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Optical rectification in a traveling-wave geometry

U. Peschel,* K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom

~Received 22 June 1999!

We study the generation of microwave pulses due to optical rectification in a traveling-wave geometry. A
system of evolution equations is derived which describes the mutual propagation of both optical and micro-
wave fields. Overlap integrals and optimization criteria are given, and analytical expressions to determine the
generated microwave pulse are derived. It is observed that in non-velocity-matched geometries two microwave
pulses are generated initially. Both are the exact image of the optical signal. One pulse stays attached to the
optical wave, while the other propagates at the microwave group velocity and is subject to absorption and
dispersive broadening. In contrast, in velocity-matched configurations a single signal is generated which is
proportional to the first derivative of the optical pulse. It is found that for increased conversion efficiencies the
action of the generated voltage on the optical wave via the electro-optic effect can no longer be neglected, and
results in an effective cubic nonlinearity acting on the optical wave.@S1050-2947~99!04011-1#

PACS number~s!: 42.65.Ky, 42.79.Nv, 07.57.Hm
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I. INTRODUCTION

Second-order nonlinear effects were among the first to
investigated after the invention of the laser. It was sho
that frequency doubling occurs if a highly intense beam
incident on a noncentrosymmetric crystal@1#. In early theo-
retical papers it was pointed out that in addition to a seco
harmonic wave a static electrical field should be genera
@2#. In fact only a few years later it was demonstrated tha
short voltage pulse is induced by an optical pulse propa
ing through a quartz crystal@3#. Optical rectification has at
tracted constantly growing interest~for an overview, see e.g
Ref. @4#, and references therein!. This is because it provide
an easy and elegant way to transfer the optical power into
electrical signal, which is available for further processing.
the usual nonresonant case, second-order nonlinearities
an instantaneous response, and therefore the induced el
cal signal can in principle be as short as the initial opti
pulse. The generated short voltage shock can be used
device testing and sampling applications. Using a pulsed
ser operating in the subpicosecond domain, the gener
electrical pulse covers a wide frequency range extendin
the THz domain@5,6#, where efficient sources of cohere
radiation are not available to date. Another very promis
application of optical rectification is the construction of fa
photodiodes, which in principle have no intrinsic delay im
posed by the material response. Although much progress
been made toward achieving these goals, the conversio
ficiency obtained is rather low and a practical implemen
tion remains to be devised. A breakthrough could
achieved by employing waveguiding structures where
optical and electrical fields propagate in parallel until a c
tain depletion of the pump pulse is reached. In addition to
increased efficiency, this would be a step toward a furt
integration and a more practical device scheme. In fact tr
elling wave electro-optic modulators, where electrical a
optical pulses propagate in parallel, come close to this a
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Unfortunately the theory describing the mutual propagat
of an optical and a microwave field coupled together by
second-order nonlinear response of the medium is curre
incomplete. The aim of this paper is to develop an appro
ate set of evolution equations for the fields propagating in
waveguide structure. We define overlap integrals, which
termine the efficiency of the process and provide a too
optimize the device. Finally we derive analytical expressio
to describe the overall conversion process.

In addition to general considerations of traveling-wa
optical rectification, the derivation of a consistent descript
of a system including optical and microwave fields is a ch
lenging task by itself. For example the slowly varying env
lope approximation cannot be applied to the microwave
main in a straightforward way, although it has be
successfully used to describe the propagation of opt
pulses with even less than picosecond duration. Some
tempts have been made to describe the propagation of m
wave pulses on nonlinear transmission lines, and the res
ing evolution equations are usually related to the Boussin
or to the Korteweg–de Vries equation@7,8#. Here our de-
scription of the microwave field comes close to the lat
type of equation, while the propagation equation of the op
cal pulse is much more similar to common equations in
tics, which are based on the slowly varying envelope
proximation.

