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Quantum-dot laser with periodic pumping
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We sketch the theory of a laser based on quantum dots which are pumped by a surface acoustic wave.
Collective emission in the sense of superradiance is possible if the dots are identical and arranged along a
straight line. In that case strong noise suppression is possible in the photocurrent spectrum, even for high
output intensity[S1050-294{@9)02512-3

PACS numbes): 42.50.Fx, 42.50.Lc, 42.55.Px, 77.65.Dq

[. INTRODUCTION with an interdigital transducefiDT) on top of the crystal
(Fig. 1. A mechanical SAW is generated by applying a
Semiconductor quantum dots have an interesting potentidligh-frequency signal to the IDT. The fundamental acoustic
for quantum-optical applications. The growth of dots with wavelength\, and the frequency,=v/\y are established
transition frequencies in the optical range is very well con-by the interdigital electrode spacing, whereis the sound
trolled [1]. Such a zero-dimensional system leads to muctvelocity of the crystal. With \j~1-3 um and v
higher gain than bulk or two-dimensional quantum-well~3 kms'!, frequencies in the GHz range are achievable.
structures, as shown theoretically as well as experimentallfhe acoustic wave is accompanied by a piezoelectric field
[1-4]. Dots as active media in semiconductor lasers havevhich gives an additional potential for electrons and holes
already been established, and even lasing of a single dot inand so periodically modulates the band edges. For high
semiconductor microcavity can be achieJéd-7]. From a  enough SAW amplitudes, optically generated excitons in the
theoretical point of view, the discrete states allow one to treatjuantum well will be dissociated by the piezoelectric field
dots much like atoms. This makes for a much simpler situafinset of Fig. 2. A field strength of the order of 500 V/cm
tion than, for example, the continua of states in quantunsuffices and results in a wave amplitude of 50—-150 meV,
wells. Furthermore, the semiconductor samples are smatlepending on the wavelength. Carriers are then trapped in
compared to atomic beams or even clouds of trapped atomthe moving lateral potential superlattice of the sound wave
If a dot is to be operated as a low-noise light source it hacand recombination becomes impossible: Electrons will stay
better be pumped in an as regular manner as possible. Imax the minima of the wave, while holes move with the
mogdus and Yamamoto’s scheme of a single-photon turnstilenaxima[14—16. A simple estimate of the spatial widthd
device [8] driven by an alternating voltage source is oneof the lateral ground state in the wave potential yields
method for a regularized pump. A surface acoustic waveAd/\A<0.02. We thus obtain a series of equally spaced
(SAW) could as well periodically deliver electrons and holesquantum wires moving in the plane of the quantum well. The
at a well localized array of dots or even a single dot, as
already suggested {®]. If (more or lessidentical quantum LASER —s
dots could be arranged along a straight line a SAW with b
wave fronts parallel to that line would entail collective emis- N
sion by the array; with suitable mirrors mounted one could [
thus realize a superradiant laser. The present paper sketch m STRDEOSTSOR
the theory of such a laser and demonstrates interesting pc g
tential for noise suppression. In contrast to the model of a,,c,qe ecrRic
superradiant laser with collectively pumped three-level at- CRYSTAL
oms suggested in Reff10—13 the noise reduction in the
present case is due to the periodic simultaneous pumping @
the dots by the SAW and can be optimal even for strong
output.

WELL
HE

IIl. THE PUMP MECHANISM SiCTL

To briefly explain our concept, let us consider a semicon- |G, 1. Schematic sketch of a SAW sample. The material of the
ductor quantum well surrounded by a piezoelectric materiakystem may be, for example, GaAs for the piezoelectric crystal,
InGaAs for the quantum well, and InP for the stressor. The inset

depicts the storage of optically generated excitons in the potential of
*Electronic address: fritz.haake@uni-essen.de the surface acoustic wave.
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hole generation rate in the SAW, so all wires are well occu-
pied. For simplicity we neglect both types of noise here and
consider the case of zero pump fluctuations. Such an ideal-
ized pump process allows for a simple analytic description.

