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Phonon approach to an array of traps containing Bose-Einstein condensates
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We investigate theoretically an array of traps containing Bose-Einstein condensates, taking into account
tunneling of atoms between adjacent traps and atom-atom interactions within each trap. After an expansion
valid in the limit of a large number of atoms, we end up studying a variation of the problem of phonons in a
one-dimensional lattice. Analysis of these fictitous phonons and their vacua shows that the fluctuations in atom
numbers and phases of the condensates behave qualitatively as in the much-studied case of two traps.
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I. INTRODUCTION have sought to clarify the issue by studying the splitting of a
trap into two by erecting a potential wall in the middE2].

The possibility of peculiar interference phenomena, suchWe make the two-mode approximation, and an expansion
as an analog of the Josephson effgldt continues to spur Vvalid in the limit of large atom numbeN. The problem of
interest in the Bose-Einstein condensate in a double-well pcatom numbers and phases is thereby reverted to studies of a
tential. Our focus is on fully quantized approaches that lengimple harmonic oscillator.
themselves to analyses of not only average quantities such as In the present paper we carry out counterparts of the two-
atom numbers in each potential well, but also for studies offode approximation and large-expansion for the case of
atom number fluctuations and dynamics of condensat@ultiple traps. This is in contrast to the recent applications of
phases. The traditional way is to treat the atom number anthe Hubbard model to cold atoms in an optical latfit€], in
the condensate phase as canonical conjugate varigbtgs ~ Which small filling factors are considered. Instead of one
However, with the entry of quantum-optics-oriented authordlarmonic oscillator, a system of coupled harmonic oscilla-
into the field, nowadays one more often sees the two-modtrs emerges. We end up studying a straightforward variation
approximation[5—12]. In the case of a trap split into two, of the standard textbook exercigE7] of phonons in a one-
this amounts to tak|ng into account two |0west-energy OnedimenSional lattice. The result is that, for the most part, one
particle states of the double well. We have recently comMmay correctly surmise the behavior of atom number and
mented on the relations between the two main approachég]ase fluctuations and their time evolution from the known
[12]. results for two traps. The main difference, a rather minor

On the other hand, a System of mu|t|p|e wells has recentbone, seems to be that the kind of revivals of fluctuations that
been found to present intriguing features in the experiment@ne would see in a double trap are absent.

[13]. Briefly, a one-dimensional optical lattice is erected in a  The expansion pertinent to the limit of a large atom num-
more or less homogeneous condensate, so that trapping is g is described in Sec. Il. The analogy with phonons is the
many wells rather than two. In these experiments the opticafubject of Sec. Ill. We discuss a second-quantized represen-
lattice is oriented vertically and suspends the atoms againé@tion of the phonons, as well as the ground state and the
gravity. However, atoms slowly leak out of the traps and falltime-dependent properties of this peculiar one-dimensional
down. Atoms leaking from the traps are seen to combine intdattice in which atom number and condensate phase take the
a train of pulses. The interpretation is that the relative phaselaces of lattice displacement and momentum of a lattice
of the condensates in the traps govern the interference undedom. The remarks in Sec. IV conclude the paper.

lying the atom pulses.

We assume here and in the rest of this paper that grgvity Il. FEW-MODE SYSTEM FOR MANY ATOMS
and leakage of atoms from the traps are weak perturbations,
and that the effects of gravity on the dynamics of the con- We consider a one-dimensiondD) array of equivalent
densates may be ignored. Even with these restrictions, thgaps containing Bose-Einstein condensates. The total num-
experiments of Ref[13] still present obvious conceptual ber of atoms is denoted By and the total number of traps by
questions. First, what is the initial state of the system afteK, both for convenience taken to be even integers. The av-
the optical lattice has been set up? For instance, what are tlegage number of atoms in each welkN/K, is regarded as
initial atom number fluctuations and phase fluctuations bean integer, too, inasmuch as such an assumption helps in the
tween the wells? Second, what is the evolution of atom numargument. We assume that the gas is weakly interacting, so
bers and phases? For example, if phase correlations betwethrat the contribution to the chemical potential from atom-
the wells deteriorate in time, then so do the distinct pulsaatom interactions, for brevity simply called chemical poten-
tions in the flux of atoms. These questions make the subjedtal, is much smaller than the frequency characterizing the
of the present paper. confinement of the atoms in each trap. Here and throughout

