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Spin-domain formation in spinor Bose-Einstein condensation
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The spatial structure of the spinor Bose-Einstein condensates with the spin degrees of freedom is analyzed
based on the generalized Gross-Pitaev&&iP) equation in light of the present spin-domain experiment on
me=+1, and O of the hyperfine stafe=1 of 2>Na atom gases. The GP solutions in three- and one-spatial
dimensional cases reproduce the observed spin-domain structures, revealing the length scale associated with
the existence of the weak interaction of the spin-spin channel, other than the ordinary coherence length related
to the density-density channel. The obtained domain structure in GP is compared with the result in the
Thomas-Fermi approximation. The former solution is found to better describe the observed features than the
latter.[S1050-294709)02412-9

PACS numbsg(s): 03.75.Fi, 05.30.Jp

[. INTRODUCTION various topological defect structures, or spin textures. We
also note that there is much remarkable reseft2hinto the
The experiments for Bose-Einstein condensat®BC) in phase separation problem of a two-component BEC consist-
alkali atomic gases, such &Rb[1], >®Na[2], and ’Li [3],  ing of different hyperfine states.
have been performed under a strong magnetic field since its Subsequently, Stengeat al. [6] produced an optically
experimental realization in alkali atomic gases in 1995. Thdrapped spinor BEC with a long cigar shape whose aspect
the magnetic field was used to confine a BEC system. Beratio is over 40 and examine whether these three-component
cause the atom spin direction adiabatically follows the magBEC’s can be either miscible or immiscible. The external
netic field, the spin degrees of freedom are frozen in thesenagnetic field is applied along the long axike z axis) to
magnetic trapping experimenitd]. see the spin-domain formation. After releasing the spinor
Recently, the MIT group succeeded in creating BEC usBEC, the Stern-Gerlach separation of the cloud is performed
ing an optical dipole trap formed by a single infrared laserto reproduce the original domain structure. Their analyses
beam[5-7] in which the spin degrees of freedom are all are based on the Thomas-Fer(liF) approximation, which
active (mg=1,0~1 of theF=1 atomic hyperfine state for neglects the kinetic energy of the above generalized GP
23\a). These atoms with the three hyperfine substates simugduations. They conclude th.at the spin-_deper}dent interact.ion
taneously undergo Bose condensation, leading to a spingh@nnel of the present spinor BEC is antiferromagnetic,
BEC, a situation analogous to superfldide [8] of a neutral rather t_han ferromagnetic in this particular h_yperflne state.
Fermion system or a triplet superconductor of a charged Fer- In this paper, we an_alyze the apove experiment by Stenger
mion system such as UPf9]. The spin degrees of freedom etal. [6] in more deteyl to de.termln.e the thrtl-:‘e-.d|menS|o_naI
- . . structure of the domain wall including the miscible and im-
play a fundamentally important role for governing their

. . miscible spin-domain structures. The one-dimensional calcu-
physics. An advantage of the present spinor BEC citde lation is also done in order to discuss the characteristic

or UPg is that it is a weakly interacting system and we KNOW g o4hs The arrangement of the paper is as follows. In Sec.
fairly well how the(quasjparticles interact using the knowl- | '\ve introduce the generalized Gross-Pitaevskii equation of
edge of atomic physics. These facts allow us the chance tg gose-Einstein condensed system with internal spin degrees
construct a microscopic many-body theory from first prin-of freedom. In Sec. Ill we simulate the actual experimental
ciples, using only a few fundamental matter parameters.  system in light of the experimental conditions of R&f and
Stimulated by the earliest optical trap experiment byjnyestigate three-dimensional systems. The properties of a
Stumper-Kurnet al. [5], general theoretical frameworks for gne-dimensional system in an idealized situation are ex-

describing a spinor BEC were given independently by Ohmiyored in Sec. IV. The last section is devoted to a summary
and Machiddg10] and by Ho[11]. They are equivalent basi- znd conclusion.

