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Theory of transient spontaneous emission by an atom in a planar microcavity
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We study the transient regime of spontaneous emission by an atom excited in a plan@rrhigtocavity.
The variation of the spatial distribution of the radiation outside the cavity is determined as a function of the
increasing number of internal reflections for transition dipole moments parallel and perpendicular to the
mirrors and for mirror separations equal\(2 and\/4. Particular attention is given to the parallel dipole in the
N\/2 cavity, where the number of reflections is closely proportional to the elapsed time. It is shown that the
transient regime extends over times of the order of the cavity decay time, in contrast to the effectively
one-dimensional cavities previously studied, where the steady state is achieved after the cavity round-trip time.
The field distribution inside the cavity tends to a steady-state form whose dimension parallel to the mirrors is
of the order of the transverse coherence length. Despite this transverse localization of the field excitation, it is
shown that the conditions for the achievement of strong atom-field coupling and the observation of Rabi
oscillations cannot be met in the planar microcavi§1050-2947®9)06911-5

PACS numbses): 42.50.Ct, 42.50.Md, 32.86t

I. INTRODUCTION planar geometry is quite different from that in other shapes
of cavity, for example spherical, one dimensional, and con-

Calculations of the radiation of light by atoms placed infocal. Thus the transient regime generally persists over a
microcavities normally begin with analyses of the field longer time scale, controlled by the cavity decay time
modes appropriate to the cavity geometry. These modes havather than the round-trip time,;. The cavity excitation es-
well-defined spatial structures, determined essentially byablished by the end of the regime also occupies a much
classical electromagnetic theory, with standard boundarjarger volume, determined by the transverse coherence
conditions at the surfaces of the cavity mirrors. They form aength of the planar microcavity, a concept introduced by De
convenient basis for calculations of the dynamics of theMartini et al.[3] and developed by Ujihafa]. The transient
coupled system of atomic transition and radiation field, esbehavior is difficult to detect in experiments, because of its
pecially the exchanges of energy between atoms prepared iglative brevity, but its form confirms important matters of
given initial states and the field. The state of the couplecrinciple in the causal time development of quantum-
system in these processes is, of course, time dependent, butchanical systems.
the coupling Hamiltonian itself is independent of the time. A study of the transient behavior is also important in un-

Extensions to this approach to calculations in cavity quanderstanding the conditions for the subsequent occurrence, or
tum electrodynamics are needed in the very initial stages ofiot, of vacuum Rabi oscillations. The conditions of experi-
radiative processes, particularly spontaneous emission. Waents with highQ microcavities ensure that the round-trip
consider an excited atom that is injected into the center of &me 7,; is much shorter than the cavity decay timg it is
symmetrical cavity at timé=0. It follows from general prin- also usually much shorter than the free-space atomic radia-
ciples of relativistic causality that the atom is not immedi- tive lifetime 7,,4. Vacuum Rabi oscillations of frequene€y
ately aware of its surroundings. Thus the atom begins tenay occur when the transition is coupled to a single longi-
radiate as it would in free space, and it is only after the timetudinal mode of the cavity, with a coupling constant denoted
T Needed for a round trip to the cavity mirrors and back()/2. It is necessary for the occurrence of oscillations that the
with velocity ¢ that the time development of the atomic ex- Rabi period is much shorter than the cavity decay time and
citation level is changed from its free-space form. Explicitthe residual radiative lifetime in the cavity; this is referred to
calculations for sphericdll] and one-dimensiondP] cavi-  as the strong-coupling regime. The weak-coupling regime is
ties find an initial exponential decay at the free-space ratedefined by the opposite conditions of a long Rabi period,
The behavior begins to convert to a more complicated timevhen the vacuum oscillations are quenched. We shall show
dependence at time,, and, for appropriate values of the that these conditions also determine the forms of initial tran-
atomic and cavity parameters, the characteristic vacuursient behavior, and that vacuum Rabi oscillations are difficult
Rabi oscillations are established at longer times. to achieve in the planar geometry.

The purpose of the present paper is to extend the work on The calculations begin in Sec. Il with a brief review of the
initial transient emission by atoms in spherical and one-main results for the steady-state modes in a I@gptanar
dimensional cavities to planar microcavities, which consistcavity and their adaptation to the study of transient effects in
of a pair of plane-parallel mirrors in a three-dimensionalthe weak-coupling regime. We derive the dependences of the
space. Although several cases are illustrated, the main calcintensity patterns radiated outside the cavity on the numbers
lations refer to an atomic dipole oriented parallel to the mir-of internal reflections for initially excited atoms with parallel
rors with cavity lengthd related to the emission wavelength and perpendicular dipole orientations, and for two character-
N\ by d=\/2. We show that the time development in theistic microcavity lengths. The external radiation patterns are
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R.T, R,.T, g(k,,1)=&(k_,1)=(sin¢,—cos¢,0),

%1 §(I2+,2)=(cos€cos¢,cos6’sin¢>,—sin 0),

\/y §(IZ,,2)=(cos€cos¢,cosasin¢>,sin0), (2
5 N

et where index 1 is associated with teevave componenfpo-
V larized orthogonal to the incident plarend index 2 with the
7 p-wave componenfpolarized parallel to the incident plane
The polarization index is denoted in generaljbyl, and 2.
The emitting dipole is localized for simplicity &= 0 inside
the cavity, with orientation

A= u(sina cosB,sina sinB,cosa). (©)]

The cavity mirrors are assumed to be metallic with zero ef-
Y2 2 fective thicknesses and infinite extents in theplane. The
complex reflection and transmission coefficieR®g,, and
T, , of the first and second cavity mirrors are assumed inde-
pendent of polarization, frequency, and incidence angle over
the range considered, and with constant phase sf8its
They satisfy |Ri|?+|Ti|?=1 and RfT;+RT =0 (i

=1 and 2).

FIG. 1. Geometry of the Fabry-Perot microcavity showing the ~ The spatial mode functions of the field are associated with
notations for coordinate axes, mirror coefficients, mode wave vecplane waves of unit amplitude incident externally from the
tors, and dipole orientation. left and right of the cavity. They are derived, as usual in

Fabry-Perot theory, by summing the geometric series result-
analyzed in Sec. Il in terms of their angular divergence. Theng from the multiple reflections on the mirrof8]. In the
transient behavior of the field excitation inside the cavity issteady-stateéegime andnsidethe planar cavity, the form of
determined, and it is shown to lead to the steady-state cohespatial dependence of the field incident from the left for po-
ence length and mode volume found previous3y]. The larizationj is [7]
main calculations assume a symmetrical microcavity, but in
Sec. IV we make comparisons with previous work on emisD =T, exp(ik_ - F)&(K, ,j)
sion by atoms close to a single plane mirfbr6]. The con- R R
ditions for the achievement of the strong-coupling regime  +T R, exfik _-F+ikdcosfle(k_,j)}— 3d<z<3d,
and the observation of vacuum Rabi oscillations are dis- @)
cussed in Sec. V; the unfavorable possibilities of the planar
cavity are contrasted with those of the confocal cavity, andypered is the mirror separation. The form of spatial depen-
compared with the situations in other forms of symmetricalyence of the field incident from the right is given by a similar
cavity. The main conclusions are summarized in Sec. VI. - gyhression but with interchanges of subscripts 1 with 2 and
+ with —. The Airy function is defined by