The process of dynamically dividing a trap and the ensu-our verbal descriptions we use the terms energy and fre-
ing state have recently elicited some controvedsy,15. We  quency interchangeably, but in the equations we always
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write the constant explicitly. interwell terms may be ignored on similar grounds. The limit
As before, we may add a polynomial of the conserveds/x— o should describe the situation when the atoms tunnel
total number of atoms to the Hamiltonian without any freely, so that in effect there are no traps. In the opposite

change in the ensuing dynamics. The two-mode=R) limit 6/k—0 the wells are so deep that the atoms cannot
Hamiltonian of our previous pap¢f2] may therefore also tunnel between them at all.
be written as We write the state vector of the boson system in the usual

’ 5 way as a superposition of number states for the wells,
7=~ 5(alay+ajay) + 2kl (ajay)’+ (ajay)’l. (1)
)= 2 CNi, . N)INp, N ()

Here we use the indices 1 and 2 for the traps, insteaduod poK

r of Ref. [12]; the boson operataa; annihilates one atom The time-independent Schiimger equation is equivalent to

from trap 1, and so forth. Given one-particle wave functionsy set of eigenvalue equations for the coefficiedts
Y r) representing atoms localized in traps 1 and 2, trap-

ping potentialV(r), atom massm, and swave scattering S
lengtha, the parameters have the expressions 7 EI [VNi—g(Ni+1)C( ... Nj—3=IN;+1INjsyg, .. )

2
5:%Re“d3r¢;(r) _Z’i_szJrV(r)}%(r)], (23 +UN((N L+ 1)C( . N+ IN—1N; g, - )
+ N (N DCC o N NF LN =1, )
2m7ha 2wha
K:Tj d3r|¢1<r>|4=Tf dr|yu(r)[%. (2b) +Ni(Nf 1 FDCC N N =N+ L)

_ N _ +2kNZC( ... Ni_1,N;,Niiq, .. )]
In practice, though, these coefficients might often have to be
inferred from phenomenological considerations. For in-
stance, the tunneling rai could be defined in such a way
that in the absence of atom-atom interactiohg, gives the
energy of the lowest excited state of the system. Similarly, inn accordance with the periodic boundary conditions, the in-
the absence of tunnelings=4n« would be the chemical dices again wrap around; e.tNk . 1=N;.
potential(in units of frequency, givenn=N/2 atoms in each To develop the left-hand side, we take a few algebraic
well. steps. First, we develop the coefficier@sinto MacLaurin

Next suppose that there ake=2 equivalent wells, and expansion$12,18, as in

take into account tunneling between adjacent wells only.

E
:zC(Nl, ...,NK) (5)

Generalizing from Eq(1), we write the Hamiltonian as Cl....Ni-1=IN;j+1Nj,q,...)
H K 5 . . ; : zc(...,Ni,l,Ni,NiJrl,...)
%:Zl _Z(ai—lai+ai aj—1taj @ tajaig) J J
+ (9_Ni_ &Ni_l)C( oo NN N g, L))

: )

+2k(ala;)?

+1( 9 , 2 . (92)

We have cast the Hamiltonian in a somewhat uneconomical 2 ‘9Ni2*l Ni—1N; aNiz

f(_)rm,. displaying Hermiticity expllcnly. .ThIS WI|| greatly_ XC( ... Ni_,N Nitq, ). (6)
simplify our subsequent calculations. With the interpretation

that the Operators with the indices 0 alnd‘ 1 are nOHEXiSt- Second, we Write the atom numbers as

ent and that the corresponding terms are ignored, Egs.

and (3) become the same in the cake=2. However, our N;=N/K+n=n+n;, (7)
present topic is the limit wittKK at least moderately large.

