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Stability of vortices in inhomogeneous Bose condensates subject to rotation:
A three-dimensional analysis

Juan J. Garcı´a-Ripoll and Victor M. Pe´rez-Garcı´a
Departamento de Ma´temáticas, ETSI Industriales, Universidad de Castilla–La Mancha, 13071 Ciudad Real, Spain

~Received 23 March 1999; revised manuscript received 2 June 1999!

We study numerically the stability of axially symmetric vortex lines in trapped dilute gases subject to
rotation. For this purpose, we solve numerically both the Gross-Pitaevskii and the Bogoliubov equations for a
three-dimensional condensate in spherically and cylindrically symmetric traps, from small to very large non-
linearities. In the stationary case we find that the vortex states withm51 andm52 are energetically unstable.
In the rotating trap it is found that this energetic instability may only be suppressed for them51 vortex line,
and that the multicharged vortices are never a local minimum of the energy functional. This result implies that
the absolute minimum of the energy is not an eigenstate of theLz operator, when the angular speed is above
a certain value.@S1050-2947~99!03412-5#

PACS number~s!: 03.75.Fi, 02.70.Hm, 03.65.Ge
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I. INTRODUCTION

Since the first experimental realization of Bose-Einst
condensation~BEC! in weakly interacting gases@1#, there
has been a large theoretical and experimental effort to s
its properties in the framework of quantum field theories a
in the so-called mean-field limit@Gross-Pitaevskii~GP!
equations#. These equations are formally nonlinear Sch¨-
dinger equations~NLS! @2# and appear in many fields o
physics, e.g., in bulk superfluids and nonlinear optics to
only a few examples.

All of these physical systems have long been known
exhibit solutions with topological defects@3,4#, of which the
simplest ones are known as vortices~in two spatial dimen-
sions! or vortex lines~in three spatial dimensions!. Vortices
are localized phase singularities with integer topologi
charge. Specifically, vortices appearing in the context of
can be seen, in the framework of the hydrodynamic interp
tation, to be analogous to the fluid dynamical vortices wh
appear in fluid dynamics@5#. In the framework of BEC stud-
ies, the question has been raised of whether these non
form clouds of condensed gases may support the existen
vortices in a stable form, and the purpose of this work is
help answer this question.

There is a huge amount of literature on vortices and v
tex properties in the framework of NLS equations, includi
their particular cubic version~the GP equation!, their non-
conservative extensions@the Ginzburg-Landau~GL! system#,
and vector GL models. In particular, the stability
m-charged GP vortices in two dimensions was studied in@6#.
In three dimensions, the GL case was recently considered@7#
and geometric instabilities have been found to strongly
form the vortex lines. The results for the GL cannot be
rectly extrapolated to the GP equation since dissipation
diffusion are essential ingredients of the models studied
Ref. @7#. This fact makes the conservative case~GP! inter-
esting by itself. Other analyses of vortices and of vor
stability in the framework of nonlinear optics are included
Ref. @8#.

The current setups used to generate Bose-Einstein
densates utilize a magnetic trap to confine a highly coo
atomic cloud. This trap is mathematically modeled by a pa
PRA 601050-2947/99/60~6!/4864~11!/$15.00
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bolic potential and distinguishes BEC from common NL
systems, in which the vortices are free and move in a hom
geneous background. The dynamics of a vortex in a spati
inhomogeneous two-dimensional GP problem was studie
Ref. @9# using the method of matched asymptotic expansio
but the authors did not consider the stability of the tw
dimensional~2D! vortex itself. In principle, the vortex mo
tion equations of Ref.@9# can be used to study the motion o
a single 2D point vortex in spatially inhomogeneous G
problems. However, the dynamics of the many-vortex cas
more complicated and by no means trivial. For simple a
proaches to the problem which do not include the effect
vortex cores on the background field, see Ref.@10#. More
elaborate analyses were done in Ref.@11#. An interesting
discussion on the validity of the fluid approximation to th
GP equation can be found in Ref.@12#. The dynamics of 3D
vortices is yet more complicated, allowing the so-called
connection. To our knowledge there are no analytical res
but only qualitative numerical observations available@13#.
Another theoretical framework in which nonhomogeneo
dynamics of vortices has been investigated is the possib
of pinning vortices in type-II superconductors@14#, but here
the dynamics has been considered only through analy
approximation techniques with no comparison with num
ics. In all the previously discussed cases, the stability of
vortex state is taken for granted.

The problem of vortex stability in the framework of Bos
Einstein condensed gases has been considered in variou
pers that address linear and global stability, either from
purely analytic point of view, such as in@15–18#, or by
mixing analytic and numerical techniques@20–23#. In Ref.
@20#, the authors solve the GP equation and find the ener
of the condensate in vortex states, for a number of partic
up toN5104. In Ref. @21#, the authors solve the Bogoliubo
equations for a unit charge vortex in a stationary trap w
axial symmetry for populations of up toN,104 atoms. In
Ref. @22#, the authors perform stability calculations for
condensate with periodic boundary conditions on theZ axis,
and study the influence of rotation in the energy and stab
of the m51 vortex. In Ref.@24#, the authors address th
problem of minimizing the energy functional with a reduc
basis of trial states that is only valid in the limit of smallU.
4864 ©1999 The American Physical Society
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In this paper we unify and substantially extend what h
been done in previous works regarding these two questi
global energetic stability and local stability of vortex state
First, in Sec. II we write the simplest equations that mode
BEC in a possibly rotating trap and offer a variational po
of view for the search of stationary states. In Sec. III we
forward the thesis that the ground state must have a
defined value of the third component of the angular mom
tum, m5^Lz&, i.e., that it must be symmetric with respect
rotations. For brevity we refer to these states as symme
vortices. We then solve numerically the GPE for such tr
states, for small and for very large values of the nonlinea
(N.107). We show how rotation affects the energy of the
stationary states and we reach the main result of this sec
which is that there are continuous intervals of the ‘‘angu
velocity,’’ ( Vm ,Vm11), in which them-charged symmetric
vortex has less energy than other states ofwell defined vor-
ticity.