Il. TIME DEPENDENCE OF THE RADIATED INTENSITY

The quantum theory of spontaneous emission by an atom D 1= (RR,)" exp2iknd cosf)
in a microscopic planar cavity was derived in previous work =
[7] by considering a complete set of orthonormal mode func- —1/{1—R,R, exp(2ikd cos)}. (5)

tions that span the infinite three-dimensional vacuum that
pervades and surrounds the microcavity. The geometry of thene total field amplitude at the location of the atom inside

tized by the introduction of creation and destruction operayj| the modes, is used to obtain the spontaneous emission rate
tors associated with the mode functions. The wave vectorgt the atom by Fermi's golden rule.

k, andk_ associated with plane waves of unit amplitude The spatial dependence of the intensity per unit solid
incoming from the left and right sides of the cavity are func-angle radiated by the dipole is derived, as in a classical de-

tions of the polar angleg and ¢: scription, by addition of all the partial emitted plane waves to
. . _ . form the total interference pattern. The radiated frdside
kK, =K(sin# cos¢,sind sin¢,cosh), the cavity on the right has a spatial dependence,
k_=Kk(sin @ cose,siné sing, — cosh), (1) D YT, expik, -F)&(K, ,j)+ TR,
where 0< §< /2 and O< ¢< 2. Orthonormal polarization Xexgik_-r+ikdcos6le(k_,j)},

vectors are defined for each wave vector by sd<z, (6)
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similar to Eq.(4) but with the mirror labels interchanged. 1,(6,6,N)
The square modulus of this expression gives the radiate

intensity per unit solid angle on the right of the cavity for a 0

given polarization, proportional to the corresponding sponta- 1+|R|*NFYV—2|R|2NTD cog2 (N + 1) cosh)
neous emission rate per unit solid angle. The spatial depen- = 1+ RI“=2IRIZ cod 27 cosd

dence of the radiated field on the left of the cavity is given by R IRl cos2am )

Eq. (6) with interchanges of subscripts 1 and 2 afdwith X |T|?{1+|R|?>—2|R|cog 7 cosh)}

X {sir? ¢+ cog ¢ cos 6}, 9

In order to study thdransientregime of the atomic dy-

namics and its effect on the establishment of the radiation

pattern, we need the time dependence of the field seIfWhere Eqs.(2), (6) and (7) h_avg bgen u_seq, ang is the
interference process. This is related to the geometrical sum iﬁee-space spontaneous emission intensity integrated over the

Eq. (5) restricted to a finite numbe of reflections, with the aIf-space_ S_Olid angle. Wi_th this normalization_, the 2free-
Airy function replaced by space radiation pattern derived from E@) by setting|R|

=0 has a unit value in the direction orthogonal to the mirrors
with =0. Note that the two terms in the final bracket give

N the contributions from the and p-polarized fields, respec-
> (RyRy)"exp(2iknd coso) tively. By setting=0 or /2, we obtain expressions de-
n=0 scribing the progressive establishment of the radiation pat-

1—(R;R,) N Dexp(2ik(N+ 1)d cosé) tern in thezxandyz planes, respectively. Ft=0 the only

(7) contribution to the interference pattern comes from the su-
perposition of the wave propagating toward one mirror and
the counterpropagating wave reflected by the other mirror to

We shall show that the description of the atomic dynamics irgive the intensity distribution established after one round-trip
terms of the numbeN of reflections is closely equivalent to time.

a description in the time domain for emission by a d|po|e Figure 2 illustrates the progressive modifications of the
oriented parallel to the mirrors and a mirror separation refadiation patterns in thex and yz planes, respectively, as
lated to the emission wavelength by \/2. In this case, one functions of the number of multiple reflections. The radiation
reflection occurs every roundtrip t|rn$t to a good approxi_ intenSity per unit solid angle is plotted as a function of the
mation for the relatively small propagation anglesf the  Propagation angl®, for different values oN. Mirrors with

radiation inside the cavity, and the time associated with on&ery high reflectivity are assumed. The dipole initially emits
reflection is given by as in free space for times shorter than the round-trip time,

and it is at the time of arrival of the light reflected back from

the mirror that the atom first acquires information about the
Trer=d/(C cOsO) — 1y=d/c for 6—0. (8)  boundary, as previously noticdd,2]. However, it is also
clear from these results that the round-trip time is not suffi-
cient for the field mode to be completely established in a
o ) . . planar cavity. We can say that, after each reflection of the
radiation pattern as a fun_ct|o_n OFis thus_ a good |nd!cator field at the cavity walls, the atom “feels” the boundaries a
Of the ?l#]lduP of tthe caV|ty-f|_eId_ mode in thgl_;rans:e?t ret')little bit more and progressively adapts its further deexcita-
gime of thé spontaneous emission process. Tne relation bgy, , dynamics to the conditions imposed by the geometry of
tween theN andt dependences is less direct for the other,[he system and the dipole orientation. Note how the small

examples considered, where the radiation is not confined tﬁ’ﬂtial anisotropy of the spatial intensity distribution, due to

small anglesp. the dependence o, vanishes very quickly for increasing

.We co_n3|_der a dipole parallel to the mirrors Oﬂa.:)‘lz values ofN as cod9 tends to 1. In the steady-state regime,
microcavity in Sec. 1A, and compare the results with thosecharacterized by a strong enhancement of the emission in the
for a dipole orthogonal t.o t.he mirrors n S.ec. .” B. In Sec. direction orthogonal to the mirrors, the propagation argle
IC, we analyze the emission by an gtomlc dipole pgrallel[ends to zero, and the projection of the emission lobe on the
and oryhogonal, respectively, to the mirrors oflaA/4 mi- Xy plane(pattern seen from theaxis) has the shape of a very
crocavity. small diameter disk.

The steady-state radiation pattern is described by a nor-
malized intensity distribution obtained from E(R) for N

—00 as

1-R,R, exp(2ikd cos#)

For an atom excited at time=0, the establishment of the

A. Dipole parallel to the mirrors of a resonant cavity

We assume aymmetricaresonant microcavity with mir-
rors whose|re|ﬂection and traTslmission coefficients are equal, 1,(6,6) |T|1+|R|>—2|R|cog 7 cosh)}
R;,=R=—|R| and T, ,=T=i|T|, respectively. The mirror = 7 7
seioaration is related to the emission wavelengthdby\ /2 lo 1+[R|*~2|R|" cog 27 cosp)
and to the wave vector byd= 7. The atom is placed in the X {sir? ¢+ cog ¢ cos 6}. (10
center of the cavity with its dipole parallel to tleaxis. The
radiated intensity per unit solid angle as a functioNpfin ~ This is also proportional to the spontaneous emission rate per
units of 3/4, is determined by the square modulus of theunit solid angle. In the weak-coupling regime, the total spon-
emitted field amplitude afte reflections as taneous emission rate for a dipole parallel to xhaxis and
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FIG. 2. External radiation pattern from a dipole parallel to the mirrors of a cavity avith /2 and|R|?>=0.998, after the numbef$ of
reflections indicated. The continuous and broken curves refer textbadyz planes, respectively.

