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Propagation of single-cycle pulsed light beams in dispersive media
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We describe a family of solutions of the three-dimensional envelope equation in dispersive media beyond
the slowly varying envelope approximatiff. Brabecet al., Phys. Rev. Lett78, 3282(1997)] that represents
few-cycle pulsed light beams evolving due to gdwsse$, phase and gain dispersion, diffraction, and space-
time focusing. We then show that group velocity dispersion tends to bend the propagating pulse front, in the
same sense as diffraction in anomalous dispersion, and in the opposite sense in normal dispersion. In the latter
case, the diffraction-induced pulse front curvature and the associated pulse broadening can be eliminated along
the whole propagation by setting the diffraction length equal to the dispersion length. Simple analytic expres-
sions for these dispersion-diffraction coupled effects are gi\@h050-2947@9)08912-X

PACS numbds): 42.65.Re, 42.65.Sf, 42.25.Bs, 42.60.Jf

I. INTRODUCTION pulse duration in a large area receiver.
In this paper, we develop a method to obtain physically
The present investigation is concerned with the propagameaningful, few-cycle, beamlike solutions of the three-
tion of narrow light beams of a few femtoseconds of durationdimensional linear SEWA envelope equation, from the un-
in dispersive media. The rapid development of methods oPhysical few-cycle solutions of the one-dimensional SVEA
pulse compression have made the experimental production €duation. These ultrashort pulsed-beam solutions propagate
such ultrashort few-cycle, even single-cycle, pulses feasibleinder the coupled effects of gafbsorption, phase and
For this reason, much attention is being paid to their propagain dispersion of any order, and diffraction, with the proper

gation in vacuum, linear and nonlinear media, and opticainclusion of space-time focusing. _
systems. The aforementioned diffraction-induced phenomena in

In this sense, it has been shol that the useful con- Vvacuum are also encountered in the solutions of the SEWA

cepts of carrier frequency and enve|ope can be extend@flvelope equation in dispersive media. Moreover, we find, as
down to the limit of single-cycle pulses. The usual first-ordera phenomenon peculiar to dispersive propagation of ul-
envelope equation within the slowly-varying-envelope ap-trashort pulsed beams, an additional dispersion-induced
proximation (SVEA), however, fails at describing their Ppulse front curvature which may enhance, reverse, or sup-
propagation[2—4]. The lack of an appropiate envelope Press the diffraction curvature along the entire propagation
propagation equation for single-cycle pulses appears now tef the pulsed beam. The suppression of the curvature, and
be resolved with the recent derivation of an extended nonlintherefore of the associated pulse broadening, occurs with
ear envelope equatiofil], which is valid within a wider normal group velocity dispersiof&VD) when the strengths
frame called the slowly-evolving-wave approximation Of diffraction and dispersion, measured by their characteristic
(SEWA). This envelope equation incorporates, together withxial length scales of interaction, are similar. This can be
the effects of dispersion and nonlinearity, the unavoidablélualitatively understood as a dispersive compensation of the
effects of diffraction[5] and space-time focusinfg] or the  diffraction-induced propagation path difference between the
dependence of diffraction with frequency, in the propagatiorimore tilted low-frequency components of the spectrum and
of few-cycle pulses. the less tilted high-frequency components, in a similar way
On the other hand, the diffraction of few-cycle pulses inthat adequate dispersive optical elements have been devel-
vacuum has been studied for some t|[ﬁ¢ Due to the su- ODEd[lo] to avoid pulse front distortion due to path differ-
perbroad spectra of these pulses, the different spectral corgnces in the focusing of ultrashort pulses by lerjd4s.
ponents also diffract differently. In the space-time domain,
this results in some diffraction-induced transformations of  Il. ULTRASHORT PULSED-BEAM PROPAGATION
the temporal form of the pulséotherwise undeformable EQUATION BEYOND THE SVEA
which include pulse polarity reversiad], time differentiation
on propagation5], pulse broadening, and redshift of the
spectrum along each beam cross seck®#8]. Diffraction is
also responsible for an increasing pulse front curvaf8ie
; . . . 1 t
on propagation due to the time delay of arrival between dif- AE(rt) — _atzj' dt’e(t—t")E(r,t’)=0, 1)
ferent parts of the pulse at each cross secfi®i®,9. In 2 J=
practice, the net effect of this curvature is an increase of the
where g(t)=(1/2m) [~ .e(w)exp(—iwt), and e(w) is the
electric permittivity of the medium. For the carrier-
*Electronic address: porras@dfarn.upm.es enveloped fieldE(r,t) =A(r,t)exp(—iwgt+iBy2), with B,