In Sec. IV we address the question of the stability of t
symmetric states that we introduced in our thesis. We s
by describing the three types of stability:energeticstability,
a state is a local minimum of the energy function
Lyapunovstability, slight perturbations do not destroy th
original state; andlinear stability, Lyapunov stability in the
linearized equations. We show the physical implications
each concept and recall how they relate to each other.
next obtain the Bogoliubov equations as the result of line
izing the GPE. We discuss the implications that their pro
functions and eigenvalues have for the linear and global
bility of vortices and derive several analytic results regard
this question. Finally, in Sec. IV D we collect the most im
portant concepts and propose a numerical algorithm
studying the stability of stationary states of the GPE. T
algorithm is applied to them51 andm52 unperturbed vor-
tex states in stationary traps. It is found that them51 and
m52 vortices are only energetically unstable, which mea
that the lifetime of both configurations is only limited b
dissipation. Further study reveals that rotation can only
bilize the unit charge vortex line if the angular speed is in
suitable range which is almost coincident with (V1 ,V2).
Outside of this range,V2,V,Vc , the minimum of the
energy functional is not an eigenstate of theLz operator—in
other words, it isnot symmetric under rotations—and thus
our initial thesis is refuted. These results are complemen
by numerical simulations of the evolution of perturbed sy
metric vortices that seem to indicate that them51 andm
52 vortices are Lyapunov stable even when they are
minima of the energy functional. In Sec. V we summar
our work and discuss their implications.

II. THE MODEL

For very small temperatures and small densities, the c
densate can be accurately modeled by the Gross-Pitae
equation~GPE! @3,4#. We will always refer to an axially
symmetric trap with a term that accounts for rotation arou
the Z axis and which may be generated by imposing a s
able weak magnetic field over the trapping potential. T
form of the equation is
s
s:
.
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2m
nc1

1

2
mv2~g2r 21z2!c

1U0Nucu2c1ṼLzc. ~1!

Here N is the number of atoms in the gas whileU0
54p\2a/m characterizes the interaction and is defined
terms of the ground-state scattering length,a. By introducing
both parameters in the equation, we can impose the foll
ing normalization onc:

E ucu2d3x51. ~2!

It is convenient to express Eq.~1! in a natural set of units,
which for our problem is built up from two scales: the size
the trap~measured by the width of the linear ground stat!,
a05A\/mv, and its period,t51/v. With these definitions
the equation simplifies to

i
]c

]t
5F2

1

2
n1 iV

]

]u
1

1

2
~g2r 21z2!1Uucu2Gc, ~3!

while maintaining the normalization~2!. Unless otherwise
stated, we will use this adimensionalization in all figur
throughout the paper.

The new parameters,V5\Ṽ and U54pNa/a0, repre-
sent the ‘‘angular speed’’ of the trap and the adimension
ized interaction strength, respectively. For stability reas
~see below!, V will be of the order of magnitude of o
smaller than the radial strength of the trapping,g. The inter-
action,U, will take values from 0 to 63104, which for con-
densates of rubidium and sodium implies a minimum of 16

and a maximum of 107 atoms~this is in the range of curren
and projected experiments!. The shape of the trap is dictate
by the geometry factor,g, and in this work it will typically
take two possible values:g51 for a spherically symmetric
trap, andg52 for an axially symmetric, elongated trap.

A stationary solution of Eq.~3! will be of the form
c(xW ,t)5e2 imtf(xW ) @25#, wherem may be interpreted both
as a frequency and as a chemical potential,

mf5F2
1

2
n1 iV

]

]u
1

1

2
~g2r 21z2!1Uufu2Gf. ~4!

Any solution of Eq.~3! has an energyper particle which
is given by the functional

E~c,N!5E S 1

2
u¹cu22 iVc̄]uc D

1E F1

2
~g2r 21z21Uucu2!ucu2G . ~5!

For a stationary solution it becomes

E~c,N!5m2
U

2 E ufu4. ~6!

The stationary solutions of Eq.~3! may also be regarded a
the critical points of
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Lm5E~c,N!2mE ucu2 ~7!

subject to the constraint of Eq.~2!. In that casem has a third
interpretation: it is the Lagrange multiplier of the norm.

III. STATIONARY VORTEX STATES

A. Symmetric vortex states

Since the model which is presented in Eq.~3! has at least
axial symmetry and since we are interested in single vo
solutions to the GPE, it is tempting to think that the releva
stationary states of Eq.~3! must also be eigenstates of theLz
operator. We will put forward the thesis that the ground st
of Eq. ~3! is an eigenstate ofLz . Our purpose in this work is
to find these states, to study their stability, and finally
confirm or refute our thesis.

In other words, we are imposing an ansatz for the wa
functions that has the formc(r ,z,u,t)5e2 imteimuf(r ,z),
and in this section we will search the unit norm functio
fm

(m)(r ,z) and real numbersm, which are solutions of

F2
1

2
n2mV1

1

2
~g2r 21z2!1Uufm

(m)u22mGfm
(m)50.

~8!

