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We study numerically the stability of axially symmetric vortex lines in trapped dilute gases subject to
rotation. For this purpose, we solve numerically both the Gross-Pitaevskii and the Bogoliubov equations for a
three-dimensional condensate in spherically and cylindrically symmetric traps, from small to very large non-
linearities. In the stationary case we find that the vortex statesmtli andm=2 are energetically unstable.

In the rotating trap it is found that this energetic instability may only be suppressed for=tHevortex line,

and that the multicharged vortices are never a local minimum of the energy functional. This result implies that
the absolute minimum of the energy is not an eigenstate of jheperator, when the angular speed is above

a certain value[ S1050-2947®9)03412-5

PACS numbgs): 03.75.Fi, 02.70.Hm, 03.65.Ge

[. INTRODUCTION bolic potential and distinguishes BEC from common NLS
systems, in which the vortices are free and move in a homo-
Since the first experimental realization of Bose-Einsteingeneous background. The dynamics of a vortex in a spatially
condensationBEC) in weakly interacting gasefl], there  inhomogeneous two-dimensional GP problem was studied in
has been a large theoretical and experimental effort to studiRef.[9] using the method of matched asymptotic expansions,
its properties in the framework of quantum field theories andbut the authors did not consider the stability of the two-
in the so-called mean-field limifGross-Pitaevskii(GP) dimensional(2D) vortex itself. In principle, the vortex mo-
equationy These equations are formally nonlinear Sehro tion equations of Ref9] can be used to study the motion of
dinger equationgNLS) [2] and appear in many fields of a single 2D point vortex in spatially inhomogeneous GP
physics, e.g., in bulk superfluids and nonlinear optics to citgproblems. However, the dynamics of the many-vortex case is
only a few examples. more complicated and by no means trivial. For simple ap-
All of these physical systems have long been known tgproaches to the problem which do not include the effect of
exhibit solutions with topological defecf8,4], of which the  vortex cores on the background field, see R&D]. More
simplest ones are known as vortio@s two spatial dimen- elaborate analyses were done in Rgfl]. An interesting
siong or vortex lines(in three spatial dimensiopsVortices  discussion on the validity of the fluid approximation to the
are localized phase singularities with integer topologicalGP equation can be found in R¢12]. The dynamics of 3D
charge. Specifically, vortices appearing in the context of GRrortices is yet more complicated, allowing the so-called re-
can be seen, in the framework of the hydrodynamic interpreeonnection. To our knowledge there are no analytical results
tation, to be analogous to the fluid dynamical vortices whichbut only qualitative numerical observations availaplé].
appear in fluid dynamickb]. In the framework of BEC stud- Another theoretical framework in which nonhomogeneous
ies, the question has been raised of whether these nonurdynamics of vortices has been investigated is the possibility
form clouds of condensed gases may support the existence of pinning vortices in type-Il superconductdr#4], but here
vortices in a stable form, and the purpose of this work is tothe dynamics has been considered only through analytical
help answer this question. approximation techniques with no comparison with numer-
There is a huge amount of literature on vortices and vorics. In all the previously discussed cases, the stability of the
tex properties in the framework of NLS equations, includingvortex state is taken for granted.
their particular cubic versioifthe GP equation their non- The problem of vortex stability in the framework of Bose-
conservative extensiofithe Ginzburg-Landa(GL) systen, Einstein condensed gases has been considered in various pa-
and vector GL models. In particular, the stability of pers that address linear and global stability, either from a
m-charged GP vortices in two dimensions was studigé]n  purely analytic point of view, such as if15-1§, or by
In three dimensions, the GL case was recently considéed mixing analytic and numerical techniqug®0—23. In Ref.
and geometric instabilities have been found to strongly def20], the authors solve the GP equation and find the energies
form the vortex lines. The results for the GL cannot be di-of the condensate in vortex states, for a number of particles
rectly extrapolated to the GP equation since dissipation andp toN=10". In Ref.[21], the authors solve the Bogoliubov
diffusion are essential ingredients of the models studied irequations for a unit charge vortex in a stationary trap with
Ref. [7]. This fact makes the conservative cd&P) inter-  axial symmetry for populations of up td<10* atoms. In
esting by itself. Other analyses of vortices and of vortexRef. [22], the authors perform stability calculations for a
stability in the framework of nonlinear optics are included in condensate with periodic boundary conditions onZteis,
Ref. [8]. and study the influence of rotation in the energy and stability
The current setups used to generate Bose-Einstein cowf the m=1 vortex. In Ref.[24], the authors address the
densates utilize a magnetic trap to confine a highly coolegroblem of minimizing the energy functional with a reduced
atomic cloud. This trap is mathematically modeled by a parabasis of trial states that is only valid in the limit of sm&ll
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In this paper we unify and substantially extend what has 1 K2
been done in previous works regarding these two questions: 'ﬁﬁ == ﬁAI//JF 5mw2(72r2+ )y
global energetic stability and local stability of vortex states.
First, in Sec. Il we write the simplest equations that model a +UON|¢|2¢+(~)LZ¢. (1)

