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Phonon approach to an array of traps containing Bose-Einstein condensates

Juha Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

~Received 20 July 1999!

We investigate theoretically an array of traps containing Bose-Einstein condensates, taking into account
tunneling of atoms between adjacent traps and atom-atom interactions within each trap. After an expansion
valid in the limit of a large number of atoms, we end up studying a variation of the problem of phonons in a
one-dimensional lattice. Analysis of these fictitous phonons and their vacua shows that the fluctuations in atom
numbers and phases of the condensates behave qualitatively as in the much-studied case of two traps.
@S1050-2947~99!06512-9#

PACS number~s!: 03.75.Fi, 05.30.2d, 32.80.Pj
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I. INTRODUCTION

The possibility of peculiar interference phenomena, su
as an analog of the Josephson effect@1#, continues to spur
interest in the Bose-Einstein condensate in a double-well
tential. Our focus is on fully quantized approaches that le
themselves to analyses of not only average quantities suc
atom numbers in each potential well, but also for studies
atom number fluctuations and dynamics of condens
phases. The traditional way is to treat the atom number
the condensate phase as canonical conjugate variables@2–4#.
However, with the entry of quantum-optics-oriented auth
into the field, nowadays one more often sees the two-m
approximation@5–12#. In the case of a trap split into two
this amounts to taking into account two lowest-energy o
particle states of the double well. We have recently co
mented on the relations between the two main approac
@12#.

On the other hand, a system of multiple wells has rece
been found to present intriguing features in the experime
@13#. Briefly, a one-dimensional optical lattice is erected in
more or less homogeneous condensate, so that trapping
many wells rather than two. In these experiments the opt
lattice is oriented vertically and suspends the atoms aga
gravity. However, atoms slowly leak out of the traps and f
down. Atoms leaking from the traps are seen to combine
a train of pulses. The interpretation is that the relative pha
of the condensates in the traps govern the interference un
lying the atom pulses.

We assume here and in the rest of this paper that gra
and leakage of atoms from the traps are weak perturbati
and that the effects of gravity on the dynamics of the c
densates may be ignored. Even with these restrictions,
experiments of Ref.@13# still present obvious conceptua
questions. First, what is the initial state of the system a
the optical lattice has been set up? For instance, what are
initial atom number fluctuations and phase fluctuations
tween the wells? Second, what is the evolution of atom nu
bers and phases? For example, if phase correlations bet
the wells deteriorate in time, then so do the distinct pul
tions in the flux of atoms. These questions make the sub
of the present paper.

The process of dynamically dividing a trap and the en
ing state have recently elicited some controversy@14,15#. We
PRA 601050-2947/99/60~6!/4902~8!/$15.00
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have sought to clarify the issue by studying the splitting o
trap into two by erecting a potential wall in the middle@12#.
We make the two-mode approximation, and an expans
valid in the limit of large atom numberN. The problem of
atom numbers and phases is thereby reverted to studies
simple harmonic oscillator.

In the present paper we carry out counterparts of the t
mode approximation and large-N expansion for the case o
multiple traps. This is in contrast to the recent applications
the Hubbard model to cold atoms in an optical lattice@16#, in
which small filling factors are considered. Instead of o
harmonic oscillator, a system of coupled harmonic osci
tors emerges. We end up studying a straightforward varia
of the standard textbook exercise@17# of phonons in a one-
dimensional lattice. The result is that, for the most part, o
may correctly surmise the behavior of atom number a
phase fluctuations and their time evolution from the kno
results for two traps. The main difference, a rather min
one, seems to be that the kind of revivals of fluctuations t
one would see in a double trap are absent.

The expansion pertinent to the limit of a large atom nu
ber is described in Sec. II. The analogy with phonons is
subject of Sec. III. We discuss a second-quantized repre
tation of the phonons, as well as the ground state and
time-dependent properties of this peculiar one-dimensio
lattice in which atom number and condensate phase take
places of lattice displacement and momentum of a lat
atom. The remarks in Sec. IV conclude the paper.

