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Theory of transient spontaneous emission by an atom in a planar microcavity

Ottavia Jedrkiewicz and Rodney Loudon
Physics Department, Essex University, Colchester CO4 3SQ, United Kingdom

~Received 19 April 1999!

We study the transient regime of spontaneous emission by an atom excited in a planar high-Q microcavity.
The variation of the spatial distribution of the radiation outside the cavity is determined as a function of the
increasing number of internal reflections for transition dipole moments parallel and perpendicular to the
mirrors and for mirror separations equal tol/2 andl/4. Particular attention is given to the parallel dipole in the
l/2 cavity, where the number of reflections is closely proportional to the elapsed time. It is shown that the
transient regime extends over times of the order of the cavity decay time, in contrast to the effectively
one-dimensional cavities previously studied, where the steady state is achieved after the cavity round-trip time.
The field distribution inside the cavity tends to a steady-state form whose dimension parallel to the mirrors is
of the order of the transverse coherence length. Despite this transverse localization of the field excitation, it is
shown that the conditions for the achievement of strong atom-field coupling and the observation of Rabi
oscillations cannot be met in the planar microcavity.@S1050-2947~99!06911-5#

PACS number~s!: 42.50.Ct, 42.50.Md, 32.80.2t
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I. INTRODUCTION

Calculations of the radiation of light by atoms placed
microcavities normally begin with analyses of the fie
modes appropriate to the cavity geometry. These modes
well-defined spatial structures, determined essentially
classical electromagnetic theory, with standard bound
conditions at the surfaces of the cavity mirrors. They form
convenient basis for calculations of the dynamics of
coupled system of atomic transition and radiation field,
pecially the exchanges of energy between atoms prepare
given initial states and the field. The state of the coup
system in these processes is, of course, time dependen
the coupling Hamiltonian itself is independent of the time

Extensions to this approach to calculations in cavity qu
tum electrodynamics are needed in the very initial stage
radiative processes, particularly spontaneous emission.
consider an excited atom that is injected into the center
symmetrical cavity at timet50. It follows from general prin-
ciples of relativistic causality that the atom is not imme
ately aware of its surroundings. Thus the atom begins
radiate as it would in free space, and it is only after the ti
t rt needed for a round trip to the cavity mirrors and ba
with velocity c that the time development of the atomic e
citation level is changed from its free-space form. Expli
calculations for spherical@1# and one-dimensional@2# cavi-
ties find an initial exponential decay at the free-space r
The behavior begins to convert to a more complicated t
dependence at timet rt , and, for appropriate values of th
atomic and cavity parameters, the characteristic vacu
Rabi oscillations are established at longer times.

The purpose of the present paper is to extend the work
initial transient emission by atoms in spherical and o
dimensional cavities to planar microcavities, which cons
of a pair of plane-parallel mirrors in a three-dimension
space. Although several cases are illustrated, the main ca
lations refer to an atomic dipole oriented parallel to the m
rors with cavity lengthd related to the emission waveleng
l by d5l/2. We show that the time development in th
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planar geometry is quite different from that in other shap
of cavity, for example spherical, one dimensional, and c
focal. Thus the transient regime generally persists ove
longer time scale, controlled by the cavity decay timetc
rather than the round-trip timet rt . The cavity excitation es-
tablished by the end of the regime also occupies a m
larger volume, determined by the transverse cohere
length of the planar microcavity, a concept introduced by
Martini et al. @3# and developed by Ujihara@4#. The transient
behavior is difficult to detect in experiments, because of
relative brevity, but its form confirms important matters
principle in the causal time development of quantu
mechanical systems.

A study of the transient behavior is also important in u
derstanding the conditions for the subsequent occurrenc
not, of vacuum Rabi oscillations. The conditions of expe
ments with high-Q microcavities ensure that the round-tr
time t rt is much shorter than the cavity decay timetc ; it is
also usually much shorter than the free-space atomic ra
tive lifetime t rad. Vacuum Rabi oscillations of frequencyV
may occur when the transition is coupled to a single lon
tudinal mode of the cavity, with a coupling constant deno
V/2. It is necessary for the occurrence of oscillations that
Rabi period is much shorter than the cavity decay time a
the residual radiative lifetime in the cavity; this is referred
as the strong-coupling regime. The weak-coupling regim
defined by the opposite conditions of a long Rabi perio
when the vacuum oscillations are quenched. We shall sh
that these conditions also determine the forms of initial tr
sient behavior, and that vacuum Rabi oscillations are diffic
to achieve in the planar geometry.

The calculations begin in Sec. II with a brief review of th
main results for the steady-state modes in a high-Q planar
cavity and their adaptation to the study of transient effects
the weak-coupling regime. We derive the dependences o
intensity patterns radiated outside the cavity on the numb
of internal reflections for initially excited atoms with parall
and perpendicular dipole orientations, and for two charac
istic microcavity lengths. The external radiation patterns
4951 ©1999 The American Physical Society
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4952 PRA 60OTTAVIA JEDRKIEWICZ AND RODNEY LOUDON
analyzed in Sec. III in terms of their angular divergence. T
transient behavior of the field excitation inside the cavity
determined, and it is shown to lead to the steady-state co
ence length and mode volume found previously@3,4#. The
main calculations assume a symmetrical microcavity, bu
Sec. IV we make comparisons with previous work on em
sion by atoms close to a single plane mirror@5,6#. The con-
ditions for the achievement of the strong-coupling regi
and the observation of vacuum Rabi oscillations are d
cussed in Sec. V; the unfavorable possibilities of the pla
cavity are contrasted with those of the confocal cavity, a
compared with the situations in other forms of symmetri
cavity. The main conclusions are summarized in Sec. VI

II. TIME DEPENDENCE OF THE RADIATED INTENSITY

The quantum theory of spontaneous emission by an a
in a microscopic planar cavity was derived in previous wo
@7# by considering a complete set of orthonormal mode fu
tions that span the infinite three-dimensional vacuum t
pervades and surrounds the microcavity. The geometry o
cavity is shown in Fig. 1. The electromagnetic field is qua
tized by the introduction of creation and destruction ope
tors associated with the mode functions. The wave vec
kW 1 and kW 2 associated with plane waves of unit amplitu
incoming from the left and right sides of the cavity are fun
tions of the polar anglesu andf:

kW 15k~sinu cosf,sinu sinf,cosu!,

kW 25k~sinu cosf,sinu sinf,2cosu!, ~1!

where 0<u<p/2 and 0<f,2p. Orthonormal polarization
vectors are defined for each wave vector by

FIG. 1. Geometry of the Fabry-Perot microcavity showing t
notations for coordinate axes, mirror coefficients, mode wave v
tors, and dipole orientation.
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«W ~kW 1,1!5«W ~kW 2,1!5~sinf,2cosf,0!,

«W ~kW 1,2!5~cosu cosf,cosu sinf,2sinu!,

«W ~kW 2,2!5~cosu cosf,cosu sinf,sinu!, ~2!

where index 1 is associated with thes-wave component~po-
larized orthogonal to the incident plane! and index 2 with the
p-wave component~polarized parallel to the incident plane!.
The polarization index is denoted in general byj 51, and 2.
The emitting dipole is localized for simplicity atrW050 inside
the cavity, with orientation

mW 5m~sina cosb,sina sinb,cosa!. ~3!