placed in the middle of the cavity, evaluated from Fermi’'sThe integrated spontaneous emission intensity thus remains
golden rulg[7,9], can be written as constant on the approach to perfect reflectivity, as the in-
crease in peak intensity is compensated by the decrease in
3 w2 2m the divergence angle of the emission lobe.
FH:EFOL sm@d&fo dély(0,¢)/1o, (1) Using representatiofi4), the evaluation of the spontane-
ous emission rate for a dipole parallel to tkexis is how

where T, is the emission rate in free space. The relativeStraightforward, and from Ed11) setting sin/=96, we have

spontaneous-emission rate is thus di)rectly related to the ratio 3 ) 0y 1 3

of radiated intensities given by EL0), expressed in units _° N g 2= 2y_ >

of 3/4. ’ v Ed g F”_4wrofo d¢f0 167340067 =35 1.
The intensity distribution given by Eq10) simplifies in

the limit of a perfect cavity with zero-transmission mirrors. The spontaneous emission lifetime is reduced by a factor of

As #—0 when|R|?>—1, we can expand the function c8s 2 in agreement with previous wof&0]. A direct integration

around 1, and obtain the radiation pattern in any plane oref Eq. (14) over the half-space, with the real units of the

(15

thogonal to the mirrors as normalized intensity distribution restored, shows that the en-
ergy per unit time radiated by the atom is increased by a
1,(0) IT|2(1+]|R|)? 4|T|? =2 12 factor of 2, which compensates for the reduction of the

atomic decay time and ensures the conservation of energy. It
is worth noting that a more general evaluation of the spon-
This shows an enhancement of ®# relative to the small- taneous emission rate of a dipole parallel to the mirrors, as a
angle intensity in the absence of the mirro[R|&0). The  function of kd, shows that a maximum valug; =3I, is
evaluation of the angular divergence at half the maximum oféached as soon ddl is slightly greater thanm for [R|?

the emitted intensity leads to the well-known reg@lt0,14]  —1 [7,12-17. In fact, kd= 7 is a cutoff value due to the
boundary conditions of the electromagnetic field in a cavity

2 2|T| with perfect reflecting mirrors, and formally,=3I"y occurs
= [77/(1—|R|2)]1/2: N (13)  only in thelimit d—\/2.
a

o, (1—|RPD2+@2R[26* ([T|?Im)%+ 6*

Ad

The angular divergence tends to zero fof—0 and, in this B. Dipole orthogonal to the mirrors of a resonant cavity

limit, a well-known representation of Dirac’s delta function ~ We now consider an atomic dipole oriented parallel to the
leads to z axis in the middle of ad=A/2 symmetrical microcavity.
Only the p-polarized field contributes, and the normalized
(O)1,=45(6%). (149 intensity distribution afteN reflections is
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FIG. 3. External radiation patterns as in Fig. 2 but for a dipole perpendicular to the mirrors. The intensity is isotropic araumdsthe

1,(6,N)  1+|R[*N+D_2[R[2N*D cog27(N+1)cosd) again showing an enhancement of 4 relative to free-
| = 1+|R|4—2|R|200s(27rcose) space emission al= /2. The angular divergence at half
0 maximum intensity is

X|TI?{1+|R|?+ 2|R|cog 7 cos)}sir? 0. (16) L[R2 T2
The emission is independent of the angleand absolutely Ag= P (19)
isotropic in thexy plane. The emission intensity is now con-
centrated around= 7/2, and the dipole radiates in all direc- in agreement with previous resu[ts0]. Comparison of Egs.
tions parallel to the mirrors. Figure 3 shows the spatial pat{19) and (13) shows that the planar lobe of the enhanced
tern of the emission in any plane orthogonal to the mirrorsemission of a dipole orthogonal to the mirrors for small val-
and containing the axis, for increasing values df. The ues of|T| is much narrower than the unidirectional emission
axis is centered of= /2 in order to show the entire inten- lobe of a dipole parallel to the mirrors.

sity pattern, and the relation & to the elapsed time is ill For |T|?—0, (18) takes the limiting form
defined. However, the round-trip time is clearly not sufficient
for the dipole to completely “feel” the boundaries, and the 1,.(6) 225( 6— f) (20)
final field pattern cannot be established in this time. o 2)

The normalized intensity distribution in the steady-state ] o
regime is obtained from Eq16), with N—, as Using Eq.(20), we easily evaluate the spontaneous emission

rate for a perpendicular dipole, replacih@py L and putting
1,(6) |T|?{1+]|R|?+2|R|cog 7 cosh)} 2 sin#=1 in Eq.(11). We thus obtain, in agreement with pre-
o, 1+|R*—2[R?cod2mcosh) 6. (17)  vious result{7,10,15,18,

The spontaneous emission rate of an qtor_nic dip_ole_orthogo- Fi=il“0f2ﬁd¢fﬁ/2d025( 9— z> _ §F0. 21)
nal to the mirrors of a symmetrical cavity is again given by 4 0 0 2/ 2

Eqg. (11) but with 1,(6,¢) replaced byl , (6). In the limit of

perfect mirrors, wher¢R|?>— 1, Eq. (17) can be expanded The spontaneous emission lifetime is reduced by a factor of

aroundé= =/2. To a good approximation, £ with respect to the free-space value, as for the emission of
the dipole parallel to the mirrors. The energy of the system is
G | TI?(1+|R])? again conserved.

lo 1\
2y2 2/p|2
(1-|R|*)*+47% R ( 60— 577) C. Spontaneous emission in a cavity wherd<A/2

2, 2 We now consider a symmetrical planar microcavity with a
|T|%/ 7 . . i a
~ 5, (18) smaller mirror separation, namelg=\/4 or kd= /2, than
(| T|22m)2+ | 6 EW that of the two preceding subsections. We analyze the estab-
2 lishment of the intensity distribution for a dipole parallel to
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FIG. 4. External radiation patterns for a dipole parallel to the mirrors as in Fig. 2, but with mirror sepatatiod.

the mirrors and then for a dipole orthogonal to the mirrors, The spontaneous emission rate @igr A/4 is given by Eq.
again assuming a weak-coupling regime. (11), with substitution of a modified form of Eq.10) in
For an atomic dipole parallel to theaxis, the normalized which 7 is replaced byr/2. In the limit|R|>— 1, the result is
radiated intensity per unit solid angle, as a function of theapproximately
number N of reflections, is given by Eq(9) but with =
everywhere replaced byr/2. The transient effect is illus-
trated in Fig. 4, where we plot the spatial intensity distribu-
tions in thezxandyx planes as functions of the propagation
angle 6. The oscillating dipole radiates as in free space be- «I'o|T|?, (23
fore the first round-trip of the electromagnetic wave. The
further radiative evolution of the atom is progressively modi-as the integral is convergent, aiig tends to zero fotR|?
fied after subsequent field reflections, until inhibition of the—1 or [T|*—0.
emission occurs foN— o, when the spontaneous emission ~ Ford<\/2 we putkd~0 in Egs.(6) and(7), and replace
rate is drastically reduced. The peak radiated intensitg at ™ Py 0 in Eq.(10) to obtain the spontaneous emission rate
=0 in the steady state fat=\/4 is given in general by (11) for a general value oR| as