II. BASIC EQUATIONS

To illustrate our procedure and to give an impression
the magnitude of the physical quantities involved we inv
tigate a structure~see Fig. 1! already studied in Ref.@9#. It is
grown on a heavily doped substrate to provide for the bott
electrode. A GaAs core is sandwiched between two Al
layers to allow for optical guiding. Lateral confinement
provided by a rib etched into the cladding layer. It is cover
with a metal contact which forms the top electrode. The m
crowave field spreads between both electrodes. To av
losses due to free-carrier absorption, the structure shoul
designed in such a way that the optical mode does not ex
4918 ©1999 The American Physical Society
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PRA 60 4919OPTICAL RECTIFICATION IN A TRAVELING-WAVE . . .
to the electrodes. On the other hand, the separation betw
the two electrodes has to be small to provide a maxim
overlap between optical and microwave fields. Because
the usual growth@100# and cleaving@110# directions we as-
sume the vertical direction~x! to be parallel to@100# crystal
orientation. The field propagates into thez direction, which
corresponds to the@011# direction. Taking into account tha
in a fcc lattice the only independent nonzero second-or
susceptibility tensor element isd145

1
2 x1,2,3

(2) (v,2v)5
2(1/2)n4r 41, the optical field is assumed to be TE polariz
~the main component is in they direction!, where the main
component of the microwave field should be directed into
x direction ~quasi-TM mode!. Note that no special care wa
taken to optimize this structure with respect to maximu
overlap integrals nor to obtain group-velocity matching. T
values obtained below for this structure are therefore
away from being optimal.

In what follows we start from basic electrodynamics.
the frequency-domain, Maxwell’s equations in the abse
of free charges or currents read as

“3E5 ivm0H,

“3H52 iv~«0«RE1PNL!, ~1!

whereE and H denote the electric and magnetic fields, r
spectively. Both depend on the angular frequencyv and both
are influenced by the nonlinearly induced polarizationPNL.
The waveguide structure including the metal layers is de
mined by the relative dielectric constant«R(x,y). «0 andm0
account for the free-space permittivity and for the free-sp
permeability, respectively.

Because optical nonlinearities are usually very weak,
first consider the unperturbed case (PNL50). Unless other-
wise stated, we do not restrict considerations to particu
frequency domains, and therefore include both the opt
and microwave modes in a consistent description. The wa
guide is a single mode with respect to the above-mentio
polarization directions in both the optical and microwa
domains. The corresponding unperturbed mode profiles
assumed to be known and to have spatial structures like

Eunpert~x,y,z,v!5E0~x,y,v!exp@ ib~v!z#,

Hunpert~x,y,z,v!5H0~x,y,v!exp@ ib~v!z# ~2a!

FIG. 1. Structure under investigation~top: geometry; bottom:
coordinate system and crystal axes;s5w51.8mm; h15h3

50.72mm; h251.065mm; GaAs:«R(v50)512.9; «R(v5vopt)
511.404; AlAs:«R(v50)59.7, «R(v5vopt)58.374).
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where the propagation constantb~v! is mainly real but might
have a small imaginary part in the case of weak losses.
absolute value of the field structures defined in Eq.~2! is
chosen in such way that the guided mode powerp0 .

p052 ReH E dxE dy@E03~H0!* #zJ , ~2b!

does not depend on frequency, and the indexz denotes thez
component of the Poynting vector. Now we mix perturb
and unperturbed fields and derive the following express
from Eq. ~1!:

“•@E3~Hunpert!* 1~Eunpert!* 3H#5 iv~Eunpert!* •PNL.
~3!

After replacing the unperturbed fields in Eq.~3! by inserting
Eq. ~2a! into Eq. ~3!, we integrate over the waveguide stru
ture ~x andy directions!. Finally only thez component of the
vectors on the left-hand side of Eq.~3!, remains and we
obtain

F ]

]z
2 ibG E dxE dy@E3~H0!* 1~E0!* 3H#z

5 ivE dxE dy~E0!* •PNL, ~4!

where only the fieldsE, H, and PNL still depend on the
propagation directionz.

Because all acting nonlinearities are weak, we can ass
that the mode profiles are not changed by the action of
polarization, and that only the amplitudes evolve. Therefo
we decompose the perturbed fields into a constant~but still
frequency-dependent! field shape and into an evolving am
plitude as

E~x,y,z,v!5u~z,v!E0~x,y,v!,

H~x,y,z,v!5u~z,v!H0~x,y,v!, ~5!

and transform Eq.~4! into

F ]

]z
2 ib~v!Gu,~z,v!

5
iv

p0
E dxE dy@E0~x,y,v!#* •PNL~x,y,z,v!.

~6!