BEC in a possibly rotating trap and offer a variational point
of view for the search of stationary states. In Sec. Il we putHere N is the number of atoms in the gas whild
forward the thesis that the ground state must have a welk 47h?a/m characterizes the interaction and is defined in
defined value of the third component of the angular momenterms of the ground-state scattering lengthBy introducing
tum, m=(L,), i.e., that it must be symmetric with respect to Poth parameters in the equation, we can impose the follow-
rotations. For brevity we refer to these states as symmetritlg normalization ony:

vortices. We then solve numerically the GPE for such trial

states, for small and for very large values of the nonlinearity f | ] 2d3x=1. 2)
(N=10"). We show how rotation affects the energy of these

stationary states and we reach the main result of this section

hich is that th . . s of the * | ' It is convenient to express E(]l) in a natural set of units,
which is that there are continuous intervals of the “angular,nich for our problem is built up from two scales: the size of

velocity,” (Qm,Qm+1), in which them-charged symmetric  he trap(measured by the width of the linear ground state
v_o_rtex has less energy than other statesvell defined vor- ap= \/m and its periody=1/w. With these definitions
ticity. the equation simplifies to

In Sec. IV we address the question of the stability of the
symmetric states that we introduced in our thesis. We start gy 1 91, )
by describing the three types of stabilignergeticstability, ==~ 3 AT s () Ul g, (3)
a state is a local minimum of the energy functional;
Lyapunovstability, slight perturbations do not destroy the while maintaining the normalizatio). Unless otherwise
original state; andinear stability, Lyapunov stability in the stated, we will use this adimensionalization in all figures
linearized equations. We show the physical implications ofthroughout the paper.
each concept and recall how they relate to each other. We The new parameter€§)=7#{) andU=4nNa/a,, repre-
next obtain the Bogoliubov equations as the result of linearsent the “angular speed” of the trap and the adimensional-
izing the GPE. We discuss the implications that their propeized interaction strength, respectively. For stability reasons
functions and eigenvalues have for the linear and global stasee below, (0 will be of the order of magnitude of or
bility of vortices and derive several analytic results regardingsmaller than the radial strength of the trappityg,The inter-
this question. Finally, in Sec. IV D we collect the most im- action,U, will take values from 0 to & 10%, which for con-
portant concepts and propose a numerical algorithm fodensates of rubidium and sodium implies a minimum df 10
studying the stability of stationary states of the GPE. Thisand a maximum of 10atoms(this is in the range of current
algorithm is applied to then=1 andm=2 unperturbed vor- and projected experimentsThe shape of the trap is dictated
tex states in stationary traps. It is found that thee1 and by the geometry factory, and in this work it will typically
m=2 vortices are only energetically unstable, which meandake two possible values;=1 for a spherically symmetric
that the lifetime of both configurations is only limited by trap, andy=2 for an axially symmetric, elongated trap.
dissipation. Further study reveals that rotation can only sta- A Stationary solution of Eq(3) will be of the form
bilize the unit charge vortex line if the angular speed is in ay(x,t)=e *'p(x) [25], where x may be interpreted both
suitable range which is almost coincident witk{,Q),). as a frequency and as a chemical potential,
Outside of this range(),<Q<Q., the minimum of the
energy functional is not an eigenstate of theoperator—in
other words, it isnot symmetric under rotatiorsand thus
our initial thesis is refuted. These results are complemented
by numerical simulations of the evolution of perturbed sym-  Any solution of Eq.(3) has an energper particle which
metric vortices that seem to indicate that tme=1 andm is given by the functional
=2 vortices are Lyapunov stable even when they are not 1
minima of the energy functional. In Sec. V we summarize _ 2 07
our work and discuss their implications. E(w’N)_f <§|V¢| |Q¢a0¢)

g 1
—+ = (Yr2+ 2%+ U| ¢|?

ré= 90 " 2

¢. (4

1A iQ
E +1
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Il. THE MODEL
For very small temperatures and small densities, the cor-or a stationary solution it becomes
densate can be accurately modeled by the Gross-PitaevsKii
equation(GPBE [3,4]. We will always refer to an axially o U 4
symmetric trap with a term that accounts for rotation around E(4:N)=p 2 |l*. ©®)
the Z axis and which may be generated by imposing a suit-
able weak magnetic field over the trapping potential. TheThe stationary solutions of E¢3) may also be regarded as
form of the equation is the critical points of
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5 with fixed vorticity. With that basis our stationary solution is
E#:E(l//,N)—MJ’ | 4] (1) expressed as
subject to the constraint of E¢R). In that caseu has a third P (x,t)=e"'nelm? ; caPY(r,2). 9)

interpretation: it is the Lagrange multiplier of the norm.

Here the single indexn, denotes two quantum numbers,
Ill. STATIONARY VORTEX STATES (n,,n,), that describe the axial and radial degrees of free-
dom, andP{™ is a product of a Hermite polynomial, a La-

A. Symmetric vortex states . .
guerre polynomial, and a Gaussian,

Since the model which is presented in E8). has at least

axial symmetry and since we are interested in single vortex PM=C H, (2)L, (pZ)rmeimeef(pzﬂz)/Z, (108
solutions to the GPE, it is tempting to think that the relevant ? '

stationary states of E@3) must also be eigenstates of the

operator. We will put forward the thesis that the ground state Cc— / 1 n! 108
of Eq. (3) is an eigenstate df,. Our purpose in this work is B JyJm2nn y ¥ a(ng+m)l (10D

to find these states, to study their stability, and finally to

confirm or refute our thesis. with p=r/\y
In other words, we are imposing an ansatz for the wave

functions that has the formy(r,z,6,t)=e~'*e™?¢(r,z),

and in this section we will search the unit norm functions

4" (r,z) and real numberg, which are solutions of

Next, following the same convention about the indices,
we have introduced this expansion into Eg). to obtain

(Ei(m)—Qm—,u)chU% Alllcicci=0. (11

1 1
— 5 A=mO+ S (Y24 2+ U2 | o0 =0. | o
g Here EM is the harmonic-oscillator energy of the mode
P(™, and the tensoA{f}] has the following definition:

