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Bose-condensate tunneling dynamics: Momentum-shortened pendulum with damping
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Bose-Einstein condensates in a double-well trap, as ¥4g8-B baths connected by micropores, have been
shown to exhibit Josephson-like tunneling phenomena. Unlike the superconductor Josephson junction of phase
difference ¢ that maps onto a rigid pendulum of energy ebs(these systems map onto a momentum-
shortened pendulum of energy\/l—p2¢ cos(p) and Iength\/l—pzd,, wherep,, is a population imbalance
between the wells/baths. We study here the effect of damping on the four distinct modes of the nonrigid
pendulum, characterized by distinct temporal mean val(é$,and (p,). Damping is shown to produce
different decay trajectories to the final equilibriut=0=p 4 state that are characteristic dynamic signatures of
the initial oscillation modes. In particular, damping causestate oscillations with ¢») =7 to increase in
amplitude and pass through phase-slip states, before equilibrating. Similar behavior has beer®sieeB in
experiments[S1050-294{@9)03207-2

PACS numbg(s): 03.75.Fi, 74.50tr, 05.30.Jp, 32.80.Pj

I. INTRODUCTION Section |l outlines the five characteristic oscillation
modes of the momentum-shortened pendulum without damp-

Phase coherent Bose-Einstein condens&8E€) have re-  ing. Section Ill adds damping through, the angular veloc-
cently been observed in systems of alkali-metal atphjs ity, showing how thep,-¢ phase space and pendulum coor-
The superfluidity of these condensates, however, can only bdinate locii are affected. Finally, Sec. IV presents our
verified through some characteristic signatures like the preszonclusions.
ence of persistent Josephson tunneling currfght§)]. These
Josephson-like phenomena, as well as richer oscillation |, NONRIGID PENDULUM WITHOUT DAMPING
modes, have been predicted in double-well magnetic traps, , ) o
and between two condensates in different hyperfine levels W& now briefly summarize the derivation of the boson
[3—8]. Some of these effects have experimentally been Obgoseph§on junction dynam_lcal equations at tempera‘t’ure
served in a vertical array of trapped Bose-Einstein conden—:0 derived in[5,6]. Bose-Einstein condensates, with wave

. ; function ¥ (r,t), obey, within a mean-field approximation, a
_sates[_lO] and in *He-B baths co_nnected by mm_:ropov[ai], Gross-Pitaevskii equatiofGPE [2]. Josephson-like tunnel-
including metastable states with a phase differencerof ina has been predicted between two BEC populations in
[5,6,9 between bathf11]. 9 P bop

le-well 2-8]. T i h li -
Mechanical analogues have been useful in providing double-well trap32-8]. To describe such tunneling, we ap

) . . . roximate the wave function witN, , atoms in traps 1,2 b
physical understanding of superconducting Josephson junc- linear combination of time-indelbzendent singlg-v(eibr-y
tions (SJJ [12,13. These include a pendulum analog Wheremal. ed to unity wave functionsb, r,iN
the tilt angle ¢ is the phase difference across the junction; "~ unity wave tunct 141 2Nr),
the angular momenturp, is the junction voltage; the pen- _ . ;
dulum length is the Josephson critical current; and the mo- WD =1(1) @o(r,3N7) + (1) Po(r,2N7). (2.1
ment of inertia and pendulum damping are the junction ca- o
pacitance and shunt resistance. With circuit inductance, th'é'ﬁrele(t)JrNZ((jt)f._ N; |sba conftzint,ie?r;(g|the cto|mple?f{ham—
analog has an added torsion bar, introducing an additional ti" utei| aret |Ze mlet yt‘,ﬁlz( )=¢e'"L ;_ﬂliz( g (\;\_/l t
angle. In all SJJ cases, however, the pendulum is rigid, Witig\l.lz( )=l A]% In egrating over spatial coordinates
length independent of the state of the system. yields coupled dynamic equations for the amplitudes,

By contrast, the BEC5,6] and 3He-B [9] atomic tunnel

. N _ 2
junctions map onto aonrigid pendulum, with length depen- 174 =Eqihy + Us| | “ghn — K, (2.29
dent on the canonical momentum as\/l—pi: “faster . 5
equals shorter.” This means that the oscillation modes are 171 =Ethp+ Ul o] “h— Kify . (2.2b

richer than those of the rigid pendulum. ) .