For quantum-optical applications we have to couple the
PPD to a single-mode light field inside a resonator. As the
dot is pumped by a SAW, we cannot put a semiconductor
Bragg mirror, which would block the mechanical wave, on
top of the device. For the back side this would not be a
problem. We, therefore, need at least one external mirror for

FIG. 2. Arrangement for parallel pumping of several identical the cavity. The carriers could be generated outside the cavity,
quantum dots. since the electrons and holes can be transported over some
millimeters by the SAW.

length of these wires is given by the width of the IDT’s, . o
typically 300 um. The occupation of the wires with elec- Theoretical description

trons and holes can be controlled by the pump strength of the For the theoretical description we work with the unexcited
laser and is of the order 1010" carriers per wire. (ground state|0), the excited statfl), and the semiexcited

A quantum dot for our purposes may be established by atateqe) and|h), which have either an electrdg) or a hole
stressor on top of the crystal which causes a local potentigh) in the dot. As already mentioned the ground and excited
minimum in the quantum well underneath. The linear dimen-states form a two-level system coupled by the pseudospin
sion of typical stressor dots with transition frequencies in theyperatorsS, ,S_ . The operatorS, generates an exciton

optical range is about 10-30 nm while their potential depth§rom the ground state, whereSs annihilates the exciton in
are about 100 meV for electrons and 50 meV for holes. Fofayor of the ground state. Both semiexcited states are anni-

further investigations, we assume that the dot is so small thagjjated bys. |

there is only one electron and one hole level. Occupation of -

these levels with two carriers of opposite spin is forbidden S.|e)=S.|h)=0; (1)

by Coulomb blockade. When both levels are occupied an

exciton is formed, so there is just a single exciton state. Wéhese states do not couple to the light field. The density ma-
should speak of an excited, a semiexcited, and an unexcitdéix of a single quantum dot may be written in the general
dot for an exciton, only one carri¢electron or holg and no ~ form

carrier present. An excited/unexcited dot may then be treated

as simple two-level system with pseudospin operators @ (1)=1(|1)(L[+ oo )[0)(0]+ oox(t)|0)(1

S.,S_ creating and annihilating an exciton. This system + 0 1(1)] 10| + oeel 1) [€)(E] + opp(t) )]

may interact with a single-mode light field. In the semiex-

cited case no interaction with the light field is possible and )

th? c_reation .Of an e_xcitor) is only possible by qapturing theNote that no coherences exceny; ando g are ever created.
missing carrier. While being crossed by a moving quantuml_he pumping causes the following transition.

wire an empty dpt may pluck one of the carriers qffergd: I An excited quantum dot has no free state for an additional
the dot potential is deep enough a carrier will drop into it and

. : . carrier so this state remains unchanged:

stay there, while the wave is moving on.

The scheme just sketched may indeed produce the de- |1)(1|—|1)(1]. (3a)
signed properties of the pump. First, the periodicity of arriv-
ing carriers is given by the SAW, as the moving wires areFor the following transitions we must distinguish if an elec-
well separated. Second, with a density of about 3 carriers pafon or a hole arrives. For an incoming electron we find for
100 nm in a wire, there is a high probability for the dot to the semiexcited states
capture an electron or hole within the crossing time of a wire.
Of course, a single dot makes but inefficient use of the mov- le)(e|—|e)(e| and [h)(h|—|1)(1], (3b)
ing wires, as only one of TCcarriers is used per cycle. If one ) ) ) ]
had several dots lying in a row parallel to the wires, better-€-, the single-electron state is occupied and remains un-
pump yields could arise. This arrangement would be needeghanged while the single-hole state is brought to the excited
for a superradiant laser and is shown in Fig. 2. Another waytate. For an incoming hole we correspondingly find
to increase efficiency may be focusing the SAW onto one or
fow dote. Yy k le)el—[1)(1] and [h)(h|—|h)hl.  (3b)

Our periodically pumped dgPPD) will in practice suffer
from degradation of complete regularity. One cause of pum
fluctuations is the finite width of the lateral SAW ground
state, as mentioned above. This leads to variations in the |0)(0|—|e)(e| or |h)h]. (30)
instant of pumping. As indicated above, this will be a few
percent of the pump perio@ given by the SAW frequency. Finally, all off-diagonal elements are destroyed,
Pump noise also results when no carrier is plucked from a
crossing wire; this may be minimized by a high-electron and |1)(0|, [0){(1|—0O. (3d)