II. FEW-MODE SYSTEM FOR MANY ATOMS

We consider a one-dimensional~1D! array of equivalent
traps containing Bose-Einstein condensates. The total n
ber of atoms is denoted byN and the total number of traps b
K, both for convenience taken to be even integers. The
erage number of atoms in each well,n5N/K, is regarded as
an integer, too, inasmuch as such an assumption helps in
argument. We assume that the gas is weakly interacting
that the contribution to the chemical potential from ato
atom interactions, for brevity simply called chemical pote
tial, is much smaller than the frequency characterizing
confinement of the atoms in each trap. Here and through
our verbal descriptions we use the terms energy and
quency interchangeably, but in the equations we alw
4902 ©1999 The American Physical Society
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PRA 60 4903PHONON APPROACH TO AN ARRAY OF TRAPS . . .
write the constant\ explicitly.
As before, we may add a polynomial of the conserv

total number of atoms to the Hamiltonian without a
change in the ensuing dynamics. The two-mode (K52)
Hamiltonian of our previous paper@12# may therefore also
be written as

H

\
52

d

2
~a1

†a21a2
†a1!12k@~a1

†a1!21~a2
†a2!2#. ~1!

Here we use the indices 1 and 2 for the traps, instead ofl and
r of Ref. @12#; the boson operatora1 annihilates one atom
from trap 1, and so forth. Given one-particle wave functio
c1,2(r ) representing atoms localized in traps 1 and 2, tr
ping potentialV(r ), atom massm, and s-wave scattering
lengtha, the parameters have the expressions

d5
2

\
ReH E d3rc2* ~r !F2

\2

2m
¹21V~r !Gc1~r !J , ~2a!

k5
2p\a

m E d3r uc1~r !u45
2p\a

m E d3r uc2~r !u4. ~2b!

In practice, though, these coefficients might often have to
inferred from phenomenological considerations. For
stance, the tunneling rated could be defined in such a wa
that in the absence of atom-atom interactions,\d gives the
energy of the lowest excited state of the system. Similarly
the absence of tunneling,m54nk would be the chemica
potential~in units of frequency!, givenn5N/2 atoms in each
well.

Next suppose that there areK>2 equivalent wells, and
take into account tunneling between adjacent wells on
Generalizing from Eq.~1!, we write the Hamiltonian as

H

\
5(

i 51

K F2
d

4
~ai 21

† ai1ai
†ai 211ai 11

† ai1ai
†ai 11!

12k~ai
†ai !

2G . ~3!

We have cast the Hamiltonian in a somewhat uneconom
form, displaying Hermiticity explicitly. This will greatly
simplify our subsequent calculations. With the interpretat
that the operators with the indices 0 andK11 are nonexist-
ent and that the corresponding terms are ignored, Eqs~1!
and ~3! become the same in the caseK52. However, our
present topic is the limit withK at least moderately large
What happens at thei 51 andi 5K ends of the Hamiltonian
is then hopefully a small perturbation. For mathematical c
venience we from now on resort to the analog of perio
boundary conditions; for the indices of boson operators
pearing in Eq.~3!, 0[K andK11[1.

In both Hamiltonians~1! and ~3!, only intrawell nonlin-
earities are present. In the two-mode case the justifica
was that, for a weakly interacting gas, atom-atom inter
tions are comparable to the effects of tunneling only wh
tunneling is slow, i.e., the overlap between the wave fu
tions localized in the two traps is small. Hence, quartic
terwell terms depending on the overlap of the squares of
wave functions are smaller still@12#. Here we assume tha
d
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interwell terms may be ignored on similar grounds. The lim
d/k→` should describe the situation when the atoms tun
freely, so that in effect there are no traps. In the oppo
limit d/k→0 the wells are so deep that the atoms can
tunnel between them at all.

We write the state vector of the boson system in the us
way as a superposition of number states for the wells,

uc&5 (
N1 , . . . ,NK

C~N1 , . . . ,NK!uN1 , . . . ,NK&. ~4!

The time-independent Schro¨dinger equation is equivalent t
a set of eigenvalue equations for the coefficientsC,

2
d

4 (
i

@ANi 21~Ni11!C~ . . . ,Ni 2121,Ni11,Ni 11 , . . . !

1ANi~Ni 2111!C~ . . . ,Ni 2111,Ni21,Ni 11 , . . . !

1ANi 11~Ni11!C~ . . . ,Ni 21 ,Ni11,Ni 1121, . . . !

1ANi~Ni 1111!C~ . . . ,Ni 21 ,Ni21,Ni 1111, . . . !

12kNi
2C~ . . . ,Ni 21 ,Ni ,Ni 11 , . . . !#

5
E

\
C~N1 , . . . ,NK! ~5!

In accordance with the periodic boundary conditions, the
dices again wrap around; e.g.,NK11[N1.

To develop the left-hand side, we take a few algebr
steps. First, we develop the coefficientsC into MacLaurin
expansions@12,18#, as in

C~ . . . ,Ni 2121,Ni11,Ni 11 , . . . !