Expression~6! describes any field evolution in the frequen
domain without making critical assumptions. Unfortunate
the nonlinear polarization expressed by the electrical fie
gives rise to convolution integrals in the frequency doma
making a deeper insight into the field dynamics virtua
impossible. Therefore, the alternative time domain desc
tion of Eq.~6! will be derived. To this end we concentrate o
the two relevant frequency regimes, i.e., around the car
frequency of the optical wavevopt and around the originv
50. We now expand the propagation constantb~v! of the
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4920 PRA 60PESCHEL, BUBKE, HUTCHINGS, AITCHISON, AND ARNOLD
guided modes around the respective frequencies. In the
of the optical field this expansion is trivial, and results in t
following Taylor series:

b~v!5bopt1
v2vopt

nopt
1

Dopt

2
~v2vopt!

21¯ , ~7a!

wherevopt is the carrier frequency, andbopt, nopt, andDopt
denote the mean propagation constant, the group velo
and the dispersion of the optical pulse, respectively, defi
as,

bopt5b~vopt!,
1

nopt
5

nopt
group

c
5

]b

]vU
v5vopt

and

Dopt5
]2b

]v2U
v5vopt

,

wherenopt
group represents the group index of the optical wav

andc the velocity of light in vacuum.
Because the microwave field is centered aroundv50, we

expand the propagation constant at this point. The rea
condition requiresb(2v)52b(v)* , and results in the ex
pansion

b~v!5
i

2
amic1

v

nmic
1

i

2
amic9 v21

Tmic

6
v31¯ , ~7b!

with

amic52 Im@b~0!#,
1

nmic
5

nmic
group

c
5ReS ]b

]vU
v50

D ,

amic9 5ImS ]2b

]v2U
v50

D and Tmic5ReS ]3b

]v3U
v50

D
where nmic

group is the group index of the microwave mod
which coincides with its effective index atv50, amic and
amic9 are the linear and nonlinear loss coefficients, resp
tively andTmic is the dispersion coefficient. Note that in E
~7b! purely real and purely imaginary coefficients alterna
The expansion around zero frequency is always justified
less the microwave spectrum touches material resonan
especially those of lattice vibrations. In this case the la
frequency domain has to be treated separately, and a fu
evolution equation for the evolving phonon mode has to
taken into account. Here we restrict our considerations to
simplest case, where no additional resonances influence
field evolution. For both the microwave and optical fields w
terminated our expansion after the first dispersive te
which causes the pulse to spread even in the absenc
losses. In general the field profiles which enter the over
integrals in Eq.~5! also exhibit some frequency dependen
However, a considerable part of this has been removed
the normalization to the frequency-independent guided m
power p0 introduced in Eq.~2b!. In what follows it is as-
sumed that the field structures are invariant within each se
rate optical and microwave regime~but normally differ be-
se
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tween the two regimes!. Some remarks on the influence o
their frequency dependence on the final evolution equati
will be made later.

A further difficulty may arise if one tries to evaluate th
field structures defined in Eq.~2a!, the guided power~2b!, or
the propagation constants~7b! exactly at zero frequency
Strictly speaking, all these quantities are defined as result
a limiting procedure toward static conditions. It turns out th
for vanishing frequencies all fields are transversal (Ez50)
and real valued. In this case it is convenient to replace
optical power by an electrical onepel :

pel5
p0

2
5 lim

v→0
ReH E dxE dy@E03~H0!* #zJ 5

U2

Z
,

which can be expressed in terms of the voltageU between
both electrodes and by the impedanceZ of the structure.
Also, most of the other quantities which define the micr
wave propagation can be expressed by common electros
quantities, as was done in Ref.@8#.

Now we insert Eq.~7! into Eq. ~6! and perform the in-
verse Fourier transform. We end up with propagation eq
tions in the time domain for the microwave and optic
fields, respectively:

F ]

]z
1

amic

2
1

1

nmic

]

]t
2

amic9

2

]2

]t22
Tmic

6

]3

]t3Gumic~z,t !

52
1

2pel

]

]t E dxE dyEmic
0 ~x,y,v50!•Pmic~x,y,z,t !,

~8a!

F ]

]z
1

1

nopt

]

]t
1 i

Dopt

2

]2

]t2Guopt~z,t !

5
1

p0
S ivopt2

]

]t D
3E dxE dy@Eopt

0 ~x,y,vopt!#* •Popt~x,y,z,t !,

~8b!

The fast varying phases„i.e., expbib(vopt)z2 ivoptt c… have
been removed from Eq.~8b!. The total electrical field is now
constructed as

E~x,y,z,t !5 buopt~z,t !Eopt
0 ~x,y!exp~ iboptz2 ivopt t !1c.c.c

1umic~z,t !Emic
0 ~x,y!,

where c.c. denotes the complex conjugate. The nonline
induced polarization is decomposed into different frequen
components as

PNL~x,y,z,t !5@Popt~x,y,z,t !exp~ iboptz2 ivopt t !1c.c.#

1Pmic~x,y,z,t !.

