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Propagation of single-cycle pulsed light beams in dispersive media

Miguel A. Porras*
Departamento de Fı´sica Aplicada, Escuela de Ingenieros de Minas, Universidad Polite´cnica de Madrid, Rios Rosas 21,

E-28003 Madrid, Spain
~Received 7 June 1999!

We describe a family of solutions of the three-dimensional envelope equation in dispersive media beyond
the slowly varying envelope approximation@T. Brabecet al.,Phys. Rev. Lett.78, 3282~1997!# that represents
few-cycle pulsed light beams evolving due to gain~losses!, phase and gain dispersion, diffraction, and space-
time focusing. We then show that group velocity dispersion tends to bend the propagating pulse front, in the
same sense as diffraction in anomalous dispersion, and in the opposite sense in normal dispersion. In the latter
case, the diffraction-induced pulse front curvature and the associated pulse broadening can be eliminated along
the whole propagation by setting the diffraction length equal to the dispersion length. Simple analytic expres-
sions for these dispersion-diffraction coupled effects are given.@S1050-2947~99!08912-X#

PACS number~s!: 42.65.Re, 42.65.Sf, 42.25.Bs, 42.60.Jf
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I. INTRODUCTION

The present investigation is concerned with the propa
tion of narrow light beams of a few femtoseconds of durat
in dispersive media. The rapid development of methods
pulse compression have made the experimental productio
such ultrashort few-cycle, even single-cycle, pulses feasi
For this reason, much attention is being paid to their pro
gation in vacuum, linear and nonlinear media, and opt
systems.

In this sense, it has been shown@1# that the useful con-
cepts of carrier frequency and envelope can be exten
down to the limit of single-cycle pulses. The usual first-ord
envelope equation within the slowly-varying-envelope a
proximation ~SVEA!, however, fails at describing the
propagation @2–4#. The lack of an appropiate envelop
propagation equation for single-cycle pulses appears no
be resolved with the recent derivation of an extended non
ear envelope equation@1#, which is valid within a wider
frame called the slowly-evolving-wave approximatio
~SEWA!. This envelope equation incorporates, together w
the effects of dispersion and nonlinearity, the unavoida
effects of diffraction@5# and space-time focusing,@2# or the
dependence of diffraction with frequency, in the propagat
of few-cycle pulses.

On the other hand, the diffraction of few-cycle pulses
vacuum has been studied for some time@6#. Due to the su-
perbroad spectra of these pulses, the different spectral c
ponents also diffract differently. In the space-time doma
this results in some diffraction-induced transformations
the temporal form of the pulse~otherwise undeformable!,
which include pulse polarity reversal@7#, time differentiation
on propagation@5#, pulse broadening, and redshift of th
spectrum along each beam cross section@6,8#. Diffraction is
also responsible for an increasing pulse front curvature@8#
on propagation due to the time delay of arrival between
ferent parts of the pulse at each cross section@8,6,9#. In
practice, the net effect of this curvature is an increase of
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pulse duration in a large area receiver.
In this paper, we develop a method to obtain physica

meaningful, few-cycle, beamlike solutions of the thre
dimensional linear SEWA envelope equation, from the u
physical few-cycle solutions of the one-dimensional SVE
equation. These ultrashort pulsed-beam solutions propa
under the coupled effects of gain~absorption!, phase and
gain dispersion of any order, and diffraction, with the prop
inclusion of space-time focusing.

The aforementioned diffraction-induced phenomena
vacuum are also encountered in the solutions of the SE
envelope equation in dispersive media. Moreover, we find
a phenomenon peculiar to dispersive propagation of
trashort pulsed beams, an additional dispersion-indu
pulse front curvature which may enhance, reverse, or s
press the diffraction curvature along the entire propaga
of the pulsed beam. The suppression of the curvature,
therefore of the associated pulse broadening, occurs
normal group velocity dispersion~GVD! when the strengths
of diffraction and dispersion, measured by their characteri
axial length scales of interaction, are similar. This can
qualitatively understood as a dispersive compensation of
diffraction-induced propagation path difference between
more tilted low-frequency components of the spectrum a
the less tilted high-frequency components, in a similar w
that adequate dispersive optical elements have been d
oped@10# to avoid pulse front distortion due to path diffe
ences in the focusing of ultrashort pulses by lenses@11#.

