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Nonadiabatic control of Bose-Einstein condensation in optical traps

A. Bulatov, B. E. Vugmeister, and H. Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 28 December 1998!

We show that the nonequilibrium atomic phase-space density~degeneracy! of a Bose gas confined in the
off-resonant optical trap can be manipulated by means of the breathing modes of the atomic oscillations in the
trap. This new phenomenon opens a possibility to control the onset of the Bose-Einstein condensation in the
atomic cloud loaded in an optical trap. The effect arises from the instability of squeezing oscillations of atomic
phase-space distribution, initiated by the nonadiabatic change of the optical potential. The manipulation of the
degree of degeneracy of the atomic distribution is achieved by means of dynamical control of the squeezing
parameters. The physical consequences of the proposed mechanism are discussed.@S1050-2947~99!05212-9#

PACS number~s!: 03.75.Fi, 61.43.Fs, 77.22.Ch, 75.50.Lk
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I. INTRODUCTION

The coherent manipulation of the atomic center-of-m
motion in optical lattices by means of the nonstationary
pole potentials has provided new experimental capabilitie
study the dynamical systems with time-dependent poten
@1–4#. The parametric nonadiabatic excitations of the opti
lattice give rise to oscillations of the atomic momentum a
coordinate distribution dispersions~breathing modes! @2–4#
of the lattice and may be used for the manipulation of
coordinate or momentum dispersions of the atomic distri
tion by means of squeezing in phase space@3,5#.

The breathing modes of atomic oscillations in the opti
lattices have been observed experimentally with the us
the Bragg scattering techniques@2,4#. The observed decay o
the oscillations may be due to both the dissipative and
dephasing effects. The dephasing, caused by nonlinearit
fects, can lead to partial revivals~echoes! under certain cir-
cumstances. The echo effect for the breathing modes
atomic oscillations in the optical lattices incorporating t
features of both spin~photon! @6,7# and the phonon@8# echo
mechanisms has been predicted to exist in@9#.

In a recent experiment@10#, the optical trapping of a
Bose-Einstein condensate has been reported. The conde
was obtained by means of evaporative cooling in a magn
trap and then transferred into an optical trap with large
tuning. As the authors point out, the optical confinement
the condensate provides many advantages in compariso
the magnetic traps. One of the important experimental ob
vations in@10# was that the condensates were obtained in
optical trap even when it was loaded with nonconden
magnetically trapped atoms. The authors suggest that th
related to the effect of increasing of the phase-space den
of the atomic system with the adiabatically changing sh
of the confining potential@11#. As we show below, a simila
effect of phase compression should also take place for
parametric changing of the anharmonic optical potent
This happens due to the fact that for the anharmonic po
tial, the effective role of anharmonicity depends on the te
perature, and therefore the average potential changes
parametrically in case of parametric change of the inten
of the optical lattice. As the authors of Ref.@11# point out,
one needs to take into account some relaxation mechanis
PRA 601050-2947/99/60~6!/4875~7!/$15.00
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order to escape from the conservation of phase volume
posed by the Liouville theorem. In the above cited work,
was assumed that this relaxation mechanism was prov
by atomic collisions.

The present paper explores the effect of increasing
phase-space density~degeneracy degree! for the atomic sys-
tem in the non-adiabatic regime. In this regime, a spec
mechanism of relaxation has to be considered, since the
namical time scale may not be much longer than the re
ation time. We show, that in the nonadiabatic case,
phase-space density can be increased by the nonlinear e
of the atomic breathing oscillations due to the instability
such oscillations with respect to the initial conditions. Th
relaxation mechanism is known as ‘‘phase mixing’’ and do
not require atomic collisions. This effect opens a possibi
of a fast nonadiabatic control of the onset of the Bo
Einstein condensation~BEC! in the atomic cloud loaded into
an optical lattice.

II. THE MODEL AND BASIC EQUATIONS

An atom subjected to a off-resonant laser field expe
ences an energy shift of the ground state proportional to
intensity of the field. If the field is formed by a standin
wave with large detuning, the effective potential for the
oms in the ground state is given by@12#

U~x,t !5V~ t !@12cos~2qx!#, ~1!

wherex denotes the atomic center-of-mass coordinate,V(t)
is the amplitude of the dipole potential~proportional to the
intensity of the laser field! which is assumed to be time
dependent, andq is the wave vector of the laser field.