Our treatment of these equations and of those that we will

find throughout this work will be fully three-dimensional, Ai(jrngwf Ei(m)ﬁfm)Pﬁm)me)drdz. (12)

and no spurious conditior{s.g., periodicity will be imposed

on the boundaries. We want to obtain at least the lowest (m) )

energy state for each value of the vorticity, Also the de- Since thePi™ are products of known polynomials by expo-
pendency of the spectrum with respect to the nonIinearitj‘e”“an it could_be p055|ble_, in principle, to evaluate the
and the angular velocity), is interesting since it will tell us €nsor exactly with a Gaussian quadrature formula of the

whether the vortex-line states may ever become energeticalgPPropriate order. This approach was used in Reg] for
favorable. the three-dimensional case. However, when one wishes to

use a large number of modéshich in our case is of about
1600 for each value ah) to achieve large nonlinearities, the
B. Numerical search of stationary states search of the quadrature points becomes more difficult than
Due to the nonlinear nature of the problem that we wantPerforming a stable integration by means of some other
to solve[Eq. (8)], there are not many analytical tools avail- methods, of which the simplest accurate one is Simpson’s
able. The most commogand maybe the easi¢stpproach to  rule [27].
the problem is to discretize the spatial part and to perform Once we fix all of the constant&(™, A{}}, x, and a
evolution in imaginary time while trying to preserve the nor- guess for the solution, it is feasible to solve Efyl) itera-
malization, a method which is related to the steepest-descetively, e.g., by Newton’s methofR27]. However, it is wiser
technique. The precision of the solution depends on the typt® perform two simplifications before implementing the al-
of the spatial discretization—finite differencéssed, for ex-  gorithm. The first one is that all of the eigenfunctioR§™
ample, in Refs[20,26]) or spectral methodsuch as the one can be made real and thus we can impose the coefficients in
used in Ref[28]). However, these common methods, such ashe expansiong,, to also be real.
finite differences[20] and similar spectral method®1], The second optimization is that, thanks to the symmetry
have up to date reached a maximum value of the interactionf the problem, the ground state of Ed) has a well defined
coefficient of U= 10°, which is well below the values that positive parity. This allows us to eliminate redundant modes
can be obtained in experiments. The imaginary time evoluf32], saving memory and reaching higher energies and non-
tion also has serious convergence problems which limit itdinearities which otherwise would be computationally hard to
applicability whenQ #0. attain. On the other hand, we have always checked that this
We will present here an approximation technique formethod produced the same results as the complete one for a
these problems. Mathematically speaking, our technique is selected and significant set of values of the parameters.
Galerkin-type method in which one performs the expansion Finally, it is important to note that the tensor of Eg}2) is
of the unknown using a complete orthonormal basis of théndeed a product of two smaller tensors which can be calcu-
Hilbert subspace under consideration. For convenience wiated by integrating on the andr variables, respectively
have used the basis of eigenstates of the harmonic oscillatpt9]. This decomposition is most important when working
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with a large number of modes, because then the siZ}f 6
becomes extremely largé.e., 1604 elements for 1600 K, @ (b)_
modes. " s
Concerning the evaluation of polynomials of a very high 4l o o
degree as the ones involved in our computations, we must E-E S
say that it is not a simple task. This is especially difficult for Om ™ 00 o TR o e
intermediate values of the spatial variables since in that ol é -
range there are a lot of terms with opposite signs and similar v E

'(i_nﬂ_éco{g.o

magnitude, and the cancellations induce numerical instabili-

ties. The usual procedure to avoid this difficulty is to use 0 L .
Horner's method27] to evaluate the polynomial, which is s I
comparable to using fast Fourier transfoffafT) techniques, Lo M © (dlv ,
but in our case this is not enough and the evaluation of the T
polynomials could only be done using recursive formulas 41 LAy
which are specific to the Hermite and Laguerre basis. Mty S ¢ :

We remark that the election of this spectral technique was
largely influenced by the need for reaching high nonlineari-
ties which are not achievable using the other approaches.
Further details on the numerical technique as well as conver-
gence proofs will be given elsewhe29].

@O0 0, O,
WErEoo0 0, 0. o

~F
@)}

C. Results for stationary traps

FIG. 1. Plots(a) and(c) show the ground-state enerdy,,, and
emical potentialpoo(U), dependence on the interaction strength.
Plots(b) and(d) show the chemical potential and the energy of the

¥VIth a different \./ortICIty,m=0,d... -,6.This Vﬁas, p(al[formed lowest state for each vorticity, always relative to value the ground
or two geometries corresponding fo=1 (spherically sym- state. The interaction values range frai=0 (upper diagonalto

metric trap and y=2 (cigar shape trap of a stationary trap, =50 000(lowest diagonal All calculations shown correspond to

=0, Wh_”e varying the intensity of the interaction from O the spherically symmetric trapi=1, and all quantities have been
to approximately 50 000. The results of this study are plotteGdimensionalized using the rules of Sec. I.

in Fig. 1.
Remarkably, in the absence of rotation, and up from theThis shift gives rise to an ample phenomenology, which is
lowest states, both the spectrum and the energies can be fictured in Fig. 2. First, we see that the degeneracy with

By using the preceding technique, we have searched th&
lowest statesr{(,,n,=0) for each branch of the spectrum

ted to a simple formula, respect tom is broken. The only other possible degeneracy
that remains is with respect to theand z variables, but it
#om(N)= oo N) + wer(N)m, (138 disappears in the case without spherical symmery 1.
Second, then=1,2,3, ... branches of the spectrum be-
Eom(N)=Eg(N) + wex(N)m. (13b) come a minimum of the energy functional with respect to

other branches for continuous intervals of the angular veloc-
The first term is the chemical potential of the=0 ground ity (2m,Qm+1). We will refer to these values of the angular
state and it is irrelevant for the dynamics. Using the ThomasVelocity asstabilizing frequenciesThey are given by the
Fermi limit, one can show that it grows proportionally go ~ Simple formula
«N?® a behavior which is approximately reflected in the
numerical resultFig. 1(c)].