II. ULTRASHORT PULSED-BEAM PROPAGATION
EQUATION BEYOND THE SVEA

The propagation of an electromagnetic wave in a lin
dispersive medium can be described by the wave equati

DE~r,t !2
1

c2
] t

2E
2`

t

dt8«~ t2t8!E~r,t8!50, ~1!

where «(t)5(1/2p)*2`
` «(v)exp(2ivt), and «(v) is the

electric permittivity of the medium. For the carrie
enveloped fieldE(r,t)5A(r,t)exp(2iv0t1ib0z), with b0
5069 ©1999 The American Physical Society
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5070 PRA 60MIGUEL A. PORRAS
5Re@k(v0)#, k(v)5(v/c)A«(v), and for pulses as shor
as a single optical period,Dt5T052p/v0, the following
first-order envelope equation has been derived recently@1#:

]jA5S 2
a0

2
1 iD DA1

i

2b0
S 11 i

b1

b0
]tD 21

D'A, ~2!

where D'5]x
21]y

2 , t5t2b1z, j5z, bm

5Re@]v
mk(v)uv0

#, am52 Im@]v
mk(v)uv0

#, and

D52
a1

2
]t1 (

m52

`
bm1 iam/2

m!
~ i ]t!

m ~3!

is the dispersion operator.@Throughout this paper, the sym
bols Dt and Dv without any subscript stand for the fu
width at half maximum~FWHM! of uAu2 and its Fourier
transformuÂu2.#

The validity of Eq.~2! is restricted by the condition@1#

u]jAu!b0uAu, ~4!

which requires a small change of the envelopeA as the pulse
covers a distance equal to the wavelength 2p/b0. In Bra-
bec’s derivation@1# of Eq. ~2!, the quotientb1 /b0 is next
replaced with 1/v0 and the difference is neglected, under t
additional condition v f.vg , where v f5v0 /b0 and vg

5b1
21 are the phase and group velocities, respectively, at

carrier frequency@1#. Although the numerical difference
will be negligible in most cases, Eq.~2! without this approxi-
mation will yield ~as we shall see! more consistent analytic
expressions, at least for linear propagation. Space-time
cusing is included in Eq.~2! in its lowest order, as defined i
the original reference@2#, whereas in the SEWA equatio
this lowest order is slightly falsified. For clarity, we sha
refer to Eq.~2! under the only condition~4! as the linear
envelope equation under the slowly-evolving-envelopeap-
proximation~SEEA!. On removing the conditionv f.vg on
the material medium, this SEEA equation applies under
same requirements for the material medium, implicit in t
condition~4!, as the usual SVEA equation but retains, at
same time, its validity down to single-cycle pulses.

III. PULSED GAUSSIAN BEAM SOLUTION
OF THE SEEA ENVELOPE EQUATION

Searching for solutions of Eq.~2!, we multiply by @1
1 i (b1 /b0)]t#, Fourier transform the equation, and ma
the changeÂ5Â8 exp@(2a0/21 iD̂ )j#, where Â8(v2v0)
andD̂(v2v0) are the temporal Fourier transforms ofA and
the operatorD, respectively. We then obtain the usual equ
tion for paraxial diffraction,

D'Â812ibe]jÂ850, ~5!

with an effective propagation constantbe5b01b1(v
2v0). This shows that the SEEA Eq.~2! accounts for the
frequency dependence of diffraction as in a first-order d
persive medium. The SEWA envelope equation yields, ho
ever,be5b0v/v0, i.e., as in a nondispersive medium whe
all the frequencies travel at the the same velocityv f . The
paraxial diffraction Eq.~5! admits the Gaussian beam sol
e

o-

e
e
e

-

-
-

tion Â85(2 i jR /q)exp(iber
2/2q), wherer 5Ax21y2, q5j

2 i jR , andjR.0 is the Rayleigh range or diffraction length
which we take independent of frequency. The envelope sp
trum is then