Following the experimental situation described in R
@10#, we assume that after the initial cooling to temperatu
T, the atoms are transferred into the optical trap with la
detuning and located near the minimum of the optical pot
tial. The temperatureT is assumed to be higher than the BE
transition temperatureTc . Since the detuning is large, th
dissipation effects are small and will be disregarded. N
that the dissipation effects may be sufficiently small ev
when the detuning is not large@4#. In this case, the approac
presented below should still be applicable. In this paper
4875 ©1999 The American Physical Society
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will consider the case of temperaturesT much larger than the
energy\v0 of the atomic oscillations at the bottom of th
potential. Consequently, no quantum dynamical effects
be taken into account. On the other hand, the tempera
should be low enough to ensure that the atoms do not es
from the potential well. The periodicity of optical trappin
potential is also disregarded. Therefore, the effective po
tial can be approximated as an oscillator with weak anh
monicity and time-dependent frequency given by

U~x,t !'
mv~ t !2x2

2
1

mh~ t !x4

4
, ~2!

with the harmonic frequencyv(t) and anharmonicity param
eterh(t) corresponding to the potential~1! and given by

v~ t !52qAV~ t !

m
, h~ t !52

8

3
q4

V~ t !

m
, ~3!

wherem is the atomic mass.
Following @13# and @5#, we employ the Wigner function

formalism @14# in order to study the nonequilibrium evolu
tion of the atomic phase-space distribution in the optical t
above the BEC transition. As we show in the Appendix,
the range of parameters discussed above, the equatio
motion for the Wigner function can be reduced to the Lio
ville equation. The quantum corrections can in principle
taken into account in the framework of the formalism p
sented below, but will be disregarded in the present pa
For Gaussian initial conditions and weak anharmonicity,
atomic Wigner function can be approximately represente
the form

r~p,x,t !5C~ t !exp@2F~p,x,t !#,

F~p,x,t !5ap21bpx1gx21dx41epx3, ~4!

where the distribution parameters satisfy a closed se
equations given by

d

dt
a~ t !52

1

m
b~ t !,

d

dt
b~ t !52

2

m
g~ t !12mv2a~ t !,

d

dt
g~ t !5mv2b~ t !,

d

dt
d~ t !5mv2e~ t !1mhb~ t !,

d

dt
e~ t !52

4

m
d~ t !12mh~ t !a~ t !. ~5!

In this approximation the coefficientC(t) may be time-
dependent, since the Wigner function should be normaliz
The details are discussed in the Appendix.

The quantityJ5a(t)g(t)2 1
4 b2(t) is related to the infor-

mation entropy of the systemSin f52^ ln@r#& where ^ &
stands for averaging with respect to the distribution~4!. In
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the coherent regime with no anharmonicity,J5const @5#.
From Eq. ~5!, it follows that J is also conserved in the
present case.

The solution given by Eq.~4! can be considered as a
extension of the results@15,5#, to the case of weak anharmo
nicity of the trap and sufficiently long evolution times
Namely, as we discuss below, the system has to be
phase-mixing regime. In this limit, the solution~4! follows
from the exact result given by Eqs.~A16! and ~A15! from
the Appendix.

III. THE PHASE-SPACE VOLUME AND CRITERION
OF BEC

The criterion of Bose-Einstein condensation~BEC! for
the atoms trapped in the harmonic potential can be obta
analogously to the case of the ideal Bose gas@16#. Express-
ing the total number of particlesN in the system in terms o
the chemical potentialm and temperatureT with the subse-
quent settingm50 leads to the following criterion of BEC in
a finite system@17#

Nc5 (
k51

`
Wk

12Wk
, ~6!

where Nc is a critical total number of particles andWk
5exp(2Ek /T). Introducing the density of statesr(E), we
obtain from Eq.~6! @17#,

Nc5 (
k51

` E
0

`

dEr~E!exp~2kE/T!.

In the quasiclassical limit, the density of states is expres
in terms of the phase-space volume and the BEC criterio
reduced to

Nc5 (
k51

` E dG

~2p\!D
exp@2kH~p,q!/T#, ~7!

with dG5)n51
D dpndqn being an element of the

D-dimensional phase space. For the harmonic potential
D.1, the BEC criterion given by Eq.~7! yields

Nc5S T

\v D D

zD~1!, ~8!

wherev is the frequency of harmonic oscillations in the we
andzD(z)5z1z2/2D1z3/3D1 . . . is a Riemannz function.
In one dimension, one has to exclude the ground-state po
lation in order to avoid problems with singularities of th
Riemannz function. For the harmonic potential, the BE
criterion is given by@17#

Nc5
T

\v
lnS 2T

\v D , ~9!

where v is the frequency of harmonic oscillations in th
well. One should note, that the quantityT/v corresponds to
the average phase volumêE&/v of the atomic system,
which is an adiabatic invariant for the slow variation of th
parameters of the harmonic potential@18#. Following the ex-
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perimental situation of Ref.@10#, we will concentrate on the
one-dimensional case in the rest of this section. The ge
alization of the results presented below toD.1 is straight-
forward.