What happens at the=1 andi=K ends of the Hamiltonian and expand the square root factors into Laurent series in the
is then hopefully a small perturbation. For mathematical conpresumably large average number of atoms in a welFor
venience we from now on resort to the analog of periodidnstance,

boundary conditions; for the indices of boson operators ap-

pearing in Eq(3), 0=K andK+1=1. NN FD=n+ 1+ni_1+n
In both Hamiltoniang(1) and (3), only intrawell nonlin- i-1(Ni+1)=n 2
earities are present. In the two-mode case the justification
was that, for a weakly interacting gas, atom-atom interac- (a4 ni_1—np)? ®
tions are comparable to the effects of tunneling only when 8n '

tunneling is slow, i.e., the overlap between the wave func-

tions localized in the two traps is small. Hence, quartic in-The change of variable;—n+n; is understood in the co-
terwell terms depending on the overlap of the squares of thefficientsC as well. Third, after inserting these expansions
wave functions are smaller stillL2]. Here we assume that into Eg. (5), in each order of the derivatives and separately
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for the terms proportional t@ and to x, we examine the On the other hand, the leading powerroin the terms that

contributions to Eq(5) order by order in 1. contain second derivatives may be written, once more using
The contribution that is zeroth order in the derivatives andperiodic boundary conditions, as

proportional tox is simply

né
K(2,8)=— 5 2
2 2 2 5
K(0,x)=2x| >, (n?+2nn+n?)|C. 9)
I
Suppose now that the characteristic order of magnitude of
But the physics following from the Hamiltonia@) remains  the numbem; is ni~An and correspondingly the order of

unchanged, except for a trivial shift of the zero of energy, ifmagnitude of they; derivative isd/dn;~1/An. The relative
we add a constant of the motionkb For instance, we might Size of the first- and second-order derivative terms is then

J J 2C 15
o ) & @9

useH'’ defined by estimated as
, K(1,8)] [An\?
H' H _(an
7:z—ZKEI (n2+2naiTai) (10) K(2,5) ( n ) (16)

It will transpire from the solutions thakn/n=<1/yn, so in
the limit of large atom number the first derivatives should be
negligible in comparison with the second derivatives.
All told, we have found a partial differential equation for
K(QK)ZZKE niZC. (11)  the coefficient<C(ny, ... ,ngk), which in the case of the time
i independent Schainger equation reads

instead of the Hamiltoniakhl. However, for the Hamiltonian
H'’ the term corresponding to E¢P) would simply read

We ignore the attendant shift in the zero of energy, and use X
this form in lieu of Eq.(9) in what follows. >

On the other hand, the three leading termshipropor- =t
tional to ¢ in the zeroth-order derivative are

né( d g \% 4 5 )
- |- (ni—n;j_1)“+2kn;|C

+ —_
an;  dn;_q 8n

=-C. (17

1
K(0,0)= 52 [ TNl AN 2] For the time-dependent Scliinger equation, the right-hand

side is modified in the obvious way. Periodic boundary con-
ditions are assumed, so that, ;=n; andny=ny . Besides,
it should be noted that the conservation of atom number is
used in the derivation. Solutions to Ed.7) should only be
considered in the subspace wEkn;=0. As a matter of fact,
it may be seen easily that the quantiyn, commutes with
the differential operator on the left-hand side of ELj/), and
(12) indeed is a conserved quantity. Finally, as we have already
mentioned, periodic boundary conditions are not necessary
for two wells, K=2. In that case, using the condition that
In the second equality we have used the periodic boundarg; +n,=0, it may be verified that Eq(17) coincides with
conditions. The first sum can then be removed with the sam&q. (17) of Ref.[12].
kind of tricks we already used in conjunction with the term

+ ! 2+(nj— 2+ (nj— aHe
ﬁ[ (Ni=ni—)+(Ni—nj41)7]

112 1C
n §(+ni)+%

:52

o
+8—n zl (ni—ni_l)ZC.

K(0,x). We finally have I1l. ANALOGY WITH 1D PHONONS
5 A. Phonon formalism
_ 2 .
K(0.9)=3g, Z (ni—n;—1)°C. 13 The Schidinger equatiori17) is derived from the Hamil-
tonian

As far as we can tell, this is the only instance during our 5 K s s
analysis in which the periodic boundary conditions are es- = _ i — 2, 7 n— 2 2
sential. Without them and for the case>2, we do not h kzl 2 (™ S0 g (N Ni-a) ™+ 20Mic
know how to eliminate all contributions that are zeroth order (18
in n from the termK(0,6).