The propagation of an electromagnetic wave in a linear
dispersive medium can be described by the wave equation
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=Rek(w)], k(w)=(w/c) Je(w), and for pulses as short tion A’ =(—i¢g/q)exp(Bs/2q), wherer = x?>+y?, q=&

as a single optical period\t=Ty=27/w, the following
first-order envelope equation has been derived recghily

9.A ( RCNRTS PO 1+'Bla>_1A A (2
=| — = +i — | 1+i==4, :
¢ 2 2B Bo *
where A, =d5+3;, r=t— Pz, £=z, Bm
=R dgk(®)] 4], am=2Imldgk(w)|, ], and

a ” +iag/2

D=— g+ 3, Pl ) (3)
2 m=2 mI

is the dispersion operatdThroughout this paper, the sym-
bols At and Aw without any subscript stand for the full

width at half maximum(FWHM) of |A|? and its Fourier

transform|A|2.]
The validity of Eq.(2) is restricted by the conditioft]

|0:Al<Bol Al (4)

which requires a small change of the enveldpas the pulse
covers a distance equal to the wavelengt/ 2,. In Bra-
bec’s derivation1] of Eq. (2), the quotientB,/B, is next

—iér, andég>0 is the Rayleigh range or diffraction length,
which we take independent of frequency. The envelope spec-
trum is then

_ifR F(iﬂerz
ex 2q

)z:/;exp[(—ao/2+ilﬁ)§], (6)

where we have introduced an arbitrary amplitq}d&)r each
frequency. Since the propagation constant is approximated,
when concerned with diffraction effects, by the straight line
Be=Bot B1(w—wy), it will take negative values for some
frequencies, specifically for w<wy— Bo/B1=wo(1
—vg4/vy), afrequency quite close to zefexactly zero in the
SEWA). To avoid these negative values@f, which lead to
“anti-Gaussian” beams in the spectruﬁn, and hence to
“antibeam” behavior in the space-time domain, we shall
take =0 for frequencieso< wo(1—Vvg/v¢). This condition
does not entail a real restriction, since the lowest frequency
wo—Aw/2 in the frequency banfwy— A w/2,wy+ A w/2] of
pulses as short as a single periad € Ty) is sizeably higher
than wo(1—-vg4/vy). For example, the frequency band is
about [0.750(,1.2504] for a single-cycle pulse with a

replaced with 1lbg and the difference is neglected, under theGaussian-like spectrurfz/, whereaswq(1—Vvg/vy) remains

additional conditionvi=vy, where vi=wy/By, and vq

smaller than 0.0 in the near-infrared and visible window

= ,81’1 are the phase and group velocities, respectively, at thef fused silica.

carrier frequency{1]. Although the numerical differences

will be negligible in most cases, E(R) without this approxi-

mation will yield (as we shall seemore consistent analytic —iég i Bor?
expressions, at least for linear propagation. Space-time fo/*~ Tex 24

cusing is included in Eq2) in its lowest order, as defined in
the original referencg2], whereas in the SEWA equation
this lowest order is slightly falsified. For clarity, we shall

refer to Eq.(2) under the only condition4) as the linear
envelope equation under the slowly-evolviegvelopeap-
proximation(SEEA). On removing the condition;=vgy on

By inverse Fourier transform of E@6), we obtain
(o} 1 * d
B e B

]
Xip(w—wg)expiDé)exp —i(w—wo)| 7— ——| | |-

29
)

the material medium, this SEEA equation applies under thd he curly brackets can be identified with the solutif(r, £)
same requirements for the material medium, implicit in theof the SVEA equation
condition(4), as the usual SVEA equation but retains, at the

same time, its validity down to single-cycle pulses.