Our treatment of these equations and of those that we
find throughout this work will be fully three-dimensiona
and no spurious conditions~e.g., periodicity! will be imposed
on the boundaries. We want to obtain at least the low
energy state for each value of the vorticity,m. Also the de-
pendency of the spectrum with respect to the nonlinea
and the angular velocity,V, is interesting since it will tell us
whether the vortex-line states may ever become energetic
favorable.

B. Numerical search of stationary states

Due to the nonlinear nature of the problem that we w
to solve@Eq. ~8!#, there are not many analytical tools ava
able. The most common~and maybe the easiest! approach to
the problem is to discretize the spatial part and to perfo
evolution in imaginary time while trying to preserve the no
malization, a method which is related to the steepest-des
technique. The precision of the solution depends on the t
of the spatial discretization—finite differences~used, for ex-
ample, in Refs.@20,26#! or spectral methods~such as the one
used in Ref.@28#!. However, these common methods, such
finite differences@20# and similar spectral methods@21#,
have up to date reached a maximum value of the interac
coefficient ofU5103, which is well below the values tha
can be obtained in experiments. The imaginary time evo
tion also has serious convergence problems which limit
applicability whenVÞ0.

We will present here an approximation technique
these problems. Mathematically speaking, our technique
Galerkin-type method in which one performs the expans
of the unknown using a complete orthonormal basis of
Hilbert subspace under consideration. For convenience
have used the basis of eigenstates of the harmonic oscil
x
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with fixed vorticity. With that basis our stationary solution
expressed as

cm
(m)~xW ,t !5e2 imteimu (

n
cnPn

(m)~r ,z!. ~9!

Here the single index,n, denotes two quantum number
(nz ,nr), that describe the axial and radial degrees of fr
dom, andPn

(m) is a product of a Hermite polynomial, a La
guerre polynomial, and a Gaussian,

Pn
(m)5CnHnz

~z!Lnr
~r2!r meimue2(r21z2)/2, ~10a!

C5A 1

AgAp2nznz!
A nr !

p~nr1m!!
, ~10b!

with r5r /Ag
Next, following the same convention about the indice

we have introduced this expansion into Eq.~8! to obtain

~Ei
(m)2Vm2m!ci1U(

jkl
Ai jkl

(m) c̄ jckcl50. ~11!

Here Ei
(m) is the harmonic-oscillator energy of the mod

Pi
(m) , and the tensorAi jkl

(m) has the following definition:

Ai jkl
(m)52pE P̄i

(m)P̄j
(m)Pk

(m)Pl
(m)drdz. ~12!

Since thePi
(m) are products of known polynomials by expo

nentials, it could be possible, in principle, to evaluate t
tensor exactly with a Gaussian quadrature formula of
appropriate order. This approach was used in Ref.@19# for
the three-dimensional case. However, when one wishe
use a large number of modes~which in our case is of abou
1600 for each value ofm) to achieve large nonlinearities, th
search of the quadrature points becomes more difficult t
performing a stable integration by means of some ot
methods, of which the simplest accurate one is Simpso
rule @27#.

Once we fix all of the constants,Ei
(m) , Ai jkl

(m) , m, and a
guess for the solution, it is feasible to solve Eq.~11! itera-
tively, e.g., by Newton’s method@27#. However, it is wiser
to perform two simplifications before implementing the a
gorithm. The first one is that all of the eigenfunctions,Pn

(m) ,
can be made real and thus we can impose the coefficien
the expansion,cn , to also be real.

The second optimization is that, thanks to the symme
of the problem, the ground state of Eq.~4! has a well defined
positive parity. This allows us to eliminate redundant mod
@32#, saving memory and reaching higher energies and n
linearities which otherwise would be computationally hard
attain. On the other hand, we have always checked that
method produced the same results as the complete one
selected and significant set of values of the parameters.

Finally, it is important to note that the tensor of Eq.~12! is
indeed a product of two smaller tensors which can be ca
lated by integrating on thez and r variables, respectively
@19#. This decomposition is most important when workin
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with a large number of modes, because then the size ofAi jkl
(m)

becomes extremely large~i.e., 16004 elements for 1600
modes!.

Concerning the evaluation of polynomials of a very hi
degree as the ones involved in our computations, we m
say that it is not a simple task. This is especially difficult f
intermediate values of the spatial variables since in t
range there are a lot of terms with opposite signs and sim
magnitude, and the cancellations induce numerical insta
ties. The usual procedure to avoid this difficulty is to u
Horner’s method@27# to evaluate the polynomial, which i
comparable to using fast Fourier transform~FFT! techniques,
but in our case this is not enough and the evaluation of
polynomials could only be done using recursive formu
which are specific to the Hermite and Laguerre basis.

We remark that the election of this spectral technique w
largely influenced by the need for reaching high nonlinea
ties which are not achievable using the other approac
Further details on the numerical technique as well as con
gence proofs will be given elsewhere@29#.

C. Results for stationary traps

By using the preceding technique, we have searched
lowest states (nz ,nr50) for each branch of the spectru
with a different vorticity,m50, . . . ,6.This was performed
for two geometries corresponding tog51 ~spherically sym-
metric trap! andg52 ~cigar shape trap!, of a stationary trap,
V50, while varying the intensity of the interaction from
to approximately 50 000. The results of this study are plot
in Fig. 1.

Remarkably, in the absence of rotation, and up from
lowest states, both the spectrum and the energies can b
ted to a simple formula,

m0m~N!.m00~N!1veff~N!m, ~13a!

E0m~N!.E00~N!1ṽeff~N!m. ~13b!

