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Bose-condensate tunneling dynamics: Momentum-shortened pendulum with damping
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Bose-Einstein condensates in a double-well trap, as well3He-B baths connected by micropores, have been
shown to exhibit Josephson-like tunneling phenomena. Unlike the superconductor Josephson junction of phase
differencef that maps onto a rigid pendulum of energy cos(f), these systems map onto a momentum-
shortened pendulum of energy2A12pf

2 cos(f) and lengthA12pf
2 , where pf is a population imbalance

between the wells/baths. We study here the effect of damping on the four distinct modes of the nonrigid
pendulum, characterized by distinct temporal mean values,^f& and ^pf&. Damping is shown to produce
different decay trajectories to the final equilibriumf505pf state that are characteristic dynamic signatures of
the initial oscillation modes. In particular, damping causesp-state oscillations witĥ f&5p to increase in
amplitude and pass through phase-slip states, before equilibrating. Similar behavior has been seen in3He-B
experiments.@S1050-2947~99!03207-2#

PACS number~s!: 03.75.Fi, 74.50.1r, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

Phase coherent Bose-Einstein condensates~BEC! have re-
cently been observed in systems of alkali-metal atoms@1#.
The superfluidity of these condensates, however, can onl
verified through some characteristic signatures like the p
ence of persistent Josephson tunneling currents@2–8#. These
Josephson-like phenomena, as well as richer oscilla
modes, have been predicted in double-well magnetic tr
and between two condensates in different hyperfine le
@3–8#. Some of these effects have experimentally been
served in a vertical array of trapped Bose-Einstein cond
sates@10# and in 3He-B baths connected by micropores@11#,
including metastable states with a phase difference op
@5,6,9# between baths@11#.

Mechanical analogues have been useful in providin
physical understanding of superconducting Josephson j
tions ~SJJ! @12,13#. These include a pendulum analog whe
the tilt anglef is the phase difference across the junctio
the angular momentumpf is the junction voltage; the pen
dulum length is the Josephson critical current; and the m
ment of inertia and pendulum damping are the junction
pacitance and shunt resistance. With circuit inductance,
analog has an added torsion bar, introducing an additiona
angle. In all SJJ cases, however, the pendulum is rigid, w
length independent of the state of the system.

By contrast, the BEC@5,6# and 3He-B @9# atomic tunnel
junctions map onto anonrigid pendulum, with length depen
dent on the canonical momentum as;A12pf

2 : ‘‘faster
equals shorter.’’ This means that the oscillation modes
richer than those of the rigid pendulum.

In this paper, we investigate the effects of damping on
nonrigid-pendulum oscillation modes of tunneling BEC. T
central result is that each mode has a unique dynamical
jectory to the common final̂f&505^pf& rest state that is
thus a characteristic mode signature.
PRA 601050-2947/99/60~1!/487~7!/$15.00
be
s-

n
s,
ls
b-
n-

a
c-

;

-
-
e

ilt
th

re

e

a-

Section II outlines the five characteristic oscillatio
modes of the momentum-shortened pendulum without da
ing. Section III adds damping throughḟ, the angular veloc-
ity, showing how thepf-f phase space and pendulum coo
dinate locii are affected. Finally, Sec. IV presents o
conclusions.

II. NONRIGID PENDULUM WITHOUT DAMPING

We now briefly summarize the derivation of the bos
Josephson junction dynamical equations at temperaturT
50 derived in@5,6#. Bose-Einstein condensates, with wa
functionC(r ,t), obey, within a mean-field approximation,
Gross-Pitaevskii equation~GPE! @2#. Josephson-like tunnel
ing has been predicted between two BEC populations
double-well traps@2–8#. To describe such tunneling, we ap
proximate the wave function withN1,2 atoms in traps 1,2 by
a linear combination of time-independent single-well~nor-

malized to unity! wave functionsF1,2(r , 1
2 NT),

C~r ,t !5c1~ t ! F1~r , 1
2 NT!1c2~ t ! F2~r , 1

2 NT!. ~2.1!

HereN1(t)1N2(t)5NT is a constant, and the complex am
plitudes are defined byc1,2(t)5eiu1,2(t)uc1,2(t)u, with
N1,2(t)[uc1,2(t)u2. Integrating over spatial coordinate
yields coupled dynamic equations for the amplitudes,

i\ċ15E1c11U1uc1u2c12Kc2 , ~2.2a!

i\ċ25E2c21U2uc2u2c22Kc1 . ~2.2b!