TPA-IR)? | 1-[R
1-RP?Z TR

1—cod(/2)cosb)
1—cogq 7 cosh) {1+

3 w2
l“HzZl“O|T|2 . dosing cog 6}

1,(0) 1-|RJ?
lo, 1+|R?*

(22 r=r, (24

and complete inhibition occurs for perfectly reflecting mir- When |R|2—1, T'=To|T|%4, in agreement with previous
rors[16]. results[7]. Although the conditiord<<\/2 is difficult to re-

In terms of the classical picture of dipole imadéd8,19,  alize in the optical regime, we can say in general that when
we note that for a dipole parallel to the perfectly reflectingthe oscillating dipole is placed in a cavity shorter than half
mirrors and a mirror separation shorter than half the atomithe emission wavelength and is oriented parallel to the mir-
wavelength, the sum of the radiation emitted by the imagesors, the spontaneous emission lifetime of the atom tends to
completely cancels the radiation emitted by the real dipoleinfinity for reflectivities tending to unity. Spontaneous emis-
Separationsl<<\/2 thus correspond to conditions of destruc- sion does take place for reflectivities not quite equal to unity,
tive self-interference for the reflected waves of the emittecbut it is a really very slow process.
radiation. Alternatively, considering the excited atom as For an atomic dipole perpendicular to the mirrors o a
stimulated by the vacuum field, the only available modes for=\/4 microcavity, the normalized radiated intensity per unit
d<\/2 do not interact with the dipole, as their polarization is solid angle, as a function of the numhsrof reflections, is
orthogonal to the mirrors, and the emission is inhibited.given by Eq.(16), but with = everywhere replaced by/2.
When|R|?# 1, the emission in the steady state is not com-The intensity distribution in any plane orthogonal to the mir-
pletely suppressed because of the existence of other modess, and containing the axis, is illustrated in Fig. 5 for
whose polarization is not orthogonal to the atomic dipole. different values ofN. There is now a constructive interfer-
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FIG. 5. External radiation patterns for a dipole perpendicular to the mirrors as in Fig. 3 but with mirror separati¢h

ence between the partially reflected emitted waves. Théhe energy density of the quantum vacuum field is inversely
atomic dipole normal to the mirrors interacts with the modeproportional to the cavity volume, the atom-vacuum field
whose polarization is orthogonal to the mirrors, and thecoupling increases whei— 0, leading to a divergence.
emission is enhanced rather than inhibited. The enhancement Apart from the perpendicular dipole witd<<\/4, the
factor of the peak radiated intensity in the steady state ighange in spontaneous emission rate from the free-space
obtained ford= /2 as value caused by insertion of the atom in the planar cavity is

limited to a factor of 3.
I (wf2) [TIP(1+|R)? 4

o~ (I-RP? i-RZ ®

Ill. TRANSIENT AND STEADY-STATE FIELD
for |R|2>—1. The spontaneous emission enhancement factor DISTRIBUTIONS
is independent of the value dffor a dipole orthogonal to the

mirrors, because of the term c@scosr/2)=0 that multi- In this section we obtain the dependence on mirror reflec-
plies kd in Egs. (6) and (7). tivity of the characteristic time needed for the formation of

For d=\/4, and in the limit|R|2— 1, the normalized in- the s.tea'dy—sta_lte spatial inte_nsity distribut@on emi'tted by an
tensity distribution in the steady-state regime can be ex&mic dipole in a planar cavity. The most interesting case to
pressed as analyze is a microcavity whose distance between the mirrors
is d=\/2 with the emitting dipole parallel to thg axis,
where the time and\N dependences of the emission are

1,(0) 4 |T|?%/ 7R T
=— )2 =45 0= 5| equivalent. It is shown in Sec. Il A that the form of the emis-

lo

sion lobe tends toward a tight concentration aroundztéves
26 for reflectivities tending to unity. From an analytical study of
(26) the dependences of the propagation angle of the emitted field

The total spontaneous emission rate of the atom, obtaine®f the time and the reflectivity in the weak-coupling regime,
from Eq.(11) with Il replaced by. and replaced byr/2in ~ We can derive the mean time needed for the establishment of
Eq.(17), isT', =3T,. Ford<\/2, we sekd~0 in Egs.(6) the transverse coherence length and mode volume in a planar
and (7) and replacer by 0 in Eq.(17) to obtain the sponta- CaVIty.

neous emission rate for a general valudRjf as

" (|T|2/77|R|)2+(0—§77

1+|R| A. Angular divergence of the emitted radiation

FL=F01_|R| for d</2. (27 We consider the radiation pattern in theplane, remem-

bering that the spatial distribution becomes isotropic in the
The spontaneous emission rate of the dipole orthogonal try plane after a small number of initial reflections. We evalu-
the mirrors tends to infinity whefR|?—1, in agreement ate the lobe angular divergence as a functioN,aind derive
with previous result§7,16]. It has been noted 6] that, since its dependence on the reflectivity of the mirrors. The normal-
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ized radiated intensity distribution is given by E®) with

¢=0. The spontaneous emission is enhanced=a0, with _ — |RF=0.998
iel
value £ 0.25¢ IR = 0.9995
I,(ON) 1+|R v 0.2 - |Rf=1
H(I ):1_:R:(1_|R|2(N+1))2. (28) 'é‘
0 <0.15
Q
We limit our attention to very high reflectivitiefR|2—1 or £ 0.1
|T|?>—0, when the results of the Sec. Il A show that-0. g
The propagation anglé at half the maximum height of the E 0.05 S
intensity distribution is derived from N S i
0 2000 4000 6000 8000 10000
1+|R|*N*TD—2|R[2N*D cogmr(N+1) 62) Reflections N

(1-|R®*+|R[*m*¢" . . .
FIG. 6. Angular divergence of the radiation emitted by a dipole
(1—|RJ2N*1)y2 parallel to the mirrors afteN reflections, for cavities witll=X\/2

= 20-[RPZ (29 and|R|?=0.998, 0.9995, and 1.

n‘Fine term in Eq(30). Nevertheless it turns out that E@®3)
satisfies Eq(32) within a good approximation even for mod-
erate values such a&¢=50.

