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Nonadiabatic control of Bose-Einstein condensation in optical traps
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We show that the nonequilibrium atomic phase-space defd#tgeneracyof a Bose gas confined in the
off-resonant optical trap can be manipulated by means of the breathing modes of the atomic oscillations in the
trap. This new phenomenon opens a possibility to control the onset of the Bose-Einstein condensation in the
atomic cloud loaded in an optical trap. The effect arises from the instability of squeezing oscillations of atomic
phase-space distribution, initiated by the nonadiabatic change of the optical potential. The manipulation of the
degree of degeneracy of the atomic distribution is achieved by means of dynamical control of the squeezing
parameters. The physical consequences of the proposed mechanism are dif8u€§83294709)05212-9

PACS numbes): 03.75.Fi, 61.43.Fs, 77.22.Ch, 75.50.Lk

I. INTRODUCTION order to escape from the conservation of phase volume im-
posed by the Liouville theorem. In the above cited work, it
The coherent manipulation of the atomic center-of-masgvas assumed that this relaxation mechanism was provided
motion in optical lattices by means of the nonstationary di-by atomic collisions.
pole potentials has provided new experimental capabilities to The present paper explores the effect of increasing the
study the dynamical systems with time-dependent potentialBhase-space densitylegeneracy degrgéor the atomic sys-
[1-4]. The parametric nonadiabatic excitations of the opticateém in the non-adiabatic regime. In this regime, a specific
lattice give rise to oscillations of the atomic momentum andmechanism of relaxation has to be considered, since the dy-
coordinate distribution dispersioribreathing modesj2—4]  namical time scale may not be much longer than the relax-
of the lattice and may be used for the manipulation of theation time. We show, that in the nonadiabatic case, the
coordinate or momentum dispersions of the atomic distribuPhase-space density can be increased by the nonlinear effects
tion by means of squeezing in phase spEs;8]. of the atomic breathing oscillations due to the instability of
The breathing modes of atomic oscillations in the opticalSUCh oscillations with respect to the initial conditions. This
lattices have been observed experimentally with the use delaxation mechanism is known as “phase mixing” and does
the Bragg scattering techniquig4]. The observed decay of NOt require atomic collisions. This effect opens a possibility
the oscillations may be due to both the dissipative and th€f a fast nonadiabatic control of the onset of the Bose-
dephasing effects. The dephasing, caused by non]inearity eEinStEin CondensatioﬁBEC) in the atomic cloud loaded into
fects, can lead to partial revivalschoes under certain cir- an optical lattice.
cumstances. The echo effect for the breathing modes of

atomic oscillations in the optical lattices incorporating the Il. THE MODEL AND BASIC EQUATIONS
features of both spifphoton [6,7] and the phonof8] echo _ . _
mechanisms has been predicted to exigioih An atom subjected to a off-resonant laser field experi-

In a recent experimenf10], the optical trapping of a €nces an energy shift of the ground state proportional to the
Bose-Einstein condensate has been reported. The condenstt€nsity of the field. If the field is formed by a standing
was obtained by means of evaporative cooling in a magnetigave with large detuning, the effective potential for the at-
trap and then transferred into an optical trap with large de©ms in the ground state is given py2]
tuning. As the authors point out, the optical confinement of
the condensate provides many advantages in comparison to U(x,t)=V(t)[1—cog2qx)], (1)
the magnetic traps. One of the important experimental obser-
vations in[10] was that the condensates were obtained in thevherex denotes the atomic center-of-mass coordind{g)
optical trap even when it was loaded with noncondenseds the amplitude of the dipole potentigbroportional to the
magnetically trapped atoms. The authors suggest that this igtensity of the laser fieldwhich is assumed to be time-
related to the effect of increasing of the phase-space densityependent, and is the wave vector of the laser field.
of the atomic system with the adiabatically changing shape Following the experimental situation described in Ref.
of the confining potentidll1]. As we show below, a similar [10], we assume that after the initial cooling to temperature
effect of phase compression should also take place for th&, the atoms are transferred into the optical trap with large
parametric changing of the anharmonic optical potentialdetuning and located near the minimum of the optical poten-
This happens due to the fact that for the anharmonic potertial. The temperatur& is assumed to be higher than the BEC
tial, the effective role of anharmonicity depends on the tem4ransition temperaturd,. Since the detuning is large, the
perature, and therefore the average potential changes nodissipation effects are small and will be disregarded. Note
parametrically in case of parametric change of the intensitghat the dissipation effects may be sufficiently small even
of the optical lattice. As the authors of R¢fL1] point out, when the detuning is not largd]. In this case, the approach
one needs to take into account some relaxation mechanism presented below should still be applicable. In this paper we
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will consider the case of temperaturEsnuch larger than the the coherent regime with no anharmonicit}s const [5].