The cavity mirrors are assumed to be metallic with zero
fective thicknesses and infinite extents in thexy plane. The
complex reflection and transmission coefficientsR1,2, and
T1,2 of the first and second cavity mirrors are assumed in
pendent of polarization, frequency, and incidence angle o
the range considered, and with constant phase shifts@8#.
They satisfy uRi u21uTi u251 and Ri* Ti1RiTi* 50 (i
51 and 2).

The spatial mode functions of the field are associated w
plane waves of unit amplitude incident externally from t
left and right of the cavity. They are derived, as usual
Fabry-Perot theory, by summing the geometric series res
ing from the multiple reflections on the mirrors@8#. In the
steady-stateregime andinside the planar cavity, the form of
spatial dependence of the field incident from the left for p
larization j is @7#

D21$T1 exp~ ikW 1•rW !«W ~kW 1 , j !

1T1R2 exp@ ikW 2•rW1 ikd cosu#«W ~kW 2 , j !%2 1
2 d,z, 1

2 d,

~4!

whered is the mirror separation. The form of spatial depe
dence of the field incident from the right is given by a simil
expression but with interchanges of subscripts 1 with 2 a
1 with 2. The Airy function is defined by

D215 (
n50

`

~R1R2!n exp~2iknd cosu!

51/$12R1R2 exp~2ikd cosu!%. ~5!

The total field amplitude at the location of the atom insi
the cavity atrW050, derived by summing the contributions o
all the modes, is used to obtain the spontaneous emission
of the atom by Fermi’s golden rule.

The spatial dependence of the intensity per unit so
angle radiated by the dipole is derived, as in a classical
scription, by addition of all the partial emitted plane waves
form the total interference pattern. The radiated fieldoutside
the cavity on the right has a spatial dependence,

D21$T2 exp~ ikW 1•rW !«W ~kW 1 , j !1T2R1

3exp@ ikW 2•rW1 ikd cosu#«W ~kW 2 , j !%,
1
2 d,z, ~6!

c-
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similar to Eq. ~4! but with the mirror labels interchanged
The square modulus of this expression gives the radia
intensity per unit solid angle on the right of the cavity for
given polarization, proportional to the corresponding spon
neous emission rate per unit solid angle. The spatial dep
dence of the radiated field on the left of the cavity is given
Eq. ~6! with interchanges of subscripts 1 and 2 and1 with
2.

In order to study thetransient regime of the atomic dy-
namics and its effect on the establishment of the radia
pattern, we need the time dependence of the field s
interference process. This is related to the geometrical su
Eq. ~5! restricted to a finite numberN of reflections, with the
Airy function replaced by

(
n50

N

~R1R2!n exp~2iknd cosu!

5
12~R1R2!~N11!exp„2ik~N11!d cosu…

12R1R2 exp~2ikd cosu!
. ~7!

We shall show that the description of the atomic dynamics
terms of the numberN of reflections is closely equivalent t
a description in the time domain for emission by a dipo
oriented parallel to the mirrors and a mirror separation
lated to the emission wavelength byd5l/2. In this case, one
reflection occurs every roundtrip timet rt to a good approxi-
mation for the relatively small propagation anglesu of the
radiation inside the cavity, and the time associated with
reflection is given by

t ref5d/~c cosu!→t rt5d/c for u→0. ~8!

For an atom excited at timet50, the establishment of th
radiation pattern as a function ofN is thus a good indicato
of the buildup of the cavity-field mode in the transient r
gime of the spontaneous emission process. The relation
tween theN and t dependences is less direct for the oth
examples considered, where the radiation is not confine
small anglesu.

We consider a dipole parallel to the mirrors of ad5l/2
microcavity in Sec. II A, and compare the results with tho
for a dipole orthogonal to the mirrors in Sec. II B. In Se
II C, we analyze the emission by an atomic dipole para
and orthogonal, respectively, to the mirrors of ad5l/4 mi-
crocavity.

A. Dipole parallel to the mirrors of a resonant cavity

We assume asymmetricalresonant microcavity with mir-
rors whose reflection and transmission coefficients are eq
R1,25R52uRu andT1,25T5 i uTu, respectively. The mirror
separation is related to the emission wavelength byd5l/2
and to the wave vector bykd5p. The atom is placed in the
center of the cavity with its dipole parallel to thex axis. The
radiated intensity per unit solid angle as a function ofN, in
units of 3/4p, is determined by the square modulus of t
emitted field amplitude afterN reflections as
d
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I i~u,f,N!

I 0

5
11uRu4~N11!22uRu2~N11! cos„2p~N11!cosu…

11uRu422uRu2 cos~2p cosu!

3uTu2$11uRu222uRucos~p cosu!%

3$sin2 f1cos2 f cos2 u%, ~9!

where Eqs.~2!, ~6! and ~7! have been used, andI 0 is the
free-space spontaneous emission intensity integrated ove
half-space solid angle. With this normalization, the fre
space radiation pattern derived from Eq.~9! by settinguRu2

50 has a unit value in the direction orthogonal to the mirro
with u50. Note that the two terms in the final bracket giv
the contributions from thes and p-polarized fields, respec
tively. By settingf50 or p/2, we obtain expressions de
scribing the progressive establishment of the radiation p
tern in thezx andyz planes, respectively. ForN50 the only
contribution to the interference pattern comes from the
perposition of the wave propagating toward one mirror a
the counterpropagating wave reflected by the other mirro
give the intensity distribution established after one round-
time.

Figure 2 illustrates the progressive modifications of t
radiation patterns in thezx and yz planes, respectively, a
functions of the number of multiple reflections. The radiati
intensity per unit solid angle is plotted as a function of t
propagation angleu, for different values ofN. Mirrors with
very high reflectivity are assumed. The dipole initially em
as in free space for times shorter than the round-trip tim
and it is at the time of arrival of the light reflected back fro
the mirror that the atom first acquires information about
boundary, as previously noticed@1,2#. However, it is also
clear from these results that the round-trip time is not su
cient for the field mode to be completely established in
planar cavity. We can say that, after each reflection of
field at the cavity walls, the atom ‘‘feels’’ the boundaries
little bit more and progressively adapts its further deexc
tion dynamics to the conditions imposed by the geometry
the system and the dipole orientation. Note how the sm
initial anisotropy of the spatial intensity distribution, due
the dependence onf, vanishes very quickly for increasin
values ofN as cosu tends to 1. In the steady-state regim
characterized by a strong enhancement of the emission in
direction orthogonal to the mirrors, the propagation anglu
tends to zero, and the projection of the emission lobe on
xy plane~pattern seen from thez axis! has the shape of a ver
small diameter disk.

The steady-state radiation pattern is described by a
malized intensity distribution obtained from Eq.~9! for N
→` as

I i~u,f!

I 0
5

uTu2$11uRu222uRucos~p cosu!%

11uRu422uRu2 cos~2p cosu!

3$sin2 f1cos2 f cos2 u%. ~10!