In this paper, we investigate the effects of damping on thd'ere E; , are the zero point energies for wells Jdeter-
nonrigid-pendulum oscillation modes of tunneling BEC. Themined by the trap curvaturgsU, , are proportional to the
central result is that each mode has a unique dynamical trdnean-field energyK is determined by the off-diagonal ma-
jectory to the common final¢)=0=(p,) rest state that is trix elements of the trap potentials and kinetic energies be-

thus a characteristic mode signature. tween ®, (r;3N1) wave functions, yielding tunneling be-
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tween wells. The parameteks ,, U, andK are independent (a)
of [N41(t) —Ny(t)] in this approximation, and are only de-
pendent on the fixedl . 1.0 A) ' ' ' B ' '
Defining the relative phase differenge= 6,— 6,, and the
fractional population imbalance=(N;—N,)/Nt, Egs.(2.2) 05 f 1
for ¢ , can be rewritten in terms of those variables as y
: 00F  __-X-i_ ]
7=~ I=Zsing, (2.3 . \_/
. z 10 . . . . . .
¢=Az+AE+ COS¢. (2.3b :
1-z 1.0 r T T T T T
. . . \/
These equations describe the dynamics of the boson Josepf o5F . A O
son junction(BJJ [5,6]. The right-hand side of E¢2.3b ~t
gives the chemical potential difference throujp=—7 ¢. Y oo} b'¢ . Y
—U,)N¢/4K, and the time is scaled inK2%. Equations -05 | i }
(2.3) imply thatz is the conjugate momentum for the gener- C) D)
alized (angulaj coordinate¢, with system Hamiltonian -1.0 ' ' ' ' ' '
-1.0 -05 00 05 10-10 -05 0.0 05 1.0
H=1AZ2+AEz—\1—Z%cose. (2.4

(b)

This allows us to identify the population imbalangewith

the canonical momentum, mentioned in the Introduction,

giving the pendulum modes their physical significance.
Superconductor Josephson junctions have been phenom

enologically modeled by Schdinger-like equations similar 0.5

to Egs.(2.2) [13,14 (without the nonlinear terjn One ob- '

tains a Josephson coupling energy proportional to

—+/N;N, cos¢, but as charge leakages through the external

circuit strongly suppress population imbalances, tien Z 00}

=N,=3N; and z=~0 [15]. This SJJ coupling energy

~—cosp is thus that of aigid pendulum, with all junction

oscillation modes(including those with circuit inductance

[12]) being those of the rigid-pendulum analogy. Comparing -0.5

with Egs.(2.4), we see that the BJJ of charge-neutral atoms

is described in general by ronrigid momentum-shortened

1.0

pendulum of length/1—Z?, wherez is a canonical momen- 1.0

tum [5,6]. ) -1 0 1 2
3He-B baths connected by microporfkl] that act as o/

Cooper-pair tunneling barriers can also be shown to map

onto a nonrigid pendulum, witk the BCS gap phase differ- FIG. 1. (3) Plots of(dimensionlesscoordinate-space locix(y)

ence, andz the number difference in a region of depressednonrigid undamped pendulum, for types of oscillation modes de-

order parameter, just outside the micropf®¢ scribed in the text. The parameters, average, and initial phase/

The oscillation modes of the momentum-shortened nonMomentum variables aréA) A=5; (¢$)=0=(z); 2(0)=0.5,
rigid pendulum are of five type&,6], distinguished by mean #(0)=0; (B) A=25; —<(¢)<=, (2)=0.5; 2(0)=0.54(0)
values of(),(z) of the tilt angle and angular momentum. =0 (€) A=0.36;(¢)=m, (2)=0; 2(0)=0.8, ¢(0)=; (D) A
As shown in Fig. 1a) these argA) “zero-phase” oscilla- 2 {$)=m, (z)=0.866;2(0)=0.666, $(0)=. The cross rep-
tions about the downward-orientation rest position, Withresents the pendulum support, the dashed lines are particular pen-
(¢)=(z)=0; (B) “running-phase” pendulum rotations of dulum lengths;(b) phase-space-¢ plots for the undamped non-

h o h=oo with | t rigid pendulum, showing the five types of oscillations as given in
phase ¢ s W nonz“ero angular momen urfe) the text, for the casg@\)—(D) in (a). The dashed line represents the
#0, corresponding to a “macroscopic quantum self-

o L separatrix between bounded and self-trapped motiongg#dr=0,
trapping” of nonzero, self-maintained value of the popula-5ng the dotted line represents the separatrix of the bounded and
tion imbalance(C) “ w-phase” oscillations about the verti- seit.trapped motions foz(0)=0.8 and( )= .