energyfiwg of the atomic oscillations at the bottom of the From Eq. (5), it follows that J is also conserved in the
potential. Consequently, no quantum dynamical effects willpresent case.

be taken into account. On the other hand, the temperature The solution given by Eq(4) can be considered as an
should be low enough to ensure that the atoms do not escap&tension of the resulfd5,5], to the case of weak anharmo-
from the potential well. The periodicity of optical trapping nicity of the trap and sufficiently long evolution times.
potential is also disregarded. Therefore, the effective potenNamely, as we discuss below, the system has to be in a
tial can be approximated as an oscillator with weak anharphase-mixing regime. In this limit, the solutigd) follows
monicity and time-dependent frequency given by from the exact result given by Eq6A16) and (A15) from

the Appendix.
mo(t)2x?  my(t)x* PP

U(x,t)~ + , (2
2 4 Il. THE PHASE-SPACE VOLUME AND CRITERION
with the harmonic frequency(t) and anharmonicity param- OF BEC
eter n(t) corresponding to the potentiél) and given by The criterion of Bose-Einstein condensati®BEC) for
the atoms trapped in the harmonic potential can be obtained
V(1) 8 V() analogously to the case of the ideal Bose [ga. Express-
w(t)=2q m’ n(t)=— 39 T m 3 ing the total number of particled in the system in terms of
the chemical potentigh and temperatur@ with the subse-
wherem is the atomic mass. guent setting. =0 leads to the following criterion of BEC in
Following [13] and[5], we employ the Wigner function a finite systenj17]
formalism[14] in order to study the nonequilibrium evolu- .
tion of the atomic phase-space distribution in the optical trap Wy
above the BEC transition. As we show in the Appendix, in Nc:gl 1-W,' ©®

the range of parameters discussed above, the equation of

motion for the Wigner function can be reduced to the Liou-where N, is a critical total number of particles and/,
ville equation. The quantum corrections can in principle be=exp(—E,/T). Introducing the density of statgs(E), we
taken into account in the framework of the formalism pre-gbtain from Eq.(6) [17],

sented below, but will be disregarded in the present paper.

For Gaussian initial conditions and weak anharmonicity, the c (e
atomic Wigner function can be approximately represented in chgl fo dEp(E)exp(—kE/T).
the form N
In the quasiclassical limit, the density of states is expressed
p(p.x,1)=C(t)exd — D (p,x,1)], d y b

in terms of the phase-space volume and the BEC criterion is

®(p,x,t)=ap®+ Bpx+ yx*+ x*+ epx®, (4 reducedto

oo

where the distribution parameters satisfy a closed set of _ J _

equations given by ¢ & (27Tﬁ)DeXn: kH(p,q)/T], 0
Ea(t)=— i[j(t) with dI'=0P_,dp,dg, being an element of the
dt m ' D-dimensional phase space. For the harmonic potential and

D>1, the BEC criterion given by Ed7) yields

d 2
GiAD=——y(1)+2me?a(t), TP
Ne=| 27— ¢o(1), ®
gt y(H)=mw?pB(t), wherew is the frequency of harmonic oscillations in the well
and{p(z)=z+7%/2°+2°/3°+ . .. is a Riemanr function.
d In one dimension, one has to exclude the ground-state popu-
— 5(t)=maw?e(t) +myB(t), lation in order to avoid problems with singularities of the
dt Riemann{ function. For the harmonic potential, the BEC
q 4 criterion is given by[17]
ae(t)Z - Eﬁ(t)+2m7](t)a(t). (5) T oT
Ne=-—In| —], 9
o \ho

In this approximation the coefficien€(t) may be time-

dependent, since the Wigner function should be normalizedvhere w is the frequency of harmonic oscillations in the