Although the optical field is described in a complex notatio
in the nonresonant case the nonlinear polarization is in ph
with the driving field, and all quantities related to the micr
wave fields are real. Note that the driving term of the mic
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PRA 60 4921OPTICAL RECTIFICATION IN A TRAVELING-WAVE . . .
wave evolution is the first time derivative instead of the no
linearly induced polarization itself. In contrast the optic
field is influenced directly. Now we are going to express
relevant components of the nonlinear polarization by
electrical field explicitly, while taking into account only th
main polarization directions. Hence we assume that the
tical field is polarized in they ~TE! direction, and the micro-
wave field in thex ~TM! direction and end up with the ex
pressions:

@Pmic#x52
«0

2
x~2! @Eopt

0 #y
2uuoptu2

and

@Popt#y52«0x~2!@Emic
0 #x@Eopt

0 #yumic uopt, ~9!

wherex (2) is the second-order susceptibility of the materi
Here it is assumed that the crystal orientation correspond
the usual configuration depicted in Fig. 1, and the only in
pendent nonzero tensor element isx (2)5x123

(2) . For other ori-
entations of the guide or for other material systems the
evant coefficients may vary, but the basic structure of
equations remains the same. Additional terms includin
term which solely contains the square of the microwave fi
may arise if the basic field structures have other polariza
components of considerable magnitude. For simplicity,
concentrate on the simplest case sketched above.

Before inserting Eq.~9! into Eq. ~8!, we normalize all
field amplitudes with respect to the respective guided po
ers,

Uopt5Ap0uopt, Umic5Apelumic ,

and end up with the final set of equations as

F ]

]z
1

amic

2
1

1

nmic

]

]t
2

amic9

2

]2

]t22
Tmic

6

]3

]t3GUmic

5xeff

]

]t
uUoptu2, ~10a!

F ]

]z
1

1

nopt

]

]t
1 i

Dopt

2

]2

]t2 12ivoptxeffUmicGUopt

52xeff

]

]t
@UmicUopt#, ~10b!

where the efficiency of the nonlinear coupling between b
fields is defined by the following overlap integral:

xeff5
«0

2p0Apel
E dxE dyx~2!@Eopt

0 #y
2@Emic

0 #x . ~11!

Note that both the field structures as well as the nonlin
coefficientx (2) depend onx andy. To evaluate all relevan
coefficients of the sample depicted in Fig. 1, we determin
the microwave mode by solving Laplace’s equation in
stationary limit@10#. The optical mode was calculated by
finite-difference scheme similar to that introduced in R
@11#. For the tabulated value of the second-order suscept
ity for GaAs, x123

(2)5200 pm/V @12#, the overlap integral

amounts toxeff58.3310214s/mAW.
It is sometimes more convenient to refer to the genera

voltage instead of the power levels. The voltage of the
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crowave is defined by the field amplitude asVmic(z,t)
5AZUmic(z,t), whereZ is the impedance of the structure.

Although the set of equations~10! looks rather compli-
cated it is much easier to be handled than the original M
well’s equations. Due to the lack of a second derivative
the z direction it separates forward and backward propa
tion, and both analytical and numerical treatments are s
plified considerably. It is interesting to note that the line
part of the above equation for the microwave was previou
derived by Ja¨ger to describe the pulse propagation on a n
linear transmission line@8#. Therefore, intrinsic nonlineari-
ties due to e.g., a carrier motion in the surrounding layers
be easily included without changing the basic structure of
equations. Also, additional terms which arise in the case
mixed polarized microwave fields will not change the ess
tial structure of the equations. Additionally, the optical wa
might be influenced by the cubic nonlinearity of the materi
Here we neglect those effects, and concentrate on the op
rectification process only. The system of equations~10! ac-
counts for forward-propagating fields only. In fact
backward-propagating microwave could also have been
cited. Its evolution equation coincides with that of th
forward-propagating field@see Eq.~10a!#, except for the op-
posite sign in front of thez derivative and the nonlinearity
Although the backward field is driven by the same nonline
term, its amplitude is usually negligible, as we will demo
strate later.