The leading order im in the terms proportional teS
(there is no contribution proportional te) that contain first [n 1=is (19
derivatives isn 1. With the aid of periodic boundary condi- d k-
tions we write

where ¢ = —idlon, satisfy

Occasionally we also think af, and ¢, as classical canoni-

5 p cal variables with the Poisson brackétg , ¢} = &, among

K(1,8)=— E (=ni_3+2n—n;41)-—C. (14) them. As the I—!amﬂtoman is qgadraﬂc, the clas_3|cal .and the
an 5 an; guantum theories are much alike. The system is akin to the
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one encountered in connection with the line@wne- s a solution fom,. The limit g—0 leads ton,—0, so that
dimensional string of masses connected by linear springswithin the present framework there is no representation for
except that the coupling between the neighboring sites ithe state of the affairs that all, are equa[19]. However, it

more complicated than in the usual textbook exampl&$.  follows from the definition(7) that the case witm,=n#0
Our immediate goal is to formulate a version of the theory ofcorresponds to a situation in which the total atom number

“lattice vibrations™ for the present system. has changed bin. This cannot happen under the Hamil-

We begin by noting the classical equations of motion fortonian (3). The vanishing of the displacements for the
the positions and momenta, or equally well, the Heisenber%honon Withqzo is as it should be. On the other hand

equations of motion for the corresponding quantum opera*

tors: constants,=0 and#,= ¢ make a solution to the equations
of motion, no matter what the valug. There is nothing
N=NS[— dyi1+2d— dr_11, (209 wrong with a nonzero canonical momentupnfor the pho-
nonqg=0.
.0 It remains to find the representation of the displacements
b=z [Nk 1= 2Nt Ny g ] — 4k (20D and momenta, and ¢, in terms of phonon annihilation and
creation operatorsy, and al. An argument just as those
Combination of these two gives always made while quantizing phonofis/] shows that
. 82
b= [~ berot b 1= B bt A1~ dis] 2nssit o
ne=i>, (aqek9—ale k) (269
—4nKS[ = bri1t 2 byl (2D O Kaog ‘
The equation of motion for eacth, (andn,) is transla-
tionally invariant, given the periodic boundary conditions. _ “q elkat oTe=ikay (26D
We thus try the standard ansatz P q ) (aq *q ) (26D
8Kné smzz
b= Bge' K~ @a), (22)

whereq, 4, andw, are constants. This ansatz satisfies thdS @ POssible expansion for the operatogsand ¢, . The
periodic boundary conditions and defines a complete, ind=0 terms in these expressions admittedly are ill-defined,
early independent set of solutions, provided the values of th8d SO is even thq—0 limit of the g=0 term in¢,.. We
analog of the phonon wave numbzare properly restricted. handle such problems by taking the-0 limit for the sin-

Here we choose the set of wave numbers gularg=0 term only at the end of our calculations. So far in
our analysis, this procedure has never produced an obviously
2 K K wrong result.
q=—m m=—5,...,5-L (23 Conversely, it is easy to verify that if, have the boson

commutation relations, them, and ¢, from Eqgs.(26) have

It may be seen immediately that the ansé2) succeeds if the proper canonical commutatotd9). Moreover, using
independent-phonon form,

w§=452sin49+ 16nk3siP o (24) H 1
? ? == g ahagt (27)
ﬁ = > a)q aqaq 2 .
As always in analysis involving phonons, it is crucial to
keep in mind that, for the set of wave numbégs), the
vectors B. Ground state

S Kig\ T We next study the ground state of the system of the con-
= e_'q e_'q e_'q densates in th& wells. In phonon language, we investigate
a VK VKK the vacuum of the phonons satisfyilag |0)=0. Nonethe-
less, zero-point fluctuations are still present.
make an orthonormal basis f&-dimensional complex vec- First consider atom number fluctuations in a well. We
tors with respect to the usual vector norm. The0 mode is  trivially have
problematic in many respects. In what follows, we keep track

of it explicitly. 2n53ir129
The equations of motiof20) imply that if Eq. (22) is a A= (020 =S 2
solution for ¢, then (An)*=(0|ni|0)= 2 K—wq
., . q
4nésirt 5 q
n —D el (ka—wgt) 25) né (m q SIr]22 3 2n [ 8 -
k= — i wq 'Bq = F . q g = ?arcta m (28
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In the approximate equality we have replaced the sum qver q\2 mq) 2
by an integral, a permissible step fiie>1. 1+ fsin( —) sin(—)
: . 1 m 2 2
The key parameter for atom number fluctuations obvi- = f dq .
ously is mny/éJo . (Q)
sin| 5
(31b
S
&= e’ (29 It is straightforward to compute the sum in E§1a exactly,