The first term is the chemical potential of them50 ground
state and it is irrelevant for the dynamics. Using the Thom
Fermi limit, one can show that it grows proportionally tom
}N2/5, a behavior which is approximately reflected in t
numerical results@Fig. 1~c!#.

The second term is much more relevant to the evolut
of the condensate. It grows linearly, as the energy levels
linear harmonic oscillator with an effective frequenc
veff(N), that decreases with the interaction. The fact that
highest levels of the spectrum ofm remain equispaced eve
for large interactions is the reason why the condensate
hibits an exponentially divergent response to the parame
perturbation of the trap frequencies, as it is shown in R
@30# and @31#.

D. Results for rotating traps

Now we want to study the stationary solutions in the pr
ence of rotation. ForVÞ0, the solutions with definite vor
ticity remain the same, while their chemical potential a
energy suffer a shift that depends on the vorticity of the st

Enm~U,V!5Enm~U,0!2mV. ~14!
st
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This shift gives rise to an ample phenomenology, which
pictured in Fig. 2. First, we see that the degeneracy w
respect tom is broken. The only other possible degenera
that remains is with respect to ther and z variables, but it
disappears in the case without spherical symmetry,gÞ1.

Second, them51,2,3, . . . branches of the spectrum b
come a minimum of the energy functional with respect
other branches for continuous intervals of the angular ve
ity (Vm ,Vm11). We will refer to these values of the angula
velocity as stabilizing frequencies. They are given by the
simple formula

FIG. 1. Plots~a! and~c! show the ground-state energy,E00, and
chemical potential,m00(U), dependence on the interaction streng
Plots~b! and~d! show the chemical potential and the energy of t
lowest state for each vorticity, always relative to value the grou
state. The interaction values range fromU50 ~upper diagonal! to
U550 000~lowest diagonal!. All calculations shown correspond t
the spherically symmetric trap,g51, and all quantities have bee
adimensionalized using the rules of Sec. II.

FIG. 2. Dependence of the energy levels onV, E0m(U,V), for
a fixed value of the interaction strength,U.8000, and a spherically
symmetric trap,g51. The horizontal line represents the vortex-fr
state,m50, the dashed line them51 vortex state, and the dotte
lines other multicharged vortex states.
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Vm5E0,m112E0m . ~15!

However, we cannot assure at this point that on those in
vals themth vortex state becomes a global minimum. Inde
in Sec. IV we will be able to prove that only them51 vortex
lines achieve the status of local minima. It still remains
open question to provide an analytic proof of this fact.

Third, even though the separation between them50 and
m51 states becomes very narrow for large interactions,
stabilizing frequencyV1 only approaches zero asympto
cally with U. As a consequence,m51 states are never
global minimum of the energy in a stationary trap, a fact t
can be checked by just inspecting the energy functional.

And finally, there is a critical value ofV for which the
energy functional becomes unbounded by below~see Fig. 3!.
In the linear case, this critical value of the frequency,Vc , is
such that all of the ground states for each value of the v
ticity have the same energy. Here we can define it as a l

Vc~U !5 lim
n→`

Vn~U !. ~16!

Using Eqs.~16! and a fit such as the one in Eq.~13!, one
finds thatVc coincides with the separation between ene
levels for large values of the vorticity and is always smal
than the critical frequency of the linear case,

Vc5veff~U !. ~17!

IV. STABILITY OF STATIONARY STATES

A. Types of stability

In the preceding section we obtained stationary soluti
of the mean-field model for the Bose-Einstein condensate
of which had a well defined value of the third component
the angular momentum operator. We named those st
symmetric vortices or just vortices. In this section we wan
study the stability of these solutions according to seve
criteria.

From a mathematical point of view, there are many de
nitions of stability. Here we will concentrate on three
them that are useful for our system and have a clear phys
interpretation. First, we have the most intuitive definitio

FIG. 3. Frequency of stabilization of the vortex states in
spherically symmetric trap,g51, as a function of the nonlinearity
The lines are arranged in order of increasing vorticity, fromm51
~solid line! to m56 ~dashed line on the top!.
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which is that ofenergetic stability. We say that a state of a
system is locally or globally energetically stable when it is
local or global minimum of the energy functional, respe
tively. Second, we say that a state isLyapunov or dynami-
cally stablewhen for sufficiently small perturbations the sy
tem remains arbitrarily close to the original state for
times. Finally, we will use the concept oflinear (dynamical)
stability, which can be defined as the stability of the syste
for infinitesimal perturbations. An equivalent definition o
the later concept is the Lyapunov stability of the lineariz
evolution equations around the stationary state.

These three concepts are not equivalent. It is well kno
however, thatenergetic stability implies Lyapunov stabilit
and Lyapunov stability implies linear stability. Intuitively,
the Lyapunov stability is the closest one to what we usua
think of as ‘‘stability’’ and it would be desirable to charac
terize the dynamical stability of a state. Energetic stabi
should ideally qualify how the system behaves when dis
pation is introduced in the system; it is also a sufficien
condition for dynamical stability and a necessary condit
for a state to be a ground state. And finally, a study of lin
stability tells us about the absence of Lyapunov or energ
stability and about the behavior of the system for sufficien
short times.

With these considerations in mind, we can think of ind
rectly studying the question of Lyapunov stability both fro
a linear and a global point of view. We will explain thi
statement in the following subsections.

B. The linear stability equations

Since we are interested in linear stability, let us begin o
study from the adimensionalized Gross-Pitaevskii equa
~3! and expand the condensate wave function around a
tionary solution with a fixed vorticity,

C~r ,z,u,t !5c01ec1

5@ f ~r ,z!eimu1ea~r ,z,u,t !#e2 im(V)t. ~18!