.C~ . . . ,Ni 21 ,Ni ,Ni 11 , . . . !

1S ]

]Ni
2

]

]Ni 21
DC~ . . . ,Ni 21 ,Ni ,Ni 11 , . . . !

1
1

2 S ]2

]Ni 21
2

22
]2

]Ni 21 ]Ni
1

]2

]Ni
2D

3C~ . . . ,Ni 21 ,Ni ,Ni 11 , . . . !. ~6!

Second, we write the atom numbers as

Ni5N/K1ni[n1ni , ~7!

and expand the square root factors into Laurent series in
presumably large average number of atoms in a well,n. For
instance,

ANi 21~Ni11!.n1
11ni 211ni

2

2
~11ni 212ni !

2

8n
. ~8!

The change of variablesNi→n1ni is understood in the co
efficientsC as well. Third, after inserting these expansio
into Eq. ~5!, in each order of the derivatives and separat
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4904 PRA 60JUHA JAVANAINEN
for the terms proportional tod and to k, we examine the
contributions to Eq.~5! order by order in 1/n.

The contribution that is zeroth order in the derivatives a
proportional tok is simply

K~0,k!52kF(
i

~n212nni1ni
2!GC. ~9!

But the physics following from the Hamiltonian~3! remains
unchanged, except for a trivial shift of the zero of energy
we add a constant of the motion toH. For instance, we migh
useH8 defined by

H8

\
5

H

\
22k(

i
~n212nai

†ai ! ~10!

instead of the HamiltonianH. However, for the Hamiltonian
H8 the term corresponding to Eq.~9! would simply read

K~0,k!52k(
i

ni
2C. ~11!

We ignore the attendant shift in the zero of energy, and
this form in lieu of Eq.~9! in what follows.

On the other hand, the three leading terms inn propor-
tional to d in the zeroth-order derivative are

K~0,d!5d(
i

H 2n2
1

4
@~21ni 2112ni1ni 11!#

1
1

16n
@21~ni2ni 21!21~ni2ni 11!2#J C

5d(
i

F2n2
1

2
~112ni !1

1

8nGC
1

d

8n (
i

~ni2ni 21!2C. ~12!

In the second equality we have used the periodic bound
conditions. The first sum can then be removed with the sa
kind of tricks we already used in conjunction with the ter
K(0,k). We finally have

K~0,d!5
d

8n (
i

~ni2ni 21!2C. ~13!

As far as we can tell, this is the only instance during o
analysis in which the periodic boundary conditions are
sential. Without them and for the caseK.2, we do not
know how to eliminate all contributions that are zeroth ord
in n from the termK(0,d).

The leading order inn in the terms proportional tod
~there is no contribution proportional tok) that contain first
derivatives isn21. With the aid of periodic boundary cond
tions we write

K~1,d!5
d

4n (
i

~2ni 2112ni2ni 11!
]

]ni
C. ~14!
d

f

e

ry
e

r
-

r

On the other hand, the leading power ofn in the terms that
contain second derivatives may be written, once more us
periodic boundary conditions, as

K~2,d!52
nd

2 (
i

S ]

]ni
2

]

]ni 21
D 2

C. ~15!

Suppose now that the characteristic order of magnitude
the numberni is ni;Dn and correspondingly the order o
magnitude of theni derivative is]/]ni;1/Dn. The relative
size of the first- and second-order derivative terms is th
estimated as

UK~1,d!

K~2,d!
U;S Dn

n D 2

. ~16!

It will transpire from the solutions thatDn/n&1/An, so in
the limit of large atom number the first derivatives should
negligible in comparison with the second derivatives.

All told, we have found a partial differential equation fo
the coefficientsC(n1 , . . . ,nK), which in the case of the time
independent Schro¨dinger equation reads

(
i 51

K F2
nd

2 S ]

]ni
2

]

]ni 21
D 2

1
d

8n
~ni2ni 21!212kni

2GC
5

E

\
C. ~17!

For the time-dependent Schro¨dinger equation, the right-han
side is modified in the obvious way. Periodic boundary co
ditions are assumed, so thatnK11[n1 andn0[nK . Besides,
it should be noted that the conservation of atom numbe
used in the derivation. Solutions to Eq.~17! should only be
considered in the subspace with( ini50. As a matter of fact,
it may be seen easily that the quantity( ini commutes with
the differential operator on the left-hand side of Eq.~17!, and
indeed is a conserved quantity. Finally, as we have alre
mentioned, periodic boundary conditions are not necess
for two wells, K52. In that case, using the condition th
n11n250, it may be verified that Eq.~17! coincides with
Eq. ~17! of Ref. @12#.