cally. The framework is based on Bogoliubov theory which
is extended to a vectorial order parameter with three compo-
nents, corresponding to=1,0,— 1 of theF=1 atomic hy-
perfine state, giving rise to generalized Gross-PitaeV&i)
equation. They calculate low-lying collective modes such as The Hamiltonian invariant under spin space rotation and
sound wave, spin wave, and their coupled mode and predigtauge transformation is written in terms of the three-

component field operator¥  , ¥4,V _4, corresponding to

the sublevelsng=+1,0,—1 of the hyperfine staté=1.
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H=Jdr2i W (0 (1)y(n) E=Jolr2i {¢r<r)hi<r)¢i<r>}+Jdr{En<r>+Es<r)},
. ©
R AN HOMIGIN I
b where
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£33 (S vioEanro) o .
’ En(n) =5 2 [4i(n]*, (10
where
72v2 gs ?
hi(r)=— == u V() =p(F )i +a(F; () EN=5 2 |2 #H O] . (D

is the one-body Hamiltonian/(r) is the trapping potential, . . . . )
i,j=0,+1 are spin indices an& (a=x,y,7) are the fol- We will use the following notation in Sec. IVZ(r)

lowing 3% 3 spin matrices: = i(n)/n(r) wheren(r) = ;| |,
It is possible to think that some spin-dependent type of
inelastic collisions affect the behavior of this spinor BEC.

01 0 N .
1 But in this paper, we concentrate on how the GP equations
FX:E 10 1), (3)  describe the spinor system.
0 1 0
I1l. THREE-DIMENSIONAL CASE
/0 -1 0
i . . i .
F——1|1 o -1 4) In this section we analyze the three-dimensional systems

in comparison with the actual experiments done by Stenger
et al. [6]. The main interests arél) the z position of the
domain wall, and(2) the radial shape including the mutual

1 0 O overlapping of the spin domains.
F,={0 0 0] (5)
0 0 -1 A. Experiment

) . . In order to establish a model system we briefly explain
We have introduced the linear and quadratic Zeeman enefpejr experimental conditions. The condensate is under the
gies [6], E,e=Eq—p(F,)+q(FZ) with p=p+p, and the magnetic fieldB(z) which is applied along the axis. Since
Lagrange multiplierp, represents the conservation of the the atoms are in the hyperfife=1 state, the condensate
total spin of the system. consists of the three components: ;, ¢, and¢_;. The
The interaction constants are related to the two kinds ofonuniform magnetic field8(z) is characterized by its field
scattering lengths, anda, corresponding to the total spin gradient:p’ <dB(z)/dz. Thep in E, is set to zero az=0
zero channel and two channel: andp=p’z. The stronger-field side of the cigar-shaped con-
densate is filled with the-1 condensate. As the system fol-
Amh? ag+2a, lows the total spin conservation, the opposite side is filled
9n= m 3 ©) with the —1 condensate. Stenget al. [6] observe the col-
umn density distribution of the three spin components and
estimate the interaction constagntfrom thez position of the
. (7)  domain wall between the spin components. The result de-
pends not only orp, but also on the coefficien. qocBS
whereBy,=B(z) is the base magnetic field. The experiments
are done for varioup’s andq’s. From Fig. 4 of Ref[6],
"=1 Hz/um and g=2 Hz corresponds todB/dz~
4x10"% mG/um and B,~20 mG. Because the system
size <300 um, we can treap’ and g as constant even in
this weakB,.
hi(r)+gn2 |¢j(r)|2 &i(1) They estir_nate the relations_hip pfandq to _thez position
] of the domain wall by approximating the cigar-shaped sys-
tem as a one-dimensional one with uniform density, which is
+0s> > (Fo)i,j bt (Fii=0.  (8) assumed to be 2/3 times the peak density. The kinetic term is
a [kl also ignored. This allows us to draw linesprq phase dia-
gram as a function of the interaction constapt(in their
The energy of the system is given by paper,c,).