IDT quantum dots

The ground state will be transferred to one of the semiex-
Rited states,
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We may write the pump process described by Egal— If we neglect spontaneous emission and assume zero detun-
(3d) in terms of the density matrix;;(to—0) for the quan- ing between dots and field mode the interaction-picture mas-
tum dot. Directly after the pump act with an electron we findter equation in between two pump acts reads
atty+0

p=Lp,
011(to+0) = 011(tg—0) + opn(to—0), .
. . K
ooo(to+0)=0, =gi21 [aS,—a'S ,p]+ 5{[a,paT]+[ap,aT]}-
1(tgt0)=0op(te+0)=0, 4 (1)
ohn(to+0)=0, The indexi labels quantum dots. To solve the master equa-
tion we resort to certain approximations. The limit
Oedtpt0)=0edtg—0)+ ogo(tg—0). <1/T,\Ng, Eq. (10) allows an adiabatic elimination of the

_ ) ) ) dot variables and to expand the reduced generator of the
For pumping with a h(_)le we fmd_the corresponding equayjgde dynamics in powers ofT,«/y/Ng. In implementing
tions by interchanging indezandh in Eq. (4). If we couple  hat expansion we will follow here the strategy presented in
the quantum dot to a single light mode the whole stausuca[lg] with appropriate modifications to account for the peri-

operator has the form odic pumping. By this expansion and going to the semiclas-
sical limit of large photon numbers we will obtain a Fokker-
p(h)=>, pikliY(Kl, (5) Planck equation.
],k

where the indices take on the valug&=0,1g,h, and the P representation

pjk are operators acting in the Hilbert space of the field Since we are looking for a Fokker-Planck equation for the
mode. According to Eq4) we may formally introduce the field mode consider a diagonal expansion with respect to
pump operator$, for pumping with electrons an®,, for ~ coherent statega), i.e., we make use of the Glauber-

pumping with holes. We may write SudarsharP representation,
ti+0)=Pgp(t;—0 6
p(t; ) ep(t; ) (6) P(t):f P(a,a*,t)|a)<a|d2a. (12)
and
Later on we will use polar coordinates for the complex field
p(ti+T/24+0)=Pp(t;+T/2—-0). (7) amplitude as
If the time evolution of the statistical operator without pump- _ Jne® 13
ing is given by the Liouville—von Neumann generatoas a=\new. (13
=L 8 Now we can write the master equati@til) for the complete
p=Lp, ( ) P :
density operatoP in the form
the formal solution over one period reads )
P=LP=(Lo+L;+A)P. (14
p(to+T+0)=Pe- 2P e-"2p(ty+0), 9
) Here Ly+L, is the interaction operator resulting from the
and may be read as a stroboscopic quantum map. Jaynes-Cummings term in E€L1)

lll. SUPERRADIANT LASER N _ . N
_ i * i —

We now come to the description of our superradiant laser Lop‘; glas, —a”S. 'P]_igl LoiP 139
model forN quantum dots. As shown in Fig. 2 all quantum
dots are assumed to lie in a row parallel to the pump wave. N
This ensures that all quantum dots are pumped at the same Llp:E g
instant. Furthermore the coupling constanshould be the i=1
same for all quantum dots and the field mode is very weakly

damped with the rate. To get a large number of photons in Lo describes atomic motion under the parametric influence of
the cavity we require the field mode, without back action on the latter; atomic back

action on the field mode is accounted for by, finally, A is

’ s.p+—ps —%LP 16
Gar T —_izlli-()

1 the damping generator for the field mode,
?,\/Ng>;<. (10) Ping 9
AP—K(?+(9*P—(?P 1
=5\ 729 &a*a =k—--nP. v

For the strong-coupling regime the condition Nris not restric-
tive; see Ref[17] whereg/x>1 is advocated. The limit (10) allows us to treat;+ A perturbatively.
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IV. SYSTEMATIC APPROXIMATION OF THE FIELD Q=g|al. (27
MODE GENERATOR