III. ANALOGY WITH 1D PHONONS

A. Phonon formalism

The Schro¨dinger equation~17! is derived from the Hamil-
tonian

H
\

5 (
k51

K Fnd

2
~fk2fk21!21

d

8n
~nk2nk21!212knk

2G ,
~18!

wherefk[2 i ]/]nk satisfy

@nk ,f l #5 idkl . ~19!

Occasionally we also think ofnk andf l as classical canoni
cal variables with the Poisson brackets$nk ,f l%5dkl among
them. As the Hamiltonian is quadratic, the classical and
quantum theories are much alike. The system is akin to
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PRA 60 4905PHONON APPROACH TO AN ARRAY OF TRAPS . . .
one encountered in connection with the linear~one-
dimensional! string of masses connected by linear sprin
except that the coupling between the neighboring site
more complicated than in the usual textbook examples@17#.
Our immediate goal is to formulate a version of the theory
‘‘lattice vibrations’’ for the present system.

We begin by noting the classical equations of motion
the positions and momenta, or equally well, the Heisenb
equations of motion for the corresponding quantum ope
tors:

ṅk5nd @2fk1112fk2fk21#, ~20a!

ḟk5
d

4n
@nk1122nk1nk21#24knk . ~20b!

Combination of these two gives

f̈k5
d2

4
@2fk1214fk1126fk14fk212fk22#

24nkd @2fk1112fk2fk21#. ~21!

The equation of motion for eachfk ~and nk) is transla-
tionally invariant, given the periodic boundary condition
We thus try the standard ansatz

fk5bqei (kq2vqt), ~22!

whereq, bq , andvq are constants. This ansatz satisfies
periodic boundary conditions and defines a complete,
early independent set of solutions, provided the values of
analog of the phonon wave numberq are properly restricted
Here we choose the set of wave numbers

q5
2p

K
m, m52

K

2
, . . . ,

K

2
21. ~23!

It may be seen immediately that the ansatz~22! succeeds if
the dispersion relation of the phonons reads

vq
254d2sin4

q

2
116nkd sin2

q

2
. ~24!

As always in analysis involving phonons, it is crucial
keep in mind that, for the set of wave numbers~23!, the
vectors

xq[S eiq

AK
,
e2iq

AK
, . . . ,

eKiq

AK
D T

make an orthonormal basis forK-dimensional complex vec
tors with respect to the usual vector norm. Theq50 mode is
problematic in many respects. In what follows, we keep tra
of it explicitly.

The equations of motion~20! imply that if Eq. ~22! is a
solution forfk , then

nk5

4nd sin2
q

2

2 ivq
bqei (kq2vqt) ~25!
,
is

f

r
rg
-

.

e
-
e

k

is a solution fornk . The limit q→0 leads tonk→0, so that
within the present framework there is no representation
the state of the affairs that allnk are equal@19#. However, it
follows from the definition~7! that the case withnk[n̄Þ0
corresponds to a situation in which the total atom num
has changed byKn̄. This cannot happen under the Ham
tonian ~3!. The vanishing of the displacementsnk for the
phonon withq50 is as it should be. On the other han
constantsnk[0 andfk[f̄ make a solution to the equation
of motion, no matter what the valuef̄. There is nothing
wrong with a nonzero canonical momentumf̄ for the pho-
non q50.

It remains to find the representation of the displaceme
and momentank andfk in terms of phonon annihilation an
creation operatorsaq and aq

† . An argument just as thos
always made while quantizing phonons@17# shows that

nk5 i(
q

A2nd sin2
q

2

Kvq
~aqeikq2aq

†e2 ikq!, ~26a!

fk5(
qA vq

8Knd sin2
q

2

~aq eikq1aq
†e2 ikq! ~26b!

is a possible expansion for the operatorsnk and fk . The
q50 terms in these expressions admittedly are ill-defin
and so is even theq→0 limit of the q50 term infk . We
handle such problems by taking theq→0 limit for the sin-
gularq50 term only at the end of our calculations. So far
our analysis, this procedure has never produced an obvio
wrong result.

Conversely, it is easy to verify that ifaq have the boson
commutation relations, thennk andfk from Eqs.~26! have
the proper canonical commutators~19!. Moreover, using
Eqs.~26!, the Hamiltonian~18! may be cast into the ordinar
independent-phonon form,

H

\
5(

q
vqS aq

†aq1
1

2D . ~27!