The same form of expansion continues to provide a good
approximation for the radiation pattern of a dipole placed in
a lossy cavity with very high reflectivity mirrors. We shall
find that the cavity field mode is established after a mean

where the intensity expression on the left is obtained fro
Eq. (9) with ¢=0, and expanded in powers éf Only the
leading terms in the limits of smal and|T|? are retained
and, in particular, th&=0 values of the final two factors in
Eq. (9) are sufficient. It follows that

1 . . :
= (14 |R|ZNT)2_2|R|ZN*Deog (N +1) 62) time corresponding t&>50. Thus with|R|? close, but not
2 necessarily equal to 1, expansion of E§0) aroundx= 7
IR|2726% [ 1— |R|2N+D 2 gives a quadratic equation of the forax?+bx+c=0, with
T2 ( 1—-|RJ? ) 30 IR[Z  (1—|R[ZN+1)\2
_ 2(N+1)
. i - A= onr 1z iomeE ) TR
The angle in the remaining cosine is not smalNatends to
large values, and this term cannot be expanded araund b=—2m|R[ZN*D
=0. ’
Consider first perfectly reflecting mirrors witfR|?>— 1, 1 1
when Eq.(30) can be written c=— §+(7T2—3)|R|2(N+1)— §|R|4(N“). (34)

—~ 2 _ 2
cosx=1—(x/4) where x=m(N+1)6" (31  The external angular divergence is now a function|Rif

. . . .. obtained from
The solutionx=0 is an artifact of the perfect-reflectivity

limit, and we require a second solution closexte 7. Ex-

2
pansion of cog around this value gives in first approxima- AO(N,|R])= —————=F(N,|R)), (35
tion: Va(N+1)
P G 32 .
cosx=—1+ ——7—=1- 7. (32 b+ (b?—4ac)l?| 12
F(N,|R))= 53 . (36)

This quadratic equation is readily solved, and the angular
spreadA 6(N) of the emitted radiation is obtained from twice The result given by Eq33) for the lossless cavity is recov-
the field propagation anglé at half maximum intensity as  ered from Eq.(35) in the limit |R|2=1. On the other hand,

the steady-state limit obtained fbr— oo is
AO(N)=26(N)

) 2t (24-202)12 12 188 AO(NLR]) 2 (N+1)2(1—|R|2)2r/4~ 2IT|
T — 2T . — =
- ~ . ’ Jm(N+1 IR ’
Ja(N+1) 3 JN+1 TN+ \/;(37)
(33

in agreement with Eq13).

The limit of an ideal cavity is thus characterized by an an-
gular divergence of the transmitted field that tends to zero as
N~%2 as N—o. Expression(33) is correct for relatively Figure 6 illustrates the variation af9(N,|R|) with the
large values o, compatible with the treatment of the co- number of reflections that the radiation undergoes in the cav-

B. Analysis of the results
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ity before emission, obtained from E(5), for three values where Egs.(40) and (42) are used. The widtA w. of the

of the mirror reflectivity, including perfect mirrors with spectrum transmitted by a Fabry+Beinterferometer with
|R|?=1. Isolated values oA §(N,|R|) can also be obtained d=\/2, satisfied8]

from the widths of the complete radiation patterns shown in

Fig. 2, and these agree closely with the continuous curve for Awelw=1/, (44)

|R|?=0.998. The steady-state limits have been achieved at erefis the fi f the mi it defined
the right-hand side of the figure for the two lossy cavities,W eret s the finesse of the microcavity defined as

but the divergence angle for the perfect cavity continues to 7|R| - -

fall in accordance with Eq(33). f= 1—|R|2§ 1-|R? = W (45)
The damping rate of a lossy planar cavity for normal

propagation with9=0 is usually defined as for reflectivities tending to unity. The solid andlEq. (43)]
T.=c|T|%d (38) is thus proportional to the transmitted spectral widlEg.
¢ ' (44)]. This suggests that the progressive establishment of the
spatial intensity distribution, as a function of the number of
field reflections, is accompanied by a similar progressive es-
tablishment of the spectral “pattern” of the emitted radia-
_ _ 2_ tion. We have derived the spatial pattern of the emitted field
7e= 1l e=d/c|T|*=(N)d/c, 39 for a well-defined emission wavelengkh but the above re-
where the mean number of reflections of the field befor(—,mark implies that the.atom learns about thg spectral proper-
emission is defined approximately as ties of the planar cavity only _afte_r a delay tlme_ of the order
of 7., exactly as for the spatial field configuration.

and the associatezhvity storage timéor cavity photon life-
time) is given by

(N)=1/TJ% (40) o
C. Planar microcavity transverse coherence length

Note that (N)=500 for mirrors with reflectivity |R|? and mode volume

=0.998 andN)= 2000 for reflectivity] R|>=0.9995. We re- From conventional diffraction theory, the diameter of the
mark that, sinceN represents the number of reflections thataperture that gives the angular widit# of the emission lobe
the field undergoeafter the first round trip{N) in Eq. (39  outside the cavity is obtained from Rayleigh’s criterior] &l
and (40) should strictly be written aéN+ 1), but 1 can be

ignored relative ta(N) for the parameters adopted here. In [c~NAS. (46)

terms of the above definitions, Fig. 6 shows that the mean h iate with th ) fth
characteristic time for establishment of the cavity field dis-"/& can thus associatg with the transverse extension of the

tribution is of the order of the storage timg, in agreement cavity-field distribution, also defined as the coherence length
with a previous estimati20]. ’ of the microcavity. From Eqg35) and(46), | is a function

Expressing the cavity storage time as a function of theOf the mirror reflectivity and the number of field reflections
round-trip time from Eq(8), we have given by

N Ja(N+1)

AONJR) 2 F(IN,R])

7e=(N) 7. (41) I.(N,|R|)~ 47)
It is clear that, in contrast to spherical or one-dimensional In th d . N th h
cavities[1,2], the field pattern is established only after a time nt € stea .y-state. regime, with—, the coherence
much greater than that of the first round trip. The higher thdeN9thc is obtained with the use of EqE37) and(45) as
reflectivity, the more reflections the radiated field must un- 1

dergo to completely establish its spatial pattern. With the lo~\ \/;/2|T|~—)\ Jf, (48)
above notation, the steady-state limit given by E3j) is 2

rewritten as whose dependence onandf agrees with previous results

[3,4,10,11,2]1 The steady-state field distribution, with an ef-
Af=2m(N). (42 fective radiusr.=I./2, is equivalent, in some respects, to a
" . . ) mode of the lossy planar cavif21]. Its localized cylindrical
In planar cavities with perfectly reflecting mirrors, the char-fig|q gistribution contrasts with the usual plane-wave modes
acteristic timer tends to infinity, and this is associated with f infinite extent along the mirror surfaces described in Sec.
the infinite_narrowing of the angular emission lobe repre-| Tpe finjteness of the transverse dimension of the effective
sented by Eq(14). These considerations have important con-mage equal to the coherence length, is a direct consequence
sequences for the realization of the regime of strong couplings ne finite loss of the cavity, which also yields the finite
in a very highQ planar cavity, and this is analyzed in Sec. V. oytarnal divergence angle. It has been obsefed thatr

~ With azimuthal isotropy in the spatial intensity distribu- j5 4150 the minimum radius of the mirrors needed to support
tion, the solid angle of the emission lobe in the steady state i§,e mode.

