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Quantum-dot laser with periodic pumping
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We sketch the theory of a laser based on quantum dots which are pumped by a surface acoustic wave.
Collective emission in the sense of superradiance is possible if the dots are identical and arranged along a
straight line. In that case strong noise suppression is possible in the photocurrent spectrum, even for high
output intensity.@S1050-2947~99!02512-3#

PACS number~s!: 42.50.Fx, 42.50.Lc, 42.55.Px, 77.65.Dq
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I. INTRODUCTION

Semiconductor quantum dots have an interesting pote
for quantum-optical applications. The growth of dots w
transition frequencies in the optical range is very well co
trolled @1#. Such a zero-dimensional system leads to mu
higher gain than bulk or two-dimensional quantum-w
structures, as shown theoretically as well as experiment
@1–4#. Dots as active media in semiconductor lasers h
already been established, and even lasing of a single dot
semiconductor microcavity can be achieved@5–7#. From a
theoretical point of view, the discrete states allow one to tr
dots much like atoms. This makes for a much simpler sit
tion than, for example, the continua of states in quant
wells. Furthermore, the semiconductor samples are s
compared to atomic beams or even clouds of trapped ato

If a dot is to be operated as a low-noise light source it h
better be pumped in an as regular manner as possible.
moḡlus and Yamamoto’s scheme of a single-photon turns
device @8# driven by an alternating voltage source is o
method for a regularized pump. A surface acoustic wa
~SAW! could as well periodically deliver electrons and hol
at a well localized array of dots or even a single dot,
already suggested in@9#. If ~more or less! identical quantum
dots could be arranged along a straight line a SAW w
wave fronts parallel to that line would entail collective em
sion by the array; with suitable mirrors mounted one co
thus realize a superradiant laser. The present paper ske
the theory of such a laser and demonstrates interesting
tential for noise suppression. In contrast to the model o
superradiant laser with collectively pumped three-level
oms suggested in Refs.@10–13# the noise reduction in the
present case is due to the periodic simultaneous pumpin
the dots by the SAW and can be optimal even for stro
output.

II. THE PUMP MECHANISM

To briefly explain our concept, let us consider a semic
ductor quantum well surrounded by a piezoelectric mate

*Electronic address: fritz.haake@uni-essen.de
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with an interdigital transducer~IDT! on top of the crystal
~Fig. 1!. A mechanical SAW is generated by applying
high-frequency signal to the IDT. The fundamental acous
wavelengthl0 and the frequencyf 05v/l0 are established
by the interdigital electrode spacing, wherev is the sound
velocity of the crystal. With l0;1 –3 mm and v
;3 km s21, frequencies in the GHz range are achievab
The acoustic wave is accompanied by a piezoelectric fi
which gives an additional potential for electrons and ho
and so periodically modulates the band edges. For h
enough SAW amplitudes, optically generated excitons in
quantum well will be dissociated by the piezoelectric fie
~inset of Fig. 1!. A field strength of the order of 500 V/cm
suffices and results in a wave amplitude of 50–150 me
depending on the wavelength. Carriers are then trappe
the moving lateral potential superlattice of the sound wa
and recombination becomes impossible: Electrons will s
in the minima of the wave, while holes move with th
maxima@14–16#. A simple estimate of the spatial widthDd
of the lateral ground state in the wave potential yie
Dd/l,0.02. We thus obtain a series of equally spac
quantum wires moving in the plane of the quantum well. T

FIG. 1. Schematic sketch of a SAW sample. The material of
system may be, for example, GaAs for the piezoelectric crys
InGaAs for the quantum well, and InP for the stressor. The in
depicts the storage of optically generated excitons in the potentia
the surface acoustic wave.
4986 ©1999 The American Physical Society
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PRA 60 4987QUANTUM-DOT LASER WITH PERIODIC PUMPING
length of these wires is given by the width of the IDT’
typically 300mm. The occupation of the wires with elec
trons and holes can be controlled by the pump strength of
laser and is of the order 103–104 carriers per wire.