This is also proportional to the spontaneous emission rate
unit solid angle. In the weak-coupling regime, the total spo
taneous emission rate for a dipole parallel to thex axis and



4954 PRA 60OTTAVIA JEDRKIEWICZ AND RODNEY LOUDON
FIG. 2. External radiation pattern from a dipole parallel to the mirrors of a cavity withd5l/2 anduRu250.998, after the numbersN of
reflections indicated. The continuous and broken curves refer to thezx andyz planes, respectively.
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placed in the middle of the cavity, evaluated from Ferm
golden rule@7,9#, can be written as

G i5
3

4p
G0E

0

p/2

sinu duE
0

2p

df I i~u,f!/I 0 , ~11!

where G0 is the emission rate in free space. The relat
spontaneous-emission rate is thus directly related to the
of radiated intensities given by Eq.~10!, expressed in units
of 3/4p.

The intensity distribution given by Eq.~10! simplifies in
the limit of a perfect cavity with zero-transmission mirror
As u→0 when uRu2→1, we can expand the function cosu
around 1, and obtain the radiation pattern in any plane
thogonal to the mirrors as

I i~u!

I 0
5

uTu2~11uRu!2

~12uRu2!21p2uRu2u4 '
4uTu2/p2

~ uTu2/p!21u4 . ~12!

This shows an enhancement of 4/uTu2 relative to the small-
angle intensity in the absence of the mirrors (uRu50). The
evaluation of the angular divergence at half the maximum
the emitted intensity leads to the well-known result@3,10,11#

Du>
2

@p/~12uRu2!#1/25
2uTu

Ap
. ~13!

The angular divergence tends to zero foruTu→0 and, in this
limit, a well-known representation of Dirac’s delta functio
leads to

I i~u!/I 0>4d~u2!. ~14!
e
tio

r-

f

The integrated spontaneous emission intensity thus rem
constant on the approach to perfect reflectivity, as the
crease in peak intensity is compensated by the decreas
the divergence angle of the emission lobe.

Using representation~14!, the evaluation of the spontane
ous emission rate for a dipole parallel to thex axis is now
straightforward, and from Eq.~11! setting sinu>u, we have

G i5
3

4p
G0E

0

2p

dfE
0

p2/4
du2

1

2
4d~u2!5

3

2
G0 . ~15!

The spontaneous emission lifetime is reduced by a facto
2
3, in agreement with previous work@10#. A direct integration
of Eq. ~14! over the half-space, with the real units of th
normalized intensity distribution restored, shows that the
ergy per unit time radiated by the atom is increased b
factor of 3

2, which compensates for the reduction of th
atomic decay time and ensures the conservation of energ
is worth noting that a more general evaluation of the sp
taneous emission rate of a dipole parallel to the mirrors, a
function of kd, shows that a maximum valueG i53G0 is
reached as soon askd is slightly greater thanp for uRu2
→1 @7,12–17#. In fact, kd5p is a cutoff value due to the
boundary conditions of the electromagnetic field in a cav
with perfect reflecting mirrors, and formallyG i53G0 occurs
only in the limit d→l/2.

B. Dipole orthogonal to the mirrors of a resonant cavity

We now consider an atomic dipole oriented parallel to
z axis in the middle of ad5l/2 symmetrical microcavity.
Only the p-polarized field contributes, and the normalize
intensity distribution afterN reflections is
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FIG. 3. External radiation patterns as in Fig. 2 but for a dipole perpendicular to the mirrors. The intensity is isotropic around thz axis.
n-
-
a

or

-
l
n
e

at

g
by

lf

ed
al-
on

ion

-

r of
n of

is

a

tab-
to
I'~u,N!

I 0
5

11uRu4~N11!22uRu2~N11! cos„2p~N11!cosu…

11uRu422uRu2 cos~2p cosu!

3uTu2$11uRu212uRucos~p cosu!%sin2 u. ~16!

The emission is independent of the anglef, and absolutely
isotropic in thexy plane. The emission intensity is now co
centrated aroundu5p/2, and the dipole radiates in all direc
tions parallel to the mirrors. Figure 3 shows the spatial p
tern of the emission in any plane orthogonal to the mirr
and containing thez axis, for increasing values ofN. The
axis is centered onu5p/2 in order to show the entire inten
sity pattern, and the relation ofN to the elapsed time is il
defined. However, the round-trip time is clearly not sufficie
for the dipole to completely ‘‘feel’’ the boundaries, and th
final field pattern cannot be established in this time.

The normalized intensity distribution in the steady-st
regime is obtained from Eq.~16!, with N→`, as

I'~u!

I 0
5

uTu2$11uRu212uRucos~p cosu!%

11uRu422uRu2 cos~2p cosu!
sin2 u. ~17!

The spontaneous emission rate of an atomic dipole ortho
nal to the mirrors of a symmetrical cavity is again given
Eq. ~11! but with I i(u,f) replaced byI'(u). In the limit of
perfect mirrors, whereuRu2→1, Eq. ~17! can be expanded
aroundu5p/2. To a good approximation,

I'~u!

I 0
5

uTu2~11uRu!2

~12uRu2!214p2uRu2S u2
1

2
p D 2

'
uTu2/p2

~ uTu2/2p!21S u2
1

2
p D 2 , ~18!
t-
s

t

e

o-

again showing an enhancement of 4/uTu2 relative to free-
space emission atu5p/2. The angular divergence at ha
maximum intensity is

Du>
12uRu2

p
5

uTu2

p
, ~19!

in agreement with previous results@10#. Comparison of Eqs.
~19! and ~13! shows that the planar lobe of the enhanc
emission of a dipole orthogonal to the mirrors for small v
ues ofuTu is much narrower than the unidirectional emissi
lobe of a dipole parallel to the mirrors.

For uTu2→0, ~18! takes the limiting form

I'~u!

I 0
>2dS u2

p

2 D . ~20!

Using Eq.~20!, we easily evaluate the spontaneous emiss
rate for a perpendicular dipole, replacingi by' and putting
sinu>1 in Eq. ~11!. We thus obtain, in agreement with pre
vious results@7,10,15,16#,

G'5
3

4p
G0E

0

2p

dfE
0

p/2

du 2dS u2
p

2 D5
3

2
G0 . ~21!

The spontaneous emission lifetime is reduced by a facto
2
3 with respect to the free-space value, as for the emissio
the dipole parallel to the mirrors. The energy of the system
again conserved.

C. Spontaneous emission in a cavity whered<l/2

We now consider a symmetrical planar microcavity with
smaller mirror separation, namely,d5l/4 or kd5p/2, than
that of the two preceding subsections. We analyze the es
lishment of the intensity distribution for a dipole parallel
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FIG. 4. External radiation patterns for a dipole parallel to the mirrors as in Fig. 2, but with mirror separationd5l/4.
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the mirrors and then for a dipole orthogonal to the mirro
again assuming a weak-coupling regime.

For an atomic dipole parallel to thex axis, the normalized
radiated intensity per unit solid angle, as a function of
number N of reflections, is given by Eq.~9! but with p
everywhere replaced byp/2. The transient effect is illus
trated in Fig. 4, where we plot the spatial intensity distrib
tions in thezx andyx planes as functions of the propagatio
angleu. The oscillating dipole radiates as in free space
fore the first round-trip of the electromagnetic wave. T
further radiative evolution of the atom is progressively mo
fied after subsequent field reflections, until inhibition of t
emission occurs forN→`, when the spontaneous emissio
rate is drastically reduced. The peak radiated intensity au
50 in the steady state ford5l/4 is given in general by

I i~0!