The second term is much more relevant to the evolution r ]
of the condensate. It grows linearly, as the energy levels of a 15} y
linear harmonic oscillator with an effective frequency, b ]
wer(N), that decreases with the interaction. The fact that the 145 ]
highest levels of the spectrum @f remain equispaced even E0 [
for large interactions is the reason why the condensate ex- "o y ]
hibits an exponentially divergent response to the parametric 137 e e e ]
perturbation of the trap frequencies, as it is shown in Refs. Foe ]
[30] and[31]. 12[

D. Results for rotating traps 00 O‘.2 | d.4

Now we want to study the stationary solutions in the pres-
ence of rotation. Fof) # 0, the solutions with definite vor- FIG. 2. Dependence of the energy levels@nEy,(U,Q), for
ticity remain the same, while their chemical potential anda fixed value of the interaction strengths=8000, and a spherically

energy suffer a shift that depends on the vorticity of the stateSymmetric trapyy=1. The horizontal line represents the vortex-free
state,m=0, the dashed line them=1 vortex state, and the dotted

Enm(U,Q)=E;(U,00—mQ. (14 lines other multicharged vortex states.
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which is that ofenergetic stability We say that a state of a
system is locally or globally energetically stable when it is a
local or global minimum of the energy functional, respec-
tively. Second, we say that a stateligapunov or dynami-
cally stablewhen for sufficiently small perturbations the sys-
tem remains arbitrarily close to the original state for all
times. Finally, we will use the concept bihear (dynamical)
stability, which can be defined as the stability of the system
for infinitesimal perturbations. An equivalent definition of
the later concept is the Lyapunov stability of the linearized
I evolution equations around the stationary state.
S These three concepts are not equivalent. It is well known,
0 50 12 100 however, thatenergetic stability implies Lyapunov stability
U and Lyapunov stability implies linear stabilityintuitively,
the Lyapunov stability is the closest one to what we usually
think of as “stability” and it would be desirable to charac-
terize the dynamical stability of a state. Energetic stability
should ideally qualify how the system behaves when dissi-
pation is introduced in the system; it is also a sufficiency
0 —E _E (15 condition for dynamical stability and a necessary condition
m™ =0m+1  =0m- for a state to be a ground state. And finally, a study of linear

However, we cannot assure at this point that on those inteSt@Pility tells us about the absence of Lyapunov or energetic
vals themth vortex state becomes a global minimum. Indeed stability and about the behavior of the system for sufficiently

in Sec. IV we will be able to prove that only tme=1 vortex ~ S"Ort trilmﬁs. derations in mind Hink of indi
lines achieve the status of local minima. It still remains an With these considerations in mind, we can think of indi-

open question to provide an analytic proof of this fact. rectly studying the question of Lyapunov stability both from

Third, even though the separation betweenrtie0 and a linear ar)d a global .point of view. We will explain this
m=1 states becomes very narrow for large interactions, thgtatement in the following subsections.
stabilizing frequency(); only approaches zero asymptoti- . N ]
cally with U. As a consequencen=1 states are never a B. The linear stability equations
global minimum of the energy in a stationary trap, a fact that  Since we are interested in linear stability, let us begin our
can be checked by just inspecting the energy functional. study from the adimensionalized Gross-Pitaevskii equation
And finally, there is a critical value of) for which the  (3) and expand the condensate wave function around a sta-
energy functional becomes unbounded by befsee Fig. 3 tionary solution with a fixed vorticity,
In the linear case, this critical value of the frequenQy,, is
such that all of the ground states for each value of the vor-  W(r,z,6,t)= o+ ey
ticity have the same energy. Here we can define it as a limit —[(r,2)€™+ ea(r,z,0,t)]e " #Dt. (18)

FIG. 3. Frequency of stabilization of the vortex states in a
spherically symmetric trapy=1, as a function of the nonlinearity.
The lines are arranged in order of increasing vorticity, from 1
(solid line) to m=6 (dashed line on the t9p

Q.(U)=lim Q. (V). (16)

n—oe

We insert this expansion into E3) and truncate the equa-
tions up toO( '), thus obtaining

Using Eqgs.(16) and a fit such as the one in E(.3), one
finds thatQ). coincides with the separation between energy
levels for large values of the vorticity and is always smaller
than the critical frequency of the linear case,

idia=(Ho+iQd,+2Uf2)a+Uf2e 2Mly (193

—idia=(Ho—1Qd,+2Uf?) a+Uf2e?My, (19b)

with Ho=—3A+2(%r?+2%)— u(Q). We can also write
Q= wer(U). A7 this equation in a more compact form,

IV. STABILITY OF STATIONARY STATES . o H(Q)W=B(Q)W (20)
at ’

A. Types of stability

In the preceding section we obtained stationary solution?y using the following definitions:

of the mean-field model for the Bose-Einstein condensate, all a
of which had a well defined value of the third component of Wz( ) ,
the angular momentum operator. We named those states
symmetric vortices or just vortices. In this section we want to
study the stability of these solutions according to several
criteria.