A quantum dot for our purposes may be established b
stressor on top of the crystal which causes a local poten
minimum in the quantum well underneath. The linear dime
sion of typical stressor dots with transition frequencies in
optical range is about 10–30 nm while their potential dep
are about 100 meV for electrons and 50 meV for holes.
further investigations, we assume that the dot is so small
there is only one electron and one hole level. Occupation
these levels with two carriers of opposite spin is forbidd
by Coulomb blockade. When both levels are occupied
exciton is formed, so there is just a single exciton state.
should speak of an excited, a semiexcited, and an unexc
dot for an exciton, only one carrier~electron or hole!, and no
carrier present. An excited/unexcited dot may then be trea
as simple two-level system with pseudospin operat
S1 ,S2 creating and annihilating an exciton. This syste
may interact with a single-mode light field. In the semie
cited case no interaction with the light field is possible a
the creation of an exciton is only possible by capturing
missing carrier. While being crossed by a moving quant
wire an empty dot may pluck one of the carriers offered
the dot potential is deep enough a carrier will drop into it a
stay there, while the wave is moving on.

The scheme just sketched may indeed produce the
signed properties of the pump. First, the periodicity of arr
ing carriers is given by the SAW, as the moving wires a
well separated. Second, with a density of about 3 carriers
100 nm in a wire, there is a high probability for the dot
capture an electron or hole within the crossing time of a w
Of course, a single dot makes but inefficient use of the m
ing wires, as only one of 104 carriers is used per cycle. If on
had several dots lying in a row parallel to the wires, bet
pump yields could arise. This arrangement would be nee
for a superradiant laser and is shown in Fig. 2. Another w
to increase efficiency may be focusing the SAW onto one
few dots.

Our periodically pumped dot~PPD! will in practice suffer
from degradation of complete regularity. One cause of pu
fluctuations is the finite width of the lateral SAW groun
state, as mentioned above. This leads to variations in
instant of pumping. As indicated above, this will be a fe
percent of the pump periodT given by the SAW frequency
Pump noise also results when no carrier is plucked from
crossing wire; this may be minimized by a high-electron a

FIG. 2. Arrangement for parallel pumping of several identic
quantum dots.
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hole generation rate in the SAW, so all wires are well occ
pied. For simplicity we neglect both types of noise here a
consider the case of zero pump fluctuations. Such an id
ized pump process allows for a simple analytic descriptio

For quantum-optical applications we have to couple
PPD to a single-mode light field inside a resonator. As
dot is pumped by a SAW, we cannot put a semiconduc
Bragg mirror, which would block the mechanical wave,
top of the device. For the back side this would not be
problem. We, therefore, need at least one external mirror
the cavity. The carriers could be generated outside the ca
since the electrons and holes can be transported over s
millimeters by the SAW.

Theoretical description

For the theoretical description we work with the unexcit
~ground! stateu0&, the excited stateu1&, and the semiexcited
statesue& anduh&, which have either an electron~e! or a hole
~h! in the dot. As already mentioned the ground and exci
states form a two-level system coupled by the pseudos
operatorsS1 ,S2 . The operatorS1 generates an exciton
from the ground state, whereasS2 annihilates the exciton in
favor of the ground state. Both semiexcited states are a
hilated byS6 ,

S6ue&5S6uh&50; ~1!

these states do not couple to the light field. The density m
trix of a single quantum dot may be written in the gene
form

s~ t !5s11~ t !u1&^1u1s00~ t !u0&^0u1s01~ t !u0&^1u

1s10~ t !u1&^0u1see~ t !ue&^eu1shh~ t !uh&^hu.

~2!

Note that no coherences excepts01 ands10 are ever created
The pumping causes the following transition.

An excited quantum dot has no free state for an additio
carrier so this state remains unchanged:

u1&^1u→u1&^1u. ~3a!

For the following transitions we must distinguish if an ele
tron or a hole arrives. For an incoming electron we find
the semiexcited states

ue&^eu→ue&^eu and uh&^hu→u1&^1u, ~3b!

i.e., the single-electron state is occupied and remains
changed while the single-hole state is brought to the exc
state. For an incoming hole we correspondingly find

ue&^eu→u1&^1u and uh&^hu→uh&^hu. ~3b8!

The ground state will be transferred to one of the semi
cited states,

u0&^0u→ue&^eu or uh&^hu. ~3c!

Finally, all off-diagonal elements are destroyed,

u1&^0u, u0&^1u→0. ~3d!

l
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4988 PRA 60CHRISTIAN WIELE, FRITZ HAAKE, AND YURI M. GOLUBEV
We may write the pump process described by Eqs.~3a!–
~3d! in terms of the density matrixs i j (t020) for the quan-
tum dot. Directly after the pump act with an electron we fi
at t010

s11~ t010!5s11~ t020!1shh~ t020!,

s00~ t010!50,

s10~ t010!5s01~ t010!50, ~4!

shh~ t010!50,

see~ t010!5see~ t020!1s00~ t020!.