Accounting for the jumpg4) at the instants of pumping and

We now want to expand the propagawr in terms of looking for the stationary solution of mgg) we get

L —L, which is possible if the stationary photon number is

large. We write the formal solution of EL4) after a pump o (to+0)=0
oo\ to Y

act as
P(to+t)=e"'P(to+0). (18) , 1
oi(tet0)=—p——,
If we take the pump process into account with the operators 1+sinf(QT/2)
PY=II;P, and PN=1I,P}, the map(9) takes the form ,
ol (to+0)=0, (28)
P(to+T+0)=Ple-"2Ple- 2P (t5+0).  (19)
Due to periodic pumping it makes sense to look for the stro- ol (to+0)= Sirf(QT/2)
boscopic stationary state which obeys e 0 1+sir?(QT/2) "

P(ty*+ T+0)=P(ty+0). (20 oo+ 0)= b (tg+0)=0
Since we are interested in the properties of the light field, we )
look for the solution of the reduced density operator of thedirectly after the arrival of an electron, and

field mode, )
Too(to+T/2+0)=0,

P=TrP. (21)
. 1
Here the partial trace 'E’gt refers to all quantum dots, while o (te+ T2+ 0)= —————,
we use T, for a single dot. 1+sir?(QT/2)
The expansion of the exponential term in Ef8) up to i
first order inL —L, reads Oeelto+ T/2+0)=0, (29)
t .
Lt alot ' oLo(t—t) /1 Lot/ . SIF(QT/2
elt~gbo +f0dt elot=t)(L—L,)ekot, (22) oh (to+T/24+0)= .( ) ,
1+sirt(QT/2)

whereupon the master equation becomes . .
ao(tot T/2+0) = opy(to+T/2+0)=0
P(to+1)=Lge"0'P(tg+0)+(L—Lg)e"o'P(ty+0).

(23 after the arrival of a hole.

We now proceed to the explicit form of this equation. B. Higher-order terms

A. Zeroth-order treatment and stationary quantum-dot state We split off the factorizing part from the complete density

. . operator,
The zeroth-order terms in ERJ) yield
N
PO=L,P. (24) Pla,t)=P; (a,)][] o'(a,t) +7(a)1), (30)
i=1
Since the field mode appears only parametrically. inwe _ o .
can make a factorization ansatz and write the nonfactorizing patt in the general form
N
POt =Ps (a,) ][] o'(a)t), (25 mO= EI PR SRR oN (911 PP [N ¢ SR VI
i=1 I N
Fi,-n, I'N

with o' the density matrix of théth quantum dot. By tracing (3D

overN—1 quantum dots we find the equation of motion for

a single quantum dot Thel; andr; describe the state of thi¢h dot, where the sum

runs over 0, 1e, andh. All LIV _rN(t) are operators.

o=Lyo. (26) Since the trace of over all quantum dots is 1 the trace »f
must vanish,
We see that all quantum dots obey the same equation of
motion and all dots are decoupled. The single-dot dynamics Trg'otrr(t)zo. (32

in between the instants of pumping is that of a two-level
atom driven by a constant electric field with the Rabi  With the ansat430) we find from the master equatid@3)
frequency evolution equations foP; (a,t) and 7(a,t),
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a to+T/2

P+ Tr o {(L—Lo) 7}, glo:_WUin(toJrO)J’ sin 20t dt

to

N
'Pf=Tr§m{<L—Lo>Hl o'

33
33 a1 si(QT/2) 39
. N lal QT 14si2(QT/2)”
=Lom+(L—L P
m=Lom 0)iljl(r ' Inserting this into Eq(37) leads to
A . P N sif(QT/2)
—TeN L i P, 34 SYCO ML U s!
dot|( O)iHl‘T]iHlU f (34 PiY=—-n| « T2 11 ST P;. (40

To keep the expansion systematic we have taken only ternisote thatlb§1) vanishes in the stationary regime and we find
up to first order inL—Lg in Eq. (34) for 77, too. The zeroth- for the stationary photon number in the cavity

order approximation ofr would be
_ 2N sif(QT/2)