From a mathematical point of view, there are many defi- ) ) 5 —2img
nitions of stability. Here we will concentrate on three of H(Q)=Hy+ '956+2_Uf Ufe )
them that are useful for our system and have a clear physical 0 Uf2edmé  —i0g,+2Uf2)"
interpretation. First, we have the most intuitive definition, (219

(219

1 o)
o 1) (21b)
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To characterize the linear stability of a state, we are interwith respect to this family of perturbations, the=0 case
ested in the dynamics that is involved in E80). The sim-  corresponds to the existence of degeneracy in the system,
plest way to learn about it is to find a suitable basis in whichand finally if A\<0 the system is told to be energetically
Eq. (20) can be diagonalized. In other words, we want a seunstable, i.e., excitations are energetically favorable and the

of vectors,WL=(uk(r),vk(r)), such that state is not a local minimum of the energy.
When studying the condensate using tools from quantum
MW, = BW, . (22)  field theory, one may try a similar procedurEd], which is

_ . known as Bogoliubov’s theory. In that framework,and a
If B has such a diagonal Jordan form, then it follows that aare linear operators in a Fock space and one searches an

perturbation evolves simply as expansion of these operators in terms of others that diago-
nalize the energy function&25) and the evolution equations
W= c,e W, (23) (20). The resulting equations for the coefficients are known

as Bogoliubov's equations and correspond to E2@). for u,
andv,. All of the five cases exposed above have the same
a(f, )= ceMuy(r.t), (24) imp_lications_ on stability for Eq(3), which is a partial differ-
ential equation for an order parameter, and for the more com-
plete Bogoliubov theory, where the perturbations are re-

On the other hand, the lack of a diagonal form, or the exiSg4 ded as many-body corrections and involve more degrees
tence of complex eigenvalues, apparently leads to instability¢ freedom.

since we have modes that grow polynomially in time. Thus @ inay we want to comment that energetic instabilities
study of the eigenfunctions of the linearized equations giveS;a |ess “harmful” than dynamic ones, as they affect the

us all the information we need about linear stability. dynamics only when there is some kind of dissipation that
We will also see that this diagonalization is related to the(L

. X ; rives the system through the unstable branch. And even
behavior of other properties of a perturbed state in generg

. M . i ; en the lifetime of the system could be large if the intensity
and to energetic stability in particular. Associated with Eq.qf the destabilizing mode were small compared to the typical
(20) there is an energy functional,

evolution times.

Ey(a)= f 2aHga+ 2o+ e+ 4| ol2aa, (25 C. Analytic results
_ _ Here we present several results on the connection between
and a constrained energy functional, eigenvalue$Eq. (37)] and destabilizing modes.
Lo(a)= Ez(a)—,uf |a|2' (26) 1. Lack of exponential instabilities in the Bogoliubov theory

Any eigenvalue\ satisfying Eq.(37) andG(W)#0 must
which are theO(€?) terms in the expansion of Eqe) and  be real. Eigenstates wits(W)=0 may involve complex
(7), i.e., the free energy introduced in the system by thesigenvalues but they are spurious and introduced by the lin-
perturbation. If a diagonal Jordan form such as that of Eqearization procedure.

(22 is possible, then the second functional becomes diagonal This first part is proven simply by projecting the left and

too, right hands of Eq(37) on W™, Omitting the indices, the
result is

Lo(a)=2 [cl 2N G(Wy), (273
xnf<|u|2—|v|2)=f(mHnu+7H2m—nv)+J UF2u+v[2

GO = | lu?= 2. @7
- [ -madurevn. @8

If the stationary statey,, is a local minimum of the energy

subject to the constraint of a fixed noi@), then£, must be  The second part is more subtle. To prove it, we must recall

positive for all perturbations, which has obvious implicationsthat solutions of Eq(20) are stationary points of the action

for the eigenvalues and eigenstates. [30], S=JL(t)dt corresponding to the following Lagrangian

Combining our knowledge about the linearized equationglensity:

and linearized functionals, one may find two distinct situa- )

tions. First, the Bogoliubov operator may have complex ei- I i

genvalues or even have a nondiagonal Jordan form. In both L= J E(aat aay) + Lo(a). (29

cases we customarily speak liriear dynamical instability

because an arbitrarily small perturbation departs from th&Jsing Eq.(27a), one shows that the modes wiG\(W)=O

original state exponentially or polynomially in time. Second, are null modes that do not appear in the linearized Lagrang-

the linearized operator may have only real eigenvalues whickan, and thus have no influence on the dynamics.

should be interpreted as the change of energy in the conden- From a mathematical point of view, when there exist

sate due to excitatiorisee Eq(26)]. If A>0, the state under complex eigenvalues, one can think of a plateau in the en-

study ¢, is a local minimum of the energy functiong)  ergy functional such that, if we move along the eigenfunc-
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tions corresponding to these eigenvalues, the energy change TABLE I. Relation between the diagonalization of the linear-
is of orderO(€®) and thus the linearization procedure, which ized equations and the linear and global stability of a state.

goes up toO(e?), cannot account for the dynamic along
those directions. N Linear stability Global stability

It is important to keep in mind that this theorem does nOtNondiagonaI box Unstable Lyapunov unstable
grar_1t thats5, has a Bogoliub_ov diagonalization. It WOUId b_e Complex eigenvalue Undetermined Undetermined
desirable to have an analytic result that solves this question, -, _ Stable Energetically unstable