Ill. PULSED GAUSSIAN BEAM SOLUTION
OF THE SEEA ENVELOPE EQUATION

Searching for solutions of Eq2), we multiply by [1

+i(B1/Bp)d,], Fourier transform the equation, and make

the changeA=A’ exf(—ay/2+iD)&], where A’ (w— wo)
andD(w— w,) are the temporal Fourier transformsAand

with the initial conditiony(7,0) of spectrum}(w— wg), but

evaluated at the complex time- 8,r2/2q. In conclusion,

r . 2
A(r,7,&)= :fReX[<I'82(;r )zﬁ(r

,81r2
- Wg) 9

satisfies the 31D SEEA Eq.(2) provided thaty(r,&) sat-

the operatoD, respectively. We then obtain the usual equa-isfies the 1D SVEA equation for the same material me-
tion for paraxial diffraction, dium, and represents a pulsed beam propagating under the
joint effects of material gairfloss, phase and gain disper-
sion, diffraction, and space-time focusiidhe correspond-
ing SEWA solution is obtained replacing; with By/wq in
with an effective propagation constang.=Bq+ B1(w Eqg. (9).] The solution (9), henceforth referred to as the
—wp). This shows that the SEEA E@2) accounts for the pulsed Gaussian beafPGB), must satisfy conditior{4) to
frequency dependence of diffraction as in a first-order disbe physically meaningful, no matter thé( r,&) breaks the
persive medium. The SEWA envelope equation yields, howSVEA being a single-cycle pulse.

ever, B.= Bowl wy, i.e., as in a nondispersive medium where  The factor (iég/q)expBor?/2q) in the PGB represents
all the frequencies travel at the the same velogity The a Gaussian beam at the frequengy and diffraction length
paraxial diffraction Eq(5) admits the Gaussian beam solu- &g. Its complex parametaq is usually expressed #32]

A A’ +2iB.dA" =0, (5)
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1 1 2i persion originates a pulse front bending in the opposite sense
= + Y (100  to that of the diffraction-induced one. In anomalous disper-
q(&)  R(&)  poa’(¢) sion, both curvatures add up.

For an initial (¢=0) nearly transform-limited PGB in a
_ _ A2
where R(€) =&[1+ (¢r/€)%], a*(§)=ag[1+(¢/€r)%], and  |gssless medium, the dispersion-induced pulse front curva-

ap=2¢r/Bo are, respectively, the curvature radii of the tyre can be estimated as follows. Defining the redshift for
phase fronts, the Gaussian width at each cross segtion off-axis points as
=const and the squared waist width. This Gaussian beam is

modqute_d in the PGB by the SVEA pulse fory(7,¢), dw|A|2(w—w )

determining the on-axis pulse form of the PGB, but evalua- 0

tion at a space-dependent complex time for off-axis points o= : (12
leads to some spatiotemporal coupling phenomena. f dw|A|?

In vacuum =0, By=wg/c, B1=1/c, D=0), EQ.(9)
yields (=i &g/ &) y(7—r?2cq)exp{wor’/2cg), with ¢(7) an ysing Egs. (6) and (10), approximating exp-2B;(w
invariant pulse form. This vacuum PGB has been recently_wo)rz/ﬂoaz(g)]:l_zﬁl(w_wo)rz/ﬁoaz(g), and taking into
shown to generate by mode-locking axial modes of Stabl%ccount thate =<w)=fdw|¢://|2w/fdw|z}|2 we obtain the
laser resonatorg9,8]. The transverse profile of the vacuum expressiorﬁ:O—[ZB 121 80a2(8) [(Awym)? ,with (Aw)?
PGB is almost Gaussian, of widtha(¢), its form remain- ~ (0 wp)?). Sincel for g ramsform.imited pulse e s

ing invariant on propagatiof8]. The vacuum PGB exhibits ! . N
spatiotemporal coupling effects such[&8% pulse time delay, gg:atlon and bandwidth are related 8 wms=0.5, we

broadening, and redshift growing towards the beam periph
ery [8], these effects originating from the complex time shift