defined in a first approximation as Note that for a dipole in a lossless cavity, E¢33) and
47) give
AQ= A92—1—T2 43 e
-T2 ‘W" E “3) lo~\ym(N+1) (49)
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Reflections N FIG. 8. Radiation pattern for a dipole parallel to a single prefect

mirror at a distancel/2=\/4. The continuous and broken curves
FIG. 7. Evolution of the transverse coherence length as a functefer to thezxandyzplanes, respectively.
tion of N, or equivalently of the time, for the mirror reflectivities
shown. The broken lines show the steady-state values for the lossy When the remaining left-hand mirror is perfectly reflect-
cavities. ing, the normalized radiated intensity in the steady-state re-
gime is derived from the formalism of Sec. Il, or from clas-
and |.—o~ whenN—. In a resonant planar cavity with Sical wave-interference considerations, as
perfect mirrors, the mode of the electromagnetic field is thus .
infinitely extended in the plane of the mirrors, corresponding !1(6,#)/10=2{1—cogkd cosé)}{sir’ ¢+ cos ¢ cos ¢}.
to the zero divergence angle of the emission lobe. As we (51)
have seen, the mean timg necessary for the establishment
of the mode also tends to infinity. The evolutionlgfas a
function of N is shown in Fig. 7 for three values of the mirror
reflectivity.
The approximate volume of the steady-state radiativ
mode in a planar microcavity is

Both thes- and p-polarized field components contribute to
the spontaneous emission, as for a dipole placed in a cavity
and oriented parallel to the mirrors. We assume that the atom
és placed at a distance from the mirror given 2= \/4,
where the spontaneous emission rate is enhanced. The radia-
tion pattern in the horizontalx plane is given by

2d 203 3

S 3T TP

e

V%W E

for d= %)\, (50 1,(6,0)/19=2{1—cog wcosh)}cod 6, (52

while the radiation pattern in the verticat plane is
For high-reflectivity mirrors, this is very much larger than

the mode volume in confocal cavities, whafg,,~\°3 [23]. 1,(8,712)/1y=2{1—coq m cosh)}. (53
V. SPONTANEOUS EMISSION BY AN ATOM The spa]'Eithintgl?fsity distribu;it?n.in thlst inhcr:mogeneolus2 be-
NEAR A PLANE MIRROR cause of the different contributions from the two polariza-

tions. The radiation patterns as functions of the propagation

It is instructive to compare the dynamics of the establish-angle are shown in Fig. 8.
ment of the electromagnetic field radiated by a dipole in a The transient regime in the single-mirror system occurs
planar cavity with that radiated by a dipole placed in front ofduring the round-trip time or more exactly during the gener-
a single plane mirror. The system is equivalent to a cavityalized round-trip timer,.; defined in Eq(8). The steady-state
constituted by two mirrors, one of which is perfectly trans-interference pattern is now established after the waves propa-
mitting. The formalism is based on that of Sec. Il, where thegating toward the mirror have been reflected back to the
right-hand mirror shown in Fig. 1 is removed by settiRg  atom. Thus the dipole, emitting initially as in free space,
=0, andT,=1. The following derivation of the transient needs only the information from the reflected wave in order
regime of the spatial evolution confirms previous resifis  to adapt its further evolution. Because of the enhancement at
and it gives an interesting comparison with the planar cavityd/2=2\/4, the angular divergence of the emission is slightly
For simplicity we assume that the atomic dipole is parallel tonarrowed with respect to free space, although the effect is
the plane of the mirror, for example parallel to thexis. much smaller than that observed for a dipole in a cavity,

In the system with a single mirror, the Airy functidb)  where multiple reflections generate the progressive angular
and its expansioli7), which describes thdl-dependent evo- narrowing of the radiation. The pattern in Fig. 8 is very
lution of the radiation pattern, both equal unity. The contri-similar to that of a dipole placed in a symmetrical caveyd
butions to the spatial intensity distribution, and similarly to parallel to thex axis) after the first reflection of the field on
the spontaneous emission rate, come essentially from the ithe mirrors.
terference between the field radiated to the right and the The spontaneous emission rate is given by @4) with
counterpropagating field reflected by the mirror on the left.substitution of the normalized intensity from E§1), except
Of course the Airy function reduces to unity because no multhat an additional factor of must be inserted to allow for the
tiple reflections can physically occur in a system with arestriction of the radiation to half of space. For a general
single mirror. position of the dipole,
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3 sinkd 3 sinkd 3 coskd characteristic feature of the structure of the confocal micro-
F:FO( 1-3 +3 375 2 ) , (54 cavity mode spectrurf24,25.

2 kd 2 (kp* 2 (k) The cavities used in experiments with Rydberg atoms
in agreement with previous resul{$,7,15. When d/2  have very high-quality factorf26—-29 in order to observe
=\/4, we obtain the effects of coherent coupling. The atomic transition of a

two-level Rydberg atom prepared with a very large quantum
number lies in the millimeter wave region, with parameter
' 59 values

wo=101-10" s71 and I'n=10-1¢F s1. (59

F” = Fo( 1+ ﬁ
showing a slight enhancement over the free-space spontane-

ous emission rate. For the cavity parameters, we take a mode volume of the

order of 5\3, as reported in Ref23], and typical values of
Q andl'; are

_ _ —1 ~ _ -1
The results obtained in preceding sections are important 0=10-10 s and T~10°-10' s, (59

for eyaluating the possibilitie_s of a(_:ces_sing_ the_ strongyyhere the Rabi frequency is obtained from Eg7). The
cgupllng regime and_ Qf observing Rapl oscillations in pla”arcavity Q can thus be of order $0and the inequalitieg)
high-Q resonant cavities. Here we point out relevant conses. 1, Iy are satisfied, wherEj is a residual radiative decay
ﬁuﬁtn(t:r?: ?rfnog:t;istugisﬁfeor;ﬁ::aer;a;rr(?r'sr?ﬁ:vgc';sfoig? \évaevikt'i'ggfate that excludes emission into the selected mode. Equiva-
u%ed in mos? QED experiments lently, 7. is much longer than the period(1/of Rabi oscil-
P : lation. The strong-coupling regime can be achieved, and this
o _ is confirmed by experimeri27,28. Confocal microcavities
A. Confocal cavity: ideal system for QED experiments provide ideal systems for the realization of QED experiments
For a dipole excited at time=0, we have seen that the in the strong-coupling limit, as initially introduced in the
atom radiates as in free space for 0< 7. If the round-trip ~ Jaynes-Cummings mod&ICM) [30].
time is the characteristic delay time necessary for the adap- When 7,8 7, the emitted field fort<r, is built up
tation of the electromagnetic field to the environment, as irduring the very initial dynamics of the radiative process. The
confocal, spherical, or one-dimensional cavities, then arnean energ¥ in the cavity electromagnetic field &t 7, is,
abrupt change in the atomic dynamics occurstferr [1,2].  therefore,
For an emitting atom in these cavities, after the first round
trip of the light, interference effects occur that result “either E(7r) =7 @o(1—Xp(— 7t/ Trag)) ~f wo( Tt/ Trad <A o
in an enhancement or reduction of the emission rate or in a (60)

peri.odic_ e>$'change of excitatio_n between the atom and th?he atom is still nearly totally excited at time=7,;, but

cavity field” [2]. Then, depending on the value of the Rabi o ;s of this infinitesimally small quantity of energy re-

period with respect to the microcavity storage timede-  |ga5ed during the first round-trip time, the dipole is able to

fined in Eq.(39) and the spontaneous emission lifetimgy,  fee| the boundaries and adapt its further evolution to the

either the weak or strong-coupling regime can be realized. .ty environment. For perfect mirrors and a configuration
The Rabi frequency characterizes the coupling betweeg, \yhich the spontaneous decay is inhibited, expreson

the two-level atom and the resonant cavity field mode in thefepresents the cavity-field energy in the steady state. Fearn