B. Ground state

We next study the ground state of the system of the c
densates in theK wells. In phonon language, we investiga
the vacuum of the phonons satisfyingak u0&50. Nonethe-
less, zero-point fluctuations are still present.

First consider atom number fluctuations in a well. W
trivially have

~Dn!2[^0unk
2u0&5(

q

2nd sin2
q

2

Kvq

.
nd

p E
2p

p

dq

sin2
q

2

vq
5

2n

p
arctanA d

4nk
. ~28!
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4906 PRA 60JUHA JAVANAINEN
In the approximate equality we have replaced the sum ovq
by an integral, a permissible step forK@1.

The key parameter for atom number fluctuations ob
ously is

j5
d

4nk
, ~29!

the ratio of the tunneling rate between adjacent wells and
chemical potential in each well. Forj@1 the atoms tunne
easily. One might then expect that they are shuffled am
the wells at random. In the limitK@1 this should give a
Poissonian atom number in each well. For the averagen
atoms in each well, we in fact find the number fluctuatio
Dn.An. In the opposite limitj!1 it costs a lot of atom-
atom interaction energy to move an atom from one well
another, and so tunneling is inhibited. Correspondingly,
number fluctuations are sub-Poissonian, and read

Dn.
1

Ap
S nd

k D 1/4

. ~30!

Both of these limits are similar to those found in Ref.@12#,
the main difference being that our present expressions
cast in terms of the number of atoms per trapn rather than
the total number of atomsN. Expression~30! is questionable
if Dn&1, as then the expansion~6! fails. Perturbation theory
similar to the development in Ref.@12# could again handle
the caseDn&1, but we do not go into this.

We now come to the fluctuations of the canonical m
mentafk , conjugates of atom numbersnk . The notationfk
is no accident; though such an interpretation has certain t
nical weaknesses@12#, we pragmatically regardfk as the
phase operator for the BEC in the wellk. There is nothing to
fix the global phase for the condensates in an array of we
and the fluctuations of any givenfk are correspondingly
formally infinite. However, the global phase is not a physi
observable anyway. Experiments, including the experime
in Ref. @13#, rather depend on the relative phases between
wells. We study phase fluctuations between the wellsm po-
sitions apart,

@Dfm#2[^0u~fk1m2fk!
2u0&

5(
q

vqsin2
mq

2

2Knd sin2
q

2

5
1

KnAj
(

p52K/2

K/221 A11j sinS pp

K D 2

sinS mpp

K D 2

UsinS pp

K D U
~31a!
-

e

g

s

o
e

re

-

h-

s,

l
ts
he

.
1

pnAj
E

0

p

dq

A11j sinS q

2D 2

sinS mq

2 D 2

sinS q

2D .

~31b!

It is straightforward to compute the sum in Eq.~31a! exactly,
numerically, for a wide range of the parametersj, m andK.
In this way we have seen that phase fluctuations do not
matically depend on the distance between the condensatem.
We thus use them51 case as the generic estimate for pha
fluctuations between different condensates.

In this vein, we discuss the spread of the relative ph
between two neighboring condensates. The integral~31b!
gives

@Df1#2.
Aj1~11j!arctanAj

pnj
, ~32!

which for j→0 and j→` becomes 2/(pnAj) and 1/2n,
respectively. It is easy to see that in the latter limiting ca
the phonon vacuum is a minimum uncertainty state for
operatorsnk112nk andfk112fk . By comparing with the
exact sum form, we have found that the integral approxim
tion is increasingly better, the larger is the number of t
wells K. For instance, Eq.~32! is accurate to better than 10%
for all j onceK>44.

C. Time dependence

In the experiments of Ref.@13# an essentially free conden
sate is captured in an optical lattice. This is an inheren
time-dependent process. We model it by letting the tunne
rated decrease on a characteristic time scalet from a ‘‘very
large’’ initial value to whatever the final value is. The sp
cific time dependence, if needed, could bed } e2t/t. Even if
the process started from a steady state, say, ground sta
the free condensate, the capture of the condensates int
wells need not be adiabatic, and may leave behind a non
tionary state. We focus on the concomitant time depende
of the relative phases between the wells. Experimenta
such evolution results in changes with time in the shape
the atom pulses falling from the lattice.

The first issue is adiabaticity itself. Here we without fu
ther ado adopt a simple argument that worked exceedin
well in the case of two wells@12#. We assume that a give
phonon modeq evolves adiabatically until the tunneling fre
quency d has becomes so small that the ensuing pho
frequencyvq satisfies

vq.
1

2pt
. ~33!