Note that the electro-optic coefficient which describes
action of the dc field on the optical wave is related to t
rectification coefficient which drives the microwave fie
through permutation symmetry@13#. Provided that we are fa
from material resonances, the electro-optic coeffici
(voptxeff) in Eq. ~10b! is real and does not give rise to a
energy exchange. Energy conservation is ensured by the
derivatives of the remaining nonlinear terms. If we includ
frequency-dependent field profiles in Eq.~11!, additional
higher time derivatives of the nonlinear terms would appe

III. UNDEPLETED PUMP APPROXIMATION

First the case where the amount of generated microw
energy is negligible and the optical wave is almost un
fected by the rectification process will be examined. Furth
the dispersive effects on the optical wave shall be neglec
(Dopt50), and the optical wave is assumed to propag

FIG. 2. Microwave generation by two interacting optical wave
power evolution vs distance for finite and vanishing losses~param-
eters as in Table I!.
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without any changes. Under these circumstances we hav
deal with Eq.~10a! only, and the optical pulse enters as
given inhomogenity of a linear differential equation only.
what follows we also neglect the backreflection at the out
of the guide.

A. Two optical frequencies

Strictly speaking, the system of evolution equations~10!
defines the microwave field except for an integration c
to

t

-

stant, which corresponds to a constant dc voltage, and w
has to be determined from the boundary conditions. A r
power transfer does not occur in the cw case. The m
simple nonstationary case is that of an optical field consis
of two frequencies (v06dv) of equal amplitude which are
slightly detuned from each other, and hence generate a
signal atdv. The optical amplitude is launched asUopt(z
50,t)5U0 cos(dvt), and the generated microwave field d
velops as
tationary
hosen
h as the

at higher
match the

g of the
nfigu-
Umic~z,t !5xeffdvuU0u2

3ReH expF2idvS t2
z

nopt
D G F12expX2H amic

2
12amic9 dv212i FdvS 1

nmic
2

1

nopt
D1

2

3
dv3TmicG J zCG

2dvS 1

nmic
2

1

nopt
D1

4

3
dv3Tmic2 i Famic

2
12amic9 dv2G J .

~12a!

In the stationary state it oscillates at double the beat frequency, and the average power develops in thez direction as

p̄mic~Z!5
1

2

xeff
2 dv2uU0u4

F2dvS 1

nmic
2

1

nopt
D1

4

3
dv3TmicG2

1Famic

2
12amic9 dv2G2

3U12expF2S amic

2
12amic9 dv2D zGexpH 2i FdvS 1

nmic
2

1

nopt
D1

2

3
dv3TmicGzJ U2

. ~12b!

Hence we find an oscillation of the microwave power, which in the presence of microwave losses are damped and a s
state is approached~see Fig. 2!. Hence the length of a microwave generator based on optical rectification should be c
carefully to obtain optimum results. The maximum generated microwave power can be as much as four times as hig
value finally approached in the stationary limit.

B. Pulsed pump fields in non-velocity-matched geometries

The rather low conversion efficiency obtained for two interacting continuous waves considered above suggests th
peak powers are required, and therefore a pulse beam excitation should be preferable. If no special care is taken to
group velocities of the optical and microwave fields, the nondispersive terms are by far dominant in Eq.~10a!. To simplify the
analytical treatment, we therefore neglect all dispersive effects and take into account the nondispersive dampin
microwave only~i.e., amic9 5Tmic50). To demonstrate that these assumptions are justified for non-velocity-matched co
rations, we have also modeled the full system of equations~10! with the parameters of the structure depicted in Fig. 1~see Fig.
3!.

Assuming that the field propagation starts atz50,1 the resulting solution can be obtained by simple integration as

Umic~z,t !5Umic
0 ~ t2z/nopt!2Umic

0 ~ t2z/nmic!expS 2
amic

2
zD . ~13a!

The pulse shape, which enters Eq.~12!, is given by

Umic
0 ~ t8!5

xeff

1

nmic
2

1

nopt

H uUopt~ t8!u2 2
amic /2

1

nmic
2

1

nopt

E
6`

t8
dt9uUopt~ t9!u2 expF amic /2

1

nmic
2

1

nopt

~ t92t8!G J , ~13b!

1Strictly speaking, this boundary condition corresponds to a transmission line extending to6` with zero nonlinearity forz,0. A
terminated transmission line can be similarly analyzed with a boundary condition of zero current atz50, but this solution only introduces
a small, quasistatic term that can be neglected in most instances.
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PRA 60 4923OPTICAL RECTIFICATION IN A TRAVELING-WAVE . . .
where the positive~negative! signs refer to the cases wher
the velocity of the microwave is larger~smaller! than that of
the optical field.