cal upward-oriented penduluni¢)= m, with (z)=0, non-

self-trapping; andD) “ 7-phase” rotations of the inverted The z(t), #(t) time variations have been presented pre-
pendulum, but with a closed trajectory of temporal averagesiously, and are exactly soluble in terms of elliptic functions
(2)#0 (corresponding tom self-trapping in the inverted [5,6]. The spatial coordinates x{y)=(\1—2z%sing,
(@)= = orientation.(There are two different kinds of such —./1—72 cos¢) of the pendulum clearly show these differ-
self-trappedr states(z)<z, and(z)>z=\1—1/A2) ent modes as distinctive pendulum locii, as in Fige)1BJJ
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modes(A) and(B) have analogies with the SJJ rigid pendu-  To be in the underdamped regime for zero-phase oscilla-
lum (although the physical variables are quite diffejent tions, the damping contribution to the linearized form of Egs.
However, mode$C) and(D) are peculiar to the momentum- (3.1) (AE=0),
shortened pendulum. Note that the nonrigid pendulum is ) .
shortest at the bottom of its swing, so the locus of Fig) ¢+ (1+A) ¢+ n(1+A)p~0, (3.2
flatter than that of the rigid-pendulum unit circle. This length
variation is crucial to enabling the states ofC) and(D) to ~ must be small, i.e.;y1+A<1. This ratio has been esti-
exist.(B) and(D) correspond to pendulum modes of nonzeromated[4] to be of order~0.5-0.04. This is exponentially
angular momentuniz) # 0, with closed-loop trajectories en- reduced further, for lower temperatures; however, we will
closing the pendulum support point for running ma@;  use a moderate damping parameter vaie0.05 in most
but lying above for the self-trapped-state rotation. plots of numerical solutions of Eq$3.1), in order to more

As parametersA, AE are varied, for given initial clearly display the decaying trajectories under damping.
conditions z(0),¢(0), one canhave transitions between  Although we focus here on the double-well BEC damping
(z)=0 states and self-trapped states with)+#0, with  asin Eqs(3.1) through the angular velocitg~ — 7 ¢, other
the inverse oscillation period falling to zero at critical param-two-state systems such as two condensates in different hy-
eter values[5,6]. In Fig. 1b) we show the nonrigid- perfine levels in a single harmonic trap, connected by “tun-
pendulum phase portraitfor AE=0). The solid lines neling” transitions[8], can have damping from the finite
are constant-energy contours for initial conditions as in Figlifetime of excited states. This appears through the angular
1(a). Linearizing about$=0=z, the small-amplitude angu- momentum,z~— 7z (that is not just proportional to the
lar dimensionless frequencies a#g=+1+A. The heavy angular velocity [16].
dashed line is a separatrix at a critical=A.=[1 We first consider damping for the symmetric-well case
+1—27%(0)cosé(0))/(Z(0)/2), where the inverse period AE=0. The final asymptotic state reached, for all
dips to zerd5,6], and beyond which the running-phad®  z(0),4(0),A values, is the downward-oriented pendulum at
oscillation sets in. Linearizing aroungg=,z=0, small- rest,¢=0=z, as is physically reasonable. However, the way
amplitude-phase(C) oscillations are of angular frequency in which this equilibrium state is reached is different for all
w,=+v1—A, with A<1. The heavy dotted line is a separa- four oscillation modes: the different trajectories constitute
trix, when the contours pinch off a=0,¢= 7, and beyond the distinct dynamical signatures of the oscillation modes
which two separate contours witfz)#0 emerge, for the themselves. We consider each of these in turn.
m-phase(D) rotations. (A) Zero-phase modeg¢)=0=(z). Figure 2a shows

It is also possible to plot constant-energy contours forthe locus of the nonrigid-pendulunx,f/) coordinates with
fixed A, and a variety of initial conditions for the four dif- ¢#(0)=0, z(0)=0.5, A=5, and»=0.05. Clearly, there is
ferent modes described above. In this case, it is found thatamping down to the rest state, with increasing length and
for mode(A), contours of decreasing energy have decreasingecreasing amplitude. Figurét® shows the same behavior
amplitude. However, for mode€C) and (D), decreasing- in z-¢ phase space, with inward spiraling contours of de-
energy contours have increasing amplitude. This observatiooreasing energy. The maximufdimensionless frequency
will become relevant in the next section when we try toattained, from Eq(3.2), is
understand the effects of damping. We now examine the
damped nonrigid-pendulum trajectories in more detail. wo(A, )= \/1+A—%n2 (1+A)2 (3.3

and the system quickly damps to this low-amplitude regime
1. NONRIGID PENDULUM WITH DAMPING when exponential decay sets in, with characteristic damping