The corresponding value ofd is

dq.
1

4pt sin2
q

2
@8pnkt1A11~8pnkt!2#

. ~34!

This argument suggests two conclusions. First, it is incre
ingly hard to stay adiabatic, the lower one goes in phon
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frequencies. This is as expected. Lower frequencies m
longer wavelengths, so the system must adjust itself ove
increasing number of neighboring wells. This takes
longer, the larger the length scale. Second, if the time s
for variation of the tunneling rate is shorter than the inve
of the chemical potential,t&(4nkt)21, adiabaticity breaks
down for all modes even before the system starts samp
atom-atom interactions at all;dq*4nkt for all phonon
modesq.

The scenario of the breakdown of adiabaticity we ad
here is that, once the tunneling rate reaches the critical v
dq , the modeq freezes to the vacuum state that prevails
the time ofd(t)5dq . While the present method could easi
be adapted to more general situations, from now on we o
discuss ‘‘instantaneous’’ turning on of the optical lattic
t&(4nkt)21. This means thatdq*4nkt applies to all
modes, and the condensate remains in its original unconfi
state throughout the turning on of the optical lattice.

As preparation for the ensuing argument, we note t
although the operatorsnk and fk are the same no matte
what the parameters, the creation and annihilation opera
and their associated properties such as the vacuum depe
the tunneling rated, chemical potentialm54nk, and mode
frequencyvq . Suppose we have the annihilation operat
aq corresponding to the parametersd, k, vq , and another
set of annihilation operatorsāq for the parametersd̄, k̄, v̄q .
A simple manipulation based on the observation that the
trix Mkq5eikq/AK is unitary gives the connection

āq5coshuqaq1sinhuqa2q
† , ~35!

coshuq5
1

2 SAd̄vq

dv̄q

1Adv̄q

d̄vq
D ,

~36!

sinhūq5
1

2 SAd̄vq

dv̄q

2Adv̄q

d̄vq
D .

Modes q and 2q are pairwise coupled, and have to b
discussed together. The vacua of the modesāq and ā2q ,
the state satisfyingāqu0,0&ā,q5ā2qu0,0&ā,q50 may be ex-
pressed in terms of the number statesunq ,n2q&a,q corre-
sponding to the modesaq , a2q as

u0,0&ā,q5
1

coshuq
(
n50

`

~2tanhuq!nun,n&a,q . ~37!

The vacuumu0,0&ā,q is a two-mode squeezed vacuum for t
modesaq anda2q @20#. Quantum optics lingo aside, expre
sion ~37! may be verified easily by lettingāq ~and ā2q)
from Eq. ~35! act on it, which gives zero.

Let us finally address phase diffusion, or more precise
phase dispersion. Mathematically, the parameterd suddenly
switches from a value indicating ready tunneling to a fin
value that might signal strong confinement of the atoms
their wells. The state does not switch suddenly, though,
the trapped lattice of BEC’s finds itself in the wrong vacuu
corresponding to the initiald. We use the bar to denote th
parameters and phonon operators at the prelattice stage;
the wrong vacuumu0&W for each doublet of phonon modesq,
an
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2q is given by Eq.~37!. Moreover, after the capture, we le
the system evolve in time, and ask about phase fluctuat
between the wells as a function of time. By virtue of th
Hamiltonian~27!, in the Heisenberg picture each operatoraq
simply picks up the time-dependent phase factore2 ivqt. A
small amount of algebra gives

@Dfm~ t !#2[W^0u@fk1m~ t !2fk~ t !#2u0&W

5(
q

vq sin2
mq

2

4Knd sin2
q

2

F S dv̄q

d̄vq

1
d̄vq

dv̄q
D

1cosvqtS dv̄q

d̄vq

2
d̄vq

dv̄q
D G . ~38!

We first assume that the lattice is switched from the
gime in which tunneling completely dominates to the regim
when tunneling is negligible. Correspondingly, we expa
the expression inside the sum in Eq.~38! into the leading
orders in 1/d̄ andd, and convert the sum into an integral
the standard way. We obtain

@Dfm~ t !#2.
1

2n
18nk2t2. ~39!

The structure of the result is the same as was found ea
for a double well@21,7#. By the timeDfm(t);1, the phases
between the wells have drifted sufficiently far apart that in
experiments such as those in Ref.@13# neat periodic pulses o
atoms are replaced by a randomly fluctuating atomic fl
This takes about the timet;A2n (4nk)21, the square root
of the number of atoms in each well times the inverse of
chemical potential.