Obviously the excited microwave field consists of tw
parts@see Eq.~12a!#, one traveling together with the optica
pulse~velocity nopt), and another moving with the speed o
the microwavenmic @see Fig. 3~a!#. Consequently the devel
opment of the system is characterized by two rather differ
scales. No further growth of the microwave field around t
optical pulse occurs after the microwave pulses have se
rated from each other. The respective walk-off length is
fined as

Zwalk-off>
Tpulse

U 1

nmic
2

1

nopt
U , ~14a!

and amounts to about 300mm in our example~see Table I
and Fig. 3!. Since the evolution of the optical pulse occurs

FIG. 3. Field propagation in a non-velocity-matched geome
simulated with the full set of equations~10! ~all parameters as given
in Table I; propagation length: 2 mm; reference frame: copropag
ing with the optical pulse!. ~a! Voltage pulse at the output for thre
different values of microwave losses.~b! Contour plot of the micro-
wave power (amic540 dB/cm; input position of the optical pulse
t50; contour lines: each 100mW!, and evolution of the total mi-
crowave energy for three different values of microwave losses.
nt
e
a-
-

a much longer scale, the microwave pulse will follow th
optical one while constantly adapting its shape according
Eq. ~13b!.

In contrast, a microwave signal which has left the optic
pulse is subject to internal losses. Its absorption length~usu-
ally several millimeters or even centimeters! defines a second
scale,

Zabs>
1

amic
, ~14b!

after which we find stationary conditions and only the fi
pulse remains. In non-velocity-matched geometries the w
off distance is usually much shorter than the absorpt
length. Within the approximations made here, there is
advantage in device lengths longer than this absorp
length. In case of vanishing losses the electrical signal
tached to the optical pulse is the exact image of the opt
intensity distribution@see Fig. 3~c!#. With the nonlinear po-
larization acting as a source for the microwave, losses do
result in its extinction but only in a deformation of its shap

This complicated dynamical behavior is reflected by t
evolution of the electrical energy. It approaches a maxim
value when both pulses have just separated. It then return
about half this value if the second pulse is absorbed@see Fig.
3~b!#. The maximum possible conversion efficiency is o
tained in the absence of absorption, i.e., if the energy of
second pulse is preserved. In case of a Gaussian-shape
put, Uopt(t)5Apmaxexp(2t2/Tpulse

2 ), and, neglecting absorp
tion, the conversion efficiency defined as the relation of o
tical and microwave energies is given

h5
Qmic

Qopt
5

2

Ap

xeff
2

S 1

nmic
2

1

nopt
D 2

Qopt

Tpulse
. ~15!

For typical frequency conversion the efficiency is propo
tional to the optical power and the square of the nonlin
coefficient. Compared with second-harmonic generation
group-velocity mismatch plays a role similar to that of t
phase mismatch. As already stated in Ref.@14#, the group-
velocity mismatch influences the conversion efficiency cr
cally. In the case of an unmatched configuration in t
present example~see Table I!, an efficiency of 8.831027 is
obtained. In the case of a backward-propagating wave
velocity mismatch is considerably higher. Even in the case
a non-velocity-matched configuration, as studied above,
backward-propagating wave corresponds to only 2.7% of
total generated microwave power.

As already mentioned, the electrical pulse in its final st
is an almost exact image of the optical signal. This rema
able property of non-velocity-matched configurations can
potentially employed as a basis for a photodetector with
extremely high temporal resolution. Another consequence
the low conversion efficiency is that the optical pulse is
most unaffected by the measurement. Hence an optical si
can be recorded in a quasitransparent geometry, and la
may be used for further applications.

Finally a comparison with second-harmonic generat
shall be made. Although the evolution equations look ve
different, the basic scaling properties are the same due to

y

t-
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TABLE I. Characteristics parameters of the structure depicted in Fig. 1. The wavelength selected
for illustrative purposes only, and, although it lies with the two-photon absorption band of GaAs
nonlinear loss process is neglected. In practice it would probably be necessary to employ a combin
alloy composition and wavelength corresponding to sub-half-band-gap frequencies.