The first question to ask is what form the damping termt™M€

should have in the equations of motion. This problem has
been addressed i#], where it has been assumed that, for
BEC, there will be a noncoherent dissipative current of

normal-state atoms, or Bogoliubov quasiparticles, propor- . .
. . T T (B) Running-phase modez)+0. Figure 3a) shows the
tional to the chemical potential differendeu [4]. This dis locus of the nonrigid-pendulum coordinates with- 25, and

sipative current is the analog of the normal current branch ir<Jill other parameters and initial conditions as before. Startin
a single Josephson junctidn,= — G A u, with G the dc con- b : 9

X . .with rotation of nonzero angular momentum as in Fi
ductance. The equations for the BEC model damped nonngl&e coordinate-space trajegtory damps smoothl)(zt)og)g)l
pendulum are then

oscillations and finally settles to the rest state. The phase-
spacez-¢ trajectory of Fig. 8b) shows thisz decrease and
7= —J1—7%sin d— 7795, (3.1a capture by one of theé=2n= energy potential minima.

It has been showfb,6] for zero damping; =0, that the
inverse oscillation periody(A,0) dips to zero as\ is in-
creased through a critical = A, at the onset of a “self-

cosé, (3.1 {rapped” state. With a characteristic frequensy(A, ) in
the »# 0 damped case, defined from the highest peak of the
power spectrumz(w)|?, we find that a dip at\ ;= A(7)
where n=2#G/N+ is a dimensionless damping constant.  persists, but no longer to zero. This is seen in Fig).3

To(A, ;)= m (3.4

b=A z+A E+
¢ 1-7°
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FIG. 2. () Nonrigid-pendulum coordinate-space trajectory, for
mode (A) of Fig. 1, ¢(0)=0, z(0)=0.5, and dampingy=0.05;
(b) nonrigid-pendulum phase-space trajectory for moalgof Fig.
1, #(0)=0, z(0)=0.5, and damping;=0.05.

-0.2 0.4

We next consider the damping af states with average
phase(¢)= 1.

(C) w-phase oscillations witkip) = 7,(z)=0. Figure 4a)
shows the coordinate-spacey) trajectory of the nonrigid-
pendulum bob with initial values ¢(0)=, z(0)
=0.01, A=0.36, and dampingy=0.05. Clearly, the sys-
tem, initially at the top of the figure, starts to oscillate with
increasing amplitude, with momentum rising and length
J1—7? falling, until z is driven towards unityzero pendu-
lum length. Since this means that the number of atoms in
one well falls below the minimum number needed to sustain
a well-defined mean condensate wave function, the semiclas-
sical approximation implicit in Eqs(2.3) and (3.1) starts
breaking down, and quantum fluctuations start becoming im-
portant. Numerically, this is signaled as a singularity in Eqgs.
(3.1, and the onset of phase-slip proces@vith ¢ jumping
by 7). We use the interpolation substitutiofilL —z°—[ (1

1.5

1.0}

05}

-1.0 |

15 : ' ‘ ‘
-15 -1.0 -05 00 05
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| n=0

1n=0.001

000001 n=0.1

10 15 20

FIG. 3. (a) Coordinate-space trajectory for mo¢®) of Fig. 1,
—7%)?+ €]"* wheree<1 to follow the behavior of the sys- and damping;=0.05;(b) phase-space trajectory for motion shown

tem past the singularity, althoughcan then attain unphysi- in (a); (c) oscillation frequency of mode versus inverse mAsfor
cal values exceeding unity at some points in the trajectoryz(0)=0.5, ¢(0)=0, and various dampings=0.1,10"%,10"°.
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FIG. 4. (a) Coordinate-space trajectory for mo@e) of Fig. 1,
with z(0)=0.01, and%=0.05; (b) phase-space trajectory for mo-
tion shown in(a); (c) power spectrumz(w)|? of the momentum
versus frequencies explored during the motion depicte@)irb).

After the phase slip, the pendulum settles to a final state
(¢)=0 that damps to rest with decreasing amplitude, as pre-
viously stated.