In order to analyze the role of the anharmonic correctio
to the confining potential in the quasiclassical approxim
tion, we will relate the BEC criterion to the average pha
volume of the atomic system. From Eq.~7!, it follows that in
this case the BEC criterion is formulated in terms of t
functionsZk(T) defined by

Zk~T!5E dG exp@2kH~p,q!/T#, ~10!

whereZ1(T)5Z(T) is the average phase volume of the p
ticle with the HamiltonianH. If the energyE of the classical
Hamiltonian system is fixed, the phase volume is an ad
batic invariant of the system@18#. For the one-dimensiona
~1D! Hamiltonian H5p2/2m1U(x), the phase volume is
given by

I ~E!5 R dxA2m@E2U~x!#. ~11!

Making use of the identity]I (E)/]E5t(E) @18#, the ele-
ment of phase volume is expressed asdG5dE t(E), where
t(E) is a period of the finite motion of the system. Takin
this into account, we finally obtain

Zk~T!5
1

2p\E0

`

dEt~E!exp~2kE/T!. ~12!

We shall estimate the effect of an adiabatic change of
phase volume for the atomic cloud confined in the opti
trap in the situation close to the experiment@10#. In this case,
the potential is given by Eq.~1!. For sufficiently low tem-
peratures, the anharmonicity effects are small and we nee
only consider the quartic anharmonicity terms in the pot
tial. Due to the anharmonicity, the period of the finite osc
lations of the atoms acquires the energy-dependent co
tions @19#

t~E!5
2p

v S 11
E

8VD . ~13!

Substituting the dependence given by Eq.~13! into Eq. ~12!,
we obtain

Zk~T!5
I

k S 11
1

k

T

8VD , ~14!

whereI 5(2p/v)T is the average phase volume for the h
monic potential. Making use of the Eq.~7! and taking into
account the known result for the harmonic case, we ob
the BEC criterion in the form

Nc5
T

\v F lnS 2T

\v D1
p2

6

T

8VG . ~15!

Since for the adiabatic modulation of the optical poten
T;v;V1/2, the anharmonic corrections given by Eq.~15!
lead to the parametric dependence of the BEC point on
r-
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amplitude of the potential. Typically,T/V;0.1 @10# and
therefore the magnitude of the phase volume compres
can be significant for small occupation numbersn̄
5T/(\v);1.

As we will see below, the average phase-space volu
enters the BEC criterion in the modified form if the nonad
batic squeezing atomic oscillations are present and the
ergy distribution is nonequilibrium.

IV. THE BEC IN PRESENCE OF SQUEEZING
OSCILLATIONS

Let us analyze the nonequilibrium energy distribution
the case when the fast squeezing oscillations are presen
it was shown in the previous section, the average pha
apace volume is not conserved in case of the adiabatic m
lation of optical potential. This effect is due to a relaxatio
mechanism which does not have to be specified in this
gime. In the nonadiabatic regime, a similar effect is e
pected, but in this case one has to consider a specific re
ation mechanism. We consider a collisionless gas of atom
the anharmonic optical trap with fast parametric modulat
of optical potential and show that in such system there ex
a relaxation mechanism for the average quantities due to
instabilities of atomic trajectories with respect to the init
conditions. Such a mechanism is related to the effect kno
in the literature as ‘‘phase mixing’’@21#.

In order to clarify the mechanism of the proposed effe
we will make use of the analytical expression for the Wign
function given by Eq.~4!. As we show in the Appendix, this
solution is valid for arbitrary nonadiabatic evolution of th
parameters of the dipole potential provided that the ph
mixing @21# is present and the initial condition for th
Wigner function has the form of Eq.~4!. If the atomic system
is excited by means of a quick parametric change of
effective potential, the phase-mixing regime is achieved
sufficiently long timest>tc , wheretc is a phase correlation
time. Extending the method described in@21# to the case of a
nonperiodic change of the potential, we obtain an estim
for the correlation time in the formtc>(1/Kv) with K
5m(hT/mv4) and

m.
1

v2 Udv

dt U.
For the fast nonadiabatic change of the potential, the co
lation time is sufficiently short and the time evolution of th
atomic distribution takes place in the phase-mixing regim
One should note that in the classical regime~sufficiently
large occupation numbers! considered in a present paper, th
phase mixing can also be treated as a classical proces
this case, the solution for the distribution function is given
Eqs.~4! and ~5!.