I 0
5

12uRu2

11uRu2
, ~22!

and complete inhibition occurs for perfectly reflecting m
rors @16#.

In terms of the classical picture of dipole images@18,19#,
we note that for a dipole parallel to the perfectly reflecti
mirrors and a mirror separation shorter than half the ato
wavelength, the sum of the radiation emitted by the ima
completely cancels the radiation emitted by the real dipo
Separationsd,l/2 thus correspond to conditions of destru
tive self-interference for the reflected waves of the emit
radiation. Alternatively, considering the excited atom
stimulated by the vacuum field, the only available modes
d,l/2 do not interact with the dipole, as their polarization
orthogonal to the mirrors, and the emission is inhibite
When uRu2Þ1, the emission in the steady state is not co
pletely suppressed because of the existence of other m
whose polarization is not orthogonal to the atomic dipole
,

e

-

-

-

ic
s
.

d
s
r

.
-
es

The spontaneous emission rate ford5l/4 is given by Eq.
~11!, with substitution of a modified form of Eq.~10! in
which p is replaced byp/2. In the limit uRu2→1, the result is
approximately

G i>
3

4
G0uTu2E

0

p/2

du sinu
12cos„~p/2!cosu…

12cos~p cosu!
$11cos2 u%

}G0uTu2, ~23!

as the integral is convergent, andG i tends to zero foruRu2
→1 or uTu2→0.

For d!l/2 we putkd'0 in Eqs.~6! and~7!, and replace
p by 0 in Eq. ~10! to obtain the spontaneous emission ra
~11! for a general value ofuRu as

G i>G0

uTu2~12uRu!2

~12uRu2!2 5G0

12uRu
11uRu

. ~24!

When uRu2→1, G i>G0uTu2/4, in agreement with previous
results@7#. Although the conditiond!l/2 is difficult to re-
alize in the optical regime, we can say in general that wh
the oscillating dipole is placed in a cavity shorter than h
the emission wavelength and is oriented parallel to the m
rors, the spontaneous emission lifetime of the atom tend
infinity for reflectivities tending to unity. Spontaneous em
sion does take place for reflectivities not quite equal to un
but it is a really very slow process.

For an atomic dipole perpendicular to the mirrors of ad
5l/4 microcavity, the normalized radiated intensity per u
solid angle, as a function of the numberN of reflections, is
given by Eq.~16!, but with p everywhere replaced byp/2.
The intensity distribution in any plane orthogonal to the m
rors, and containing thez axis, is illustrated in Fig. 5 for
different values ofN. There is now a constructive interfer
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FIG. 5. External radiation patterns for a dipole perpendicular to the mirrors as in Fig. 3 but with mirror separationd5l/4.
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atomic dipole normal to the mirrors interacts with the mo
whose polarization is orthogonal to the mirrors, and
emission is enhanced rather than inhibited. The enhancem
factor of the peak radiated intensity in the steady state
obtained foru5p/2 as

I'~p/2!

I 0
5

uTu2~11uRu!2

~12uRu2!2 >
4

12uRu2 ~25!

for uRu2→1. The spontaneous emission enhancement fa
is independent of the value ofd for a dipole orthogonal to the
mirrors, because of the term cosu5cos(p/2)50 that multi-
plies kd in Eqs.~6! and ~7!.

For d5l/4, and in the limituRu2→1, the normalized in-
tensity distribution in the steady-state regime can be
pressed as

I'~u!

I 0
5

4

p

uTu2/puRu

~ uTu2/puRu!21S u2
1

2
p D 2 >4dS u2

p

2 D .

~26!

The total spontaneous emission rate of the atom, obta
from Eq.~11! with i replaced by' andp replaced byp/2 in
Eq. ~17!, is G'53G0 . For d!l/2, we setkd'0 in Eqs.~6!
and ~7! and replacep by 0 in Eq.~17! to obtain the sponta
neous emission rate for a general value ofuRu, as

G'5G0

11uRu
12uRu

for d!l/2. ~27!

The spontaneous emission rate of the dipole orthogona
the mirrors tends to infinity whenuRu2→1, in agreement
with previous results@7,16#. It has been noted@16# that, since
e

e
ent
is

or

-

ed

to

the energy density of the quantum vacuum field is invers
proportional to the cavity volume, the atom-vacuum fie
coupling increases whend→0, leading to a divergence.

Apart from the perpendicular dipole withd,l/4, the
change in spontaneous emission rate from the free-sp
value caused by insertion of the atom in the planar cavity
limited to a factor of 3.

III. TRANSIENT AND STEADY-STATE FIELD
DISTRIBUTIONS

In this section we obtain the dependence on mirror refl
tivity of the characteristic time needed for the formation
the steady-state spatial intensity distribution emitted by
atomic dipole in a planar cavity. The most interesting case
analyze is a microcavity whose distance between the mir
is d5l/2 with the emitting dipole parallel to thex axis,
where the time andN dependences of the emission a
equivalent. It is shown in Sec. II A that the form of the em
sion lobe tends toward a tight concentration around thez axis
for reflectivities tending to unity. From an analytical study
the dependences of the propagation angle of the emitted
on the time and the reflectivity in the weak-coupling regim
we can derive the mean time needed for the establishme
the transverse coherence length and mode volume in a pl
cavity.

A. Angular divergence of the emitted radiation

We consider the radiation pattern in thezxplane, remem-
bering that the spatial distribution becomes isotropic in
xy plane after a small number of initial reflections. We eva
ate the lobe angular divergence as a function ofN, and derive
its dependence on the reflectivity of the mirrors. The norm
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ized radiated intensity distribution is given by Eq.~9! with
f50. The spontaneous emission is enhanced atu50, with
value

I i~0,N!

I 0
5

11uRu
12uRu ~12uRu2~N11!!2. ~28!

We limit our attention to very high reflectivities,uRu2→1 or
uTu2→0, when the results of the Sec. II A show thatu→0.
The propagation angleu at half the maximum height of the
intensity distribution is derived from

11uRu4~N11!22uRu2~N11! cos„p~N11!u2
…

~12uRu2!21uRu2p2u4

5
~12uRu2~N11!!2

2~12uRu2!2 , ~29!

where the intensity expression on the left is obtained fr
Eq. ~9! with f50, and expanded in powers ofu. Only the
leading terms in the limits of smallu and uTu2 are retained
and, in particular, theu50 values of the final two factors in
Eq. ~9! are sufficient. It follows that

1

2
~11uRu2~N11!!222uRu2~N11!cos„p~N11!u2

…

5
uRu2p2u4

2 S 12uRu2~N11!

12uRu2 D 2

. ~30!

The angle in the remaining cosine is not small asN tends to
large values, and this term cannot be expanded arounu
50.

Consider first perfectly reflecting mirrors withuRu2→1,
when Eq.~30! can be written

cosx>12~x2/4! where x5p~N11!u2. ~31!