numerically, for a wide range of the parametérsm andK.
In this way we have seen that phase fluctuations do not dra-
matically depend on the distance between the condensates
S\Ie thus use then=1 case as the generic estimate for phase
uctuations between different condensates.
In this vein, we discuss the spread of the relative phase

the ratio of the tunneling rate between adjacent wells and th
chemical potential in each well. F@&1 the atoms tunnel
easily. One might then expect that they are shuffled amon
the wells at random. In the limiK>1 this should give a : : .
Poissonian atom number in each well. For the average of bievtglvseen two neighboring condensates. The integsab)
atoms in each well, we in fact find the number fluctuations?

An=\/n. In the opposite limitt<1 it costs a lot of atom- JE+(1+ ¢)arctanyé

atom interaction energy to move an atom from one well to [Ap,]?= , (32
another, and so tunneling is inhibited. Correspondingly, the g

number fluctuations are sub-Poissonian, and read which for ¢—0 and é—» becomes 24nyg) and 1/2,

respectively. It is easy to see that in the latter limiting case
the phonon vacuum is a minimum uncertainty state for the
operatoran,, ;—ny and ¢y, 1 — ¢. By comparing with the
exact sum form, we have found that the integral approxima-
tion is increasingly better, the larger is the number of the
wells K. For instance, Eq32) is accurate to better than 10%

Both of these limits are similar to those found in Ref2], ~ for all £ onceK=44.

the main difference being that our present expressions are

cast in terms of the number of atoms per trapather than C. Time dependence
the total number of atomN. Expression(30) is questionable
if An<1, as then the expansid6) fails. Perturbation theory

n=—

Var

1 /né 1/4
LUE

K

In the experiments of Ref13] an essentially free conden-
il h | ; | i handl sate is captured in an optical lattice. This is an inherently
similar to the development in Ref12] could again handle  ie_gependent process. We model it by letting the tunneling

the caseAn=1, but wehdoﬂnot go into t?isr.] cal o€ decrease on a characteristic time scafeom a “very
We now come to the fluctuations of the canonica MO°|arge” initial value to whatever the final value is. The spe-

mentagy , conjugates of atom numbeng. The notationdy  iific time dependence, if needed, couldde e~!'". Even if

i; no accident; though such an interpretation has certain techy o process started from a steady state, say, ground state of
nical weaknessepl2], we pragmatically regard, as the e free condensate, the capture of the condensates into the
phase operator for the BEC in the wkllThere is nothing 0 |5 need not be adiabatic, and may leave behind a nonsta-
fix the global phase for the condensates in an array of wellgjonary state. We focus on the concomitant time dependence
and the fluctuations of any givery are correspondingly ot the relative phases between the wells. Experimentally,
formally infinite. However, the global phase is not a physicalg,,cy evolution results in changes with time in the shapes of
observable anyway. Experiments, including the experimentg,e atom pulses falling from the lattice.
in Ref.[13], rather depend on the relative phases between the e first jssue is adiabaticity itself. Here we without fur-
wells. We study phase fluctuations between the weliso-  {her ado adopt a simple argument that worked exceedingly
sitions apart, well in the case of two well§12]. We assume that a given
phonon modey evolves adiabatically until the tunneling fre-
quency 6 has becomes so small that the ensuing phonon

2_ 2
[A ¢m]*=(O0[(¢k+m— ¢1)[0) frequencyw, satisfies
mq
. 1
wgSiF —- -
=> —2 9T omr 33
q .50
2Kn55|n2§ The corresponding value & is

[pm\?  (mpm)|? 1
1 K/2—1 1+§S|n? smT 6q= . (39

= 47TTSir129[87TnK7'+ \/1+(87Tnm')7]
Kny& p=—kr2 .(pw)‘ 2
SN ?