The distribution in Eq.~4! is nonequilibrium and the evo
lution of the parameters is given by~5!. In order to obtain the
BEC criterion when the squeezing oscillations are pres
we will go back to the condition in the form given by Eq.~6!
and then substitute the probabilities for different occupat
numbers derived for the nonequilibrium distribution Eq.~4!.
In quasiclassical approximation, this will give the result
the form
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Nc5
1

~2p\!D (
k51

`

Z̃k~ t !, ~16!

analogous to Eq.~7!. From Eq.~16!, it follows that in the
non-equilibrium case the BEC criterion is formulated
terms of the time-dependent functionsZ̃k(t) defined by

Z̃k~ t !5E dG exp@2kF~p,x,t !#. ~17!

In this case,Z̃(t) is the effective phase volume of the partic
with the distribution function given by Eq.~4!. Making use
of the Eqs.~4! and ~17!, we obtain

Z̃k~ t !5
Ĩ

k S 12
1

k

3

8

h0

v0
2

a~ t !

J D , ~18!

where Ĩ is the average phase volume for the harmonic
tential. Note that according to Eq.~3!,

h0

mv0
4

52
1

6

1

V0
.

In the adiabatic limit,aad(t)/J '(4T/mv2) @5# and Eq.~18!
reduces to the adiabatic result given by Eq.~14!. Making use
of the Eq.~16! and taking into account the known result f
the harmonic case and thatJ51/4(\v0 /T0)2 where v0
5v(0), h05h(0) andT05T(0), weobtain the BEC crite-
rion in the form

Nc5
T0

\v0
F lnS 2T0

\v0
D2

p2

6

3

2 S T0

v0
D 2 h0

v0
2
a~ t !G . ~19!

For the quantitative analysis of the nonequilibrium pha
space compression effect described above, a full nume
simulation of the evolution of the atomic distribution wit
the potential given by Eq.~1!, has been performed. Th
simulation was done by means of direct integration of
atomic equations of motion with subsequent calculation
the phase-space volume. The initial conditions were take
the form of the classical squeezed state~A12!, corresponding
to an instantaneous increase of the confining potentialt
50 with subsequent excitation of squeezing oscillations
the atomic distribution.

In Fig. 1, we present the results of simulations for t
average phase volumeZ̃(t) as a function of time with fas
nonadiabatic modulation of the optical potentialv(t). One
can see, thatZ̃(t) exhibits a fast decrease during the tim
interval less than the period of undisturbed oscillatio
Note, that the nonconservation ofZ̃(t) is related to a transi-
tion into the phase mixing regime. Making use of the es
mate for the correlation timetc given above and the param
eters of the modulation, we obtain

v~0!tc.
10

m

V0

T
'2,
-

-
al

e
f
in

f

.

-

in qualitative agreement with the results presented in Fig
This estimate also agrees with direct numerical analysis
the average phase correlator of the system described by
~A6!.

For the time t.tc , the atomic system is in a phase
mixing regime and the evolution of the distribution functio
is defined by Eq.~5! for the parameters of the classic
squeezed state in the form of Eq.~4! with time-dependent
frequencyv(t). In Fig. 2, we present the results of simul
tions for the average phase volumeZ̃(t) in the phase-mixing
regime as a function of time, with the nonadiabatic modu
tion of the optical potential. One can see, that the aver
phase volumeZ̃(t) decreases over the time interval of th
order of the modulation time and exhibits oscillations.

We assume that the correlation timetc can be made
shorter than the mean-free time for the atomic collisions,
that the evolution of the atomic distribution during the mod
lation and phase mixing can be described within the co
sionless model presented above.

FIG. 1. The average phase-space volumeZ̃(t) as a function of a
dimensionless timet5v0t for the fast time modulation of the op
tical potential v(t)5v0(11mt) with (h0T0 /mv0

4)50.1 andm
55.0. The initial conditions correspond to the equilibrium therm
state fort,0 excited by means of the instant increase of the eff
tive potential att50 so that@v0 /v(t,0)#50.25.