Quantity Symbol Value

structure
optical
properties

group index nopt
group 3.55

group-velocity dispersion Dopt 1.3310224 s2/m

structure
microwave
properties

impedance Z 53.6V

group index nmic
group 2.55

dispersion of the
damping

amic9 0

third-order dispersion Tmic 1.1310235 s3/m

structure
electro-optic
properties

nonlinear coefficient xeff 28.3310214 s/mAW
electro-optic coefficient

2
2v0xeff

AZ
28.4

1

mV

optical pulse
~Gaussian!

wavelength l 1.5 mm

duration Tpulse 1 ps
peak power pmax5uUopt

maxu2 1 kW
pulse energy Qopt 1.25 nJ
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quadratic interaction involved. However, a remarkable d
ference is the absence of an oscillatory behavior. While
non-phase-matched geometries up and down conversio
the second-harmonic power alternate, a stationary sta
readily approached in case of non-velocity-matched opt
rectification. The reason for this somehow unexpected
havior is that the rectification process produces a respo
centered at zero frequency, and therefore the phase o
optical wave does not influence the microwave field. Nev
theless interference between different microwave com
nents can still play an important role. The formation of t
steady state given by Eq.~13b! can be understood as a m
crowave field generated at one slope of the optical pu
which then crosses the optical pulse due to the respec
velocity difference, and is finally eliminated while interfe
ing with microwave components generated at the other s
of the optical pulse.

C. Dispersive effects on the microwave propagation

Before dealing with the velocity-matched case, a sh
comment will be made with regard to the influence of t
higher-order dispersive terms in Eq.~10a!. By numerical
simulations of non-velocity-matched configurations on
basis of the complete system of equations, it is found that
influence is almost negligible. In any case it is observed t
the only significant effect is on the second pulse, which se
rated from the optical wave at the beginning. Provided tha
is not already absorbed by strong losses, it starts to sp
due to the influence of third-order dispersion. In contrast,
pulse attached to the optical signal remains almost u
fected. Only for very long propagation distances can a c
tain influence be perceived. However, if this is the case,
changes in the pump wave can no longer be ignored. Th
fore, we come back to this point later in Sec. IV.
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D. Velocity-matched structures

Now let as assume that our main focus is not a fa
response photodiode but an effective microwave genera
and that a considerable increase in the conversion efficie
is required. For the purpose it is essential to achieve velo
matching between the microwave and optical modes.
cently much effort has been devoted to achieving this go
In traveling-wave geometries the efficiency of electro-op
modulation can be greatly enhanced if electrical signals
optical fields propagate with the same velocity. While t
influence on the optical mode is basically limited, the spe
of the microwave field can be easily modified. Almost com
plete velocity matching while maintaining low losses w
reported in Ref.@15#. In the optimum case the group veloc
ties of both waves coincide, the walk-off distance defined
Eq. ~14a! diverges, and expression~13! is no longer valid.
Then the microwave field evolves in the absence of disp
sive effects as

Umic~z,t !52
xeff

amic
F12expS 2

amic

2
zD G ]

]t
uUopt~ t !u2.

~16!

Note that the temporal field structure has changed from
non-velocity-matched case@see Fig. 4~a!#, being proportional
to the derivative of the optical power, rather than the opti
power itself. The main reason for this is the significance
velocity mismatch term in Eq.~10a!. In the limit of vanish-
ing absorption, Eq.~16! indicates that the field grows linearl
with z, and that the evolution of the pump wave can
longer be neglected above a certain rate of conversion. In
case of a Gaussian pulse~energyQopt and durationTpulse) the
conversion efficiencyh in a velocity-matched structure
amounts to



on
o

rt
f

f

n
c
a
b

tic
n

ad

lt
di

o
io
ta

er
u
th
e
hi
ld
r

th
o

d
i

a
ec

o

oef-
-
nc-

w
the
r-
rity
n-
s is
of

ead
ar-
has
onic
es
ase

ic
en
ges
. A
the

PRA 60 4925OPTICAL RECTIFICATION IN A TRAVELING-WAVE . . .
h~z!5
Qmic

Qopt
5

8

Ap
xeff

2 F12exp~2amic z/2!

amic
G2 Qopt

Tpulse
3 .

~17!

In the case of vanishing losses, expression~17! grows pro-
portionally to the square of the length. Note the much str
ger dependence on the pulse duration compared with n
velocity-matched configurations@see Eq. ~15!#. Hence
optical rectification is much more efficient for ultrasho
pulses. In the case of the structure depicted in Fig. 1 and
typical pulse parameters~Table I!, a conversion efficiency o
1% is reached after a propagation length of 3.2 cm.