The details are discussed in the Appendix. well. One should note, that the quantifyo corresponds to
The quantityd= a(t) y(t) — ; 82(t) is related to the infor- the average phase volum@&)/» of the atomic system,

mation entropy of the systen$,;=—(In[p]} where ()  which is an adiabatic invariant for the slow variation of the

stands for averaging with respect to the distributidn In parameters of the harmonic poten{ia8]. Following the ex-
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perimental situation of Ref10], we will concentrate on the amplitude of the potential. TypicallyT/V~0.1 [10] and
one-dimensional case in the rest of this section. The genetherefore the magnitude of the phase volume compression
alization of the results presentEd belowDo>1 is Straight- can be Signiﬁcant for small Occupation numbeE
forward. =T/(hw)~1.

In order to analyze the role of the anharmonic corrections  As we will see below, the average phase-space volume
to the confining potential in the quasiclassical approximaenters the BEC criterion in the modified form if the nonadia-
tion, we will relate the BEC criterion to the average phasepatic squeezing atomic oscillations are present and the en-
volume of the atomic system. From E@), it follows thatin  ergy distribution is nonequilibrium.
this case the BEC criterion is formulated in terms of the

functionsZ,(T) defined by IV. THE BEC IN PRESENCE OF SQUEEZING
OSCILLATIONS

Zk(T):f dl" expl —kH(p,q)/T], (10 Let us analyze the nonequilibrium energy distribution in

the case when the fast squeezing oscillations are present. As
whereZ,(T)=Z(T) is the average phase volume of the par-jt was shown in the previous section, the average phase-
ticle with the HamiltoniarH. If the energyE of the classical  apace volume is not conserved in case of the adiabatic modu-
Hamiltonian system is fixed, the phase volume is an adiagtion of optical potential. This effect is due to a relaxation
batic invariant of the systerfi.8]. For the one-dimensional mechanism which does not have to be specified in this re-
(1D) Hamiltonian H=p?/2m+U(x), the phase volume is gime. In the nonadiabatic regime, a similar effect is ex-

given by pected, but in this case one has to consider a specific relax-
ation mechanism. We consider a collisionless gas of atoms in

I(E)= % dx\2mE—U(x)]. (11  the anharmonic optical trap with fast parametric modulation

of optical potential and show that in such system there exists

. . . B a relaxation mechanism for the average quantities due to the
Making use of the identityl (E)/JE=1(E) [18], the ele- instabilities of atomic trajectories with respect to the initial

ment_of phas_e volume IS (_axpress_eddi?dE «(E), where_ conditions. Such a mechanism is related to the effect known
t(I_E)_ls a period of the_ finite motion of the system. Taking in the literature as “phase mixing[21].
this into account, we finally obtain In order to clarify the mechanism of the proposed effect,
1 (= we will make use of the analytical expression for the Wigner
Z(T= ﬁj dEt(E)exp(—KE/T). (12 function given by Eq(4). As we show in the Appendix, this
mhJo solution is valid for arbitrary nonadiabatic evolution of the

. . . arameters of the dipole potential provided that the phase
We shall estimate the effect of an adiabatic change of th ixing [21] is present and the initial condition for the

phage VOIUme fpr the atomic cloud gonfined in _the Optical\/\/ignerfunction has the form of E¢4). If the atomic system
trap in the situation close to the experimgh@]. In this case, is excited by means of a quick parametric change of the

the potential is given by_ E.q'l)' For sufficiently low tem- oo riye potential, the phase-mixing regime is achieved for
peratures, the anharmonicity effects are small and we need Ecbfficiently long timest=t, , wheret, is a phase correlation
only consider the quartic anharmonicity terms in the poten—,[ime Extending the meth(gd descritc)edﬂﬂ to the case of a
tial. Due to the anharmonicity, the period of the finite oscil- nonheriodic change of the potential, we obtain an estimate
Ic_':ltions of the atoms acquires the energy-dependent Corregs e correlation time in the forn’tcz(lle) with K
tions[19] = u(5TIme?) and

E
1+ W)' (13) 1|dw

dt

2
t(E)=7 ~

n=—
C02

Substituting the dependence given by Ep) into Eq.(12),
we obtain For the fast nonadiabatic change of the potential, the corre-

lation time is sufficiently short and the time evolution of the
atomic distribution takes place in the phase-mixing regime.
One should note that in the classical regirtsifficiently
large occupation numbersonsidered in a present paper, the
wherel =(27/w)T is the average phase volume for the har-phase mixing can also be treated as a classical process. In
monic potential. Making use of the E¢7) and taking into  this case, the solution for the distribution function is given by
account the known result for the harmonic case, we obtaifEqgs. (4) and(5).