This argument suggests two conclusions. First, it is increas-
(319 ingly hard to stay adiabatic, the lower one goes in phonon
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frequencies. This is as expected. Lower frequencies mean q is given by Eq.37). Moreover, after the capture, we let
longer wavelengths, so the system must adjust itself over athe system evolve in time, and ask about phase fluctuations
increasing number of neighboring wells. This takes thebetween the wells as a function of time. By virtue of the
longer, the larger the length scale. Second, if the time scalelamiltonian(27), in the Heisenberg picture each operatgr

for variation of the tunneling rate is shorter than the inversesimply picks up the time-dependent phase faetol“a'. A

of the chemical potentiak=<(4n«7) !, adiabaticity breaks small amount of algebra gives

down for all modes even before the system starts sampling

atom-atom interactions at alls;=4n«r for all phonon [A () 1= W(Ol[ brs m(t) — Bi(1) 17| O)wy
modesq. mq
The scenario of the breakdown of adiabaticity we adopt wyq S — - —
here is that, once the tunneling rate reaches the critical value :2 2 (%4_ %)
d4, the modeq freezes to the vacuum state that prevails at T 4K 'n2q dwq dwg
the time of(t) = &,. While the present method could easily ngsin'>
be adapted to more general situations, from now on we only -
discuss “instantaneous” turning on of the optical lattice, dwg  dwq
r=(4nx7)"1. This means thats,;=4n«7 applies to all +Coswgt o do. (39
modes, and the condensate remains in its original unconfined “q “q
state throughout the turning on of the optical lattice. We first assume that the lattice is switched from the re-

As preparation for the ensuing argument, we note thagime in which tunneling completely dominates to the regime
although the operators, and ¢, are the same no matter \yhen tunneling is negligible. Correspondingly, we expand
what the parameters, the creation and annihilation operatogfe expression inside the sum in E&8) into the leading

and their a}ssociated propgrties SUCh. as the vacuum depend 8fers in 16 and 8, and convert the sum into an integral in
the tunneling rateS, chemical potential=4nk, and mode the standard way. We obtain

frequencyw,. Suppose we have the annihilation operators

aq corresponding to the parametefs x, oy, and another 1
set of annihilation operatoks, for the parameters, «, w, [A¢m(D)]?= 5~ +8nx’t?, (39
q K, g 2n
A simple manipulation based on the observation that the ma-
trix quzeikq/\/R is unitary gives the connection The structure of the result is the same as was found earlier
. for a double well21,7]. By the timeA ¢,(t) ~ 1, the phases
aq=Ccoshf,aq+sinh aqaiq , (35 between the wells have drifted sufficiently far apart that in an
experiments such as those in Réf3] neat periodic pulses of
1 Sw Sw. atoms are replaced by a randomly fluctuating atomic flux.
coshé)q:E — /=], This takes about the time~y2n (4n«) %, the square root
dwyq Sy of the number of atoms in each well times the inverse of the
_ (36)  chemical potential.
=1 dwq dwq Quantitative comparisons with the experiments in Ref.
S'”“’q‘i( V 5_;(4_ V g_wq : [13] are hampered by the fact that the number of atoms cap-

tured in the traps was not uniform; there were more atoms
Modes q and —q are pairwise coupled, and have to be Where the original condensate was denser. Besides, some of
yrp the parameters needed in the theory are not stated explicitly.
This kind of uncertainty notwithstanding, we pause for an
estimate of the dephasing time scale in the experinfé:/3s
We assume that the traps were turned on instantaneously. It
seems reasonable to take-200 as the number of atoms in
. each trap, and use the value for the dengity10¥cn?,
10,00 q=—r— > (—tanhg,)" nN)eq. (37 which gives the chemical potentiélu/kg~4 nK. The re-
9 coshdy i=o K 4 sulting dephasing time is/2n (4nk) 1~40 ms. This is
. comparable to the experimental time scales. It need not be a
The vacuun0,0) 4 is a two-mode squeezed vacuum for the ;i cigence that degradation of the interference was ob-
modesag anda—q [20]; Quantum optics lingo aside, expres- seryed in Ref[13] at higher atom densities.
sion (37) may be verified easily by lettingy, (and a_) Additional insights are gained if in the second step of the
from Eq. (35) act on it, which gives zero. expansion we do not outright take the lindit-0, but just
Let us finally address phase diffusion, or more preciselyassumes<4nx. We thus expand as in

phase dispersion. Mathematically, the paramétsuddenly
switches from a value indicating ready tunneling to a final 1)
g y g COSwyt=c08 4\nkd sin(i \/1+—sir129t (40)
a 2 4nk 2
. q
smit} (41