The phase portrait is displayed in Figbit The average
value of the momentum i&)=0. The damped phase-space
trajectories spiral outwards, lowering their energies. The am-
plitudes increase exponentially, with time scales

2

Tw(Ayﬂ)Zm

(3.5

as determined by linearizing Eq€3.1) about ¢=7,z=0.
The frequency shifts from a minimum initial value

WA, ) =\1-A—172(1-A)? (3.6

to larger frequencies. After a phase slip aroyid 37/2, the
system settles into a state wifl$)) =2, equivalent to the
zero state, with frequency approachingy(A,n) of Eq.
(3.3, as the pendulum damps with decreasing amplitudes.
Figure 4c) shows the broad spectrum(w)|? of frequencies
explored during the trajectory, spanning this range
o (A, 7)Soswi(A,7).

(D) m-phase rotations (¢)=m,(z)#0. Figure %a)
shows in coordinate space thestate initial pendulum rota-
tion from &(0)=, z(0)=0.666 (which is just slightly
smaller than the fixed point value,=\1—1/A?), with A
=2, and%»=0.05. Linearizing abou®=m, z=z,, the initial
frequency of the self-trappe®T) = state is

USA, m=VAZ-1-12A2(A%-1)2  (3.7)

The trajectory spirals outwards with increasing amplitude,
goes through a phase slip, and then damps down with de-
creasing amplitude to a zero-state oscillation that goes even-
tually to rest. The phase-space trajectory is given in Fig.
5(b). Comparing with Fig. 8), we see that théz)+0 state
persists until the phase slip occurs in this self-trapped BEC
state. The damping-induced initial exponential increase now
has the time scale

(A7) = 3.9

nA(A2—1)"

The(z) >z, state(not shown goes to a running state, then a
zero state.

Thus, Figs. 2-5 for the various oscillation trajectories of
the damped nonrigid pendulum depict the distinct dynamical
signatures of the different oscillation modes that can be ini-
tially set up in the double-well BJJ. FotHe-B tunneling
through micropore$11], flows outside the pores introduce
an additional “hydrodynamic” twist: the total phase differ-
ence is not just the phase difference across the p¢réss
corresponds to inductive effects in a SJJ, modeled by a tor-
sion bar attached to the pendul(ir?].) However, we expect
coordinate- and phase-space trajectories to play a similar di-
agnostic role.r states have been observed 3He-B, with
outward spiraling phase-space trajectories.

An external driveAE, in the absence of damping, induces
a running-phase state of rotation frequency related Eo
With damping, we find numerically that running-phase rota-
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FIG. 5. (a) Coordinate-space trajectory for mod®), and damp-
ing 7= 0.05; (b) phase-space trajectory of motion shown(@n

tions decrease in amplitude to a final steady state of down-

ward orientation ¢=0) with zero angular velocityp=0.
There is anonzeroBEC population imbalance+ 0, in the
steady state determined by settigg=0 in (3.1b, corre-
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sponding to a pendulum lengtfil—Z? less than unity. By
contrast, the damped SJJ with a nonzero external dc voltage
reaches an “ac Josephson” steady state: the ac current and
voltage are nonzero, corresponding tdrigid-) pendulum

rotation at average angular velocity) # 0.

Finally, we comment on the quantum version of the BJJ,
and the regime in which the semiclassical treatment leading
to the nonrigid pendulum is adequate. For the SJJ, with

Cooper-pair numbe(difference operatorAN, the quantum
regime isE./E;>1, whereE(E;) is the charging energy
(coupling energy. For the BEC, the corresponding energies
areU and XN, determined by GPE matrix elemenh&6].
Thus, quantum fluctuations are important foe N%. This
implies a wide regimé3], A(N7)<NZ, where the semiclas-
sical nonrigid-pendulum model for the BJJ is valid.

IV. CONCLUSIONS

Bose-Einstein condensate tunneling between double-well
traps can be mapped onto a momentum-shortened nonrigid
pendulum, with five distinct oscillation modes, that are all
affected by damping in characteristic ways. Although they
end up in the equilibrium rest state of zero pendulum tilt
angle, their coordinate and phase-space trajectories are
dynamical signatures of their original state of oscillation.
In particular, inverted-pendulum-oscillation states increase
in amplitude due to damping, and undergo phase slips.
Transitions between pendulum-rotation states of self-trapped
BEC population, and pendulum oscillation states, show
singular dips in inverse periods as the pendulum mass is
changed, that are still distinguishable for low enough
dampings/temperatures. These damped nonrigid-pendulum
dynamical states could be observable in double-well
BEC traps; *He-B pair tunneling through micropores; and
transitions between different hyperfine states in harmonic
traps.
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