Here E1,2 are the zero point energies for wells 1,2~deter-
mined by the trap curvatures!; U1,2 are proportional to the
mean-field energy;K is determined by the off-diagonal ma
trix elements of the trap potentials and kinetic energies

tween F1,2(r ; 1
2 NT) wave functions, yielding tunneling be
487 ©1999 The American Physical Society
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tween wells. The parametersE1,2, U, andK are independen
of @N1(t)2N2(t)# in this approximation, and are only de
pendent on the fixedNT .

Defining the relative phase differencef[u22u1, and the
fractional population imbalancez[(N12N2)/NT , Eqs.~2.2!
for c1,2 can be rewritten in terms of those variables as

ż52A12z2 sinf, ~2.3a!

ḟ5L z1DE1
z

A12z2
cosf. ~2.3b!

These equations describe the dynamics of the boson Jos
son junction~BJJ! @5,6#. The right-hand side of Eq.~2.3b!
gives the chemical potential difference throughDm52\ ḟ.
Here L[(U11U2)NT/4K, DE[(E12E2)/2K1(U1
2U2)NT/4K, and the time is scaled in 2K/\. Equations
~2.3! imply that z is the conjugate momentum for the gene
alized ~angular! coordinatef, with system Hamiltonian

H5 1
2 Lz21DEz2A12z2 cosf. ~2.4!

This allows us to identify the population imbalancez, with
the canonical momentumpf mentioned in the Introduction
giving the pendulum modes their physical significance.

Superconductor Josephson junctions have been phen
enologically modeled by Schro¨dinger-like equations simila
to Eqs.~2.2! @13,14# ~without the nonlinear term!. One ob-
tains a Josephson coupling energy proportional
2AN1N2 cosf, but as charge leakages through the exter
circuit strongly suppress population imbalances, thenN1
5N25 1

2 NT and z'0 @15#. This SJJ coupling energ
;2cosf is thus that of arigid pendulum, with all junction
oscillation modes~including those with circuit inductanc
@12#! being those of the rigid-pendulum analogy. Compar
with Eqs.~2.4!, we see that the BJJ of charge-neutral ato
is described in general by anonrigid momentum-shortened
pendulum of lengthA12z2, wherez is a canonical momen
tum @5,6#.

3He-B baths connected by micropores@11# that act as
Cooper-pair tunneling barriers can also be shown to m
onto a nonrigid pendulum, withf the BCS gap phase differ
ence, andz the number difference in a region of depress
order parameter, just outside the micropore@9#.

The oscillation modes of the momentum-shortened n
rigid pendulum are of five types@5,6#, distinguished by mean
values of^f&,^z& of the tilt angle and angular momentum
As shown in Fig. 1~a! these are~A! ‘‘zero-phase’’ oscilla-
tions about the downward-orientation rest position, w
^f&5^z&50; ~B! ‘‘running-phase’’ pendulum rotations o
phase2`,f,`, with nonzero angular momentum̂z&
Þ0, corresponding to a ‘‘macroscopic quantum se
trapping’’ of nonzero, self-maintained value of the popu
tion imbalance;~C! ‘‘ p-phase’’ oscillations about the vert
cal upward-oriented pendulum,^f&5p, with ^z&50, non-
self-trapping; and~D! ‘‘ p-phase’’ rotations of the inverted
pendulum, but with a closed trajectory of temporal avera
^z&Þ0 ~corresponding top self-trapping! in the inverted
^f&5p orientation.~There are two different kinds of suc
self-trappedp stateŝ z&,z, and^z&.z[A121/L2.)
ph-
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The z(t), f(t) time variations have been presented p

viously, and are exactly soluble in terms of elliptic functio
@5,6#. The spatial coordinates (x,y)5(A12z2 sinf,
2A12z2 cosf) of the pendulum clearly show these diffe
ent modes as distinctive pendulum locii, as in Fig. 1~a!. BJJ