The solutionx50 is an artifact of the perfect-reflectivit
limit, and we require a second solution close tox5p. Ex-
pansion of cosx around this value gives in first approxima
tion:

cosx>211
~p2x!2

2
512

x2

4
. ~32!

This quadratic equation is readily solved, and the angu
spreadDu(N) of the emitted radiation is obtained from twic
the field propagation angleu at half maximum intensity as

Du~N!52u~N!

5
2

Ap~N11!
S 2p1~2422p2!1/2

3 D 1/2

'
1.88

AN11
.

~33!

The limit of an ideal cavity is thus characterized by an a
gular divergence of the transmitted field that tends to zero
N21/2 as N→`. Expression~33! is correct for relatively
large values ofN, compatible with the treatment of the co
r

-
s

sine term in Eq.~30!. Nevertheless it turns out that Eq.~33!
satisfies Eq.~32! within a good approximation even for mod
erate values such asN>50.

The same form of expansion continues to provide a go
approximation for the radiation pattern of a dipole placed
a lossy cavity with very high reflectivity mirrors. We sha
find that the cavity field mode is established after a me
time corresponding toN@50. Thus withuRu2 close, but not
necessarily equal to 1, expansion of Eq.~30! aroundx5p
gives a quadratic equation of the form,ax21bx1c50, with

a5
uRu2

2~N11!2 S 12uRu2~N11!

12uRu2 D 2

1uRu2~N11!,

b522puRu2~N11!,

c52
1

2
1~p223!uRu2~N11!2

1

2
uRu4~N11!. ~34!

The external angular divergence is now a function ofuRu
obtained from

Du~N,uRu!5
2

Ap~N11!
F~N,uRu!, ~35!

with

F~N,uRu!5S 2b1~b224ac!1/2

2a D 1/2

. ~36!

The result given by Eq.~33! for the lossless cavity is recov
ered from Eq.~35! in the limit uRu251. On the other hand
the steady-state limit obtained forN→` is

Du~N,uRu!→ 2

Ap~N11!
F ~N11!2~12uRu2!2

uRu2 G1/4

>
2uTu

Ap
,

~37!

in agreement with Eq.~13!.

B. Analysis of the results

Figure 6 illustrates the variation ofDu(N,uRu) with the
number of reflections that the radiation undergoes in the c

FIG. 6. Angular divergence of the radiation emitted by a dipo
parallel to the mirrors afterN reflections, for cavities withd5l/2
and uRu250.998, 0.9995, and 1.
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ity before emission, obtained from Eq.~35!, for three values
of the mirror reflectivity, including perfect mirrors with
uRu251. Isolated values ofDu(N,uRu) can also be obtained
from the widths of the complete radiation patterns shown
Fig. 2, and these agree closely with the continuous curve
uRu250.998. The steady-state limits have been achieve
the right-hand side of the figure for the two lossy cavitie
but the divergence angle for the perfect cavity continues
fall in accordance with Eq.~33!.

The damping rate of a lossy planar cavity for norm
propagation withu>0 is usually defined as

Gc5cuTu2/d, ~38!

and the associatedcavity storage time~or cavity photon life-
time! is given by

tc51/Gc5d/cuTu25^N&d/c, ~39!

where the mean number of reflections of the field bef
emission is defined approximately as

^N&>1/uTu2. ~40!

Note that ^N&5500 for mirrors with reflectivity uRu2

50.998 and̂ N&52000 for reflectivityuRu250.9995. We re-
mark that, sinceN represents the number of reflections th
the field undergoesafter the first round trip,̂ N& in Eq. ~39!
and ~40! should strictly be written aŝN11&, but 1 can be
ignored relative tô N& for the parameters adopted here.
terms of the above definitions, Fig. 6 shows that the m
characteristic time for establishment of the cavity field d
tribution is of the order of the storage timetc , in agreement
with a previous estimate@20#.

Expressing the cavity storage time as a function of
round-trip time from Eq.~8!, we have

tc5^N&t rt . ~41!

It is clear that, in contrast to spherical or one-dimensio
cavities@1,2#, the field pattern is established only after a tim
much greater than that of the first round trip. The higher
reflectivity, the more reflections the radiated field must u
dergo to completely establish its spatial pattern. With
above notation, the steady-state limit given by Eq.~37! is
rewritten as

Du52/Ap^N&. ~42!

In planar cavities with perfectly reflecting mirrors, the cha
acteristic timetc tends to infinity, and this is associated wi
the infinite narrowing of the angular emission lobe rep
sented by Eq.~14!. These considerations have important co
sequences for the realization of the regime of strong coup
in a very high-Q planar cavity, and this is analyzed in Sec.

With azimuthal isotropy in the spatial intensity distrib
tion, the solid angle of the emission lobe in the steady sta
defined in a first approximation as

DV5pS Du

2 D 2

5
1

^N&
5uTu2, ~43!
n
or
at
,
o

l

e

t

n
-

e
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e
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where Eqs.~40! and ~42! are used. The widthDvc of the
spectrum transmitted by a Fabry-Pe´rot interferometer with
d5l/2, satisfies@8#

Dvc /vc51/f , ~44!

wheref is the finesse of the microcavity defined as

f 5
puRu

12uRu2
>

p

12uRu2
5

p

uTu2 ~45!

for reflectivities tending to unity. The solid angle@Eq. ~43!#
is thus proportional to the transmitted spectral width@Eq.
~44!#. This suggests that the progressive establishment of
spatial intensity distribution, as a function of the number
field reflections, is accompanied by a similar progressive
tablishment of the spectral ‘‘pattern’’ of the emitted radi
tion. We have derived the spatial pattern of the emitted fi
for a well-defined emission wavelengthl, but the above re-
mark implies that the atom learns about the spectral pro
ties of the planar cavity only after a delay time of the ord
of tc , exactly as for the spatial field configuration.

C. Planar microcavity transverse coherence length
and mode volume

From conventional diffraction theory, the diameter of t
aperture that gives the angular widthDu of the emission lobe
outside the cavity is obtained from Rayleigh’s criterion as@8#

l c'l/Du. ~46!

We can thus associatel c with the transverse extension of th
cavity-field distribution, also defined as the coherence len
of the microcavity. From Eqs.~35! and~46!, l c is a function
of the mirror reflectivity and the number of field reflection
given by

l c~N,uRu!'
l

Du~N,uRu!
'

l

2

Ap~N11!

F~N,uRu!
. ~47!

In the steady-state regime, withN→`, the coherence
length l c is obtained with the use of Eqs.~37! and ~45! as

l c'lAp/2uTu;
1

2
lAf , ~48!

whose dependence onl and f agrees with previous result
@3,4,10,11,21#. The steady-state field distribution, with an e
fective radiusr c5 l c/2, is equivalent, in some respects, to
mode of the lossy planar cavity@21#. Its localized cylindrical
field distribution contrasts with the usual plane-wave mod
of infinite extent along the mirror surfaces described in S
II. The finiteness of the transverse dimension of the effect
mode, equal to the coherence length, is a direct consequ
of the finite loss of the cavity, which also yields the fini
external divergence angle. It has been observed@22# that r c
is also the minimum radius of the mirrors needed to supp
the mode.