A>0, V A Stable Energetically stable

2. Sufficient condition for stability

If the linearized Hamiltoniari, is positive definite, then
B, may be diagonalized, all of its eigenvalues are positivepress the possibly negative eigenvalues in the ranga 0
real numbers, and there are neither dynamical nor energetie m if () is large enough. Even more, as the shift is a real
instabilities. number, if one were able to demonstrate that there are no
To prove this theorem, one only needs to show that ther@ynamical instabilities in the stationary trap, then there
is a one-to-one correspondence between the eigenfunctioRguld be no dynamical instabilities in the rotating trap.
of HY25;H Y2 and the eigenfunctions af,H, so that
H#ZUZH %’2|n)=)\|n), (30) D. A numerical algorithm for the study of the stability
Let us collect and simplify what has been exposed in the
if and only if preceding subsections by formulating the algorithm that we
have used to study the stability of the vortex states of Sec.
o M1 Y2 Ny = H 2 n). @D .
o ) ) N The algorithm must be applied to each symmetric vortex
This implies that the eigenvalue in E@7) must be positive.  geparately. The first step consists in linearizing the evolution

I ) equations to obtain
3. Stability in stationary traps

In Eqg. (37), if =0 and n>3m, then the linearized 'M—&/V (34)
Hamiltonian,, is positive, the Bogoliubov operatdt, can o TPV
be diagonalized, and it is also positive. Furthermoren if
>m, then any real eigenvalue is positive0. Second, one has to search the Jordan form oBteerator

The proof has several steps. First, one takes any value @ a suitable finite-dimensional space. In the third step, one
n that satisfies that condition and proves thet" ">H™ st classify the Jordan boxes and eigenvalues according to
and H">H™=0. Second, this fact is used to prove thatTaple | and obtain the information about the stability. In case
Hon>Hom- Third, it is shown that4, is positive, which  of instability, depending on the magnitude of the eigenvalues
altogether impliest{,>0. The last assertion may be easily one can check whether they can be suppressed with an ap-
checked with the help of Eq28). propriate choice of parameters, namély The fourth stage

The preceding two theorems imply that in a stationaryof the algorithm consists of checking that the size of the
trap any mode with negative energy must be comprised iRubspace does not influence the results. To ensure the valid-
the (0,-2m), ..., (m,m) families, and any dynamic insta- ity of the results, we have checked them with numerical

bility must lay in (0—=2m), ...,(3m,0). Thus we need only simulations of the evolution of perturbed states.
diagonalize a finite number of operators to analyze the sta-

bility of a vortex state. This result is an extension of the one

obtained in Ref[17], where a sufficient condition for stabil- E. Numerical procedure

ity is found to b¢n2>4mz, without taking into account pos- It is useful to expandr anda into states of fixed vorticity
sible complex eigenvalues. so that the modes are separated into disjoint subspaces,
4. Local stability under rotation . u™(r)en?
- . W = - . 35
In Eq. (37), the operatoi3,(Q)) exhibits a linear depen- ' v M= (p)gl(2m=n)6 39

dence with respect tQ,

These subspaces are not mixed by the action of the operators
of Eg. (21) and we can define their restriction to these sub-
aces separately as

Bn(Q)=B,(0) = (n—m)Q}. (32

While the wave functions of the modes are the same as thos&
of the stationary traps, the energies of the excitations suffer
also a shift that depends on the vorticity, Bn(Q) =0, Hn(Q), (369

A(Q)=A(0)=(n—m)Q. (33 Ho(Q)=Hon(Q)+ Uy, (36b)

In general, the influence of these shifts has to be checked HY— (n—m Q)
numerically. It is easy to show, however, that the shift is Ho= (n—m) (360
positive forn<m, which means that one can expect to sup- 0 H2M "—(m—-n)Q)’
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H :_§A+§(7r +z )+2—r+f —,L,L(O), (36d)
5 1 1
u=ut? | (360

With these definitions the eigenvalue equati@®2) be-
come

AW =B ()W, n=m, (37

If G(WM)>0, then (" ,v{®™ M) is a Bogoliubov mode
with energye=\{" and vorticities ,2m—n), whereas if
G(WM)<0, then the excitation isv(>™ ™ ,u{™) with en-
ergy e=—\\". As a rule of thumb, to place all the relevant
information in the eigenvalue, thefunction must always be
the one with the largest contribution. This is formally stated
in G(W)>0. In the following, we will refer to these
branches of the spectrum by the pairs of quantum numbers
(n,2m—n) and (2n—n,n), respectively.

We have discretized E@37) in a basis which is the Car-

tesian product of twice the one we used to solve the station- B T T T
: ; . 20 40 60 80
ary GPE. To be more precise, using the notation of Sec. Ill 12
the expansion is as follows: U
_ Pin 0 FIG. 4. Lowest eigenvalues of the Bogoliubov operasgrfor
Wi(”): E ay + 2 b ) (38) the m=1 unperturbed state ife) a spherically symmetric trapy
k 0 Piam-n =1, and(b) an axially symmetric trapy=2. The solid lines rep-

resent modes with quantum numbers (0,2) and the dashed lines

In this basis, the operatdrlo_n is diagonal, Wh”e_ the op- represent modes of the (2,0) family. Crossing of levels is signaled
erator/ must be evaluated, either by means of integrals ofiih circles as a visual aid.