S

_ Ng=—m ——————, 41
7O =Ly7©, (35) kT 1+sir?(Q4T/2) “y

o . ___with the stationary Rabi frequency
This is a homogeneous equation and we can choose arbitrary

initial conditions. By settingm(0)=0 we see that the non- T

factorizing terms vanish identically for all times in this ap- 0= \/n—sgz. (42)
proximation. So we need at least terms of first order to get

quantum-mechanical corrections to the factorization ansatSimilar to the atomic microlaser we may define two dimen-
So the second term in E¢33) in all is of second order in  sionless parameters. The first one is the upper bound for the
L—L, and leads to field mode diffusion. mean photon number

N
C. Drift and stationary photon number nmax:—_l_, (43
K
We consider the first term in E¢33) since only deriva-
tives of first order in the field variables are involved. By and the other one a dimensionless pump parameter,
symmetry allg' are identical. This makes it easy to rewrite

the drift term in the form T
N N =g \/nmaxz- (44)
r yot[ LliI:[l Ui] Pf:Z’l Traor L1} Py With this we find the equation for the normalized photon
_ numbern
=N Trgor{L1i0"}Ps. (36)
_ng sir?(oVn/2)
h=— =2 (45)

Next we again assume the relevant photon numbers to be n i \/~— '
large and, in addition, to have a sufficiently narrow distribu- max  1+sir(6\n/2)
tion for the variation of the drift coefficient across its width

to be negligible. This leads to a transcendental equation to be solved numerically. The left-

hand side represents the loss and the right-hand side the gain.
_ . The threshold is defined as the valuetoivhere the slope of
P$1):NTrdoq(L1iU|)Pf+APf gain and loss coincide at=0. The pump parametef is
‘ . normalized such that the threshold is&t 1. Stable solu-
d gl K oo K tions are the intersections of gain and loss curves where the
“oa? Ngj + 2 P slope of the gain curve is lower than the one of the gain. We
display the graphical solution for a single valuein Fig.
(37 3. For higher values of we find several stable solutions, but
our semiclassical approach does not answer the question on

The polarizationo, in the intervalto<t<t,+T/2 is given which branch of the solution the laser operates or when tran-

by sitions between the branches occur. Such deficiency is due to
the neglect of noise and is already known from the atomic
microlaser.
T )= — = gt (to+0)sin 20t (39) If we rewrite Eq.(43) with the help of Eq.(44) in the
2|al form
Since we assumed to be small we may replace the polar- _ N*g?
max— , 5 o (46)

ization by its time average?,.
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10 A SIR(QT/2) -
n= —Kk|n,
ngT/2 1+ sirP(QT/2)
which indeed has the form of a semiclassical laser equation
0.5 with gain and loss term. Here
A= g°NT 53
0.00 0 oE 10 has the sense of a linear gain of the active medium. To reach

the threshold of lasing the linear amplification inside the cav-
ity must be higher than the field damping> «. In the sta-

FIG. 3. Graphical solution for the stationary photon numbertionary regimen=0 we recover the condition of vanishing
according to Eq(45). drift (42),

n/n

max

we see that for a fixed value @f the photon number scales 2N sirA(QgT/2)
asN?, i.e., superradiantly. The reason for superradiance is ns:ﬁ m
the collectivity of the emission process. However, the collec- s
tivity is generated by a different mechanism than in the
atomic superradiant laser of Ref&0—13. While in the lat- E. Diffusion terms

ter case all transitions and even the pumping are coherent, gjmilarly to the last section we rewrite the second term in
we here get collectivity by pumping all quantum dots at theEq_ (33),

same instant.

(54)

Due to our assumptions of a large photon number and N .
small fluctuations we may write Trio {(L—Lo)7}=Trjy, {DW}Zzl Traor D'}
=
n:ns+ v, n5> v, (47) =N Trdoti{Diﬂ-i}l (55)
and get where
%MS&L (48) ' =Trgor {m} = m(D (| 1(1))'+ mog(t)(|0)(0])'
14 . . . .
+ay(D([0)(1)'+ () (|1)€0])'
We now expand the drift coefficient in E¢40) around the i P i
stationary photon number, and find +medt)(e)(e])! + mh(t) ([h)(h]) (56)
9 is the trace ofr over N—1 quantum dots. The last step in
PO =T — P (490  Eq.(55) again results from the equivalence of the dots. Now
Jdv .
we find
with d d
P{?=Ng 2o Mot — 77'01), (57)
Q.T/2 cot (QT/2) da
I'=«|1- : . (50)
1+sir?(QT/2)

so what we need are the off-diagonal elemerlgand 7751.
From Eq.(34) we get a set of equations for the mattik by
D. Semiclassical laser equation tracing overN—1 dots,