We insert this expansion into Eq.~3! and truncate the equa
tions up toO(e1), thus obtaining

i ] ta5~H01 iV]u12U f 2!a1U f 2e22imuā, ~19a!

2 i ] tā5~H02 iV]u12U f 2!ā1U f 2e2imua, ~19b!

with H052 1
2 n1 1

2 (g2r 21z2)2m(V). We can also write
this equation in a more compact form,

i
]

]t
WW 5szH~V!WW 5B~V!WW , ~20!

by using the following definitions:

WW 5S a

ā
D , ~21a!

sz5S 1 0

0 21D , ~21b!

H~V!5H01S iV]u12U f 2 U f 2e22imu

U f 2e2imu 2 iV]u12U f 2D .

~21c!
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To characterize the linear stability of a state, we are in
ested in the dynamics that is involved in Eq.~20!. The sim-
plest way to learn about it is to find a suitable basis in wh
Eq. ~20! can be diagonalized. In other words, we want a
of vectors,WW k

t 5„uk(r ),vk(r )…, such that

lkWW k5BWW k . ~22!

If B has such a diagonal Jordan form, then it follows tha
perturbation evolves simply as

WW 5( cke
iltWW k , ~23!

a~rW,t !5( cke
iltuk~rW,t !, ~24!

On the other hand, the lack of a diagonal form, or the ex
tence of complex eigenvalues, apparently leads to instab
since we have modes that grow polynomially in time. Thu
study of the eigenfunctions of the linearized equations gi
us all the information we need about linear stability.

We will also see that this diagonalization is related to
behavior of other properties of a perturbed state in gen
and to energetic stability in particular. Associated with E
~20! there is an energy functional,

E2~a!5E 2āH0a1c0
2ā21c̄0

2a214uc0u2aā, ~25!

and a constrained energy functional,

L2~a!5E2~a!2mE uau2, ~26!

which are theO(e2) terms in the expansion of Eqs.~6! and
~7!, i.e., the free energy introduced in the system by
perturbation. If a diagonal Jordan form such as that of
~22! is possible, then the second functional becomes diag
too,

L2~a!5( ucku2lkG~WW k!, ~27a!

G~WW k!5E uuku22uvku2. ~27b!

If the stationary state,c0, is a local minimum of the energy
subject to the constraint of a fixed norm~2!, thenL2 must be
positive for all perturbations, which has obvious implicatio
for the eigenvalues and eigenstates.

Combining our knowledge about the linearized equatio
and linearized functionals, one may find two distinct situ
tions. First, the Bogoliubov operator may have complex
genvalues or even have a nondiagonal Jordan form. In b
cases we customarily speak oflinear dynamical instability
because an arbitrarily small perturbation departs from
original state exponentially or polynomially in time. Secon
the linearized operator may have only real eigenvalues wh
should be interpreted as the change of energy in the con
sate due to excitations@see Eq.~26!#. If l.0, the state unde
study c0 is a local minimum of the energy functional~5!
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with respect to this family of perturbations, thel50 case
corresponds to the existence of degeneracy in the sys
and finally if l,0 the system is told to be energetical
unstable, i.e., excitations are energetically favorable and
state is not a local minimum of the energy.

When studying the condensate using tools from quan
field theory, one may try a similar procedure@19#, which is
known as Bogoliubov’s theory. In that framework,ā anda
are linear operators in a Fock space and one searche
expansion of these operators in terms of others that dia
nalize the energy functional~25! and the evolution equation
~20!. The resulting equations for the coefficients are kno
as Bogoliubov’s equations and correspond to Eqs.~22! for uk
andvk . All of the five cases exposed above have the sa
implications on stability for Eq.~3!, which is a partial differ-
ential equation for an order parameter, and for the more c
plete Bogoliubov theory, where the perturbations are
garded as many-body corrections and involve more deg
of freedom.

Finally, we want to comment that energetic instabiliti
are less ‘‘harmful’’ than dynamic ones, as they affect t
dynamics only when there is some kind of dissipation t
drives the system through the unstable branch. And e
then the lifetime of the system could be large if the intens
of the destabilizing mode were small compared to the typ
evolution times.

C. Analytic results

Here we present several results on the connection betw
eigenvalues@Eq. ~37!# and destabilizing modes.

1. Lack of exponential instabilities in the Bogoliubov theory

Any eigenvaluel satisfying Eq.~37! andG(WW )Þ0 must
be real. Eigenstates withG(WW )50 may involve complex
eigenvalues but they are spurious and introduced by the
earization procedure.

This first part is proven simply by projecting the left an
right hands of Eq.~37! on WW i

(n)† . Omitting the indices, the
result is

lnE ~ uuu22uvu2!5E ~ ūnHnu1 v̄H2m2nv !1E U f 2uu1vu2

2E ~n2m!V~ uuu21uvu2!. ~28!

The second part is more subtle. To prove it, we must re
that solutions of Eq.~20! are stationary points of the actio
@30#, S5*L(t)dt corresponding to the following Lagrangia
density:

L5E i

2
~aā t2āa t!1L2~a!. ~29!

Using Eq.~27a!, one shows that the modes withG(WW )50
are null modes that do not appear in the linearized Lagra
ian, and thus have no influence on the dynamics.

From a mathematical point of view, when there ex
complex eigenvalues, one can think of a plateau in the
ergy functional such that, if we move along the eigenfun
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tions corresponding to these eigenvalues, the energy ch
is of orderO(e3) and thus the linearization procedure, whi
goes up toO(e2), cannot account for the dynamic alon
those directions.