For pumping with a hole we find the corresponding eq
tions by interchanging indexe andh in Eq. ~4!. If we couple
the quantum dot to a single light mode the whole statist
operator has the form

r~ t !5(
j ,k

r jku j &^ku, ~5!

where the indices take on the valuesj ,k50,1,e,h, and the
r jk are operators acting in the Hilbert space of the fi
mode. According to Eq.~4! we may formally introduce the
pump operatorsPe for pumping with electrons andPh for
pumping with holes. We may write

r~ t i10!5Per~ t i20! ~6!

and

r~ t i1T/210!5Phr~ t i1T/220!. ~7!

If the time evolution of the statistical operator without pum
ing is given by the Liouville–von Neumann generatorL as

ṙ5Lr, ~8!

the formal solution over one period reads

r~ t01T10!5Pee
LT/2PheLT/2r~ t010!, ~9!

and may be read as a stroboscopic quantum map.

III. SUPERRADIANT LASER

We now come to the description of our superradiant la
model forN quantum dots. As shown in Fig. 2 all quantu
dots are assumed to lie in a row parallel to the pump wa
This ensures that all quantum dots are pumped at the s
instant. Furthermore the coupling constantg should be the
same for all quantum dots and the field mode is very wea
damped with the ratek. To get a large number of photons
the cavity we require1

1

T
,ANg@k. ~10!

1For the strong-coupling regime the condition onN is not restric-
tive; see Ref.@17# whereg/k.1 is advocated.
-

l

r

e.
me

ly

If we neglect spontaneous emission and assume zero de
ing between dots and field mode the interaction-picture m
ter equation in between two pump acts reads

ṙ5Lr,

5g(
i 51

N

@aS1
i 2a†S2

i ,r#1
k

2
$@a,ra†#1@ar,a†#%.

~11!

The indexi labels quantum dots. To solve the master eq
tion we resort to certain approximations. The limitk
!1/T,ANg, Eq. ~10! allows an adiabatic elimination of th
dot variables and to expand the reduced generator of
mode dynamics in powers ofkT,k/ANg. In implementing
that expansion we will follow here the strategy presented
@18# with appropriate modifications to account for the pe
odic pumping. By this expansion and going to the semicl
sical limit of large photon numbers we will obtain a Fokke
Planck equation.

P representation

Since we are looking for a Fokker-Planck equation for t
field mode consider a diagonal expansion with respec
coherent statesua&, i.e., we make use of the Glaube
SudarshanP representation,

r~ t !5E P~a,a* ,t !ua&^aud2a. ~12!

Later on we will use polar coordinates for the complex fie
amplitude as

a5Aneiw. ~13!

Now we can write the master equation~11! for the complete
density operatorP in the form

Ṗ5LP5~L01L11L!P. ~14!

Here L01L1 is the interaction operator resulting from th
Jaynes-Cummings term in Eq.~11!,

L0P5(
i 51

N

g@aS1
i 2a* S2

i ,P#5(
i 51

N

L0i P, ~15!

L1P5(
i 51

N

gS ]

]a
S1

i P1
]

]a*
PS2

i D 5(
i 51

N

L1i P. ~16!

L0 describes atomic motion under the parametric influence
the field mode, without back action on the latter; atomic ba
action on the field mode is accounted for byL1; finally, L is
the damping generator for the field mode,

LP5
k

2 S ]

]a
a1

]

]a*
a* D P5k

]

]n
nP. ~17!

The limit ~10! allows us to treatL11L perturbatively.
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IV. SYSTEMATIC APPROXIMATION OF THE FIELD
MODE GENERATOR

We now want to expand the propagatoreLt in terms of
L2L0 which is possible if the stationary photon number
large. We write the formal solution of Eq.~14! after a pump
act as

P~ t01t !5eLtP~ t010!. ~18!

If we take the pump process into account with the opera
Pe

N5) i Pe
i andPh

N5) i Ph
i the map~9! takes the form

P~ t01T10!5Pe
NeLT/2Ph

NeLT/2P~ t010!. ~19!

Due to periodic pumping it makes sense to look for the s
boscopic stationary state which obeys

P~ t01T10!5P~ t010!. ~20!

Since we are interested in the properties of the light field,
look for the solution of the reduced density operator of
field mode,

Pf5Tr dot
N P. ~21!