Note that for a dipole in a lossless cavity, Eqs.~33! and
~47! give

l c;lAp~N11! ~49!
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and l c→` when N→`. In a resonant planar cavity with
perfect mirrors, the mode of the electromagnetic field is th
infinitely extended in the plane of the mirrors, correspond
to the zero divergence angle of the emission lobe. As
have seen, the mean timetc necessary for the establishme
of the mode also tends to infinity. The evolution ofl c as a
function ofN is shown in Fig. 7 for three values of the mirro
reflectivity.

The approximate volume of the steady-state radia
mode in a planar microcavity is

V'pS l c

2 D 2

d'
p2l3

32uTu2
;

l3

uTu2
for d5

1

2
l. ~50!

For high-reflectivity mirrors, this is very much larger tha
the mode volume in confocal cavities, whereVconf;l3 @23#.

IV. SPONTANEOUS EMISSION BY AN ATOM
NEAR A PLANE MIRROR

It is instructive to compare the dynamics of the establi
ment of the electromagnetic field radiated by a dipole in
planar cavity with that radiated by a dipole placed in front
a single plane mirror. The system is equivalent to a cav
constituted by two mirrors, one of which is perfectly tran
mitting. The formalism is based on that of Sec. II, where
right-hand mirror shown in Fig. 1 is removed by settingR2
50, and T251. The following derivation of the transien
regime of the spatial evolution confirms previous results@6#,
and it gives an interesting comparison with the planar cav
For simplicity we assume that the atomic dipole is paralle
the plane of the mirror, for example parallel to thex axis.

In the system with a single mirror, the Airy function~5!
and its expansion~7!, which describes theN-dependent evo-
lution of the radiation pattern, both equal unity. The con
butions to the spatial intensity distribution, and similarly
the spontaneous emission rate, come essentially from th
terference between the field radiated to the right and
counterpropagating field reflected by the mirror on the le
Of course the Airy function reduces to unity because no m
tiple reflections can physically occur in a system with
single mirror.

FIG. 7. Evolution of the transverse coherence length as a fu
tion of N, or equivalently of the time, for the mirror reflectivitie
shown. The broken lines show the steady-state values for the l
cavities.
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When the remaining left-hand mirror is perfectly reflec
ing, the normalized radiated intensity in the steady-state
gime is derived from the formalism of Sec. II, or from cla
sical wave-interference considerations, as

I i~u,f!/I 052$12cos~kd cosu!%$sin2 f1cos2 u cos2 f%.
~51!

Both thes- and p-polarized field components contribute
the spontaneous emission, as for a dipole placed in a ca
and oriented parallel to the mirrors. We assume that the a
is placed at a distance from the mirror given byd/25l/4,
where the spontaneous emission rate is enhanced. The r
tion pattern in the horizontalzx plane is given by

I i~u,0!/I 052$12cos~p cosu!%cos2 u, ~52!

while the radiation pattern in the verticalyz plane is

I i~u,p/2!/I 052$12cos~p cosu!%. ~53!

The spatial intensity distribution in thus inhomogeneous,
cause of the different contributions from the two polariz
tions. The radiation patterns as functions of the propaga
angle are shown in Fig. 8.

The transient regime in the single-mirror system occ
during the round-trip time or more exactly during the gen
alized round-trip timet ref defined in Eq.~8!. The steady-state
interference pattern is now established after the waves pr
gating toward the mirror have been reflected back to
atom. Thus the dipole, emitting initially as in free spac
needs only the information from the reflected wave in ord
to adapt its further evolution. Because of the enhancemen
d/25l/4, the angular divergence of the emission is sligh
narrowed with respect to free space, although the effec
much smaller than that observed for a dipole in a cav
where multiple reflections generate the progressive ang
narrowing of the radiation. The pattern in Fig. 8 is ve
similar to that of a dipole placed in a symmetrical cavity~and
parallel to thex axis! after the first reflection of the field on
the mirrors.

The spontaneous emission rate is given by Eq.~11! with
substitution of the normalized intensity from Eq.~51!, except
that an additional factor of12 must be inserted to allow for the
restriction of the radiation to half of space. For a gene
position of the dipole,

c-

sy

FIG. 8. Radiation pattern for a dipole parallel to a single pref
mirror at a distanced/25l/4. The continuous and broken curve
refer to thezx andyz planes, respectively.
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G i5G0S 12
3

2

sinkd

kd
1

3

2

sinkd

~kd!32
3

2

coskd

~kd!2 D , ~54!

in agreement with previous results@5,7,15#. When d/2
5l/4, we obtain

G i5G0S 11
3

2p2D , ~55!

showing a slight enhancement over the free-space spon
ous emission rate.

V. STRONG-COUPLING REGIME IN SYMMETRICAL
MICROCAVITIES

The results obtained in preceding sections are impor
for evaluating the possibilities of accessing the stro
coupling regime and of observing Rabi oscillations in plan
high-Q resonant cavities. Here we point out relevant con
quences of our results for planar microcavities and we hi
light the important differences from the confocal caviti
used in most QED experiments.

A. Confocal cavity: ideal system for QED experiments

For a dipole excited at timet50, we have seen that th
atom radiates as in free space for 0,t,t rt . If the round-trip
time is the characteristic delay time necessary for the ad
tation of the electromagnetic field to the environment, as
confocal, spherical, or one-dimensional cavities, then
abrupt change in the atomic dynamics occurs fort>t rt @1,2#.
For an emitting atom in these cavities, after the first rou
trip of the light, interference effects occur that result ‘‘eith
in an enhancement or reduction of the emission rate or
periodic exchange of excitation between the atom and
cavity field’’ @2#. Then, depending on the value of the Ra
period with respect to the microcavity storage timetc de-
fined in Eq.~39! and the spontaneous emission lifetimet rad,
either the weak or strong-coupling regime can be realize

The Rabi frequency characterizes the coupling betw
the two-level atom and the resonant cavity field mode in
strong-coupling regime. It is defined, in general, as

V5
2m

\ S \v0

2«0VD 1/2

, ~56!

wherem is the electric-dipole matrix element of the atom
transition of frequencyv0 , andV is the effective volume of
the microcavity; or, equivalently, the mode volume assum
in steady-state conditions. The Rabi frequency is related
the free-space spontaneous emission rateG0 by

V25
4v0m2

2«0\V
5

6pc3

v0
2

1

V
G0 , ~57!

and V can be evaluated when the radiative decay rate
known and the field mode volumeV can be reasonably est
mated. For a half-wavelength resonant cavity witht rad
@t rt , the emission for timest>t rt occurs in a single longi-
tudinal mode of volumeV, and the vacuum Rabi frequenc
V is well defined at the moment of the photon emission. T
spatial and spectral confinement of the emitted radiation
ne-
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e
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characteristic feature of the structure of the confocal mic
cavity mode spectrum@24,25#.

The cavities used in experiments with Rydberg ato
have very high-quality factors@26–29# in order to observe
the effects of coherent coupling. The atomic transition o
two-level Rydberg atom prepared with a very large quant
number lies in the millimeter wave region, with parame
values

v0>1010– 1011 s21 and G05105– 106 s21. ~58!