Â5
2 i jR

q
expS iber

2

2q D ĉ exp@~2a0/21 iD̂ !j#, ~6!

where we have introduced an arbitrary amplitudeĉ for each
frequency. Since the propagation constant is approxima
when concerned with diffraction effects, by the straight li
be5b01b1(v2v0), it will take negative values for some
frequencies, specifically for v,v02b0 /b15v0(1
2vg /v f), a frequency quite close to zero~exactly zero in the
SEWA!. To avoid these negative values ofbe , which lead to
‘‘anti-Gaussian’’ beams in the spectrumÂ, and hence to
‘‘antibeam’’ behavior in the space-time domain, we sh
takeĉ50 for frequenciesv,v0(12vg /v f). This condition
does not entail a real restriction, since the lowest freque
v02Dv/2 in the frequency band@v02Dv/2,v01Dv/2# of
pulses as short as a single period (Dt5T0) is sizeably higher
than v0(12vg /v f). For example, the frequency band
about @0.75v0,1.25v0# for a single-cycle pulse with a
Gaussian-like spectrumĉ, whereasv0(12vg /v f) remains
smaller than 0.05v0 in the near-infrared and visible window
of fused silica.

By inverse Fourier transform of Eq.~6!, we obtain

A5
2 i jR

q
expS ib0r 2

2q D H expS 2
a0

2
j D 1

2pE2`

`

dv

3ĉ~v2v0!exp~ iD̂ j!expF2 i ~v2v0!S t2
b1r 2

2q D G J .

~7!

The curly brackets can be identified with the solutionc(t,j)
of the SVEA equation

]jc5~2a0/21 iD !c, ~8!

with the initial conditionc(t,0) of spectrumĉ(v2v0), but
evaluated at the complex timet2b1r 2/2q. In conclusion,

A~r ,t,j!5
2 i jR

q
expS ib0r 2

2q DcS t2
b1r 2

2q
,j D ~9!

satisfies the 311D SEEA Eq.~2! provided thatc(t,j) sat-
isfies the 111D SVEA equation for the same material m
dium, and represents a pulsed beam propagating unde
joint effects of material gain~loss!, phase and gain disper
sion, diffraction, and space-time focusing.@The correspond-
ing SEWA solution is obtained replacingb1 with b0 /v0 in
Eq. ~9!.# The solution ~9!, henceforth referred to as th
pulsed Gaussian beam~PGB!, must satisfy condition~4! to
be physically meaningful, no matter thatc(t,j) breaks the
SVEA being a single-cycle pulse.

The factor (2 i jR /q)exp(ib0r
2/2q) in the PGB represents

a Gaussian beam at the frequencyv0 and diffraction length
jR . Its complex parameterq is usually expressed as@12#
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1

q~j!
5

1

R~j!
1

2i

b0a2~j!
, ~10!

where R(j)5j@11(jR /j)2#, a2(j)5a0
2@11(j/jR)2#, and

a0
252jR /b0 are, respectively, the curvature radii of th

phase fronts, the Gaussian width at each cross sectioj
5const and the squared waist width. This Gaussian bea
modulated in the PGB by the SVEA pulse formc(t,j),
determining the on-axis pulse form of the PGB, but eval
tion at a space-dependent complex time for off-axis po
leads to some spatiotemporal coupling phenomena.

In vacuum (a050, b05v0 /c, b151/c, D50), Eq. ~9!
yields (2 i jR /j)c(t2r 2/2cq)exp(iv0r

2/2cq), with c(t) an
invariant pulse form. This vacuum PGB has been rece
shown to generate by mode-locking axial modes of sta
laser resonators@9,8#. The transverse profile of the vacuu
PGB is almost Gaussian, of width.a(j), its form remain-
ing invariant on propagation@8#. The vacuum PGB exhibits
spatiotemporal coupling effects such as@8# pulse time delay,
broadening, and redshift growing towards the beam per
ery @8#, these effects originating from the complex time sh
r 2/2cq. In view of the PGB expression~9!, these phenomen
are qualitatively similar in material media. The diffractio
induced factor (2 i jR /q), which introduces a phasep/2 on
propagation fromj50 to the far field, explains the observe
polarity reversal@7# and time differentiation@5# of the on-
axis pulse formc(t) on propagation. In dispersive medi
this effect superimposes to the SVEA evolutionc(t,j).