discussed together. The vacua of the modgsand Z,q,

the state satisfyingr,|0,0), 4= @_4/0,0),4=0 may be ex-
pressed in terms of the number stateg,n_,), q corre-
sponding to the modes,, @_4 as

value that might signal strong confinement of the atoms to

their wells. The state does not switch suddenly, though, but

the trapped lattice of BEC's finds itself in the wrong vacuum

corresponding to the initiab. We use the bar to denote the 200{4“‘“5
parameters and phonon operators at the prelattice stage; then

the wrong vacuunO),y for each doublet of phonon modgs  Instead of Eq(39), we have
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, 1 2k though. As the oscillations ol in Eq. (42) decay away,
[Ads(D]"=5,+ — [1-Jo(4Vnkdt)], (42 with time the repeated revivals are washed out.

whereJ, is the usual Bessel function. Fér#0, the spread IV. CONCLUDING REMARKS
of the phase difference does not grow without a bound. _

In fact, since—1<cosw,t<1, by virtue of Eq.(38) the We have studied atom number and phase fluctuations for
phase spread should always remain bounded between tR®se-Einstein condensates in an array of traps, taking into
(lower and uppervalues account tunneling of atoms between adjacent traps and atom-

atom interactions within each trap. The conclusions are gen-
— . .mq erally as one would surmise on the basis of the much-studied
qu'r‘Z? case of a double-well trap. The main difference, a rather
[ApplP=> ——— (43)  esoteric one, is that certain revivals of two traps are incom-
q 2Kn§sin2g plete in the many-well system.
2 Some comments about the nature of the model are due.
First consider the easy case (@eep traps actually being
and present. Ignoring atom-atom interactions, the one-particle
states then come iftight) bands. One could think o, as
. nzm boson operators corresponding to the localized Wannier
@qS! 2 stateq 17] constructed from the states of the lowest band. It

B
[Apmli=> (—“

is harder to imagine what, should be if the potential wells

@\ dwg 2Kné sinZg are shallow or nonexistent. We do not undertake any explicit
2 constructions here, but vaguely think @f as boson opera-
tors that describe atoms localized approximately in the re-
® sinzm gion where thekth trap would be.
4nk q 2 When tunneling dominatess&n«), the system exhibits
= % q’ (44) two features that suggest that our model is useful even in the
2Kn55in2§ limit with no traps at all. First, if the atoms were distributed

among the would-be traps independently of one another, in
o S — the limit of a large number of traps one would expect a

In the case of the upper limit, we have také®4nx and  pgissonian atom number statistics for each trap site. As dis-
d<4nk. Equation(43) simply gives the spread of the phase ¢yssed under Eq29), this is consistent with the results from

in the initial state, prior to the optical lattice, whereas Ed.qyr model. Second, from Eq24) it may be seen that the

(44) displays the phase spread as appropriate to the vacuughectrum of low-lying excited states for the lattice of traps is
for the final trap parameters, «, multiplied by the factor

Vankl 6.

Att=0, cosw,t=1 for all g, all phonons are in phase, and —_—,
the phase spread that prevails before trapping is realized. For K
the two-mode case there is only one nontrigjahode in the

problem, and for this mode at certain times egs=—1ap-  This is as in a one-dimensional box with periodic boundary
plies. Therefore the phase fluctuations as in@4) are also  conditions. Higher excited state$=K/2) admittedly de-
reached at certain times. The phase spread at those times\,@op a peculiar spectrum with a negative effective mass.
of the order~+/n«/ 5 larger than the spread appropriate for [nasmuch as only the lowest excitations need be considered,
the ground state of the double well. Equati@2) gives the  though, our model makes sense even in the limit when there
latter as~ \k/né. The order of magnitude for the maximum are no traps at all. In that case the paraméteray be seen
phase spread is thereforex/ d. to be essentially the zero-point energy if the atoms were
In the two-mode case one may easily see why there is theonfined to a region with a size comparable to the separation
extra factory4nk/é in the upper limit for phase spread in between the as of yet nonexistent traps.
Eq. (44). Given the trap parameters, the-0 state is a Another tricky question, which we have already broached
squeezed vacuum for thene and only nontrivial phonon in Sec. Il, is atom-atom interactions. We offer here an argu-
mode, with excess fluctuations in atom number. As is usuaent to estimate when our approach should be quantitatively
for squeezed stat¢20], with time excess atom number fluc- useful. The key idea is that our method is valid if atom-atom
tuations will evolve into excess phase fluctuations. Afterinteractions have to be taken into account only in the limit
some more time, phase fluctuations again become smallevhen the traps substantially restrict the hopping of the at-
than the phase fluctuations in the true vacuum, and witloms.
coswgt=1 the initial state should revive. The first question is, when is a trap deep enough to con-
By virtue of Eq. (42), after a time of the order fine. Now, from the excitation spectrum it is obvious that in
~(nk6)~ Y2 a phase spread of the orderx/5 is reached our model the width of the tight-binding band of states is of
even in the many-trap system. This is somewhat surprisinghe orders. We regard the atoms as confined as soon as the
in that different phonons fall out of phase with time andtunneling rates is smaller than the zero-point energy in a
coswgt =—1 cannot hold for all of them at the same time trap. Takel as the total length of the array of traps, then the
The analog of the revival of a two-trap system is incompletesize of one trap is~L/K and the zero-point energy B,