_47Tﬁ2 az_ao
9= m 3

Let us introduce the three-component order parametgrs:
=(V;) with i=x,y,z. Following the standard procedure
[13], we can derive the Gross-Pitaevskii equation for de—1
scribing ¢;(r) from the Hamiltonian Eq(1):
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FIG. 1. The density plot of the-z plane. The dashed lines, the 0 50 100
solid lines aroundz=0, and the dotted lines indicate the densities @ z [um]

of the +1, 0, and—1 components. The upper solid curverat

=0 indicates the total density at=0. The peak density is 47 ’/ﬁ N{%
4.35<10%° m™3, p’=1.0 Hz/jum, and q=2.0 Hz. The optical = L0 -
confinement is assumed as the harmonic potential givel (oY g 37 4] —— J
=mi2{(27v,r)%+ (27v,2)?}, wherev,=15 Hz andv, =900 Hz. T R ‘ T
The total particle number is 8. K10°. N: 2 [~ oy
= !
B. Calculation T | i

In order to check whether or not their analysis based on 2 : : :
the above assumptioriene-dimensional TF approximation, / ! >\\ r=2
1DTF) agrees with the full three-dimensional calculations of 17 / 1 T~
the GP equation, we determine the spatial profiles of the - D ™
rotationally symmetridaround thez axis) spinor condensate 0 0 50 100
by solving the GP equation in thhez space using the differ- (b) z [um]
ence between the scattering lengtls—ay=0.19 nm
(<gs) and the peak densityyea= 4.35< 10°°m ™2 they esti- FIG. 2. The density profiles of the condensate. The peak density,

mated. We treated the magnetic-field paramgérandqas P: @ and the shape of the harmonic confinement are the same as in
constants of each system calculated and they do not vafjd: 1 except for the total particle number 8:090° in (b). The
spatially. Assuming these, we compare the calculations b ashed lines, the solid lines arournd 0, and the dotted lines indi-
1DTF, by three-dimensional TF approximati3DTF), and cate the densities of thet1, 0, and—1 components. The upper
by thr’ee-dimensional GP equati¢8DGP. In 1DTF, it is solid curves indicate the total densityg) The density profile at
assumed that the density 3 ' ' =0 and 2um. The =1 components exist even a=0. We call
. . Yy peak: . . the crossing between the 0 ardl componentgcircles the do-

(\jNg]flrSt dtlscluss thle do.malg Sitructurﬁ]al?rr]lg thtrection tmain wall. Thez coordinates of the domain wall are=19.5 um at

gr:]e eiarr?]liyll:aam’olelr gpl-ﬁ);/];?m equezer(; Hze) oae?hgo?aﬁgg.en P=0 and z=19.2um atr=2 um. (b) The density profile when

. ! ] S calculated with 3DTF. Ag increases, the domain waltircles
lated results with 3DGP is depicted in Figs. 1 até) 2There  parween the 0 component andl components moves towam

is a large overlapping region consisting of thel and the  —g. Thez coordinates of the domain wall am=24.1um atr

—1 components, between the region consisting of e =0 andz=16.2 um atr=2 um.

(or —1) component only and of the 0 component only. In o

other words, the double-peak structures of thé compo- Ccomponent and the-1 component. As seen in Fig(&, the
nent and+1 component are situated at both te0 side  Zcoordinates of the crossing points do not move appreciably
andz<0 side in Figs. 1 and(@). This feature is in accord Petween the two cases:-0 andr =2. However, the Cross-