IV. DIFFRACTION AND DISPERSION-INDUCED
PULSE FRONT CURVATURES

The most significant spatiotemporal coupling pheno
enon peculiar to dispersive pulsed-beam propagation is
lated to the curvature of the pulse fronts. The real p
r 2/2vgR(j) of the complex time is, both in vacuum and
dispersive medium, a diffraction-induced time shift of arriv
of the pulse at each planej for off-axis points. In space, this
time shift results in an axial shift2r 2/2R(j) increasing qua-
dratically with r, i.e., in paraxial spherical pulse fronts o
radius

RDF~j!5R~j!. ~11!

The initially plane pulse front then becomes convex
propagation, by the same amount as the wave fronts of
Gaussian beam of the carrier frequencyv0. The physical
explanation of this curvature is contained in the concep
space-time focusing. The redder frequencies, diffracted
larger angles, and therefore traveling at a reduced effec
velocity, are delayed with respect to the bluer frequenc
diffracted at smaller angles.

In dispersive media we find an additional pulse front c
vature in the PGB solutions of the SEEA equation, ma
ematically described through the imaginary part of the co
plex time b1r 2/b0a2(j), and physically originated by the
difference of group velocities between the on-axis part of
pulse and the off-axis redshifted part. In normal dispersi
the red components, diffracted further from the axis, tra
faster than blue components, nearer to the axis, while
opposite occurs in anomalous dispersion. Thus normal
is
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persion originates a pulse front bending in the opposite se
to that of the diffraction-induced one. In anomalous disp
sion, both curvatures add up.

For an initial (j50) nearly transform-limited PGB in a
lossless medium, the dispersion-induced pulse front cu
ture can be estimated as follows. Defining the redshift
off-axis points as

d5

E dvuÂu2~v2v0!

E dvuÂu2
, ~12!

using Eqs. ~6! and ~10!, approximating exp@22b1(v
2v0)r

2/b0a
2(j)#.122b1(v2v0)r

2/b0a
2(j), and taking into

account thatv05^v&5*dvuĉu2v/*dvuĉu2, we obtain the
expressiond.2@2b1r 2/b0a2(j)#(Dv rms)

2, with (Dv rms)
2

5^(v2v0)2&. Since for a transform-limited pulse the rm
duration and bandwidth are related byDt rmsDv rms.0.5, we
get

d.2
1

2

b1

b0

r 2

a2~j!

1

~Dt rms!
2

. ~13!

The values ofd are quite small in all cases; at the edge of t
beam@r .a(j)#, and in the extreme case of a single-cyc
pulse,d does not exceed 0.1v0.

On the other hand, the group velocityvg(v)
5@db(v)/dv#21 in a medium of propagation constan
b(v)5b01b2(v2v0)1b2(v2v0)2/21••• is given, for
small shiftd5v2v0, by vg(d).vg(12db2 /b1).

Then the difference of axial distancesvg(d)t2vgt trav-
eled by the redshifted off-axis pulse and the on-axis pulse
the instantt5j/vg of arrival of the on-axis pulse atj, is
given by2db2j/b1. Introducing Eq.~13! for d, the disper-
sion lengthjD52(Dt rms)

2/ub2u, and the Gaussian beam re
lation j/a2(j)5jR

2/a0
2R(j), we obtain an axial shift

6jRr 2/2jDR(j), with the plus and minus signs applying fo
normal (b2.0) and anomalous (b2,0) dispersion, respec
tively. This axial shift implies a pulse front curvature

RDS~j!.7~jD /jR!R~j!, ~14!

where the minus and plus signs stand for normal and ano
lous dispersion, respectively.

The total curvature of the pulse fronts results from t
superposition of the diffraction and dispersion-induced c
vatures, and is estimated by

1

RT~j!
.S 17

jR

jD
D 1

R~j!
. ~15!