Here the partial trace Trdot
N refers to all quantum dots, while

we use Trdot i
for a single dot.

The expansion of the exponential term in Eq.~18! up to
first order inL2L0 reads

eLt'eL0t1E
0

t

dt8eL0(t2t8)~L2L0!eL0t8, ~22!

whereupon the master equation becomes

Ṗ~ t01t !5L0eL0tP~ t010!1~L2L0!eL0tP~ t010!.
~23!

We now proceed to the explicit form of this equation.

A. Zeroth-order treatment and stationary quantum-dot state

The zeroth-order terms in Eq.~23! yield

Ṗ(0)5L0P. ~24!

Since the field mode appears only parametrically inL0 we
can make a factorization ansatz

P(0)~ t !5Pf ~a,t !)
i 51

N

s i~a,t !, ~25!

with s i the density matrix of thei th quantum dot. By tracing
over N21 quantum dots we find the equation of motion f
a single quantum dot

ṡ i5L0is
i . ~26!

We see that all quantum dots obey the same equatio
motion and all dots are decoupled. The single-dot dynam
in between the instants of pumping is that of a two-le
atom driven by a constant electric fielda with the Rabi
frequency
rs

-

e
e

of
s
l

V5guau. ~27!

Accounting for the jumps~4! at the instants of pumping an
looking for the stationary solution of map~9! we get

s00
i ~ t010!50,

s11
i ~ t010!5

1

11sin2~VT/2!
,

shh
i ~ t010!50, ~28!

see
i ~ t010!5

sin2~VT/2!

11sin2~VT/2!
,

s10
i ~ t010!5s01

i ~ t010!50

directly after the arrival of an electron, and

s00
i ~ t01T/210!50,

s11
i ~ t01T/210!5

1

11sin2~VT/2!
,

see
i ~ t01T/210!50, ~29!

shh
i ~ t01T/210!5

sin2~VT/2!

11sin2~VT/2!
,

s10
i ~ t01T/210!5s01

i ~ t01T/210!50

after the arrival of a hole.

B. Higher-order terms

We split off the factorizing part from the complete dens
operator,

P~a,t !5Pf ~a,t !)
i 51

N

s i~a,t !1p~a,t !, ~30!

and write the nonfactorizing partp in the general form

p~ t !5 (
l 1 , . . . ,l N
r 1 , . . . ,r N

p l 1 . . . l N ,r 1 . . . r N
~ t !u l 1 , . . . ,l N&^r 1 , . . . ,r Nu.

~31!

The l i andr i describe the state of thei th dot, where the sum
runs over 0, 1,e, andh. All p l 1 . . . l N ,r 1 . . . r N

(t) are operators.

Since the trace ofs over all quantum dots is 1 the trace ofp
must vanish,

Tr dot
N p~ t !50. ~32!

With the ansatz~30! we find from the master equation~23!
evolution equations forPf (a,t) andp(a,t),
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4990 PRA 60CHRISTIAN WIELE, FRITZ HAAKE, AND YURI M. GOLUBEV
Ṗf5Tr dot
N H ~L2L0!)

i 51

N

s iJ Pf1Tr dot
N $~L2L0!p%,

~33!

ṗ5L0p1~L2L0!)
i 51

N

s i Pf

2Tr dot
N H ~L2L0!)

i 51

N

s iJ )
i 51

N

s i Pf . ~34!

To keep the expansion systematic we have taken only te
up to first order inL2L0 in Eq. ~34! for p, too. The zeroth-
order approximation ofp would be

ṗ (0)5L0p (0). ~35!

This is a homogeneous equation and we can choose arbi
initial conditions. By settingp(0)50 we see that the non
factorizing terms vanish identically for all times in this a
proximation. So we need at least terms of first order to
quantum-mechanical corrections to the factorization ans
So the second term in Eq.~33! in all is of second order in
L2L0 and leads to field mode diffusion.

C. Drift and stationary photon number

We consider the first term in Eq.~33! since only deriva-
tives of first order in the field variables are involved. B
symmetry alls i are identical. This makes it easy to rewri
the drift term in the form

Tr dot
N H L1)

i 51

N

s iJ Pf5(
i 51

N

Trdot i
$L1is

i%Pf

5N Trdot i
$L1is

i%Pf . ~36!