At this point we interrupt our perturbative treatment of the
back action ¢ — L) and propose to interpret the foregoing

results in terms of a familiar semiclassical laser equation. . i i
With the help of Eq.(11) we may write the equation of In the Appendix we made some remarks on solving this set

7'=Lom +Dio'Pr—Trgo {Dio'} o' Py. (58)

motion for the mean photon numberas of equations. With the abbreviations
S * _ J J
n 2gNa* 019~ kN, (51 Si=—a=* a* (59
da da*

where we have neglected photon fluctuations. In this sense

Eq.(51) is a semiclassical laser equation, since we consider gnd

two-level system interacting with a parametric field. If we

assume a higl@ cavity the influence of the periodic pump- 0'i11= a'ill(to—l— 0), (60)
ing is smoothed and we coarse grain by averagipgover

time as in Eq(39). Then Eq.(51) becomes we get the solution
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1
[sin(ZQt)(E — 041 SIR(Q) | + Ot cog2Q1) |6, Py

o11(1— 1) SIN2QD)[ QT/2 ol QT/2) + 1118, P; . (61)

If we substituterr' by its time average? and carry out all integrals, E@55) becomes

Ng

QO T/2co( O T/2)

1 3+sir(QT/2) | 92

J — J —
%Wlo'f' _&a* To1| — Kns

K

+ —_
8ng

The first term is the diffusion of the photon number while the

second describes phase diffusion.

F. Fokker-Planck equation

After the systematic expansion of the master equation w

may write the result up to second order in the form

J
EPf=P§1)+ P@4{..

—FaPF (92P 1D62P
=l vPit §”sﬁ ity P b
(63)
with the damping ratd” for photon fluctuations inside the
cavity.
QT/2 co(QT/2
r:K1—S_(S). (64)
1+sir?(QT/2)
Here we have introduced Mandel’'s parameter
QO T/2col(QT/2) ! in?(Q T/2)3+Sin2(ﬂsm)
co — =Si _—
i ) T2 T 1+ si(QT/2)
1— O T/2 co(QT/2) +sirP(QT/2)
(65)

which is a measure for the photon fluctuatiohs?= ng(1
+ £) with

&>0
&=0
—1<¢<0

for super-Poissonian distributions,
for Poissonian distributions, (66)

for sub-Poissonian distributions.

The rate of phase diffusion is

D=

K 02124
(67)

—_ _|._ e —
4ng Sirt(QT/2)

and is the same as in a conventional Ig4&.

1+sir?(QT/2)
.\ (Q2T?/4)
SiR(Q:T/2)

oSO e
2 TSmO T T2

a2
az

—Ps. 62
Py (62)

The term{- - -} contains all higher-order derivatives with
respect tor and ¢. In principal we are under obligation to
keep all these derivatives since they might be important for
nonclassical fields. But in this paper we are only concerned
with the photoncurrent spectrum where higher-order terms
%o not contribute. Apparently Eq63) has the form of a
Fokker-Planck equation. But notice that in the case of a nar-
row photon distributiod” must be positive, whil& is nega-
tive. Thus Eq.(63) has no solution for large times if the
diffusion constant is negative. This reflects the fact thafthe
representation of a sub-Possonian field does not exist. Nev-
ertheless the moments of the distribution may exist, and the
system at hand is an example for such a situation. With such
cautionary remarks in mind it still makes sense to work with
Eq. (63). If an equation with an existing stationary solution is
required one may switch to a different quasiprobability
[18,20.