FIG. 1. ~a! Plots of~dimensionless! coordinate-space locii (x,y)
nonrigid undamped pendulum, for types of oscillation modes
scribed in the text. The parameters, average, and initial ph
momentum variables are~A! L55; ^f&505^z&; z(0)50.5,
f(0)50; ~B! L525; 2`,^f&,`, ^z&50.5; z(0)50.5,f(0)
50; ~C! L50.36; ^f&5p, ^z&50; z(0)50.8, f(0)5p; ~D! L
52; ^f&5p, ^z&50.866; z(0)50.666, f(0)5p. The cross rep-
resents the pendulum support, the dashed lines are particular
dulum lengths;~b! phase-spacez-f plots for the undamped non
rigid pendulum, showing the five types of oscillations as given
the text, for the cases~A!–~D! in ~a!. The dashed line represents th
separatrix between bounded and self-trapped motions for^f&50,
and the dotted line represents the separatrix of the bounded
self-trapped motions forz(0)50.8 and^f&5p.
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modes~A! and~B! have analogies with the SJJ rigid pend
lum ~although the physical variables are quite differen!.
However, modes~C! and~D! are peculiar to the momentum
shortened pendulum. Note that the nonrigid pendulum
shortest at the bottom of its swing, so the locus of Fig. 1~a! is
flatter than that of the rigid-pendulum unit circle. This leng
variation is crucial to enabling thep states of~C! and~D! to
exist.~B! and~D! correspond to pendulum modes of nonze
angular momentum̂z&Þ0, with closed-loop trajectories en
closing the pendulum support point for running mode~B!;
but lying above for the self-trappedp-state rotation.

As parametersL, DE are varied, for given initial
conditions z(0),f(0), one canhave transitions betwee
^z&50 states and self-trapped states with^z&Þ0, with
the inverse oscillation period falling to zero at critical para
eter values @5,6#. In Fig. 1~b! we show the nonrigid-
pendulum phase portrait~for DE50). The solid lines
are constant-energy contours for initial conditions as in F
1~a!. Linearizing aboutf505z, the small-amplitude angu
lar dimensionless frequencies arev05A11L. The heavy
dashed line is a separatrix at a criticalL5Lc5@1
1A12z2(0)cosf(0)#/(z2(0)/2), where the inverse perio
dips to zero@5,6#, and beyond which the running-phase~B!
oscillation sets in. Linearizing aroundf5p,z50, small-
amplitudep-phase~C! oscillations are of angular frequenc
vp5A12L, with L,1. The heavy dotted line is a separ
trix, when the contours pinch off atz50,f5p, and beyond
which two separate contours witĥz&Þ0 emerge, for the
p-phase~D! rotations.

It is also possible to plot constant-energy contours
fixed L, and a variety of initial conditions for the four dif
ferent modes described above. In this case, it is found
for mode~A!, contours of decreasing energy have decreas
amplitude. However, for modes~C! and ~D!, decreasing-
energy contours have increasing amplitude. This observa
will become relevant in the next section when we try
understand the effects of damping. We now examine
damped nonrigid-pendulum trajectories in more detail.

III. NONRIGID PENDULUM WITH DAMPING

The first question to ask is what form the damping te
should have in the equations of motion. This problem h
been addressed in@4#, where it has been assumed that,
BEC, there will be a noncoherent dissipative current
normal-state atoms, or Bogoliubov quasiparticles, prop
tional to the chemical potential differenceDm @4#. This dis-
sipative current is the analog of the normal current branc
a single Josephson junction,I d52G Dm, with G the dc con-
ductance. The equations for the BEC model damped nonr
pendulum are then

ż52A12z2 sinf2hḟ, ~3.1a!

ḟ5L z1D E1
z

A12z2
cosf, ~3.1b!

whereh[2\G/NT is a dimensionless damping constant.
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To be in the underdamped regime for zero-phase osc
tions, the damping contribution to the linearized form of Eq
~3.1! (DE50),

f̈1~11L! f1h~11L!ḟ'0, ~3.2!

must be small, i.e.,hA11L!1. This ratio has been esti
mated@4# to be of order;0.5–0.04. This is exponentially
reduced further, for lower temperatures; however, we w
use a moderate damping parameter valueh50.05 in most
plots of numerical solutions of Eqs.~3.1!, in order to more
clearly display the decaying trajectories under damping.

Although we focus here on the double-well BEC dampi
as in Eqs.~3.1! through the angular velocity,ż;2h ḟ, other
two-state systems such as two condensates in different
perfine levels in a single harmonic trap, connected by ‘‘tu
neling’’ transitions @8#, can have damping from the finit
lifetime of excited states. This appears through the ang
momentum,ż;2h z ~that is not just proportional to the
angular velocity! @16#.

We first consider damping for the symmetric-well ca
DE50. The final asymptotic state reached, for
z(0),f(0),L values, is the downward-oriented pendulum
rest,f505z, as is physically reasonable. However, the w
in which this equilibrium state is reached is different for a
four oscillation modes: the different trajectories constitu
the distinct dynamical signatures of the oscillation mod
themselves. We consider each of these in turn.