FIG. 2. The average phase-space volumeZ̃(t) as a function of a
dimensionless timet5v0t in the phase-mixing regimet.tc for the
time modulation of the optical potentialv(t)511e tanh(lt) with
e55.0 andl50.05.
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When the onset point of the BEC is achieved, the atom
phase space distribution forms an initial state for the n
equilibrium kinetic process of Bose condensation. In orde
achieve a specific target state of the atomic distribution
given time, an optimal control analysis@22# analogous to@5#
should be done. This will be a subject of future work. T
potential design may be realized in the laboratory by clo
loop learning control techniques@23,24#.

The nonadiabatic modulation of the optical potential m
not only change the initial conditions, but also affect t
BEC and therefore provide a tool to control the kinetics
the BEC process. This may happen when the modula
time in the phase-mixing regime becomes comparable to
typical time of the Bose condensation@20#. This problem is
much more complex, since the global behavior of the ph
space volume as a function of time becomes important
therefore introduction of the full tools of the optimal contr
theory is desirable. The full control of the Bose condens
opens up the prospect of manipulating an atom laser cl
released from the trap. The modest time scale of the dyn
ics should provide a testing ground for real time feedba
control of the overall condensate.

V. CONCLUSION

This paper investigated the effect of phase-space c
pression making use of the breathing oscillations in opt
lattices. The compression originates from the fact that
entropy and the phase volume do not coincide in the c
when the energy of the system is distributed and the sys
is in the nonequilibrium state. An analytical model demo
strates the possibility and degree of such phase-space
pression. This effect opens a possibility to control the on
and subsequent dynamics of the Bose-Einstein condens
of the atomic cloud loaded in an optical lattice.

APPENDIX

In this appendix, we show that in case of weak anharm
nicity, the atomic Wigner function can be presented in
form of Eq.~4! from the text. For the potential~2!, the equa-
tion of motion for the Wigner function is given by~Ref.
@14#!

]r

]t
1

p

m

]r

]x
2~mv2x1mhx3!

]r

]p
2

1

4
mhx

]3r

]p3
50.

~A1!

One can expect that at the BEC transition, the fourth term
the lhs of Eq.~A1! presenting the ‘‘quantum anharmonic
contribution should be of the same order of magnitude as
third one, which is the ‘‘classical’’ anharmonic term. How
ever, in the regime above the BEC transition discussed in
text and due to the numerical coefficients, the quantum
harmonic term appears to be one order of magnitude sm
than the classical one. The ratioj of the fourth and the third
terms on the lhs in Eq.~A1! can be approximately estimate
as

j;
\2

4^x2&^Dp2&
;

1

4n2
, ~A2!
ic
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where ^x2& and ^Dp2& are the average coordinate and m
mentum dispersions, respectively andn5(T/\v) is the av-
erage occupation number. Assumingnf2, we conclude that
j;0.1 and therefore the equation of motion for the Wign
function given by Eq.~A1! reduces to the Liouville equation
in the form

]r

]t
1

p

m

]r

]x
2~mv2x1mhx3!

]r

]p
50. ~A3!

We introduce the ‘‘polar’’ coordinatesE,Q in the phase
space by

p2

2m
5E sin2Q,

mv2x2

2
1

mhx4

4
5E cos2Q, ~A4!

with the Jacobian

S~p,x!5
]~E,Q!

]~p,x!
52

1

A2mU~x!

]U~x!

]x
, ~A5!

where

U~x!5
mv2x2

2
1

mhx4

4

is the potential energy. Note, that the variableE has the
meaning of the microscopic energy and is conserved al
each trajectory in the phase space. The polar coordin
introduced by Eq.~A4!, are not identical to the action-angl
variables commonly used for the analysis of nonlinear pr
lems@21#. As we will see below, the variablesE,Q are more
convenient for the analysis of nonlinear system dynamics
the presence of phase mixing and in the adiabatic regime
terms of the coordinates given by Eq.~A4!, the equations of
motion take the form

dQ

dt
5S~E,Q!2

1

2v

d

dt
~v!sin~2Q!,

~A6!
dE

dt
5

1

v

d

dt
~v!E@11cos~2Q!#,

with the initial conditionsQ(0)5Q0 and E(0)5E0. The
second equation in Eq.~A6! reflects the energy conservatio
if v[v05const fort.0.