2
r?/2cq. In view of the PGB expressioi®), these phenomena S~ — l B " ; (13
are qualitatively similar in material media. The diffraction- 2 Bo a%(é) (Atyyd®

induced factor ¢iér/q), which introduces a phase/2 on . _
propagation from¢=0 to the far field, explains the observed The values of5 are qu[te small in all cases; at the gdge of the
polarity reversa[7] and time differentiatior{5] of the on- P€am[r=a(£)], and in the extreme case of a single-cycle
axis pulse formy(7) on propagation. In dispersive media, PulSe,é does not exceed Qui. ,
this effect superimposes to the SVEA evolutig(ir, £). On the o_tgle_r hand, the group velocity ()
=[dB(w)/dw]™* in a medium of propagation constant
IV. DIFFRACTION AND DISPERSION-INDUCED B(©) = Bot Ba( = wo) + Ba(w =) ?/2+ - - is given, for

PULSE FRONT CURVATURES small shift 6= w—wo, by v4(8) =v4(1—5B,/B1).
Then the difference of axial distanceg(d)t—vgt trav-

The most significant spatiotemporal coupling phenom-eled by the redshifted off-axis pulse and the on-axis pulse, at
enon peculiar to dispersive pulsed-beam propagation is rehe instantt=¢&/v, of arrival of the on-axis pulse &, is
lated to the curvature of the pulse fronts. The real pargiven by —68,¢/8;. Introducing Eq(13) for 8, the disper-
r2/2ng(§) of the complex time is, both in vacuum and a sion lengthép=2(At,md?/|B,|, and the Gaussian beam re-
dispersive medium, a diffraction-induced time shift of arrival lation &/a?(¢)=¢2/a3R(£), we obtain an axial shift
of the pulse at each plargfor off-axis points. In space, this + £.r?/2£5R(£), with the plus and minus signs applying for
time shift results in an axial shift r?/2R(¢) increasing qua- normal (B,>0) and anomalous@,<0) dispersion, respec-
dratically with r, i.e., in paraxial spherical pulse fronts of tively. This axial shift implies a pulse front curvature

radius
Rps(§) =7 (ép/érIR(E), (149

Ror(€) =R(§). (11

where the minus and plus signs stand for normal and anoma-
The initially plane pulse front then becomes convex onlous dispersion, respectively.
propagation, by the same amount as the wave fronts of the The total curvature of the pulse fronts results from the
Gaussian beam of the carrier frequenoy. The physical superposition of the diffraction and dispersion-induced cur-
explanation of this curvature is contained in the concept ofatures, and is estimated by
space-time focusing. The redder frequencies, diffracted at
larger angles, and therefore traveling at a reduced effective 1 [ _&| 1
velocity, are delayed with respect to the bluer frequencies, Ri(§) |\~ &R
diffracted at smaller angles.

In dispersive media we find an additional pulse front cur-In anomalous dispersion, the initially plane pulse fronts
vature in the PGB solutions of the SEEA equation, math{1/R+(0)=0] become on propagation more convex than in
ematically described through the imaginary part of the comthe nondispersive case. In normal dispersion the pulse fronts
plex time Br?/Bya%(&), and physically originated by the become convex or concave depending on whether diffraction
difference of group velocities between the on-axis part of thés stronger £g<¢&p) or weaker €g>&p) than dispersion. If
pulse and the off-axis redshifted part. In normal dispersionég is of the order of¢p, the pulse fronts will remain plane
the red components, diffracted further from the axis, travedduring propagation.
faster than blue components, nearer to the axis, while the It is to be noted that the suppression of the pulse front
opposite occurs in anomalous dispersion. Thus normal dissurvature does not imply the elimination of the transversal