~A! Zero-phase mode, ^f&505^z&. Figure 2~a! shows
the locus of the nonrigid-pendulum (x,y) coordinates with
f(0)50, z(0)50.5, L55, andh50.05. Clearly, there is
damping down to the rest state, with increasing length a
decreasing amplitude. Figure 2~b! shows the same behavio
in z-f phase space, with inward spiraling contours of d
creasing energy. The maximum~dimensionless! frequency
attained, from Eq.~3.2!, is

v0~L,h!5A11L2 1
4 h2 ~11L!2 ~3.3!

and the system quickly damps to this low-amplitude regi
when exponential decay sets in, with characteristic damp
time

t0~L,h!5
2

h ~11L!
. ~3.4!

~B! Running-phase mode, ^z&Þ0. Figure 3~a! shows the
locus of the nonrigid-pendulum coordinates withL525, and
all other parameters and initial conditions as before. Star
with rotation of nonzero angular momentum as in Fig. 1~b!,
the coordinate-space trajectory damps smoothly to^z&50
oscillations and finally settles to the rest state. The pha
spacez-f trajectory of Fig. 3~b! shows thisz decrease and
capture by one of thef52np energy potential minima.

It has been shown@5,6# for zero damping,h50, that the
inverse oscillation periodv0(L,0) dips to zero asL is in-
creased through a criticalL5Lc , at the onset of a ‘‘self-
trapped’’ state. With a characteristic frequencyv0(L,h) in
the hÞ0 damped case, defined from the highest peak of
power spectrumuz(v)u2, we find that a dip atLc5Lc(h)
persists, but no longer to zero. This is seen in Fig. 3~c!.
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We next consider the damping ofp states with average
phasê f&5p.

~C! p-phase oscillations witĥf&5p,^z&50. Figure 4~a!
shows the coordinate-space (x,y) trajectory of the nonrigid-
pendulum bob with initial values f(0)5p, z(0)
50.01, L50.36, and dampingh50.05. Clearly, the sys-
tem, initially at the top of the figure, starts to oscillate wi
increasing amplitude, with momentum rising and leng
A12z2 falling, until z is driven towards unity~zero pendu-
lum length!. Since this means that the number of atoms
one well falls below the minimum number needed to sust
a well-defined mean condensate wave function, the semic
sical approximation implicit in Eqs.~2.3! and ~3.1! starts
breaking down, and quantum fluctuations start becoming
portant. Numerically, this is signaled as a singularity in E
~3.1!, and the onset of aphase-slip process~with f jumping
by p). We use the interpolation substitutionA12z2→@(1
2z2)21e#1/4, wheree!1 to follow the behavior of the sys
tem past the singularity, althoughz can then attain unphysi
cal values exceeding unity at some points in the trajecto

FIG. 2. ~a! Nonrigid-pendulum coordinate-space trajectory, f
mode ~A! of Fig. 1, f(0)50, z(0)50.5, and dampingh50.05;
~b! nonrigid-pendulum phase-space trajectory for mode~A! of Fig.
1, f(0)50, z(0)50.5, and dampingh50.05.
n
n
s-

-
.

y.

FIG. 3. ~a! Coordinate-space trajectory for mode~B! of Fig. 1,
and dampingh50.05;~b! phase-space trajectory for motion show
in ~a!; ~c! oscillation frequency of mode versus inverse massL for
z(0)50.5, f(0)50, and various dampingsh50.1,1023,1026.
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FIG. 4. ~a! Coordinate-space trajectory for mode~C! of Fig. 1,
with z(0)50.01, andh50.05; ~b! phase-space trajectory for mo
tion shown in~a!; ~c! power spectrumuz(v)u2 of the momentum
versus frequencies explored during the motion depicted in~a!,~b!.
After the phase slip, the pendulum settles to a final st
^f&50 that damps to rest with decreasing amplitude, as p
viously stated.