with the observatior(Fig. 3 in [6]). Figure 2a) also shows Ng Point moves significantly in TF as seen from Figbj2
that the condensate itself allows the overlapping of thred N€ trace of these crossing points in the plane for various
components az=0 in certain values op’ andq. This ex- radial harmonic potentials are depicted in Fig. 3.
istence of three componentszt 0 does not occur in calcu- _
lations with 3DTF[e.g., Fig. 2b)]. Usually the difference C. Phase diagram
between the results of the TF approximation and of the full To compare the position of the domain wall between the
GP equation is considered to be an order of the coherena®component and the 1 component, we integrate the density
length ~1 wm here, but the difference between the two profile, e.g., Fig. 1 along thesurface. Figure @) shows an
treatments is as long as 20m, which is far longer than example of the results in 3DGP and Figb¥shows that in
expected. This behavior also occurs in the one-dimension@DTF. When the density profile is integrated along the
system and is discussed thoroughly at Sec.(IMis over-  direction this produces further overlapping between the com-
lapping atr=0 does not occur at largey, but the length  ponents especially in 3DTFcompare Fig. @) with Fig.
scale stays as long as 10m.) 4(b)]. As seen from Fig. @), thez coordinate of the crossing
Another interesting difference between the results frompoint in 3DGP is slightly smaller than the 3DTF case in Fig.
3DTF and 3DGP exists at the crossing point between the @(b).
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FIG. 3. The crossing point of the 0 component and th#
component fory,=30, 75, and 900 Hz. The solid line, which is
independent ob, , is the line when the TF approximation is used.
The 900 Hz line corresponds to Fig. 1. Each axis is normalized by
the TF radius and length, which are defined as (peak densiy)
=m/2(27v,Rp)2=mI2(2mv,Z+p)?%. The Re is 82.2, 32.9, and
2.74 um for v, =30, 75, and 900 Hz, respectivel; is 164 pm.

The acquiredz values of 3DTF for varioup’ andq val-
ues are shown in Fig.(8). The 1DTF linep=2y50.7 is
also plotted. The value 50.7 is derived uniquely from the :
assumed scattering lengths and the peak densiB/§). No 0
significant difference is seen. The lower branch lines in Fig. ()
5 comes from the density profile along thexis; Whenz is
large, the value 50.7¢ density must become much smaller. FIG. 5. Thep-g diagram.(a) Comparison between the the re-
Figure 5b) compares the 1DTF and the 3DTF. sults in 1DTF and 3DGP(b) Comparison between the results in

The differences inp-q diagram between 1DTF, 3DTF, 1DTF and 3DTF. The magnetic-field parameters gre-0.2, 0.5,
and 3DGP are small. Therefore, we conclude that the estil: 2, and 4 Hzum, andg=1, 2, 5, 10, 20, and 40 Hénot all of

the combinations are usedrhe 1DTF line isp=2+50.79.

' 3DGP
mate in Ref[6] is correct. But the shapes of domain walls
are not simple as shown in Figs. 2 and 3.

(10° ()™

\ IV. ONE-DIMENSIONAL CASE

N We have seen in the preceding section that the difference
™ between the density distributions by the TF result and GP
result is much wider than the usual coherence length
=<1 um. In this section, we take up the one-dimensional
system to investigate why this is so, taking into account the
effects of the kinetic term and the interactigg term. The
magnetic-field coefficientsp(andq) and the optical poten-
tial V(r) are set to zero in this section. The kinetic term, the
interaction @,, andgs) terms, and the chemical potentjal

100

L103Cum)™|

(b)

FIG. 4.

O,.

-150

-100

z |pm|

50

100

(@ The r-integrated density profiles forp’

are retained.

A. Positive g
Figures §a) and Gb) show the cases in whid) is posi-

tive. The ratio of the components is fixed at each end of the

=1.0 Hz/jum andgq=2.0 Hz. The overlapping of these integrated system; @’+1,§q,§,1):(0,1,0) at the left-hand que and
densities simply reflects the shape of Figg)2The z coordinate of (1'0_*(_)) at the rl_g_ht-hand edge of the System. We Ir_npo_se an
the domain wall is 19.%m. (b) The corresponding result for 2dditional condition that th¢_, component is zero in Fig.
3DTF. The overlapping of these integrated densities comes from th8(&). In this case, the overlapping betwegnand{ ., ; is seen
r-dependent shift of the domain wall depicted in Fig. 3. Bheo- 0 be an order of a few micrometers. This length scale can be
ordinate of the domain wall is 21,6m. These figures should be explained by¢s=\/3/8mn(a,—ag), which is about 1.2xm
compared with Fig. 3 ifi6]. in the present case. Figuréb® shows that when no compo-
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density [10°°m-3m]

density [1020rn‘3m]
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0 0
1
|C+1I

(©

FIG. 6. The one-dimensional systems with positigg(a,
=2.75 nm,a,=2.94 nm). The chemical potentialy is
4.35x10°7° m~3xg,. (a) The density variation of the three com-
ponents when the boundary conditioff (4], Zol,|¢-1])=(1,0,0)
atz=—10 um and (0,1,0) az=10 um is imposed. We suppress
{_4, over whole range of. (b) The density variation of the three

components when the boundary condition is imposed tha

(1Z:1l,1Z0l,12-4))=(1,0,0) at z=—10um and (0,1,0) atz
=10 um. (c) The landscape oE;. The labels(a) and (b) corre-
spond to the above figure&) and (b), respectively.