: (14)

I
Zk(T):E 1+EW

the BEC criterion in the form The distribution in Eq(4) is nonequilibrium and the evo-
lution of the parameters is given 1§§). In order to obtain the
T 2T\ = T BEC criterion when the squeezing oscillations are present,
Ne=7a0 In 70l T8 8V 19 e wil go back to the condition in the form given by E&)

and then substitute the probabilities for different occupation
Since for the adiabatic modulation of the optical potentialnumbers derived for the nonequilibrium distribution E4).
T~w~V*Y2 the anharmonic corrections given by H45) In quasiclassical approximation, this will give the result in
lead to the parametric dependence of the BEC point on ththe form
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o]

1
" (27h)P g‘l

Z(1), (16)

N¢

analogous to Eq(7). From Eq.(16), it follows that in the
non-equilibrium case the BEC criterion is formulated in

terms of the time-dependent functiorg(t) defined by

Z((t):f dl" exd —k®(p,x,t)]. 17

In this caseZ(t) is the effective phase volume of the particle
with the distribution function given by Ed4). Making use
of the Egs.(4) and(17), we obtain

(18)
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FIG. 1. The average phase-space vollte) as a function of a
dimensionless time= wgt for the fast time modulation of the op-
tical potential w(t)=wo(1+ u7) with (nOTO/mwg)=0.1 and u
=5.0. The initial conditions correspond to the equilibrium thermal
state fort<<0 excited by means of the instant increase of the effec-

whereT is the average phase volume for the harmonic podive potential at=0 so thatf wy/w(t<0)]=0.25.

tential. Note that according to E¢3),

7o

11
mwg 6 Vo
In the adiabatic limita,4(t)/J ~(4T/mw?) [5] and Eq.(18)
reduces to the adiabatic result given by Egl). Making use
of the Eq.(16) and taking into account the known result for
the harmonic case and thdt=1/4(hwy/To)?> Where w,
=w(0), no=n(0) andTy=T(0), weobtain the BEC crite-
rion in the form

2Ty
6 2

w3
ﬁ(uo

TO)Z

70 )
wo

)

N.=
€ ﬁwo

| o

in qualitative agreement with the results presented in Fig. 1.
This estimate also agrees with direct numerical analysis of
the average phase correlator of the system described by Eq.
(AB).

For the timet>t., the atomic system is in a phase-
mixing regime and the evolution of the distribution function
is defined by Eq.(5) for the parameters of the classical
squeezed state in the form of E@) with time-dependent
frequencyw(t). In Fig. 2, we present the results of simula-

tions for the average phase volui@g) in the phase-mixing
regime as a function of time, with the nonadiabatic modula-
tion of the optical potential. One can see, that the average
phase voluméZ(t) decreases over the time interval of the
order of the modulation time and exhibits oscillations.

We assume that the correlation tintg can be made

For the quantitative analysis of the nonequilibrium phaseshorter than the mean-free time for the atomic collisions, so
space compression effect described above, a full numeric@hat the evolution of the atomic distribution during the modu-

simulation of the evolution of the atomic distribution with
the potential given by Eq(1), has been performed. The
simulation was done by means of direct integration of the
atomic equations of motion with subsequent calculation of
the phase-space volume. The initial conditions were taken in
the form of the classical squeezed stgé2), corresponding
to an instantaneous increase of the confining potential at
=0 with subsequent excitation of squeezing oscillations of
the atomic distribution.

In Fig. 1, we present the results of simulations for the
average phase voluni&(t) as a function of time with fast
nonadiabatic modulation of the optical potentialt). One

can see, thaZ(t) exhibits a fast decrease during the time
interval less than the period of undisturbed oscillations.