Quantitative comparisons with the experiments in R
@13# are hampered by the fact that the number of atoms c
tured in the traps was not uniform; there were more ato
where the original condensate was denser. Besides, som
the parameters needed in the theory are not stated explic
This kind of uncertainty notwithstanding, we pause for
estimate of the dephasing time scale in the experiments@13#.
We assume that the traps were turned on instantaneous
seems reasonable to taken;200 as the number of atoms i
each trap, and use the value for the densityr;1013/cm3,
which gives the chemical potential\m/kB;4 nK. The re-
sulting dephasing time isA2n (4nk)21;40 ms. This is
comparable to the experimental time scales. It need not
coincidence that degradation of the interference was
served in Ref.@13# at higher atom densities.

Additional insights are gained if in the second step of t
expansion we do not outright take the limitd→0, but just
assumed!4nk. We thus expand as in

cosvqt5cosF4Ankd Usin
q

2UA11
d

4nk
sin2

q

2
tG ~40!

.cosF4Ankd Usin
q

2Ut G . ~41!

Instead of Eq.~39!, we have
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@Df1~ t !#25
1

2n
1

2k

d
@12J0~4Ankd t !#, ~42!

whereJ0 is the usual Bessel function. FordÞ0, the spread
of the phase difference does not grow without a bound.

In fact, since21<cosvqt<1, by virtue of Eq.~38! the
phase spread should always remain bounded between
~lower and upper! values

@Dfm# l
25(

q

v̄qsin2
mq

2

2Knd̄ sin2
q

2

~43!

and

@Dfm#u
2.(

q
S d̄vq

dv̄q
D vqsin2

mq

2

2Knd sin2
q

2

.A4nk

d (
q

vqsin2
mq

2

2Knd sin2
q

2

. ~44!

In the case of the upper limit, we have takend̄@4nk̄ and
d!4nk. Equation~43! simply gives the spread of the pha
in the initial state, prior to the optical lattice, whereas E
~44! displays the phase spread as appropriate to the vac
for the final trap parametersd, k, multiplied by the factor
A4nk/d.

At t50, cosvqt51 for all q, all phonons are in phase, an
the phase spread that prevails before trapping is realized
the two-mode case there is only one nontrivialq mode in the
problem, and for this mode at certain times cosvqt 521 ap-
plies. Therefore the phase fluctuations as in Eq.~44! are also
reached at certain times. The phase spread at those tim
of the order;Ank/d larger than the spread appropriate f
the ground state of the double well. Equation~32! gives the
latter as;Ak/nd. The order of magnitude for the maximum
phase spread is therefore;k/d.

In the two-mode case one may easily see why there is
extra factorA4nk/d in the upper limit for phase spread i
Eq. ~44!. Given the trap parameters, thet50 state is a
squeezed vacuum for the~one and only! nontrivial phonon
mode, with excess fluctuations in atom number. As is us
for squeezed states@20#, with time excess atom number fluc
tuations will evolve into excess phase fluctuations. Af
some more time, phase fluctuations again become sm
than the phase fluctuations in the true vacuum, and w
cosvqt51 the initial state should revive.

By virtue of Eq. ~42!, after a time of the order
;(nkd)21/2 a phase spread of the order;k/d is reached
even in the many-trap system. This is somewhat surpris
in that different phonons fall out of phase with time a
cosvqt 521 cannot hold for all of them at the same timet.
The analog of the revival of a two-trap system is incomple
the

.
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though. As the oscillations ofJ0 in Eq. ~42! decay away,
with time the repeated revivals are washed out.

IV. CONCLUDING REMARKS

We have studied atom number and phase fluctuations
Bose-Einstein condensates in an array of traps, taking
account tunneling of atoms between adjacent traps and a
atom interactions within each trap. The conclusions are g
erally as one would surmise on the basis of the much-stud
case of a double-well trap. The main difference, a rat
esoteric one, is that certain revivals of two traps are inco
plete in the many-well system.

Some comments about the nature of the model are d
First consider the easy case of~deep! traps actually being
present. Ignoring atom-atom interactions, the one-part
states then come in~tight! bands. One could think ofak as
boson operators corresponding to the localized Wan
states@17# constructed from the states of the lowest band
is harder to imagine whatak should be if the potential wells
are shallow or nonexistent. We do not undertake any exp
constructions here, but vaguely think ofak as boson opera
tors that describe atoms localized approximately in the
gion where thekth trap would be.