Coming back to the pulse shape described by Eq.~16!, we
find that for a typical optical pulse the spectrum of the ge
erated microwave now exhibits a nonzero carrier frequen
To a certain extent one may regard the generated microw
as a single-cycle pulse with a carrier frequency defined
the pulse duration as

vmic'
2

Tpulse
. ~18!

Because the rectification process is insensitive to the op
phase, one may easily tune this carrier frequency by cha
ing the duration of the optical pulse by e.g. dispersive bro
ening.

A simulation based on the complete set of equations@see
Fig. 4~a!# shows certain deviations from the analytical resu
obtained above. Due to the much longer propagation
tance, the third-order dispersion of the microwave starts
play a considerable role and the emitted radiation is n
obvious. Also the optical pulse is now depleted by the act
of the nonlinearity, and can no longer regarded to be cons
@see Fig. 4~c!#.

IV. INFLUENCES ON THE PUMP WAVE

In a first instant one would guess that for the low conv
sion efficiencies reported above the pump wave remains
affected. Numerical investigations reveal that although
power of the optical pulse does not significantly change th
is a nonlinear evolution in its shape. The reason for t
behavior is the action of the microwave on the optical fie
via the electro-optic effect. Already for a rather low conve
sion efficiency, as in the example depicted in Fig. 4,
induced voltage reaches a peak value of 6.1 V which is
comparable magnitude to those used in electro-optic mo
lators. Its influence on the propagation of the optical field
considerable because it induces ap phase shift after 1.8 cm
of propagation.

In the case of a non-velocity-matched configuration~see
Table I!, we can estimate this action on the optical field by
pseudocubic nonlinearity which is characterized by an eff
tive cubic coefficientg3 as

g35
2voptxeff

2

1

nopt
2

1

nmic

, ~19!

which amounts to aboutg3525.231023 m21 W21 in the
case of our non-velocity-matched sample. This value is ab
-
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three orders of magnitude smaller than the comparable c
ficient (}n2 /Aeff) which originates from intrinsic cubic non
linearities. However, there is considerable scope for enha
ing this effect by improving the velocity matching in a slo
wave structure, and, furthermore, by tuning the sign of
velocity difference the sign of the effective cubic nonlinea
ity can be changed. Hence a negative effective nonlinea
can be induced which would allow for soliton formation u
der the presence of normal group-velocity dispersion, a
usually found in semiconductors. In numerical simulations
a velocity-matched structure@see Fig. 4~b!#, we indeed ob-
served a considerable narrowing of the optical pulse inst
of dispersive spreading. This effective third-order nonline
ity arising from a cascade of second-order nonlinearities
been extensively studied with reference to second-harm
generation@16#. There are, however, a number of differenc
with the rectification cascade process; for example, the ph
of the intermediate frequency is irrelevant here.

Of course in more detailed investigations the intrins
third-order nonlinearity of the semiconductor has to be tak
into account as well, and may balance the index chan
induced by the rectification process to a certain extent
detailed analysis of this nonlinear interaction is beyond
scope of this paper, and will be considered elsewhere.

FIG. 4. Field evolution in a velocity-matched configuration~pa-
rameters as in Table I, except for the group indicesnmic

group2nopt
group

50 and propagation length: 3 cm,amic55 dB/cm). ~a! Voltage
pulse at the output.~b! Contour plot of the microwave power~input
position of the optical pulse:t50; contour lines: each 0.2 W!. ~c!
Optical pulse at the input~dashed line! and at the output~solid line!.
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V. CONCLUSIONS

We have derived a set of evolution equations which
scribes the mutual propagation of optical and microwa
pulses linked together by a quadratic nonlinearity of the m
terial. In the case of small conversion efficiencies, which
by far the most realistic, analytical expressions are deri
which describe the generation of microwave signals. It tu
out that in non-velocity-matched configurations a stea
state is quickly approached, and no further evolution is
served beyond a certain propagation length. The gener
microwave pulse is an almost exact image of the optical o
making optical rectification suitable for fast and distortio
free pulse detection. For velocity-matched configuratio
h,

rs

ys

.

ve
-
e
-

s
d
s
y
-
ed
e,

,

much higher conversion efficiencies can be achieved. In
case the action of the generated electrical voltage on
optical pulse via the electro-optic effect has to be taken i
account. It leads to an effective cubic nonlinearity whi
may allow for soliton formation.
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