For the cavity parameters, we take a mode volume of
order of 5l3, as reported in Ref.@23#, and typical values of
V andGc are

V5106– 107 s21 and Gc'103– 104 s21, ~59!

where the Rabi frequency is obtained from Eq.~57!. The
cavity Q can thus be of order 108 and the inequalitiesV
@Gc ,G08 are satisfied, whereG08 is a residual radiative deca
rate that excludes emission into the selected mode. Equ
lently, tc is much longer than the period 1/V of Rabi oscil-
lation. The strong-coupling regime can be achieved, and
is confirmed by experiment@27,28#. Confocal microcavities
provide ideal systems for the realization of QED experime
in the strong-coupling limit, as initially introduced in th
Jaynes-Cummings model~JCM! @30#.

When t rad@t rt , the emitted field fort<t rt is built up
during the very initial dynamics of the radiative process. T
mean energyE in the cavity electromagnetic field att5t rt is,
therefore,

E~t rt!5\v0„12exp~2t rt /t rad!…'\v0~t rt /t rad!!\v0 .
~60!

The atom is still nearly totally excited at timet5t rt , but
because of this infinitesimally small quantity of energy r
leased during the first round-trip time, the dipole is able
feel the boundaries and adapt its further evolution to
cavity environment. For perfect mirrors and a configurati
for which the spontaneous decay is inhibited, expression~60!
represents the cavity-field energy in the steady state. F
et al. @6# showed that this steady-state field energy has
portant consequences for the immediate detection of pho
upon removal of one of the cavity mirrors. Kauranenet al.
@31# confirmed the presence of the steady-state field i
system equivalent to a dipole sheet placed in front of a sin
mirror.

B. Planar microcavity

In contrast to the confocal cavity, the transient regime
the atomic dynamics in a planar microcavity in the wea
coupling regime occurs over a mean period of durationtc .
The dipole acquires complete information about the bou
aries progressively, by means of many successive reflect
of the radiation. The realization of JCM experiments requi
that the atomic emission should occur after the effect
mode in the cavity is established, that ist rad@tc , or equiva-
lently G0!Gc in terms of the radiative and cavity deca
rates. Only the weak-coupling regime can be accessed w
these inequalities are satisfied, without any possibility of
riodical exchange of energy between the atom and the ra
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tion field. The dipole again radiates as in free space fo
,t,t rt , but the spontaneous emission rate now undergo
slow progressive modification after each round trip of t
emitted radiation for timest rt<t<tc .

For a half-wavelength planar cavity, with transition fr
quencyv05pc/d, substitution of the cavity decay rate from
Eq. ~38! and the mode volume from Eq.~50! into Eq. ~57!
gives

V25
24

p3 GcG0'GcG0 . ~61!

This simple relation shows that the value of the vacuum R
frequency of the planar microcavity lies close to the geom
ric mean of the cavity decay rate and the free-space ato
spontaneous emission rate. Thus the conditions of str
atom-field coupling and a high-Q cavity needed for the ob
servation of vacuum Rabi oscillations imply the inequalit

G0@V@Gc . ~62!

There is, however, a contradiction in these relations, as
Rabi frequencyV itself assumes the value used in the de
vation of Eq.~61! only after the delay timetc necessary for
the field in the cavity to reach its steady state. Inequa
~62!, equivalent tot rad!tc , implies that the radiation patter
is still in its transient regime at the moment of emission, a
V cannot be written as in Eq.~56! since the mode volumeV
is not yet established. The atom in a planar cavity can
acquire complete information about its environment un
well after the cavity decay timetc has elapsed, when th
probability that the photon has been transmitted through
mirrors is very high. The probability of reabsorption of th
photon by the atom is accordingly very low, and the regi
of strong atom-field coupling with Rabi oscillations cann
be accessed. Although Gießenet al. @2# analyzed the ‘‘mul-
timode’’ JCM with the possibility of Rabi oscillations, the
cavity was one dimensional with a mode ‘‘volume’’ esta
lished after the round-trip timet rt .

For dielectric mirrors with very high reflectivityuRu2
.0.9999@9# and an optical transition in the visible regio
typical parameter values are

G0'108 s21, V'33109 s21 and Gc'1011 s21,
~63!

and these satisfy

G0!V!Gc , ~64!

which is the reverse of the triple inequality in Eq.~62!. The
same inequality~64! is satisfied, but more weakly, for mir
rors of the same reflectivity but atomic parameters co
sponding to transitions of Rydberg atoms in the millime
wave range. The difficulties in achieving the strong-coupl
regime are caused essentially by the intrinsic multimo
spectrum of the planar cavity, where there is a dense c
tinuum of nondegenerate transverse modes associated
each discrete longitudinal mode@24,25,32#. The existence of
a transverse confinement of the field excitation within
effective mode radiusr c , discussed in Sec. III C, does no
0
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significantly affect previous conclusions that strong coupl
and Rabi oscillations cannot be achieved in planar cavi
@16,25#.

For the weak-coupling regime witht rad@tc , that is more
readily accessible, it remains true that the radiation patter
established during the very initial dynamics of the radiat
process, with the field energy at timet5tc given by

E~tc!5\v0„12exp~2tc /t rad!…'\v0~tc /t rad!!\v0 .
~65!

Note that Eq.~65! is a more approximate expression than E
~60!, since the atomic decay time itself undergoes variatio
for t rt<t<tc . Nevertheless, it follows from the decay rat
for a half-wavelength resonant cavity obtained in Secs. I
and II B, that the energy inequality in Eq.~65! is valid.

C. Other varieties of cavity

The planar and confocal cavities are two special case
a series of stable symmetric cavities characterized by
relative values of the cavity lengthd and the radius of cur-
vatureR of the spherical mirrors, in the range@24#

d/2<R<`. ~66!

The infinite radius of curvature corresponds to the pla
cavity, a radius equal to the cavity length to the confo
cavity, and a radius equal to half the cavity length to t
spherical or concentric cavity. The planar and confocal ca
ties have been discussed in detail, and here we make s
comments on other kinds of cavity that are sometimes u
in calculations or experiments.

The planar cavity is the limit of a symmetrical cavity a
the mirror radii of curvature tend to infinity. For a radius
curvatureR that is much greater than the cavity lengthd, but
is not infinite, the mode continua of the strictly planar cav
break up into discrete modes with the characteristic tra
verse separation@24#

Dv5~2c2/Rd!1/2. ~67!

Our conclusions for the planar cavity continue to apply wh
Dv is small compared with the atomic and cavity linewidth
so that the continua of transverse modes survive. In the
posite limit of aDv that is much larger than the linewidth
but much smaller than the longitudinal mode separations
in recent experiments on single-atom-cavity QED@33,34#,
the planar theory no longer applies; the conditions in su
cases resemble those of the confocal cavity and stro
coupling conditions may be achieved. For intermediate v
ues ofDv, it is necessary to perform a detailed analysis
the emission in order to evaluate the transient behavior
the possibilities of observing Rabi oscillations.