Note, that the nonconservation Bft) is related to a transi-
tion into the phase mixing regime. Making use of the esti-
mate for the correlation timg, given above and the param-
eters of the modulation, we obtain

lation and phase mixing can be described within the colli-
sionless model presented above.

0.85 -
B 0.8 F
Z(1) o5
Z(0)
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FIG. 2. The average phase-space volle) as a function of a

dimensionless time= wt in the phase-mixing regimie>t, for the

o _10Vo_,
o( )tc—;?~ :

time modulation of the optical potential(7) =1+ e tanh{7) with
€=5.0 and\=0.05.
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When the onset point of the BEC is achieved, the atomiavhere (x?) and(Ap?) are the average coordinate and mo-
phase space distribution forms an initial state for the nonmentum dispersions, respectively amet (T/% w) is the av-
equilibrium kinetic process of Bose condensation. In order teerage occupation number. Assumimg 2, we conclude that
achieve a specific target state of the atomic distribution at #~0.1 and therefore the equation of motion for the Wigner
given time, an optimal control analydig2] analogous t§5]  function given by Eq(A1) reduces to the Liouville equation
should be done. This will be a subject of future work. Thein the form
potential design may be realized in the laboratory by closed
loop learning control techniqug&3,24. dp p dp ) 3.9pP

The nonadiabatic modulation of the optical potential may St g (Me™X+maX )%:0- (A3)
not only change the initial conditions, but also affect the
BEC and therefore provide a tool to control the kinetics ofyye introduce the “polar” coordinate€,® in the phase
the BEC process. This may happen when the modulatiogpace by
time in the phase-mixing regime becomes comparable to the
typical time of the Bose condensatip20]. This problem is p? _
much more complex, since the global behavior of the phase %ZE SirF®,
space volume as a function of time becomes important and

therefore introduction of the full tools of the optimal control 2.2 4
Mw~X N mmnX

theory is desirable. The full control of the Bose condensate =E co<0, (A4)
opens up the prospect of manipulating an atom laser cloud 2 4
released from the trap. The modest time scale of the dynam-. ,
ics should provide a testing ground for real time feedbackvith the Jacobian
control of the overall condensate.
s _J(E,0) 1 AU (x) A5)
V. CONCLUSION (PX) d(p,Xx) 2mu(x) X (

This paper investigated the effect of phase-space com-
pression making use of the breathing oscillations in opticaYV
lattices. The compression originates from the fact that the
entropy and the phase volume do not coincide in the case U(x)=
when the energy of the system is distributed and the system
is in the nonequilibrium state. An analytical model demon-_ ) )
strates the possibility and degree of such phase-space con- the potential energy. Note, that the variatiiehas the
pression. This effect opens a possibility to control the onsefn@aning of the microscopic energy and is conserved along

and subsequent dynamics of the Bose-Einstein condensati§ch trajectory in the phase space. The polar coordinates
of the atomic cloud loaded in an optical lattice. introduced by Eq(A4), are not identical to the action-angle
variables commonly used for the analysis of nonlinear prob-

lems[21]. As we will see below, the variablds, ® are more

convenient for the analysis of nonlinear system dynamics in
In this appendix, we show that in case of weak anharmothe presence of phase mixing and in the adiabatic regime. In

nicity, the atomic Wigner function can be presented in theterms of the coordinates given by Eé4), the equations of

form of Eq.(4) from the text. For the potentig®), the equa- motion take the form

tion of motion for the Wigner function is given bgRef.

here

mo?x?>  myx*
+
2 4

APPENDIX

[14) o 1d
. at =3(E,0) 5w dt(w)SIn(ZG)),
ap p&p_ ) 3c?p_l &p_ (A6)
E_’_EF?—X (Mw X+ mnx )% Zmnx—apg—o. dE

1d
(A1) dt gt @/ElLTeos200]

One can expect that at the BEC transition, the fourth term oQith the initial conditions®(0)=0, and E(0)=E,. The
the Ihs of Eq.(A1) presenting the “quantum anharmonic” gecond equation in EGAB) reflects the energy conservation
contribution should be of the same order of magnitude as thg w=wy=const fort>0.