l=+1,+2,.... (45)
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~h2K?mL?, wherem again is the mass of an atom. We have The question about the effects of gravity remains. Specifi-
confining traps ifh 5<E,. cally, should we expect gravity to change qualitatively the
On the other hand, given thewave Scattering |engtb dynamiCS of the SyStem? To this end we note that, to have an
and density of atomg, the atom-atom interaction energy per array of traps in the first place, the tunneling ra@must be
atom is well known to be-#2ap/m. In our Hamiltonian the  less than the zero-point energy. But since trapping is due
corresponding frequencynx is proportional to atom num- to an optical lattice, the trap length parameter should be
ber not density, so to estimatewe takex~#a/mV, where  L/K~X\, the wavelength of driving light. This makes the
V is the total volume of the atomic sample. For the sake ofzero-point energy comparable to recoil energy of laser cool-
the argument we assume that prior to erecting the opticahg, E,~#%2/m\2. Suppose we are right at the edge of trap-
lattice the sample of atoms is essentially spherical, and takging, so that: 5~ E,. Gravitation should be negligible if the
V~L3. This makesc~#ia/mL3. difference in gravitational energy between successive traps is
To conclude the eStimate, we note that atom-atom intersma”er than the tunne"ng ratmg)\sEO’ or the accelera-
actions begin to matter whem«=N«/K= 6. It is therefore  tjon of gravity g satisfiesg=#2/m?\3. Inserting typical pa-
correct to ignore atom-atom interactions until the traps arg¢ameters, this condition is seen to hold by a margin of sev-
confining if nk=Eq/f. Combining this with our preceding gra| orders of magnitude. Again, one could imagine
estimates fok andE,, we find that our model is valid in the | ;iations of the argument that put powerskoin the result,

. . 3
presence of atom-atom |_nt9ract|onsta/LsK ; but such changes do not necessarily eat up the margin either.
One could think of variations of the reasoning that reduce ., ofy| analysis of the effects of gravitation on the dy-

the power coming with the number of trajss Nevertheless, namics of a trap array is certainly warranted. Besides, it

the standard condition for a weakly interacting gas, such that T . o
atom-atom interactions have little effect on the atom cloudP25€S N |nltr|gU|r.19 thgoretlcal problem. Grawtan_on removes
readsNa/L=1. If the latter inequality applies, we believe the translational invariance of the trap array, which calls for

that our modeling of the array of traps is quantitatively ac-2 modification of the phonon picture we have exploited in

curate all the way from a free gas to condensates trapped ﬁl?e present paper. Nonetheless, as we believe that gravity
the optical lattice. does not invariably render the development of the present

Let us look at the issues of trapping and interactions fronP@Per moot, we postpone such an analysis to a future occa-
one more angle. In the limiK—o our formal theory has S!ON-
only two parameters) andé= 8/4nk. We have no device in
our technical development to make a difference between free
(not trappedl atoms and noninteracting atoms, and so we ACKNOWLEDGMENTS
occasionally and maybe confusingly speak of these situations
as if they were the same. For a dilute enough gas, this is The author thanks Mark Kasevich for several discussions.
justified to some extent; one has to consider interactions onlyhis work was supported in part by NSF Grant No. PHY-
if the atomsare trapped. 9801888 and NASA Grant No. NAG8-1428.
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