It is important to keep in mind that this theorem does n
grant thatBn has a Bogoliubov diagonalization. It would b
desirable to have an analytic result that solves this ques

2. Sufficient condition for stability

If the linearized HamiltonianHn is positive definite, then
Bn may be diagonalized, all of its eigenvalues are posit
real numbers, and there are neither dynamical nor energ
instabilities.

To prove this theorem, one only needs to show that th
is a one-to-one correspondence between the eigenfunc
of H n

1/2szH n
1/2 and the eigenfunctions ofszHn so that

H n
1/2szH n

1/2un&5lun&, ~30!

if and only if

szHnH n
(21/2)un&5lH n

(21/2)un&. ~31!

This implies that the eigenvalue in Eq.~37! must be positive.

3. Stability in stationary traps

In Eq. ~37!, if V50 and n.3m, then the linearized
HamiltonianHn is positive, the Bogoliubov operatorBn can
be diagonalized, and it is also positive. Furthermore, in
.m, then any real eigenvalue is positive,l.0.

The proof has several steps. First, one takes any valu
n that satisfies that condition and proves thatH2m2n.Hm

and Hn.Hm>0. Second, this fact is used to prove th
H0n.H0m . Third, it is shown thatUn is positive, which
altogether impliesHn.0. The last assertion may be eas
checked with the help of Eq.~28!.

The preceding two theorems imply that in a stationa
trap any mode with negative energy must be comprised
the (0,22m), . . . ,(m,m) families, and any dynamic insta
bility must lay in (0,22m), . . . ,(3m,0). Thus we need only
diagonalize a finite number of operators to analyze the
bility of a vortex state. This result is an extension of the o
obtained in Ref.@17#, where a sufficient condition for stabil
ity is found to ben2>4m2, without taking into account pos
sible complex eigenvalues.

4. Local stability under rotation

In Eq. ~37!, the operatorBn(V) exhibits a linear depen
dence with respect toV,

Bn~V!5Bn~0!2~n2m!V. ~32!

While the wave functions of the modes are the same as th
of the stationary traps, the energies of the excitations su
also a shift that depends on the vorticity,

l~V!5l~0!2~n2m!V. ~33!

In general, the influence of these shifts has to be chec
numerically. It is easy to show, however, that the shift
positive forn,m, which means that one can expect to su
ge

t
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press the possibly negative eigenvalues in the range 0,n
,m if V is large enough. Even more, as the shift is a r
number, if one were able to demonstrate that there are
dynamical instabilities in the stationary trap, then the
would be no dynamical instabilities in the rotating trap.

D. A numerical algorithm for the study of the stability

Let us collect and simplify what has been exposed in
preceding subsections by formulating the algorithm that
have used to study the stability of the vortex states of S
III.

The algorithm must be applied to each symmetric vor
separately. The first step consists in linearizing the evolut
equations to obtain

i
]WW

]t
5BWW . ~34!

Second, one has to search the Jordan form of theB operator
on a suitable finite-dimensional space. In the third step,
must classify the Jordan boxes and eigenvalues accordin
Table I and obtain the information about the stability. In ca
of instability, depending on the magnitude of the eigenvalu
one can check whether they can be suppressed with an
propriate choice of parameters, namelyV. The fourth stage
of the algorithm consists of checking that the size of t
subspace does not influence the results. To ensure the v
ity of the results, we have checked them with numeri
simulations of the evolution of perturbed states.

E. Numerical procedure

It is useful to expanda andā into states of fixed vorticity
so that the modes are separated into disjoint subspaces

WW i
(n)5S ui

(n)~r !einu

v i
(2m2n)~r !ei (2m2n)uD . ~35!

These subspaces are not mixed by the action of the oper
of Eq. ~21! and we can define their restriction to these su
spaces separately as

Bn~V!5szHn~V!, ~36a!

Hn~V!5H0n~V!1Un , ~36b!

H05S Hn2~n2m!V

H2m2n2~m2n!V
D , ~36c!

TABLE I. Relation between the diagonalization of the linea
ized equations and the linear and global stability of a state.

l Linear stability Global stability

Nondiagonal box Unstable Lyapunov unstable
Complex eigenvalue Undetermined Undetermined
' l,0 Stable Energetically unstable
l.0, ; l Stable Energetically stable
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Hn52
1

2
n1

1

2
~g2r 21z2!1

n2

2r
1 f 22m~0!, ~36d!

Un5U f 2S 1 1

1 1D . ~36e!

With these definitions the eigenvalue equations~22! be-
come

lk
nWW k

(n)5Bn~V!WW k
(n) , n>m. ~37!

If G(WW k
(n)).0, then (uk

(n) ,vk
(2m2n)) is a Bogoliubov mode

with energye5lk
(n) and vorticities (n,2m2n), whereas if

G(WW k
(n)),0, then the excitation is (vk

(2m2n) ,uk
(n)) with en-

ergye52lk
(n) . As a rule of thumb, to place all the releva

information in the eigenvalue, theu function must always be
the one with the largest contribution. This is formally stat
in G(WW ).0. In the following, we will refer to these
branches of the spectrum by the pairs of quantum num
(n,2m2n) and (2m2n,n), respectively.

We have discretized Eq.~37! in a basis which is the Car
tesian product of twice the one we used to solve the stat
ary GPE. To be more precise, using the notation of Sec
the expansion is as follows:

WW i
(n)5(

k
akS Pkn

0 D 1( bl S 0

Pl ,2m2n
D . ~38!