third one, which is the “classical” anharmonic term. How-  £.q Eq.(A5), an element of the phase volund is
ever, in the regime above the BEC transition discussed in th@xpressed in terms of the polar variables in 1D as

text and due to the numerical coefficients, the quantum an-

harmonic term appears to be one order of magnitude smaller dpdx 1 dEd®

than the classical one. The ratfoof the fourth and the third dr'= 5ok 2k S(E 0) (A7)
terms on the |hs in EqA1) can be approximately estimated & mh 2(E,

as

Using this result and the equations of motion, one can show

52 1 that the element of the phase space volume is time-

fo———— (A2)  independent. From the first of EGA6), we obtain the rela-
4(x*)(Ap?)  4n? tions
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a9 90 1 dw lize the initial phase of the oscillations and="V¥(t). This
0 g n( + HCOSZ(@), (A8) indeed happens in the phase mixing regime which is estab-
lished for the times greater than a correlation titpe esti-
and mated in the text.
Transferring back to thep(x) coordinates, we obtain
d JE B 1 dow
at| Mgy |T @ artitees2®l (A9 p(p.xt)=C(0)exd —D(p.x,t)],
(A14)
From Egs.(A8), (A9), and(A5), it follows that 2 2
O (p,x,t)=ap?+Bpx\/ 1+ —+x? 1+ — |,
0, 1[99 |( 7| o] (PX.)=ap™ fp 202
at 90,/ |9y 3|7
where
and therefore
~ 1 ’yO
1 dEd® 1 dEd®, a(t)= —— ao(mw)-l——}
A= 7 S(E.0) 27k 3(Ep.0,° A0 2me me
1
implying the conservation of the phase space volume ele- + 2—C0${2‘I’) ag(Mw) — ﬁ},
ment. One should note, that this conclusion holds for arbi- Mo M
trary potential functionU(x) provided that the motion is
finite. ~ : Yo
t)=sin(2V¥ Mw) ——|, Al5
In case of weak anharmonicity, the Jacoha(E,®) can A=sIN2)) ao(Me) mw} (A15)

be approximately obtained from E(A5) as

0 = | ag(mw) + -
3 7nE Y 2 | VY e
3(E,0)~—w| 1+ ——[1+c0g20)]|. (All)
4 m(,()4 mw Yo
— ——cog2V)| ap(mw)— —|.
In order to solve the Liouville equation given by H&3) 2 Ma

with a given initial distribution, we will employ the method . ) o

of characteristics. This method requires expressing the curince¥ ="V (E,®,1) in the absence of the phase mixing, the

rent variable€(t),0(t) in terms of the initial value&,,0,  coefficients @,3,y)are the functions of (f,x,t). Making

with the substitution p(E,0,t)=p(Ey,0,,0), where use of Eq.(A15) in the limit of short timest<t.=(1/Kw)

p(Eq,0,,0) is the initial distribution function at=0. To  where

obtain the characteristicsEy=Ey(E,®,t) and O,

=0y(E,0,t), one has to solve the equation of moti@®). 7T 1
We will consider the situation when the atomic system is K:Mm and =3

excited by means of sudden nonadiabatic increase of the con-

fining potential at=0. In this case, the nonequilibrium ini-

tial condition for the Wigner function is given 4]

dw
dt

one can show that the phase volume is conserved, as ex-
pected.
— _ In the phase-mixing regimey (E,®,t)=V¥(t) and the
,X,00=C(0)exd —P(p,x,0)], .
p(px.0)=C(O)exd (p.x.0)] (A12) average phase volume may not be consef&d. In this
case, we obtain from Eq$A14) and (A15) the solution for
X2 izx4 , the single-particle distribution function in a form of E@)
w

q)(pyxao):aopz_FYO .
from the text with

and transforming to theH,®) coordinates, i.e., the charac- 7
teristics, the solution of the Liouville equation is expressed 8(t) = — (1),
in the form 2w
p(p.x,t)=C(0)ex — ®(E,0,1)], .
e(t)=— A1), (A16)
4w

2
B(E,0,1)= —Eo(E,0,1
0

ao(mwo)sin2(® +q,)
leading to the result for the phase-space volume

+ 2 co2@+W)), (A13)
Mo 5~ 3 ma)
, Z()=T|1- 53— —— (A7)
where ®,=0+WV(E,0,t) and ¥ should be expressed in 8 g J

terms of the current coordinate&,®,t). Note, that this
transformation is much simplified if the system does not uti-from the text.
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