Next we again assume the relevant photon numbers to
large and, in addition, to have a sufficiently narrow distrib
tion for the variation of the drift coefficient across its wid
to be negligible. This leads to

Ṗf
(1)5N Trdoti

~L1is
i !Pf1LPf

5
]

]a
aS Ng

s10
i

a
1

k

2D Pf1
]

]a*
a* S Ng

s01
i

a*
1

k

2D Pf .

~37!

The polarizations10
i in the intervalt0,t,t01T/2 is given

by

s10
i ~ t !52

a

2uau
s11

i ~ t010!sin 2Vt. ~38!

Since we assumedk to be small we may replace the pola
ization by its time averages̄10

i .
s

ry

t
tz.

be
-

s̄10
i 52

a

uauT
s11

i ~ t010!E
t0

t01T/2

sin 2Vt dt

52
a

uau
1

VT

sin2~VT/2!

11sin2~VT/2!
. ~39!

Inserting this into Eq.~37! leads to

Ṗf
(1)5

]

]n
nS k2

N

nT/2

sin2~VT/2!

11sin2~VT/2!
D Pf . ~40!

Note thatṖf
(1) vanishes in the stationary regime and we fi

for the stationary photon number in the cavity

ns5
2N

kT

sin2~VsT/2!

11sin2~VsT/2!
, ~41!

with the stationary Rabi frequency

Vs5Ansg
T

2
. ~42!

Similar to the atomic microlaser we may define two dime
sionless parameters. The first one is the upper bound for
mean photon number

nmax5
N

kT
, ~43!

and the other one a dimensionless pump parameter,

u5gAnmax

T

2
. ~44!

With this we find the equation for the normalized phot
numberñ

ñ5
ns

nmax

52
sin2~uAñ/2!

11sin2~uAñ/2!
, ~45!

a transcendental equation to be solved numerically. The
hand side represents the loss and the right-hand side the
The threshold is defined as the value ofu where the slope of
gain and loss coincide atn50. The pump parameteru is
normalized such that the threshold is atu51. Stable solu-
tions are the intersections of gain and loss curves where
slope of the gain curve is lower than the one of the gain.
display the graphical solution for a single value ofu in Fig.
3. For higher values ofu we find several stable solutions, bu
our semiclassical approach does not answer the questio
which branch of the solution the laser operates or when tr
sitions between the branches occur. Such deficiency is du
the neglect of noise and is already known from the atom
microlaser.

If we rewrite Eq. ~43! with the help of Eq.~44! in the
form

nmax5
N2g2

4u2k2
, ~46!
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we see that for a fixed value ofu the photon number scale
as N2, i.e., superradiantly. The reason for superradianc
the collectivity of the emission process. However, the coll
tivity is generated by a different mechanism than in t
atomic superradiant laser of Refs.@10–13#. While in the lat-
ter case all transitions and even the pumping are cohe
we here get collectivity by pumping all quantum dots at t
same instant.

Due to our assumptions of a large photon number
small fluctuations we may write

n5ns1n, ns@n, ~47!

and get

]

]n
n'ns

]

]n
. ~48!

We now expand the drift coefficient in Eq.~40! around the
stationary photon numberns and find

Ṗf
(1)5G

]

]n
nPf ~49!

with

G5kS 12
VsT/2 cot ~VsT/2!

11sin2~VsT/2!
D . ~50!

D. Semiclassical laser equation

At this point we interrupt our perturbative treatment of t
back action (}L2L0) and propose to interpret the foregoin
results in terms of a familiar semiclassical laser equation

With the help of Eq.~11! we may write the equation o
motion for the mean photon numbern as

ṅ522gNa* s102kn, ~51!

where we have neglected photon fluctuations. In this se
Eq. ~51! is a semiclassical laser equation, since we consid
two-level system interacting with a parametric field. If w
assume a high-Q cavity the influence of the periodic pump
ing is smoothed and we coarse grain by averagings10 over
time as in Eq.~39!. Then Eq.~51! becomes

FIG. 3. Graphical solution for the stationary photon numb
according to Eq.~45!.
is
-

nt,

d

se
a

ṅ5S A

ngT/2

sin2~VT/2!

11sin2~VT/2!
2k D n, ~52!

which indeed has the form of a semiclassical laser equa
with gain and loss term. Here

A5
g2NT

2
~53!

has the sense of a linear gain of the active medium. To re
the threshold of lasing the linear amplification inside the c
ity must be higher than the field damping,A.k. In the sta-
tionary regimeṅ50 we recover the condition of vanishin
drift ~41!,

ns5
2N

kT

sin2~VsT/2!