the wave function itself in position representation or by using
a tensor which is larger but equivalent to the one in@g). and an elongated trap. In those pictures several things are
In any case, the equations are always linear and so the stud{ear. First, there are two constant eigenvalnesl, which
of the Bogoliubov spectrum consists in building and diago-correspond to oscillations of the vortex line along thaxis.
nalizing a large real matrix. Second, there is a neutral mode=0 for the spherically
Even though the procedure is quite simple, the matricesymmetric trap, which corresponds to the rotation symmetry
that one must build, especially in the case of strong interacef the condensate around an axis on X¥plane. The sym-
tion, are very large and tend to exhaust computational remetry and the mode disappear wher 2 (see Fig. 4. Fi-
sources. To reach large values of the nonlinearity, we had toally, there is at least one negative eigenvalse0 (more in
work in a subspace of states with even parity with respect tthe case of elongated trgpswhich is responsible for the
the Z axis. This way we could find the excitations with low- energetic destabilization of the system. The largest contribu-
est energy for different vorticities at the cost of missing thosetion to this destabilizing mode corresponds to a wave func-

with odd parity, which are more energetic anyw&g)|. tion that is captured in the vortex line and has zero vorticity,
i.e., it is acore mode(see Fig. 5, as was qualitatively pre-

We must remark that the number of unstable modes in-

Now that stationary vortex states have been found, as digsyeases with the geometry factor—the more elongated the
cussed in Sec. lll, we are going to present now our stability 55 js the easier it is to transfer energy from the vortex to
results obtained with the previously described algorithm. 6 ¢ore plus longitudinal excitations. In other words, while

for spherical and “pancake” trapsyl<1) there is only one
negative eigenvalue which corresponds to an excitation with

In this case one has to study a single operally;, to  a vorticity different from the unperturbed function, for elon-
know whether the state is stable. This calculation provides gated traps ¥>1) we still have that mode plus some others
branch of the spectrum of excitations that is denoted by thevhich represent excitations along tEeaxis. As a conse-
quantum numbers (0,2) and (2,0). We performed the samguence, if the experiment is subject to dissipation and these
procedure for a wide range of nonlinearities in the absence ainstable modes play a significant role in the dynamics, then
rotation,()=0, and the first conclusion is that the Bogoliu- the more elongated the trap is, the less stable the vortex will
bov operator has a diagonal Jordan with real eigenvalues. be.

In Fig. 4 we show a selected set of the eigenvalues of the In Fig. 6 we show the lowest eigenvalues of the families
Bogoliubov operator, both for a spherically symmetric trap(—1,3), (1,1), (0,2), (2,0), and<{2,—4), that is, excita-

1. Stability of the m=1 vortex line in a stationary trap
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0.3

o] ] : ‘ :

A7
0.1

9 12

FIG. 5. Shape of the destabilizing mode. We show both the
original solution (dotted ling, the largest contribution (dashed FIG. 7. Q, (solid ling), —\, (lower dashed ling and\ 3 (upper
line), and the smallest contribution (solid line). Functions have dashed lingfor a spherically symmetric trapy=1.
been rescaled to aid visualization.

slightly smaller than the stabilizing frequencio|<Q4,

tions where the main contribution is an eigenstate pivith  which implies that for|\o|<Q<Q, the energetically un-
eigenvaluesn=0,=1,=2. In those pictures one sees that stable branch with vorticityn=0 disappears. Also the eigen-
excitations with the same vorticity but opposite sign alsoyalues of 3, for n>m are found to be larger thann(
have different energy, a phenomenon which is solely due to-m),. Thus, all the operators, are positive at least in

the interaction. the interval €2,,{),) and consequently the vortex with unit
N o . charge is a local minimum of the energy functional. Indeed,
2. Stability of m=1 vortex lines in rotating traps there is a small interval|§o|,£2;) in which the vortex is

It was already proveflEq. (32)] that as the effect of ro- stable and there is a local minimum of the energy functional,
tation is gradually turned on, the modes witkkm and with ~ While the ground state has no vorticity at all.
n>m are shifted up and down in the spectrum, respectively. Finally, the shifts are always real, which implies that the
A natural question concerns whether this shift is enough td3, operators remain diagonalizable with real eigenvalues and
stabilize the vortex states. We prove using numerical experiwithout dynamical instabilities.
ments that this is the case for our system.

It can be seen in Fig. 7 that the negative eigenvalue is 3. Stability of the m=2 vortex line

: ‘ Another interesting configuration is them=2 multi-
(-2.4) 1 charged vortex line. Here one suspects that a configuration
with several vortices of unit charge has less energy than a
2 20 single multicharged vortex, under all circumstances. In other
words, they must be always energetically unstable.
Al L3 @ | This intuitive perception is confirmed by the numerical
analysis. First the diagonalization Bf reveals that this op-
0 1,1 erator has at least one negative eigenvalue, whjehas
negative eigenvalues and a pair of complex eigenvalues that,
0,2) ] as we saw above, do not participate in the dynamics and
must be discarded. Regarding the negative eigenvalues, they
e do not decrease with the nonlinearity, but are always larger
_ 50 100 ‘ in absolute value than their linear limits. This implies that
I -2.4) ] there are always negative eigenvalues which cannot be sup-
] pressed with any rotation below the critical valie,<Q
(2,0) <Q.=<v.
- The immediate consequence of this linear stability analy-
A ) () ] ses is that, since the linearization of the ene(@9) is not
] positive, them=2 vortex line is never a local minimum of
0 (L1 the energy. This is true even for the parameter interval,
©02) (9,,9Q5), in which it has less energy than the rest of the
stationary symmetric vortices. If them=2 ground state is
not a minimum, and the other symmetric states have more
energy, we can conclude that the minimum of the energy
functional in the rotating trap witlf) e (Q2,,{23) must be a
state which is not symmetric with respect to rotations, as it
FIG. 6. Excitation energy of the lowest Bogoliubov modes for Was proposed in Ref24] for small nonlinearities. A similar
an unperturbed state witin=1. The vorticities of each mode are analysis can be performed for the stationary states with
written close to its corresponding line. PI@) corresponds toy =3,4,..., which extends this result to larger rotation fre-
=1, and(b) to y=2. quencies that are all below the critical one.