G. Photocurrent spectrum

The photocurrent spectrum may be written in the form

(1(0)i(w)=i2

2 o
1+—KRef (v(t)v(t+7))e'*7dr|,
Ng 0

(68)

wherei ) is the shot-noise level. To calculate the photocur-

rent spectrum we have to find the correlatiorft) v(t+ 7)).
Using a standard approach we can obtain

%(v(t)v(tvL 7)) =T(v(t)v(t+ 7)), (69)
as well as
V2= — 2T v2+ 2T én =0. (70)
With this the desired correlation function reads
(vO(t+m)=éne " (7

and the photocurrent spectrum becomes
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l" 1-0
((0)i(0)y=i3) 1+26——]. (72)
SN T2+ w? 0.8
Since ¢ is negative the second term reduces the spectrum 5 06
below shot noise. The strength of shot-noise suppression for =
w=0 is given by o 04
, 3+si?(Q:T/2) 0.2
y+1/12sif(QT2)—i——
K 1+ sir?(QT/2) 0.0
A=2]g==2 , : , 0
' 14y +sir(QgT/2) 121+ siiA(QT/2)]
(73 FIG. 4. Normalized stationary photon number vs dimensionless

where we have used the shorthand

y=—0,T/2co(QT/2). (74)
In the case where si(f2.T/2)~1 this becomes
1+
A=~4 Y . (75
(2+y)?

Fory<1 itis obvious tha\ — 1, corresponding to complete

shot-noise suppression. In contrast to thatyferl we have
no suppression and the light becomes Poissonian.

pump parameter in comparision between numerical simulation and
semiclassical approximatiofotted.

V. NUMERICAL SOLUTION
OF THE MASTER EQUATION

To check the analytical results we have made numerical
simulations of Eq.(11). Starting from the vacuum state of
the field mode we have iterated the quantum ni@pfor
fixed parameters, g, and T until the stationary state was
reached. Since the theory predicts results independent of the
number of quantum dotd we have limited our calculations
up to N=3. Furthermore, we only looked at the stationary

It might be helpful to compare the shot-noise suppressioRate inside the cavity and not at the photocurrent spectrum
given by Eq.(73) with former results for different models. connected with the dynamics of the system.
According to[21] the shot-noise suppression for a maser

with regular atomic injection is

y+1/2 sirf(QT/2)
=2 .
[1+y+SirP(QT/2)]?

M (76)

The difference in the formula&3) and (76) reflects the dif-

A. Stationary photon number

The numerical results for the normalized stationary pho-
ton number are displayed in Fig. 4. The dotted lines are the
stable solutions of Eq45). For 1<#<10 we have nearly
perfect agreement of theoretical and numerical results. Be-

ferent physical conditions. In the maser case a regular didoW threshold for§<1 Eg. (45 has no positive solution
tributed beam of fully excited atoms goes through a cavity Since the theory is not valid in this range. For higher values
Since always only one atom is in the cavity at a time this0f ¢ we find transitions between different stable branches.
corresponds to the single-quantum-dot laser. The differencE0r N=1 we addtionally see the well-known influence of the
here is that our quantum dot is not fully excited after everySO-called trapping states also appearing in the atomic micro-

pump act, but is only with probability

1

" LS. v

laser[22-24,21,25-2]f For N>1 these trapping states dis-
appear and the transitions become sharp. Since(45).is
only a parametric-field approximation we cannot explain
these transitions since they are caused by fluctuations.

If we take a look at Eq(46) we see that the intensity is

. . - 2 - - 72 .
in the excited state. Nevertheless in both cases we find cor’r?—ot only increasing wittN“ but decreasing witlo™“. This

plete shot-noise suppression in the photocurrent spectrum.
we use the theory for a maser with regular distribution of

atoms but only partial excitation with probability before
entering the cavity21], the shot-noise suppression reads

_ y+1/2 sirt(QT/2)[ 1+ sirP(QT/2)]
- [14y+SirA(QT/2)]2 '

(78)

Mp

Here we have phenomenologically chospnas in the
quatum-dot casér7). Now we find the maximum ol to

jpeans that the range of smallis the most interesting one
#or an experimental realization.