The concentric microcavity withd52R also has continu-
ous distributions of modes when the transverse field va
tions are included. The transverse-mode continua now
tend from the low-frequency sides of the discre
longitudinal frequencies, and transient effects similar
those found here for the strictly planar cavity could in pri
ciple occur. There is however, an important distinction b
tween the planar and concentric microcavities in terms
their mode cross sections@24#. For the planar cavity, the
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steady-state mode has the large circular transverse cross
tion discussed in Sec. III C, both in the planes of the mirr
and in the plane of the atom at the center of the cav
leading to weak coupling between the atomic dipole and
field mode. For the concentric cavity, the modes also hav
large cross section, or spot size, at the mirrors but a v
small cross section at the position of the atom, leading
stronger atom-field coupling. With the effects of the tran
verse modes suppressed and only radially varying m
functions, the concentric cavity has a mode spectrum
transient effects similar to those of a one-dimensional ca
@1#. The nearly concentric cavity also has a discr
transverse-mode spectrum, analogous to that of the ne
planar cavity discussed above, and this provides ano
means of achieving single-mode coupling.

Discrete-mode conditions can thus be realized in a w
variety of cavity configurations with strong coupling to th
radiating atom available in systems that have small m
cross sections, and thus strong intensities, at the atomic
sition. Nevertheless, confocal cavities are adopted in the
jority of experiments because of their natural single-mo
confinement, which occurs both spatially and spectrally.

VI. CONCLUSIONS

The effects of environment on the spontaneous emis
characteristics of an excited atom form an important par
the study of the quantum-electrodynamical vacuum@35#.
One aspect of the emission is its modification from fre
space form as the atom becomes ‘‘aware’’ of its surrou
ings by the reflection of initially emitted radiation back to th
atom. The atomic decay thus displays an initial transient
havior up to some time that characterizes the comp
awareness of its environment by the atom. Previous calc
tions @1,2,6# have treated atoms in essentially on
dimensional cavities of lengthd, where the transient regim
extends up to times of the order of the round-trip timet rt
5d/c. Such theories apply to real cavities whose geomet
produce modes with well-defined spatial configurations a
isolated frequencies as, for example, in the confocal cav

Planar cavities, on the other hand, have continuous di
butions of transverse modes associated with each longit
nal frequency and they cannot be treated realistically by
one-dimensional theory. We accordingly use a thr
dimensional theory to study the emission of radiation by
atom excited at timet50. The system parameters are a
sumed to satisfy conditions of weak atom-field coupling. F
a half-wavelength high-Q cavity with d5l/2, the spatial dis-
tribution of the emission retains its free-space form for tim
up to the round-trip timet rt but it progressively changes to
narrow lobe, for a transition dipole moment parallel to t
mirrors, or to a thin sheet, for a dipole moment perpendicu
to the mirrors. The distribution of the emission by an excit
atom in a quarter-wavelength cavity withd5l/4 again tends
to a thin sheet for a perpendicular dipole, but the emissio
now inhibited for the parallel dipole.

The transient regime is particularly well characterized
a parallel dipole in ad5l/2 cavity where, in contrast to th
effectively one-dimensional cavity, it extends up to times
the order of the cavity decay timetc5d/cuTu2, whereT is
the mirror transmission coefficient. The changing spatial d
ec-
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tributions of the emitted radiation are observable in princip
but the experiment is difficult in practice because only
small fraction of the initial excitation energy of the atom
radiated over the brief time scaletc . The spatial distribution
of the internal field of the cavity at the end of the transie
regime has a transverse extent of the order of the coher
length l c'l/uTu, which is related to the angular spread
the external radiation by Rayleigh’s criterion. The coheren
length was originally defined as the minimum separation d
tance of pairs of atoms for which correlation effects occ
@3#, and it has also previously been identified as the effec
transverse dimension of the spontaneous-emission field
ume in the steady state@4#. The planar microcavity provides
a versatile system for the controlled variation and measu
ment of such correlations@36,37#.

Planar cavities do not, however, provide suitable syste
for the study of the Rabi oscillations that occur in the stron
coupling regimes of effectively one-dimensional cavitie
Thus, the identification of a finite transverse dimension
the internal field excitation does not alter previous conc
sions that strong coupling cannot be achieved and Rabi
cillations cannot be observed@16,25#. The difficulty essen-
tially arises because the timetc taken to establish the stead
field distribution within the cavity is the same as the char
teristic time for the loss of the initial atomic excitation e
ergy to the external field, when inequality~62! is satisfied.
The single quantum of energy in the complete system is t
unavailable for re-excitation of the atom, as needed for
occurrence of Rabi oscillations.

Our account of transient spontaneous emission is base
calculations of the time-dependent radiation of electrom
netic waves by an atom excited at timet50. The effects of a
cavity environment become apparent over the times nee
for the radiated waves to experience the detailed structure
the cavity mirrors. An alternative approach often used
obtain environmental modifications of the atomic emission
to calculate the density of electromagnetic field modes at
position of the atom and at the frequencyv of its transition.
The emission rate is taken to be proportional to this mo
density and the radiation pattern is determined by superp
tion of the amplitudes of the modes excited in the emiss
process. It is not immediately clear how the initial transie
behavior of the emission appears in this alternative appro

Consider first the confocal microcavity, whose mode de
sity is comblike with teeth of uniform spacingpc/d and
width Gc , assumed much smaller than the mode spac
The initial transient behavior occurs in the mode-density
proach because of the spread of emission frequencies ar
v at early times. Thus, according to the energy-time unc
tainty relation~see, for example, Refs.@38,39#!, the emission
has a frequency spread of order 1/Dt at timeDt. It follows
that for

1

Dt
@

pc

d
or Dt!

t rt

p
, ~68!

the emission occurs into very many modes to give a fr
space rate and pattern. However, whenDt is comparable to
or greater thant rt the emission is confined to a frequenc
range much smaller than the mode spacing and the full
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fects of the cavity confinement are apparent. The trans
regime thus extends over times of ordert rt as in the previous
calculations.

For the planar microcavity, we consider only transiti
dipole moments parallel to the mirrors, where the appropr
mode density approximately vanishes for frequencies up
the order of the cavity linewidthGc below pc/d. The mode
density then displays a series of continua that extend
higher frequencies, with sharp edges at odd integer multi
of pc/d; these edges have decaying tails with lengths
order Gc on their low-frequency sides. The explanation
the transient behavior in the mode-density approach is s
lar to that for the confocal microcavity for times muc
shorter thant rt , when emission occurs into many of the co
tinua to give again a free-space-like rate and pattern.
longer times we consider the example illustrated in Fig.
whered5l/2 and the transition frequencyv lies just within
the edge of the first mode-density continuum. For tim
much longer thant rt , but much smaller thantc , the emitted
frequencies lie partly in the region of nearly zero mode d
sity below the edge and partly within the first continuu
above the edge. The density of accessible modes continu
change with increasing time until their spread reduces to
lin

tt.
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to
e

width of the continuum edge, equal toGc , when a steady
state is achieved. The mode-density approach thus predi
transient regime that extends up to times of the order of
cavity storage timetc , which again agrees with the previou
calculations.

In summary, the planar and one-dimensional cavities
fer markedly in the time scales of their transient regimes
spontaneous emission by an excited atom. Beyond its t
sient regime, the planar cavity allows studies of transve
coherence effects, which do not occur in the effectively o
dimensional cavities. On the other hand, the latter allow
servation of the Rabi oscillations for achievable values of
system parameters, while these oscillations cannot be r
ized in the planar cavity.
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