(15
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The case of Fig. ) (ég=0.1¢p) can be assimilated to a
nondispersive propagation, since diffraction is much stronger
than dispersion. The pulse fronts are then conftbry ap-
pear concave in time In Fig. 1(b) (ég=¢&p), we see that
dispersion has canceled the diffraction curvature. In fact, the
pulse front remains plane during the whole propagation from
£=0 up to&—o. Finally, in Fig. Xc) (ég=10¢p) the stron-
ger dispersion turns the pulse fronts concave, in spite of the
5 time(fs) -5 20 time (fs) -20 opposite effect of diffraction. _ _

@ For the above Gaussian PGB, simple approximate ana-
lytic formulas can be obtained. Note first that as we move

\/ from the axis towards the beam periphery{«), the pulse

. spectrumA shifts fromw, towards red frequencies, the trun-

cation of the spectrunfat «=0) then becoming stronger.

wag B For the range of values offor which the truncation remains

small, the PGB with a nontruncated Gaussian spectrum

: . (easier to handle analyticajlys expected to reproduce accu-

L Zr/ac* 6 rately the true Gaussian PGRiith truncated spectrumTo
estimate this range af we impose a redshiftd| < wg, ob-

FIG. 1. Intensity (A[?) contour plots of the propagated Gauss- taining, according to Eq(13), r?/a?(£)<2w3(Atumd?. For

ian PGB wher(@) ér<{p, (b) ég=¢p, (€) £r>&p - The numerical  gn N-cycle pulse b= 2At,,=NTy/\/2In2) the result is
values of the parameters are given in the tédt.Real field trans-

verse profile of the Gaussian PGaots and its approximation with

20

1 (mm)

200 0

1 (mm)

—10 In(ReE) g

ReE (arb. units) 1

o

-200 time (fs) 200

the nontruncated Gaussian spectrigolid line) at{=0, 7=0. The r<N_7Ta(§)23_g\| a(f), (17)

rest of the numerical values are those of cdpeThe detail inside \/ﬁ

this figure shows the logarithm of the real field for a clearer com-

parison. a tranversal distance substantially larger than the beam width
=a(¢).

spreading due to diffraction. The PGB's in fact spread at the Consequently, we consider the SVEA equati@ with
same rate as the monochromatic Gaussian beam of the c&pVD for the initial Gaussian spectruiid6) without trunca-
rier frequency, this rate being determined solely by the diftion. The SVEA solution is the well-known Gaussian pulse
fraction length&g. In normal dispersion we can have, for [12] ¢(7,&) = (b§/p)*“%exp(—7/p), with p=bj—2i B,&. The
example, an expanding beam with a concave pulse front. pulse parametep is often written in the form

V. A PARTICULAR CASE: THE GAUSSIAN PGB 1 _ 1 [1+c(&)] (18)
2 1
The previous results are confirmed by direct use of the P& b%(9)
PGB Eq.(9) in some particular cases. Figure 1 shows inten'wherebz —b2 1+ (& €~)2] and (&) =[san /& are
_sity contour plots of the propagated PGB of the initial Gauss—th e G au(sgs)i an Op[)ul s e(§ dgt?r)at]i on anfjg) chErpg gZ]agnf/D plane
lan spectrum =const. The corresponding PGB solution of the SEEA equa-
" 5 ) tion is obtained by replacing the real timevith the complex
dr=mboexil — bj(w— wo) /4], (16 time r— B,r%2q, and by multiplying by the Gaussian beam

of the carrier frequency:
weakly truncated fow<wy— By /B4 to ensure beam behav-

ior. For conciseness, this particular SEEA solution will be —ir i Bor2\ [ b3\ 2 (17— B1r2/2q)?

called the Gaussian PGB. A= q D( 2q )( ) %—T}
In the three plots in Fig. 1, the carrier frequencydig