The phase portrait is displayed in Fig. 4~b!. The average
value of the momentum iŝz&50. The damped phase-spac
trajectories spiral outwards, lowering their energies. The a
plitudes increase exponentially, with time scales

tp~L,h!5
2

h ~12L!
~3.5!

as determined by linearizing Eqs.~3.1! about f5p,z50.
The frequency shifts from a minimum initial value

vp~L,h!5A12L2 1
4 h2 ~12L!2 ~3.6!

to larger frequencies. After a phase slip aroundf53p/2, the
system settles into a state with^f&52p, equivalent to the
zero state, with frequency approachingv0(L,h) of Eq.
~3.3!, as the pendulum damps with decreasing amplitud
Figure 4~c! shows the broad spectrumuz(v)u2 of frequencies
explored during the trajectory, spanning this ran
vp(L,h)<v<v0(L,h).

~D! p-phase rotations, ^f&5p,^z&Þ0. Figure 5~a!
shows in coordinate space thep-state initial pendulum rota-
tion from f(0)5p, z(0)50.666 ~which is just slightly
smaller than the fixed point valuezs5A121/L2), with L
52, andh50.05. Linearizing aboutf5p, z5zs, the initial
frequency of the self-trapped~ST! p state is

cp
ST~L,h!5AL2212 1

4 h2L2~L221!2. ~3.7!

The trajectory spirals outwards with increasing amplitud
goes through a phase slip, and then damps down with
creasing amplitude to a zero-state oscillation that goes e
tually to rest. The phase-space trajectory is given in F
5~b!. Comparing with Fig. 3~a!, we see that thêz&Þ0 state
persists until the phase slip occurs in this self-trapped B
state. The damping-induced initial exponential increase n
has the time scale

tp
ST~L,h!5

2

hL~L221!
. ~3.8!

The ^z&.zs state~not shown! goes to a running state, then
zero state.

Thus, Figs. 2–5 for the various oscillation trajectories
the damped nonrigid pendulum depict the distinct dynam
signatures of the different oscillation modes that can be
tially set up in the double-well BJJ. For3He-B tunneling
through micropores@11#, flows outside the pores introduc
an additional ‘‘hydrodynamic’’ twist: the total phase diffe
ence is not just the phase difference across the pores.~This
corresponds to inductive effects in a SJJ, modeled by a
sion bar attached to the pendulum@12#.! However, we expect
coordinate- and phase-space trajectories to play a simila
agnostic role.p states have been observed in3He-B, with
outward spiraling phase-space trajectories.

An external driveDE, in the absence of damping, induce
a running-phase state of rotation frequency related toDE.
With damping, we find numerically that running-phase ro
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tions decrease in amplitude to a final steady state of do
ward orientation (f50) with zero angular velocityḟ50.
There is anonzeroBEC population imbalancezÞ0, in the
steady state determined by settingf50 in ~3.1b!, corre-

FIG. 5. ~a! Coordinate-space trajectory for mode~D!, and damp-
ing h50.05; ~b! phase-space trajectory of motion shown in~a!.
an

D

ri,
lls
n-

sponding to a pendulum lengthA12z2 less than unity. By
contrast, the damped SJJ with a nonzero external dc vol
reaches an ‘‘ac Josephson’’ steady state: the ac current
voltage are nonzero, corresponding to a~rigid-! pendulum
rotation at average angular velocity^ḟ&Þ0.

Finally, we comment on the quantum version of the B
and the regime in which the semiclassical treatment lead
to the nonrigid pendulum is adequate. For the SJJ, w

Cooper-pair number~difference! operatorDN̂, the quantum
regime isEc /EJ.1, whereEc(EJ) is the charging energy
~coupling energy!. For the BEC, the corresponding energi
areU and 2KNT , determined by GPE matrix elements@5,6#.
Thus, quantum fluctuations are important forL@NT

2 . This
implies a wide regime@3#, L(NT),NT

2 , where the semiclas
sical nonrigid-pendulum model for the BJJ is valid.

IV. CONCLUSIONS

Bose-Einstein condensate tunneling between double-
traps can be mapped onto a momentum-shortened non
pendulum, with five distinct oscillation modes, that are
affected by damping in characteristic ways. Although th
end up in the equilibrium rest state of zero pendulum
angle, their coordinate and phase-space trajectories
dynamical signatures of their original state of oscillatio
In particular, inverted-pendulump-oscillation states increas
in amplitude due to damping, and undergo phase sl
Transitions between pendulum-rotation states of self-trap
BEC population, and pendulum oscillation states, sh
singular dips in inverse periods as the pendulum mas
changed, that are still distinguishable for low enou
dampings/temperatures. These damped nonrigid-pendu
dynamical states could be observable in double-w
BEC traps; 3He-B pair tunneling through micropores; an
transitions between different hyperfine states in harmo
traps.
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