In anomalous dispersion, the initially plane pulse fron
@1/RT(0)50# become on propagation more convex than
the nondispersive case. In normal dispersion the pulse fr
become convex or concave depending on whether diffrac
is stronger (jR,jD) or weaker (jR.jD) than dispersion. If
jR is of the order ofjD , the pulse fronts will remain plane
during propagation.

It is to be noted that the suppression of the pulse fr
curvature does not imply the elimination of the transver
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5072 PRA 60MIGUEL A. PORRAS
spreading due to diffraction. The PGB’s in fact spread at
same rate as the monochromatic Gaussian beam of the
rier frequency, this rate being determined solely by the d
fraction lengthjR . In normal dispersion we can have, fo
example, an expanding beam with a concave pulse fron

V. A PARTICULAR CASE: THE GAUSSIAN PGB

The previous results are confirmed by direct use of
PGB Eq.~9! in some particular cases. Figure 1 shows inte
sity contour plots of the propagated PGB of the initial Gau
ian spectrum

ĉ5Apb0exp@2b0
2~v2v0!2/4#, ~16!

weakly truncated forv,v02b0 /b1 to ensure beam behav
ior. For conciseness, this particular SEEA solution will
called the Gaussian PGB.

In the three plots in Fig. 1, the carrier frequency isv0
51.9 fs21, the initial Gaussian pulse duration isb0

5T0 /A2ln252.8 fs ~which corresponds toDt5T0), and the
material parameters correspond to fused silica with G
only, namely, b059193 mm21, b154881 mm21 fs, b2
521.78 mm21 fs2, and b i50 for i .2. The dispersion
length is accordingly jD52(Dt rms)

2/ub2u5b0
2/2ub2u

50.181 mm. The only difference between Figs. 1~a!, 1~b!,
and 1~c! is in the initial width, a052, 6.3, and 19mm,
respectively, to set the diffraction lengths to values sma
than, equal to, and greater than the dispersion len
namely,jR50.1jD , jD , and 10jD . Note that for these val-
ues, the SEEA condition~4!, which can now be expressed a
@1# b0jD@1, b0jR@1, is met. The observation plane is a
ways 7jR , where diffraction effects are well-developed.

FIG. 1. Intensity (uAu2) contour plots of the propagated Gaus
ian PGB when~a! jR,jD , ~b! jR5jD , ~c! jR.jD . The numerical
values of the parameters are given in the text.~d! Real field trans-
verse profile of the Gaussian PGB~dots! and its approximation with
the nontruncated Gaussian spectrum~solid line! at j50, t50. The
rest of the numerical values are those of case~b!. The detail inside
this figure shows the logarithm of the real field for a clearer co
parison.
e
ar-
-

e
-
-

r
h,

The case of Fig. 1~a! (jR50.1jD) can be assimilated to a
nondispersive propagation, since diffraction is much stron
than dispersion. The pulse fronts are then convex~they ap-
pear concave in time!. In Fig. 1~b! (jR5jD), we see that
dispersion has canceled the diffraction curvature. In fact,
pulse front remains plane during the whole propagation fr
j50 up toj→`. Finally, in Fig. 1~c! (jR510jD) the stron-
ger dispersion turns the pulse fronts concave, in spite of
opposite effect of diffraction.

For the above Gaussian PGB, simple approximate a
lytic formulas can be obtained. Note first that as we mo
from the axis towards the beam periphery (r→`), the pulse
spectrumÂ shifts fromv0 towards red frequencies, the trun
cation of the spectrum~at v.0) then becoming stronger
For the range of values ofr for which the truncation remains
small, the PGB with a nontruncated Gaussian spectr
~easier to handle analytically! is expected to reproduce accu
rately the true Gaussian PGB~with truncated spectrum!. To
estimate this range ofr, we impose a redshiftudu,v0, ob-
taining, according to Eq.~13!, r 2/a2(j),2v0

2(Dt rms)
2. For

an N-cycle pulse (b052Dt rms5NT0 /A2ln2) the result is

r ,
Np

Aln2
a~j!.3.8Na~j!, ~17!

a tranversal distance substantially larger than the beam w
.a(j).