In this basis, the operatorH0n is diagonal, while the op-
eratorU must be evaluated, either by means of integrals
the wave function itself in position representation or by us
a tensor which is larger but equivalent to the one in Eq.~12!.
In any case, the equations are always linear and so the s
of the Bogoliubov spectrum consists in building and diag
nalizing a large real matrix.

Even though the procedure is quite simple, the matri
that one must build, especially in the case of strong inter
tion, are very large and tend to exhaust computational
sources. To reach large values of the nonlinearity, we ha
work in a subspace of states with even parity with respec
the Z axis. This way we could find the excitations with low
est energy for different vorticities at the cost of missing tho
with odd parity, which are more energetic anyway@32#.

F. Numerical results

Now that stationary vortex states have been found, as
cussed in Sec. III, we are going to present now our stab
results obtained with the previously described algorithm.

1. Stability of the m51 vortex line in a stationary trap

In this case one has to study a single operator,B0, to
know whether the state is stable. This calculation provide
branch of the spectrum of excitations that is denoted by
quantum numbers (0,2) and (2,0). We performed the sa
procedure for a wide range of nonlinearities in the absenc
rotation,V50, and the first conclusion is that the Bogoli
bov operator has a diagonal Jordan with real eigenvalue

In Fig. 4 we show a selected set of the eigenvalues of
Bogoliubov operator, both for a spherically symmetric tr
rs

n-
II

f
g

dy
-

s
c-
e-
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e
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e
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and an elongated trap. In those pictures several things
clear. First, there are two constant eigenvaluesl51, which
correspond to oscillations of the vortex line along theZ axis.
Second, there is a neutral model50 for the spherically
symmetric trap, which corresponds to the rotation symme
of the condensate around an axis on theXY plane. The sym-
metry and the mode disappear wheng52 ~see Fig. 4!. Fi-
nally, there is at least one negative eigenvaluem,0 ~more in
the case of elongated traps!, which is responsible for the
energetic destabilization of the system. The largest contr
tion to this destabilizing mode corresponds to a wave fu
tion that is captured in the vortex line and has zero vortic
i.e., it is acore mode~see Fig. 5!, as was qualitatively pre-
dicted by Rokhsar in Ref.@16#.

We must remark that the number of unstable modes
creases with the geometry factor—the more elongated
trap is, the easier it is to transfer energy from the vortex
the core plus longitudinal excitations. In other words, wh
for spherical and ‘‘pancake’’ traps (g<1) there is only one
negative eigenvalue which corresponds to an excitation w
a vorticity different from the unperturbed function, for elon
gated traps (g.1) we still have that mode plus some othe
which represent excitations along theZ axis. As a conse-
quence, if the experiment is subject to dissipation and th
unstable modes play a significant role in the dynamics, t
the more elongated the trap is, the less stable the vortex
be.

In Fig. 6 we show the lowest eigenvalues of the famili
(21,3), (1,1), (0,2), (2,0), and (22,24), that is, excita-

FIG. 4. Lowest eigenvalues of the Bogoliubov operatorB0 for
the m51 unperturbed state in~a! a spherically symmetric trap,g
51, and~b! an axially symmetric trap,g52. The solid lines rep-
resent modes with quantum numbers (0,2) and the dashed
represent modes of the (2,0) family. Crossing of levels is signa
with circles as a visual aid.
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tions where the main contribution is an eigenstate ofLz with
eigenvaluesm50,61,62. In those pictures one sees th
excitations with the same vorticity but opposite sign a
have different energy, a phenomenon which is solely due
the interaction.

2. Stability of m51 vortex lines in rotating traps

It was already proved@Eq. ~32!# that as the effect of ro-
tation is gradually turned on, the modes withn,m and with
n.m are shifted up and down in the spectrum, respectiv
A natural question concerns whether this shift is enough
stabilize the vortex states. We prove using numerical exp
ments that this is the case for our system.

It can be seen in Fig. 7 that the negative eigenvalue

FIG. 5. Shape of the destabilizing mode. We show both
original solution ~dotted line!, the largest contributionu ~dashed
line!, and the smallest contributionv ~solid line!. Functions have
been rescaled to aid visualization.

FIG. 6. Excitation energy of the lowest Bogoliubov modes
an unperturbed state withm51. The vorticities of each mode ar
written close to its corresponding line. Plot~a! corresponds tog
51, and~b! to g52.
t

to

.
o
ri-

is

slightly smaller than the stabilizing frequency,ul0u,V1,
which implies that forul0u,V,Vc the energetically un-
stable branch with vorticitym50 disappears. Also the eigen
values of Bn for n.m are found to be larger than (n
2m)V1. Thus, all the operatorsBn are positive at least in
the interval (V1 ,V2) and consequently the vortex with un
charge is a local minimum of the energy functional. Inde
there is a small interval (ul0u,V1) in which the vortex is
stable and there is a local minimum of the energy function
while the ground state has no vorticity at all.

Finally, the shifts are always real, which implies that t
Bn operators remain diagonalizable with real eigenvalues
without dynamical instabilities.

3. Stability of the m52 vortex line

Another interesting configuration is them52 multi-
charged vortex line. Here one suspects that a configura
with several vortices of unit charge has less energy tha
single multicharged vortex, under all circumstances. In ot
words, they must be always energetically unstable.

This intuitive perception is confirmed by the numeric
analysis. First the diagonalization ofB1 reveals that this op-
erator has at least one negative eigenvalue, whileB0 has
negative eigenvalues and a pair of complex eigenvalues
as we saw above, do not participate in the dynamics
must be discarded. Regarding the negative eigenvalues,
do not decrease with the nonlinearity, but are always lar
in absolute value than their linear limits. This implies th
there are always negative eigenvalues which cannot be
pressed with any rotation below the critical value,V2,V
,Vc<g.