11sin2~VsT/2!
. ~54!

E. Diffusion terms

Similarly to the last section we rewrite the second term
Eq. ~33!,

Trdot
N $~L2L0!p%5Trdot

N $Dp%5(
i 51

N

Trdot i
$Dip

i%

5N Trdot i
$Dip

i%, ~55!

where

p i5Trdot
N21$p%5p11

i ~ t !~ u1&^1u! i1p00
i ~ t !~ u0&^0u! i

1p01
i ~ t !~ u0&^1u! i1p10

i ~ t !~ u1&^0u! i

1pee
i ~ t !~ ue&^eu! i1phh

i ~ t !~ uh&^hu! i ~56!

is the trace ofp over N21 quantum dots. The last step i
Eq. ~55! again results from the equivalence of the dots. N
we find

Ṗf
(2)5NgS ]

]a
p i

101
]

]a*
p i

01D , ~57!

so what we need are the off-diagonal elementsp10
i andp01

i .
From Eq.~34! we get a set of equations for the matrixp i by
tracing overN21 dots,

ṗ i5L0ip
i1Dis

i Pf2Trdot i
$Dis

i%s i Pf . ~58!

In the Appendix we made some remarks on solving this
of equations. With the abbreviations

d65
]

]a
a6

]

]a*
a* ~59!

and

s11
i 5s11

i ~ t010!, ~60!

we get the solution

r
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p10~ t01t !52
s11

4n

a

uau S Vt1
1

2
sin~2Vt ! D d2Pf1

s11

4n

a

uau Fsin~2Vt !H 1

2
2s11sin2~Vt !J 1Vt cos~2Vt !Gd1Pf

2
a

4n3/2
s11~12s11!sin~2Vt !@VT/2 cot~VT/2!1s11#d1Pf . ~61!

If we substitutep i by its time averagep̄ i and carry out all integrals, Eq.~55! becomes

NgS ]

]a
p̄101

]

]a*
p̄01D 5knsFVsT/2 cot~VsT/2!

11sin2~VsT/2!
2

1

2
s11sin2~VsT/2!

31sin2~VsT/2!

11sin2~VsT/2!
G ]2

]n2
Pf

1
k

8ns
S 11

~Vs
2T2/4!

sin2~VsT/2!
D ]2

]w2
Pf . ~62!
he

w

e

h

for
ed
ms

ar-

e
e
ev-
the
uch
ith
is
ity

ur-
The first term is the diffusion of the photon number while t
second describes phase diffusion.

F. Fokker-Planck equation

After the systematic expansion of the master equation
may write the result up to second order in the form

]

]t
Pf5 Ṗf

(1)1 Ṗf
(2)1$•••%

5G
]

]n
nPf1Gjns

]2

]n2
Pf1

1

2
D

]2

]w2
Pf1$•••%,

~63!

with the damping rateG for photon fluctuations inside th
cavity.

G5kS 12
VsT/2 cot~VsT/2!

11sin2~VsT/2!
D . ~64!

Here we have introduced Mandel’s parameter

j5

VsT/2 cot~VsT/2!2
1

2
sin2~VsT/2!

31sin2~VsT/2!

11sin2~VsT/2!

12VsT/2 cot~VsT/2!1sin2~VsT/2!
,

~65!

which is a measure for the photon fluctuationsDn25ns(1
1j) with

j.0 for super-Poissonian distributions,

j50 for Poissonian distributions, ~66!

21<j,0 for sub-Poissonian distributions.

The rate of phase diffusion is

D5
k

4ns
S 11

Vs
2T2/4

sin2~VsT/2!
D ~67!

and is the same as in a conventional laser@19#.
e

The term$•••% contains all higher-order derivatives wit
respect ton and w. In principal we are under obligation to
keep all these derivatives since they might be important
nonclassical fields. But in this paper we are only concern
with the photoncurrent spectrum where higher-order ter
do not contribute. Apparently Eq.~63! has the form of a
Fokker-Planck equation. But notice that in the case of a n
row photon distributionG must be positive, whilej is nega-
tive. Thus Eq.~63! has no solution for large times if th
diffusion constant is negative. This reflects the fact that thP
representation of a sub-Possonian field does not exist. N
ertheless the moments of the distribution may exist, and
system at hand is an example for such a situation. With s
cautionary remarks in mind it still makes sense to work w
Eq. ~63!. If an equation with an existing stationary solution
required one may switch to a different quasiprobabil
@18,20#.