V. STRONG-COUPLING REGIME IN SYMMETRICAL
MICROCAVITIES

strong-coupling regime. It is defined, in general, as et al. [6] showed that this steady-state field energy has im-
2u [ fwg | Y2 portant consequences for the immediate detection of photons
= _( ) , (56) upon removal of one of the cavity mirrors. Kauranetal.
h \2e0V [31] confirmed the presence of the steady-state field in a

system equivalent to a dipole sheet placed in front of a single

where u is the electric-dipole matrix element of the atomic mirror

transition of frequency,, andV is the effective volume of
the microcavity; or, equivalently, the mode volume assumed

in steady-state conditions. The Rabi frequency is related to B. Planar microcavity

the free-space spontaneous emission Fatéy In contrast to the confocal cavity, the transient regime of
) the atomic dynamics in a planar microcavity in the weak-
, 4wou® 61 coupling regime occurs over a mean period of duratign
= (57)

" 2g0hV _w(z)_ VFO’ The dipole acquires complete information about the bound-
aries progressively, by means of many successive reflections
and Q) can be evaluated when the radiative decay rate isf the radiation. The realization of JCM experiments requires
known and the field mode volumé can be reasonably esti- that the atomic emission should occur after the effective
mated. For a half-wavelength resonant cavity withy  mode in the cavity is established, thatrigs> 7., or equiva-

> 1,4, the emission for times= r; occurs in a single longi- lently T'y<TI'. in terms of the radiative and cavity decay
tudinal mode of volumé/, and the vacuum Rabi frequency rates. Only the weak-coupling regime can be accessed when
Q is well defined at the moment of the photon emission. Thehese inequalities are satisfied, without any possibility of pe-

spatial and spectral confinement of the emitted radiation is @odical exchange of energy between the atom and the radia-
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tion field. The dipole again radiates as in free space for Gsignificantly affect previous conclusions that strong coupling
<t<r,, but the spontaneous emission rate now undergoes@nd Rabi oscillations cannot be achieved in planar cavities
slow progressive modification after each round trip of the[16,25.
emitted radiation for times, <t<r.. For the weak-coupling regime with,¢ 7., that is more

For a half-wavelength planar cavity, with transition fre- readily accessible, it remains true that the radiation pattern is
quencywo= 7rc/d, substitution of the cavity decay rate from established during the very initial dynamics of the radiative
Eq. (38) and the mode volume from E@50) into Eq.(57)  process, with the field energy at tinbe 7. given by

ives
g E(r) = wo(1— eXp(— o/ Tra)) = Frwo( 7o/ Trad) <Hiwo.
, 24 (65
Q :_31—‘(:1—‘0%1—‘(:1—‘0. (61) . . .
™ Note that Eq(65) is a more approximate expression than Eq.

o ) (60), since the atomic decay time itself undergoes variations
This simple relation shows that the value of the vacuum Rabjo; » <t<r_. Nevertheless, it follows from the decay rates

frequency of the planar microcavity lies close to the geomettyr 4 half-wavelength resonant cavity obtained in Secs. Il A

ric mean of the c_avi_ty decay rate and the fre_e_-space atomigng |1 B, that the energy inequality in E¢65) is valid.
spontaneous emission rate. Thus the conditions of strong
atom-fleld coupling and a hng cavity peeded fo_r the o_b-. C. Other varieties of cavity
servation of vacuum Rabi oscillations imply the inequality:
The planar and confocal cavities are two special cases of
Iy>Q>T.. (62) a series of stable symmetric cavities characterized by the
relative values of the cavity lengtthand the radius of cur-

There is, however, a contradiction in these relations, as thgatureR of the spherical mirrors, in the rang24]
Rabi frequency itself assumes the value used in the deri-
vation of Eq.(61) only after the delay time necessary for df2<R<co. (66)
the field in the cavity to reach its steady state. Inequali

. o o YThe infinite radius of curvature corresponds to the planar
(62), equivalent tor,,q< 7., implies that the radiation pattern

S 2 AT ) . v avity, a radius equal to the cavity length to the confocal
is still in its transient regime at the moment of emission, an avity, and a radius equal to half the cavity length to the
{2 cannot be written as in E¢56) since the mode volum¥é g e or concentric cavity. The planar and confocal cavi-
is not yet established. The atom in a planar cavity cannofieq nave bheen discussed in detail, and here we make some

acquire complete_ informatio_n about its environment untiIcomments on other kinds of cavity that are sometimes used
well after the cavity decay time. has elapsed, when the ;, .aiculations or experiments.

probability that the photon has been transmitted through the 1,4 planar cavity is the limit of a symmetrical cavity as

mirrors is very high. The probability of reabsorption of the yhe mirror radii of curvature tend to infinity. For a radius of

photon by the atom is accordingly very low, and the regime; ;. atreR that is much greater than the cavity lengttbut
of strong atom-field coupling with Rabi oscillations cannot

. 3 is not infinite, the mode continua of the strictly planar cavity
be accessed. A_Ithough G|e_[3(_at_1al. 2] an_alyze_d the mul-_ break up into discrete modes with the characteristic trans-
timode” JCM with the possibility of Rabi oscillations, their

X ) ; ) verse separatiof4]
cavity was one dimensional with a mode “volume” estab-
lished after the round-trip time,. Aw=(2c?Rd)¥2 (67)
For dielectric mirrors with very high reflectivityR|2
>0.9999[9] and an optical transition in the visible region, Our conclusions for the planar cavity continue to apply when

typical parameter values are Aw is small compared with the atomic and cavity linewidths,
so that the continua of transverse modes survive. In the op-
Ig=10® s}, Q=~3x10° s' and TI';=10" s7%, posite limit of aAw that is much larger than the linewidths