=1.9fs', the initial Gaussian pulse duration ib,

=To/\2In2=2.8 fs (which corresponds tat=T,), and the  This expression is still an exact solution of the SEEA &,
material parameters correspond to fused silica with GVDput lacks true beam behavior because of the frequencies
only, namely, 3o=9193 mm*, B;=4881 mm'fs, B  <wy(1—v4/v() introduced. Figure @) shows its trans-
=21.78 mm'fs?, and B;=0 for i>2. The dispersion verse amplitude profile at=0, r=0 for a single-cycle
length is accordingly &,=2(Atmd?/|B2l=b3/2|Bs|  pulse N=1). The amplitude grows without bound for large
=0.181 mm. The only difference between Fig&)11(b),  r; however, it is virtually identical to the Gaussian PGB from
and Xc) is in the initial width, ag=2, 6.3, and 19um, r=0 up tor between 3, and 4, (see the detail in loga-
respectively, to set the diffraction lengths to values smallerithmic scale, as expected from Eq17). Similar results are
than, equal to, and greater than the dispersion lengthgbtained for other times and axial coordinates. Equati@h
namely,ég=0.1¢p, &p, and 1& . Note that for these val- thus provides a simple analytic expression for the Gaussian
ues, the SEEA conditiofd), which can now be expressed as PGB valid at any position of space where the pulse ampli-
[1] Boép>1, Boér>1, is met. The observation plane is al- tude is significant. Separating now the amplitude and phase
ways 7¢g, where diffraction effects are well-developed. factors in the last exponential of E§19), and using the

5 :
(19
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expressions for the width, radius of curvature of the Gaussian

beam, the duration, and chirp of the Gaussian pulse(F,.
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VI. CONCLUSIONS
To sum up, we have found a method to transform one-

can be written, after long but straightforward algebra, in thegimensional few-cycle solutions of the linear SVEA equation

following form:

_ iR

o p( iﬂorz) ( b_S) 1’2)(% (- ,Ber/ZRT)T
q 29 J\p p

Xexr{—ié(r—'gl—rj ex [1-ic(8)] 'B%H
2Ry by B9

A

(20

where Ry is given by Eq.(15) and § by Eq. (13) (with
At ns=bo/2). This expression explicitly shows that, for

into three-dimensional solutions of the linear SEWA, or the
slightly improved SEEA equation, incorporating in this way
the effects of finite transversal size, diffractiowithin the
paraxial approximation and first-order space-time focusing,
together with the effects of gain and phase and gain disper-
sion of any order. The Gaussian PGB of E9) is the
simplest example of these pulsed-beam waves in media with
GVD, since it is written in the well-known terms of a mono-
chromatic Gaussian beam coupled to a one-dimensional
Gaussian pulse through the space-dependent complex time.
The most significant dispersion-diffraction coupling effect
in the PGB solutions is the modification of the diffraction-
induced pulse-front curvature with GVD, even its complete
suppression when the dispersion and diffraction lengths are
similar. From a practical point of view, this means the elimi-

<3.8a, the Gaussian PGB has a Gaussian temporal form afation of the pulse broadening due to diffractive pulse front

any point of space, of duration(¢) and chirpc(é), as the

distortion. One can easily understand this effect by thinking

SVEA Gaussian pulse, and a complex amplitude that of thef diffraction as an anomalous dispersive phenomdd&h

Gaussian beam of the carrier frequency. The last growingince the red frequencies diffracted at larger angles advance
exponential in Eq(20) modifies slightly the Gaussian com- slower than the blue frequencies, this anomalous dispersion
plex amplitude, and becomes important only for large value$eing therefore dispensable with the proper amount of nor-

of r, leading to the blow-up of the solution. Equati¢20)
also shows explicitly the redshitt of the oscillations within
the envelope and the pulse front curvaturigl,/whose mag-
nitudes result to be exactly given by E¢&3) and(15) quali-
tatively derived in the preceding section.

mal dispersion.
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