G. Photocurrent spectrum

The photocurrent spectrum may be written in the form

^ i ~0!i ~v!&5 i SN
(2)S 11

2k

ns
ReE

0

`

^n~ t !n~ t1t!&eivt dt D ,

~68!

wherei SN
(2) is the shot-noise level. To calculate the photoc

rent spectrum we have to find the correlation^n(t)n(t1t)&.
Using a standard approach we can obtain

d

dt
^n~ t !n~ t1t!&5G^n~ t !n~ t1t!&, ~69!

as well as

ṅ̄2522Gn 2̄12Gjns50. ~70!

With this the desired correlation function reads

^n~ t !n~ t1t!&5jnse
2Gt ~71!

and the photocurrent spectrum becomes
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^ i ~0!i ~v!&5 i SN
(2)S 112j

kG

G21v2D . ~72!

Since j is negative the second term reduces the spect
below shot noise. The strength of shot-noise suppression
v50 is given by

D52uju
k

G
52

y11/2 sin2~VsT/2!
31sin2~VsT/2!

11sin2~VsT/2!

@11y1sin2~VsT/2!#2/@11sin2~VsT/2!#
,

~73!

where we have used the shorthand

y52VsT/2 cot~VsT/2!. ~74!

In the case where sin2(VsT/2)'1 this becomes

D'4
11y

~21y!2
. ~75!

For y!1 it is obvious thatD→1, corresponding to complet
shot-noise suppression. In contrast to that fory@1 we have
no suppression and the light becomes Poissonian.

It might be helpful to compare the shot-noise suppress
given by Eq.~73! with former results for different models
According to @21# the shot-noise suppression for a mas
with regular atomic injection is

DM52
y11/2 sin2~VsT/2!

@11y1sin2~VsT/2!#2
. ~76!

The difference in the formulas~73! and~76! reflects the dif-
ferent physical conditions. In the maser case a regular
tributed beam of fully excited atoms goes through a cav
Since always only one atom is in the cavity at a time t
corresponds to the single-quantum-dot laser. The differe
here is that our quantum dot is not fully excited after eve
pump act, but is only with probability

p5
1

11sin2~VsT/2!
~77!

in the excited state. Nevertheless in both cases we find c
plete shot-noise suppression in the photocurrent spectrum
we use the theory for a maser with regular distribution
atoms but only partial excitation with probabilityp before
entering the cavity@21#, the shot-noise suppression reads

DMp52
y11/2 sin2~VsT/2!@11sin2~VsT/2!#

@11y1sin2~VsT/2!#2
. ~78!

Here we have phenomenologically chosenp as in the
quatum-dot case~77!. Now we find the maximum ofDMp to
be 1/2. Thus no complete suppression can be observe
such a system. It turns out that the phenomenological
proach of Ref.@21# is not applicable for our quantum-do
laser, basically since our quantum dots are kept fixed in
cavity while Ref.~78! works with atoms traversing the cavit
independently.
m
or

n

r

s-
.

s
ce
y

m-
If

f

in
p-
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V. NUMERICAL SOLUTION
OF THE MASTER EQUATION

To check the analytical results we have made numer
simulations of Eq.~11!. Starting from the vacuum state o
the field mode we have iterated the quantum map~9! for
fixed parametersk, g, and T until the stationary state wa
reached. Since the theory predicts results independent o
number of quantum dotsN we have limited our calculations
up to N53. Furthermore, we only looked at the stationa
state inside the cavity and not at the photocurrent spect
connected with the dynamics of the system.

A. Stationary photon number

The numerical results for the normalized stationary ph
ton number are displayed in Fig. 4. The dotted lines are
stable solutions of Eq.~45!. For 1,u,10 we have nearly
perfect agreement of theoretical and numerical results.
low threshold foru,1 Eq. ~45! has no positive solution
since the theory is not valid in this range. For higher valu
of u we find transitions between different stable branch
For N51 we addtionally see the well-known influence of th
so-called trapping states also appearing in the atomic mi
laser@22–24,21,25–27#. For N.1 these trapping states dis
appear and the transitions become sharp. Since Eq.~45! is
only a parametric-field approximation we cannot expla
these transitions since they are caused by fluctuations.

If we take a look at Eq.~46! we see that the intensity i
not only increasing withN2 but decreasing withu22. This
means that the range of smallu is the most interesting one
for an experimental realization.