100 1p 200
U
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G. Lyapunov stability other theorems have been proved that describe the phenom-

As we saw above, a solution of E) is Lyapunov stable €N0logy associated with the relevant modes. _
when every slightly perturbed solution remains close The perturbatlve equayons have been solve.d.r.]umerlcally
throughout the unperturbed one. It is very difficult to studyfOr Stationary states havingi=1 andm=2 vorticities. In
Lyapunov stability of stationary solutions of E¢) in a both cases it has been found that the only instability is of an
rigorous way, a point which deserves further investigation ©Nergetic nature, being limited to a small number of modes
Here we have performed an “empirical” study of the whose nature was already predicted qualitatively/1i6.

Lyapunov stability of the stationary solutions with=1 and ~ FOr the vortex with unit charge, we have found that this
m=2 by simulating numerically how they evolve for small InStability may be suppressed by rotating the trap at a suit-
perturbations and long times. The simulation was performe@P!€ speed, and even when the trap is stationary it is expected

with a three-dimensional split-step pseudospectral methoH“at it plays.no. sig.nificant role in the dynamics, unless there
like that of Ref.[30], using an 880X 80 points grid to Is enough dissipation to take the system through the unstable
study both they¥ 1 a’mdy= 2 problems. branch. On the other hand, the linear stability analysis for the

The main result of this complementary work is that bothM=2 multicharged vortex reveals that the energetic instabil-

the unit charge vortex line and the multicharged vortex linglty May never be suppressed and that this configuration is
ever a minimum of the energy functional, even though its

are stable to perturbations which involve the destabilizing.='~" <. - . o9
modes as defined by E¢@7). For example, one may try to ifetime is, once more, only conditioned by possible dissipa-

add a small contributiori0.5% of a core mode to then tlor_:_.h | 4 orobabl _ lusion of thi
=2 vortex, with the result that the vortex line is split into e last and probably most important conclusion of this

two unit charge vortex lines which rotate but remain close toWork is that in the rotating trap, and fét>(),, the state of

the origin. We must remark that, although these simulation@inimu_m energy is not an_eigenstate of mzeoperator, "_im_j
only work for finite times which are dictated by the precisionthuslIt IS not s(;j/_mm(;etnc \l’Y'th. relsp.ect toﬂ rotte)mons. A S|;n|lar
of the scheme and the computational resources, these timEgSUIt was predicted qualitatively in Ré 4] y means of a
are typically 20 or 30 periods of the trap, which is much minimization procedure that is only justified in the limit of
larger than any of the magnitudes that one may address the$€y Smallu. Our proof remains valid for the entire range of

retically to the destabilization process, i.e., the negative Oponhnearltles use_d here. _ _ .
complex eigenvalues of E¢37). From an experimental point of view, this work has several

In the end, what these types of simulations reveal is thafPlications. First, vortex lines with unit charge may be pro-
duced by rotating the trap at a suitable speed and then cool-

the m=1 andm=2 stationary states are energetically un-; h S d oo d. th .
stable, but this has no influence on the dynamic unless so ag the gas. second, once .rotf’:\tlc')n IS removed, t ese vortices
will survive for a long time if dissipation is small. Third, the

other “mixing” or dissipative terms participate in the model. ; . . o
symmetric multicharged vortices are not minima of the en-

V. CONCLUSIONS ergy functional and thus it will be difficult to generate them
by means of cooling a rotating gas. And finally, if these
multicharged vortices are generated by some other means,
then we can expect that their lifetime will only depend on the
intensity of dissipation, whose effect is to take the system

We have studied the vortex solutions of a dilute, nonuni-
form Bose condensed gas as modeled by the Gros
Pitaevskii equatiori3), both in a stationary, axially symmet-
fic It:r_apt and EUbJECt to rﬁtaguo(rmlr ? unlfofrm m;}gr:er;uc f'etbﬁ either to them=0 ground state if)<(),, to the unit charge

irst, we have searched solutions of E4). that have the vortex line state if(0<(),, or to a symmetryless multi-

lowest energy and which are also eigenstates of the thirgharged state if),>(Q (a phenomenon that is known as
component of the angular momentum operatg(r,z, 6) splitting in the Iiterzatur¢

=f(r,2)e"™"’, in stationary and rotating traps using different "'t " |1 erical results obtained have been possible due to
values of the nonlinear coefficient ranging from small to VelYine use of a powerful Galerkin spectral method that has been
large values. It has been found that a nonzero angular SPetimized to allow for the consideration of thousands of

is required in order_to turn a vortex line state into a miniMum, o 4es which is a step forward with respect to the previous
of the energy functional with respect to other states of We”'analysis

defined vorticity.

Next, we have studied the stability of these stationary
solutions of the GPE. We have derived a set of coupled
equations that account for both the linearization of the GPE This work has been partially supported by DGICyT under
around a stationary solution and Bogoliubov’s corrections taGrants No. PB96-0534 and No. PB95-0389. We thank Pro-
the mean-field theory that describes the condensate. It hdsssor J. I. Cirac from the Institud fTheoretische Physik of
been proved that the problem may not exhibit dynamicalnnsbruck for proposing the problem to us and helping in the
instabilities of an exponential nature. In addition, severaldevelopment of the stability theorems.
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