When tunneling dominates (d@nk), the system exhibits
two features that suggest that our model is useful even in
limit with no traps at all. First, if the atoms were distribute
among the would-be traps independently of one another
the limit of a large number of traps one would expect
Poissonian atom number statistics for each trap site. As
cussed under Eq.~29!, this is consistent with the results from
our model. Second, from Eq.~24! it may be seen that the
spectrum of low-lying excited states for the lattice of traps

e l.
8p2d l 2

K2 , l 561,62, . . . . ~45!

This is as in a one-dimensional box with periodic bounda
conditions. Higher excited states (l *K/2) admittedly de-
velop a peculiar spectrum with a negative effective ma
Inasmuch as only the lowest excitations need be conside
though, our model makes sense even in the limit when th
are no traps at all. In that case the parameterd may be seen
to be essentially the zero-point energy if the atoms w
confined to a region with a size comparable to the separa
between the as of yet nonexistent traps.

Another tricky question, which we have already broach
in Sec. II, is atom-atom interactions. We offer here an ar
ment to estimate when our approach should be quantitati
useful. The key idea is that our method is valid if atom-ato
interactions have to be taken into account only in the lim
when the traps substantially restrict the hopping of the
oms.

The first question is, when is a trap deep enough to c
fine. Now, from the excitation spectrum it is obvious that
our model the width of the tight-binding band of states is
the orderd. We regard the atoms as confined as soon as
tunneling rated is smaller than the zero-point energy in
trap. TakeL as the total length of the array of traps, then t
size of one trap is;L/K and the zero-point energy isE0
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;\2K2/mL2, wherem again is the mass of an atom. We ha
confining traps if\d&E0.

On the other hand, given thes-wave scattering lengtha
and density of atomsr, the atom-atom interaction energy p
atom is well known to be;\2ar/m. In our Hamiltonian the
corresponding frequency}nk is proportional to atom num
ber not density, so to estimatek we takek;\a/mV, where
V is the total volume of the atomic sample. For the sake
the argument we assume that prior to erecting the opt
lattice the sample of atoms is essentially spherical, and
V;L3. This makesk;\a/mL3.

To conclude the estimate, we note that atom-atom in
actions begin to matter whennk5Nk/K*d. It is therefore
correct to ignore atom-atom interactions until the traps
confining if nk&E0 /\. Combining this with our preceding
estimates fork andE0, we find that our model is valid in the
presence of atom-atom interactions ifNa/L&K3.

One could think of variations of the reasoning that redu
the power coming with the number of trapsK. Nevertheless,
the standard condition for a weakly interacting gas, such
atom-atom interactions have little effect on the atom clo
readsNa/L&1. If the latter inequality applies, we believ
that our modeling of the array of traps is quantitatively a
curate all the way from a free gas to condensates trappe
the optical lattice.

Let us look at the issues of trapping and interactions fr
one more angle. In the limitK→` our formal theory has
only two parameters,n andj5d/4nk. We have no device in
our technical development to make a difference between
~not trapped! atoms and noninteracting atoms, and so
occasionally and maybe confusingly speak of these situat
as if they were the same. For a dilute enough gas, thi
justified to some extent; one has to consider interactions o
if the atomsare trapped.
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The question about the effects of gravity remains. Spec
cally, should we expect gravity to change qualitatively t
dynamics of the system? To this end we note that, to have
array of traps in the first place, the tunneling rate\d must be
less than the zero-point energyE0. But since trapping is due
to an optical lattice, the trap length parameter should
L/K;l, the wavelength of driving light. This makes th
zero-point energy comparable to recoil energy of laser co
ing, E0;\2/ml2. Suppose we are right at the edge of tra
ping, so that\d;E0. Gravitation should be negligible if the
difference in gravitational energy between successive trap
smaller than the tunneling rate;mgl&E0, or the accelera-
tion of gravity g satisfiesg&\2/m2l3. Inserting typical pa-
rameters, this condition is seen to hold by a margin of s
eral orders of magnitude. Again, one could imagi
variations of the argument that put powers ofK in the result,
but such changes do not necessarily eat up the margin ei

A careful analysis of the effects of gravitation on the d
namics of a trap array is certainly warranted. Besides
poses an intriguing theoretical problem. Gravitation remo
the translational invariance of the trap array, which calls
a modification of the phonon picture we have exploited
the present paper. Nonetheless, as we believe that gra
does not invariably render the development of the pres
paper moot, we postpone such an analysis to a future o
sion.
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