Consequently, we consider the SVEA equation~8! with
GVD for the initial Gaussian spectrum~16! without trunca-
tion. The SVEA solution is the well-known Gaussian pul
@12# c(t,j)5(b0

2/p)1/2exp(2t2/p), with p5b0
222ib2j. The

pulse parameterp is often written in the form

1

p~j!
5

1

b2~j!
@11c~j!#, ~18!

whereb2(j)5b0
2@11(j/jD)2# and c(j)5@sgnb2#j/jD are

the Gaussian pulse duration and chirp at any planej
5const. The corresponding PGB solution of the SEEA eq
tion is obtained by replacing the real timet with the complex
time t2b1r 2/2q, and by multiplying by the Gaussian bea
of the carrier frequency:

A5
2 i jR

q
expS ib0r 2

2q D S b0
2

p D 1/2

expF2
~t2b1r 2/2q!2

p G .
~19!

This expression is still an exact solution of the SEEA Eq.~2!,
but lacks true beam behavior because of the frequenciev
,v0(12vg /v f) introduced. Figure 1~d! shows its trans-
verse amplitude profile atj50, t50 for a single-cycle
pulse (N51). The amplitude grows without bound for larg
r; however, it is virtually identical to the Gaussian PGB fro
r 50 up to r between 3a0 and 4a0 ~see the detail in loga-
rithmic scale!, as expected from Eq.~17!. Similar results are
obtained for other times and axial coordinates. Equation~19!
thus provides a simple analytic expression for the Gaus
PGB valid at any position of space where the pulse am
tude is significant. Separating now the amplitude and ph
factors in the last exponential of Eq.~19!, and using the

-
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expressions for the width, radius of curvature of the Gauss
beam, the duration, and chirp of the Gaussian pulse, Eq.~19!
can be written, after long but straightforward algebra, in
following form:

A5
2 i jR

q
expS ib0r 2

2q D S b0
2

p D 1/2

expF2
~t2b1r 2/2RT!2

p G
3expF2 idS t2

b1r 2

2RT
D GexpF @12 ic~j!#

b0
2

b1
2r 4

b0
2a4~j!

G ,

~20!

where RT is given by Eq.~15! and d by Eq. ~13! ~with
Dt rms5b0/2). This expression explicitly shows that, forr
,3.8a, the Gaussian PGB has a Gaussian temporal form
any point of space, of durationb(j) and chirpc(j), as the
SVEA Gaussian pulse, and a complex amplitude that of
Gaussian beam of the carrier frequency. The last grow
exponential in Eq.~20! modifies slightly the Gaussian com
plex amplitude, and becomes important only for large val
of r, leading to the blow-up of the solution. Equation~20!
also shows explicitly the redshiftd of the oscillations within
the envelope and the pulse front curvature 1/RT , whose mag-
nitudes result to be exactly given by Eqs.~13! and~15! quali-
tatively derived in the preceding section.
ro
n

e

at

e
g

s

VI. CONCLUSIONS

To sum up, we have found a method to transform o
dimensional few-cycle solutions of the linear SVEA equati
into three-dimensional solutions of the linear SEWA, or t
slightly improved SEEA equation, incorporating in this wa
the effects of finite transversal size, diffraction~within the
paraxial approximation!, and first-order space-time focusin
together with the effects of gain and phase and gain dis
sion of any order. The Gaussian PGB of Eq.~19! is the
simplest example of these pulsed-beam waves in media
GVD, since it is written in the well-known terms of a mono
chromatic Gaussian beam coupled to a one-dimensio
Gaussian pulse through the space-dependent complex ti

The most significant dispersion-diffraction coupling effe
in the PGB solutions is the modification of the diffractio
induced pulse-front curvature with GVD, even its comple
suppression when the dispersion and diffraction lengths
similar. From a practical point of view, this means the elim
nation of the pulse broadening due to diffractive pulse fro
distortion. One can easily understand this effect by think
of diffraction as an anomalous dispersive phenomenon@13#,
since the red frequencies diffracted at larger angles adva
slower than the blue frequencies, this anomalous disper
being therefore dispensable with the proper amount of n
mal dispersion.
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