B. Variance and shot-noise suppression

In Fig. 5 (top) we have compared the numerical and the-
oretical results for the photon-number variance inside the
cavity characterized by Mandel's paramegeiThe analytical
result is obtained by inserting the stable solution of &qd)
into Eq. (65). We have limited the comparison to the inter-
esting 6 range where no transitions between the solutions

be 1/2. Thus no complete suppression can be observed atcur.

such a system. It turns out that the phenomenological ap- We find noise suppression inside the cavity up to over
proach of Ref.[21] is not applicable for our quantum-dot 90%, keeping in mind that this is independent of the number
laser, basically since our quantum dots are kept fixed in thef quantum dots. In this range the theoretical approximation
cavity while Ref.(78) works with atoms traversing the cavity agrees very well with the numerical results. The deviation
independently. for lower noise suppression is mainly due our approximation
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0.0 — . . Again the trace is conserved,
1
-0.2 'n‘ — simulation 1 Tt Teet Thnt mee=0. (A2)
\ - - Fokker—Planck eq.
0.4 ‘\ 1 For the pump act aty+T/2 we find a set of equations
nd equivalent to Eq.(A1). During the intervalst,+0<t<t,
0.6 1 | +T/2—0 andty+T/2+0<t<t;—0 the interaction takes
08 | | place. The equations of motion for the matrix elements up to
first order inL—L, [Eq. (58)] read
-1.0 ' ' .
20 — ; ; m=gametga” et KiyPy,
15 ¢ E 1 m10=ga(moo— m11) + K1oPs,
g’ ' shot-noise level (A3)
R N s . _
E : T Thn=KnnPs,
05 1 ,
|I ,/ Tee™ KeePf .
0.0 L—~" :
0 5 4 10 15 The operatorK;, in the inhomogeneous terms are defined
b
FIG. 5. Numerical solution of Mandel's parametein compari- d
son to the semiclassical approximati@ove. Below we show the Kik=[(Do)ix—Tro(Do) o], (A4)
shot-noise suppression of the photo curlié,ﬁtatho as given by
the semiclassical. which in explicit form read
of small fluctuationg47), and Eq.(48). Koo=Tro(Do)(1—0oq),
In Fig. 5 (bottom) the prediction for shot-noise suppres-
sion in the photocurrent spectrum at=0 is shown. It is K11=—=Trg(Do) o,
interesting to notice that the ranges of large noise suppres-
sion inside and outside the cavity do not coincide as one Kee=—Tro(Do)oge, (A5)
might naively expect.
Finally, we would like to stress that in this model of a Khn=—Tro(Do)opp,

superradiant laser the range of large shot-noise suppression
coincides with a large mean photon number. This is different d
from the atomic model given in Ref§10-13. Ko1= _TrQ(DU)UOf'_%Ull-
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APPENDIX: THE EQUATIONS FOR THE MATRIX = K,=6, (011~ 2|019?) (A7)

As for the quantum dot matrig we are after the strobo- 4ng
scopic stationary solution fotr. Toward that goal we write

the equations for the matrix elements in the time intervals K_=8_0q. (A8)
betweent,— 0 andty+T+0. The pump act att, (electron
causes the transitions The operator Tg(D o) can be written in the form
m11(to+0) = m14(to—0) + mpp(to—0), d T10 oo
TrQ(DO'): (9_0'10+_*0'01: 5i_:51_*!
m1o(to+0)=moi(to+0)=0, “ da “ @ (A9)
Thh(to+0)=0, (AD \yith the shorthand
e to+0) = moo(to—0), P P
S.=—ax a*. (A10)

oo to+0)=0. T da T o
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With these preparations the set of equatioh3) for = can  Here the encircled product sign denotes temporal convolu-
be solved relatively easily. Imposing stroboscopic stationartion,

ity,

w(tg+T+0)=m(ty+0, (A11) t
{f(t)}®{g(t)}=fof(t’)g(t—t’)dt’. (AL13)

we find the off-diagonal elements as

a .
mito+)=— 2|« sin(2Qt) my(to+0) The stroboscopically stationary value o, reads
ga .
+ —2|a|{K00—K11}®{S|n(ZQt)} O-il(to—i_o) -
m(to+0)= Tsmz(QT/Z)[QT/Z col(QT/2)
a
_ 9 (K_}e{1}|P;. (A12) On carrying out all convolution integrals and usifag
2a* =011(to+0) we find Eq.(61).
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