From Eq. ~A5!, an element of the phase volumedG is
expressed in terms of the polar variables in 1D as

dG5
dpdx

2p\
5

1

2p\

dEdQ

S~E,Q!
. ~A7!

Using this result and the equations of motion, one can sh
that the element of the phase space volume is tim
independent. From the first of Eq.~A6!, we obtain the rela-
tions
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]S

]Q
5

]

]t F lnS ]Q

]Q0
D G1

1

v

dv

dt
cos~2Q!, ~A8!

and

]

]t F lnS ]E

]E0
D G5

1

v

dv

dt
@11cos~2Q!#. ~A9!

From Eqs.~A8!, ~A9!, and~A5!, it follows that

]

]t
lnF S ]Q

]Q0
D S ]E

]E0
D S0

S G50

and therefore

dG5
1

2p\

dEdQ

S~E,Q!
[

1

2p\

dE0dQ0

S~E0 ,Q0!
, ~A10!

implying the conservation of the phase space volume
ment. One should note, that this conclusion holds for a
trary potential functionU(x) provided that the motion is
finite.

In case of weak anharmonicity, the JacobianS(E,Q) can
be approximately obtained from Eq.~A5! as

S~E,Q!'2vS 11
3

4

hE

mv4
@11cos~2Q!# D . ~A11!

In order to solve the Liouville equation given by Eq.~A3!
with a given initial distribution, we will employ the metho
of characteristics. This method requires expressing the
rent variablesE(t),Q(t) in terms of the initial valuesE0 ,Q0
with the substitution r(E,Q,t)5r(E0 ,Q0,0), where
r(E0 ,Q0,0) is the initial distribution function att50. To
obtain the characteristicsE05E0(E,Q,t) and Q0
5Q0(E,Q,t), one has to solve the equation of motion~A6!.

We will consider the situation when the atomic system
excited by means of sudden nonadiabatic increase of the
fining potential att50. In this case, the nonequilibrium in
tial condition for the Wigner function is given by@5#

r~p,x,0!5C~0!exp@2F~p,x,0!#,
~A12!

F~p,x,0!5a0p21g0S x21
h

2v2
x4D ,

and transforming to the (E,Q) coordinates, i.e., the charac
teristics, the solution of the Liouville equation is express
in the form

r~p,x,t !5C~0!exp@2F~E,Q,t !#,

F~E,Q,t !5
2

v0
E0~E,Q,t !Fa0~mv0!sin2~Q1C!

1
g0

mv0
cos2~Q1C!G , ~A13!

where Q0[Q1C(E,Q,t) and C should be expressed i
terms of the current coordinates (E,Q,t). Note, that this
transformation is much simplified if the system does not u
e-
i-

r-

s
n-

d

-

lize the initial phase of the oscillations andC5C(t). This
indeed happens in the phase mixing regime which is es
lished for the times greater than a correlation timetc , esti-
mated in the text.

Transferring back to the (p,x) coordinates, we obtain

r~p,x,t !5C~0!exp@2F~p,x,t !#,
~A14!

F~p,x,t !5ãp21b̃pxA11
hx2

2v2
1g̃x2S 11

hx2

2v2D ,

where

ã~ t !5
1

2mv Fa0~mv!1
g0

mvG
1

1

2mv
cos~2C!Fa0~mv!2

g0

mvG ,
b̃~ t !5sin~2C!Fa0~mv!2

g0

mvG , ~A15!

g̃~ t !5
mv

2 Fa0~mv!1
g0

mvG
2

mv

2
cos~2C!Fa0~mv!2

g0

mvG .
SinceC5C(E,Q,t) in the absence of the phase mixing, th
coefficients (ã,b̃,g̃)are the functions of (p,x,t). Making
use of Eq.~A15! in the limit of short timest,tc>(1/Kv)
where

K5m
hT

mv4
and m.

1

v2 U dv

dt U,
one can show that the phase volume is conserved, as
pected.

In the phase-mixing regime,C(E,Q,t)5C(t) and the
average phase volume may not be conserved@21#. In this
case, we obtain from Eqs.~A14! and ~A15! the solution for
the single-particle distribution function in a form of Eq.~4!
from the text with

d~ t !5
h

2v2
g~ t !,

e~ t !5
h

4v2
b~ t !, ~A16!

leading to the result for the phase-space volume

Z̃~ t !5 Ĩ S 12
3

8

h0

v0
2

a~ t !

J D ~A17!

from the text.
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