The immediate consequence of this linear stability ana
ses is that, since the linearization of the energy~25! is not
positive, them52 vortex line is never a local minimum o
the energy. This is true even for the parameter interv
(V2 ,V3), in which it has less energy than the rest of t
stationary symmetric vortices. If them52 ground state is
not a minimum, and the other symmetric states have m
energy, we can conclude that the minimum of the ene
functional in the rotating trap withVP(V2 ,V3) must be a
state which is not symmetric with respect to rotations, a
was proposed in Ref.@24# for small nonlinearities. A similar
analysis can be performed for the stationary states withm
53,4, . . . , which extends this result to larger rotation fr
quencies that are all below the critical one.

e
FIG. 7. V1 ~solid line!, 2l0 ~lower dashed line!, andl3 ~upper

dashed line! for a spherically symmetric trap,g51.
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G. Lyapunov stability

As we saw above, a solution of Eq.~3! is Lyapunov stable
when every slightly perturbed solution remains clo
throughout the unperturbed one. It is very difficult to stu
Lyapunov stability of stationary solutions of Eq.~3! in a
rigorous way, a point which deserves further investigati
Here we have performed an ‘‘empirical’’ study of th
Lyapunov stability of the stationary solutions withm51 and
m52 by simulating numerically how they evolve for sma
perturbations and long times. The simulation was perform
with a three-dimensional split-step pseudospectral met
like that of Ref. @30#, using an 80380380 points grid to
study both theg51 andg52 problems.

The main result of this complementary work is that bo
the unit charge vortex line and the multicharged vortex l
are stable to perturbations which involve the destabiliz
modes as defined by Eq.~37!. For example, one may try to
add a small contribution~0.5%! of a core mode to them
52 vortex, with the result that the vortex line is split in
two unit charge vortex lines which rotate but remain close
the origin. We must remark that, although these simulati
only work for finite times which are dictated by the precisi
of the scheme and the computational resources, these t
are typically 20 or 30 periods of the trap, which is mu
larger than any of the magnitudes that one may address t
retically to the destabilization process, i.e., the negative
complex eigenvalues of Eq.~37!.

In the end, what these types of simulations reveal is t
the m51 and m52 stationary states are energetically u
stable, but this has no influence on the dynamic unless s
other ‘‘mixing’’ or dissipative terms participate in the mode

V. CONCLUSIONS

We have studied the vortex solutions of a dilute, nonu
form Bose condensed gas as modeled by the Gr
Pitaevskii equation~3!, both in a stationary, axially symme
ric trap and subject to rotation~or a uniform magnetic field!.

First, we have searched solutions of Eq.~4! that have the
lowest energy and which are also eigenstates of the t
component of the angular momentum operator,c(r ,z,u)
5 f (r ,z)eimu, in stationary and rotating traps using differe
values of the nonlinear coefficient ranging from small to ve
large values. It has been found that a nonzero angular s
is required in order to turn a vortex line state into a minimu
of the energy functional with respect to other states of w
defined vorticity.

Next, we have studied the stability of these station
solutions of the GPE. We have derived a set of coup
equations that account for both the linearization of the G
around a stationary solution and Bogoliubov’s corrections
the mean-field theory that describes the condensate. It
been proved that the problem may not exhibit dynami
instabilities of an exponential nature. In addition, seve
y
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other theorems have been proved that describe the phen
enology associated with the relevant modes.

The perturbative equations have been solved numeric
for stationary states havingm51 and m52 vorticities. In
both cases it has been found that the only instability is of
energetic nature, being limited to a small number of mod
whose nature was already predicted qualitatively in@16#.

For the vortex with unit charge, we have found that th
instability may be suppressed by rotating the trap at a s
able speed, and even when the trap is stationary it is expe
that it plays no significant role in the dynamics, unless th
is enough dissipation to take the system through the unst
branch. On the other hand, the linear stability analysis for
m52 multicharged vortex reveals that the energetic insta
ity may never be suppressed and that this configuratio
never a minimum of the energy functional, even though
lifetime is, once more, only conditioned by possible dissip
tion.

The last and probably most important conclusion of t
work is that in the rotating trap, and forV.V2, the state of
minimum energy is not an eigenstate of theLz operator, and
thus it is not symmetric with respect to rotations. A simil
result was predicted qualitatively in Ref.@24# by means of a
minimization procedure that is only justified in the limit o
very smallU. Our proof remains valid for the entire range
nonlinearities used here.

From an experimental point of view, this work has seve
implications. First, vortex lines with unit charge may be pr
duced by rotating the trap at a suitable speed and then c
ing the gas. Second, once rotation is removed, these vor
will survive for a long time if dissipation is small. Third, th
symmetric multicharged vortices are not minima of the e
ergy functional and thus it will be difficult to generate the
by means of cooling a rotating gas. And finally, if the
multicharged vortices are generated by some other me
then we can expect that their lifetime will only depend on t
intensity of dissipation, whose effect is to take the syst
either to them50 ground state ifV,V1, to the unit charge
vortex line state ifV,V2, or to a symmetryless multi-
charged state ifV2.V ~a phenomenon that is known a
splitting in the literature!.

The numerical results obtained have been possible du
the use of a powerful Galerkin spectral method that has b
optimized to allow for the consideration of thousands
modes, which is a step forward with respect to the previo
analysis.
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