(63  but much smaller than the longitudinal mode separations, as
in recent experiments on single-atom-cavity QEE3,34),
and these satisfy the planar theory no longer applies; the conditions in such
cases resemble those of the confocal cavity and strong-
Fo<Q<T, (64)  coupling conditions may be achieved. For intermediate val-
ues ofAw, it is necessary to perform a detailed analysis of
which is the reverse of the triple inequality in E§2). The  the emission in order to evaluate the transient behavior and
same inequality(64) is satisfied, but more weakly, for mir- the possibilities of observing Rabi oscillations.
rors of the same reflectivity but atomic parameters corre- The concentric microcavity witd= 2R also has continu-
sponding to transitions of Rydberg atoms in the millimeterous distributions of modes when the transverse field varia-
wave range. The difficulties in achieving the strong-couplingtions are included. The transverse-mode continua now ex-
regime are caused essentially by the intrinsic multimodgend from the low-frequency sides of the discrete
spectrum of the planar cavity, where there is a dense corengitudinal frequencies, and transient effects similar to
tinuum of nondegenerate transverse modes associated withose found here for the strictly planar cavity could in prin-
each discrete longitudinal modi24,25,32. The existence of ciple occur. There is however, an important distinction be-
a transverse confinement of the field excitation within antween the planar and concentric microcavities in terms of
effective mode radius., discussed in Sec. Il C, does not their mode cross sectiori24]. For the planar cavity, the
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steady-state mode has the large circular transverse cross sétbutions of the emitted radiation are observable in principle,
tion discussed in Sec. Il C, both in the planes of the mirrorsbut the experiment is difficult in practice because only a
and in the plane of the atom at the center of the cavitysmall fraction of the initial excitation energy of the atom is
leading to weak coupling between the atomic dipole and theadiated over the brief time scatg. The spatial distribution
field mode. For the concentric cavity, the modes also have af the internal field of the cavity at the end of the transient
large cross section, or spot size, at the mirrors but a veryegime has a transverse extent of the order of the coherence
small cross section at the position of the atom, leading tdengthl.~\/|T|, which is related to the angular spread of
stronger atom-field coupling. With the effects of the trans-the external radiation by Rayleigh’s criterion. The coherence
verse modes suppressed and only radially varying modkength was originally defined as the minimum separation dis-
functions, the concentric cavity has a mode spectrum anthnce of pairs of atoms for which correlation effects occur
transient effects similar to those of a one-dimensional cavity3], and it has also previously been identified as the effective
[1]. The nearly concentric cavity also has a discretetransverse dimension of the spontaneous-emission field vol-
transverse-mode spectrum, analogous to that of the nearlyme in the steady stafd]. The planar microcavity provides
planar cavity discussed above, and this provides anothex versatile system for the controlled variation and measure-
means of achieving single-mode coupling. ment of such correlations86,37.

Discrete-mode conditions can thus be realized in a wide Planar cavities do not, however, provide suitable systems
variety of cavity configurations with strong coupling to the for the study of the Rabi oscillations that occur in the strong-
radiating atom available in systems that have small modeoupling regimes of effectively one-dimensional cavities.
cross sections, and thus strong intensities, at the atomic pdhus, the identification of a finite transverse dimension for
sition. Nevertheless, confocal cavities are adopted in the mahe internal field excitation does not alter previous conclu-
jority of experiments because of their natural single-modesions that strong coupling cannot be achieved and Rabi os-
confinement, which occurs both spatially and spectrally.  cillations cannot be observdd6,25. The difficulty essen-

tially arises because the time taken to establish the steady
field distribution within the cavity is the same as the charac-
V1. CONCLUSIONS teristic time for the loss of the initial atomic excitation en-

The effects of environment on the spontaneous emissioff9Y to the external field, when inequalit§2) is satisfied.
characteristics of an excited atom form an important part ofl Ne single quantum of energy in the complete system is thus
the study of the gquantum-electrodynamical vacu[Bs). unavailable for re-excitation of the atom, as needed for the

One aspect of the emission is its modification from free-0ccurrence of Rabi oscillations. o
space form as the atom becomes “aware” of its surround- Our account of transient spontaneous emission is based on

ings by the reflection of initially emitted radiation back to the calculations of the time-dependent radiation of electromag-
atom. The atomic decay thus displays an initial transient beDetic waves by an atom excited at time0. The effects of a
havior up to some time that characterizes the complet§@Vity environment become apparent over the times needed
awareness of its environment by the atom. Previous calculdor the radiated waves to experience the detailed structures of
tions [1,2,6) have treated atoms in essentially one-the cavity mirrors. An alternative approach often used to
dimensional cavities of lengtti, where the transient regime obtain envwonmental_modlflcatlons of the_ atomic emission is
extends up to times of the order of the round-trip time to c_a_lculate the density of electromagnetic fl_eld mod_e_s at the
=d/c. Such theories apply to real cavities whose geometrieB0Sition of the atom and at the frequeneyof its transition.
produce modes with well-defined spatial configurations and e emission rate is taken to be proportional to this mode
isolated frequencies as, for example, in the confocal cavitydensity and the radiation pattern is determined by superposi-

Planar cavities, on the other hand, have continuous distriion of the amplitudes of the modes excited in the emission
butions of transverse modes associated with each longitudRrocess. It is not immediately clear how the initial transient
nal frequency and they cannot be treated realistically by anjp€havior of the emission appears in this alternative approach.
one-dimensional theory. We accordingly use a three- C9n5|der fI'I‘St thg confocal microcavity, wh.ose mode den-
dimensional theory to study the emission of radiation by arfity is comblike with teeth of uniform spacingc/d and
atom excited at time=0. The system parameters are as-Width I'c, assumed much smaller than the mode spacing.
sumed to satisfy conditions of weak atom-field coupling. ForT he initial transient behavior occurs in Fhe mode-de_nsny ap-
a half-wavelength higl cavity with d=\/2, the spatial dis- proach becguse of the spread (_)f emission frequer_mes around
tribution of the emission retains its free-space form for times® at €arly times. Thus, according to the energy-time uncer-
up to the round-trip time-,, but it progressively changes to a tainty relation(see, for example, Reff38,39), the emission
narrow lobe, for a transition dipole moment parallel to thehas a frequency spread of ordeAt/at time At. It follows
mirrors, or to a thin sheet, for a dipole moment perpendiculafhat for
to the mirrors. The distribution of the emission by an excited
atom in a quarter-wavelength cavity with=\/4 again tends 1  =c T
to a thin sheet for a perpendicular dipole, but the emission is g ©f At< py (68)
now inhibited for the parallel dipole.

The transient regime is particularly well characterized for
a parallel dipole in al=\/2 cavity where, in contrast to the the emission occurs into very many modes to give a free-
effectively one-dimensional cavity, it extends up to times ofspace rate and pattern. However, wheiis comparable to
the order of the cavity decay time,=d/c|T|?, whereT is  or greater thanr, the emission is confined to a frequency
the mirror transmission coefficient. The changing spatial disfange much smaller than the mode spacing and the full ef-
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fects of the cavity confinement are apparent. The transienwidth of the continuum edge, equal 1o,, when a steady
regime thus extends over times of ordgras in the previous state is achieved. The mode-density approach thus predicts a
calculations. transient regime that extends up to times of the order of the
For the planar microcavity, we consider only transition cavity storage time, which again agrees with the previous
dipole moments parallel to the mirrors, where the appropriatealculations.
mode density approximately vanishes for frequencies up to In summary, the planar and one-dimensional cavities dif-
the order of the cavity linewidth'. below 7rc/d. The mode fer markedly in the time scales of their transient regimes in
density then displays a series of continua that extend tgpontaneous emission by an excited atom. Beyond its tran-
higher frequencies, with sharp edges at odd integer multiplesient regime, the planar cavity allows studies of transverse
of mc/d; these edges have decaying tails with lengths oftoherence effects, which do not occur in the effectively one-
orderI'; on their low-frequency sides. The explanation of dimensional cavities. On the other hand, the latter allow ob-
the transient behavior in the mode-density approach is simiservation of the Rabi oscillations for achievable values of the
lar to that for the confocal microcavity for times much system parameters, while these oscillations cannot be real-
shorter thanr,;, when emission occurs into many of the con- ized in the planar cavity.
tinua to give again a free-space-like rate and pattern. For
longer times we consider t'he example illqstra}ted il”.l Eig. 2, ACKNOWLEDGMENTS
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