B. Variance and shot-noise suppression

In Fig. 5 ~top! we have compared the numerical and th
oretical results for the photon-number variance inside
cavity characterized by Mandel’s parameterj. The analytical
result is obtained by inserting the stable solution of Eq.~41!
into Eq. ~65!. We have limited the comparison to the inte
esting u range where no transitions between the solutio
occur.

We find noise suppression inside the cavity up to o
90%, keeping in mind that this is independent of the num
of quantum dots. In this range the theoretical approximat
agrees very well with the numerical results. The deviat
for lower noise suppression is mainly due our approximat

FIG. 4. Normalized stationary photon number vs dimensionl
pump parameter in comparision between numerical simulation
semiclassical approximation~dotted!.
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of small fluctuations~47!, and Eq.~48!.
In Fig. 5 ~bottom! the prediction for shot-noise suppre

sion in the photocurrent spectrum atv50 is shown. It is
interesting to notice that the ranges of large noise supp
sion inside and outside the cavity do not coincide as
might naively expect.

Finally, we would like to stress that in this model of
superradiant laser the range of large shot-noise suppres
coincides with a large mean photon number. This is differ
from the atomic model given in Refs.@10–13#.
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APPENDIX: THE EQUATIONS FOR THE MATRIX p

As for the quantum dot matrixs we are after the strobo
scopic stationary solution forp. Toward that goal we write
the equations for the matrix elements in the time interv
betweent020 andt01T10. The pump act att0 ~electron!
causes the transitions

p11~ t010!5p11~ t020!1phh~ t020!,

p10~ t010!5p01~ t010!50,

phh~ t010!50, ~A1!

pee~ t010!5p00~ t020!,

p00~ t010!50.

FIG. 5. Numerical solution of Mandel’s parameterj in compari-
son to the semiclassical approximation~above!. Below we show the
shot-noise suppression of the photo currenti SN

(2) at v50 as given by
the semiclassical.
s-
e

ion
t

d
n-

s

Again the trace is conserved,

p111pee1phh1p0050. ~A2!

For the pump act att01T/2 we find a set of equation
equivalent to Eq.~A1!. During the intervalst010,t,t0
1T/220 and t01T/210,t,t120 the interaction takes
place. The equations of motion for the matrix elements up
first order inL2L0 @Eq. ~58!# read

ṗ115gap011ga* p101K11Pf ,

ṗ105ga~p002p11!1K10Pf ,

~A3!

ṗhh5KhhPf ,

ṗee5KeePf .

The operatorsKik in the inhomogeneous terms are defin
by

Kik5@~Ds! ik2TrQ~Ds!s ik#, ~A4!

which in explicit form read

K005TrQ~Ds!~12s00!,

K1152TrQ~Ds!s11,

Kee52TrQ~Ds!see, ~A5!

Khh52TrQ~Ds!shh ,

K0152TrQ~Ds!s011
]

]a
s11.

We now define

K65aK016a* K10. ~A6!

For a large photon number and small fluctuations the co
mmutator ofa and the differential operator]/]a may again
be neglected, and with that approximation we get

K15d1~s1122us10u2! ~A7!

and

K25d2s11. ~A8!

The operator TrQ(Ds) can be written in the form

TrQ~Ds!5
]

]a
s101

]

]a*
s015d6

s10

a
5d6

s01

a*
,

~A9!

with the shorthand

d65
]

]a
a6

]

]a*
a* . ~A10!
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With these preparations the set of equations~A3! for p can
be solved relatively easily. Imposing stroboscopic station
ity,

p~ t01T10!5p~ t010, ~A11!

we find the off-diagonal elements as

p10~ t01t !52
a

2uau
sin~2Vt !p11~ t010!

1F ga

2uau $K002K11% ^ $sin~2Vt !%

1
g

2a*
$K1% ^ $cos~2Vt !%

2
g

2a*
$K2% ^ $1%GPf . ~A12!
-
.
.
.
s.

rg

um

pl.

N.

.
-

B

ey

no
r-
Here the encircled product sign denotes temporal conv
tion,

$ f ~ t !% ^ $g~ t !%5E
0

t

f ~ t8!g~ t2t8!dt8. ~A13!

The stroboscopically stationary value ofp11 reads

p11~ t010!5
s11

2 ~ t010!

2n
sin2~VT/2!@VT/2 cot~VT/2!

1s11~ t010!#d1Pf . ~A14!

On carrying out all convolution integrals and usings11
5s11(t010) we find Eq.~61!.
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~1999!.

@14# C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus,
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