, 2
Ef% ; .E,: GHD(Faiigi(r)

n%gs
=Ll =10+ 20 Ll =),

(12

The upper and lower signs correspond to the positive and
negativegs, respectively. Equatioril2) shows thatE, is
minimum on the line|{,4|=]{_4] when gs>0, and on

|£ 41| +[£-1/=1 wheng<O0.

Figure Gc) shows the landscape &, wheng,>0. The
gray lines(a) and(b) in Fig. 6(c) correspond to Figs.(6) and
6(b), respectively. The lingb) goes along the minimum en-
ergy line|Z.,|=[¢_4| at first and this corresponds to tle
=—10 um to 5 um region in Fig. b). Both the lines(a)
and(b) climb up the hill in theE, landscape fronE,=0 to
Es=n?g4/2. This process is controlled by the kinetic term
and the interactiog, term in the GP equation, E¢8), and
the length scale is an order éf.

The spatial variation in Fig.(B) is also understood by the
so-calledd vector[8], which expresses the spin structure of
superfluid. Atz=—10 um andz=10 um thed vectors are
given by d=z and d=x+iy, respectively. In the region
from z=—10 um to 5 um the d vector rotates from the
direction to thex direction. Since these states are energeti-
cally degenerate, this length scale is governed by the system
size. On the other hand, in the region fras5 um to
z=10 um the d vector is described bg=x+ity wheret
varies fromt=0 (z=5um) tot=1 (z=10 wm). This state
change produces the energy variation related to the interac-
tion gs, thus is governed by the spin-coherence lergth

B. Negativegg

Figure 7 shows the cases in whigh is negative. In Fig.
7(@), the ratio of the components is fixed to
(1€ 1)1 &ol,1£-1])=(0,0,1) at the left-hand edge and (1,0,0)
at the right-hand edge of the system. As shown by the gray
line (&) in Fig. 7(c), the system goes along the minimuig
line |£ 4|+ |{_1|=1. Therefore, the length scale is not con-
trolled by &5 and it becomes as long as the boundary condi-
tions allow, that is, the length scale is determined by the
boundary condition. This gentle shape contrasts remarkably
with Fig. 7(b) which shows the system when the ratio of the
components is fixed to|{.4|,|%ol,|¢-1])=(0,0,1) at the
{eft-hand edge of the system. The quick change araund
—10 um to —7 um is controlled byé in a similar reason
of the previousgs>0 case. It is interesting to note that the
{_, component spontaneously appears to mininkze the
system without restriction does not go along ti§e ;|=0

: . . . line.
nent is suppressed, the overlapping region becomes wider

and is subdivided into the wider region—(@0 um<z
<5 um) where{_;=¢,, and the narrow region (mm
<z<10 um) wherel_,# .. The latter region is charac-
terized by the coherence lengih.

The difference between Figs(ed and &b) is explained
by considering thé term of the total energfEq. (9)]. The
relative phases of’s (equivalently, of¢’s) are determined
under the condition thaEg is minimized as shown in the
Appendix. We can writdeg as

C. Length scales

The length scale of the density variation in the system
without the spin freedom is determined = /1/(87wna)
wherea(>0) is thes-wave scattering length. This is equiva-
lent to ¢,=+3/8wn(2a,+a,) (where Z,+ay>0) in the
system treated in this paper. The origin&fis the compe-
tition between the kinetic term and the interaction term with
g, in the GP equation.
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total ! 7 (2) &. When the total density does not vary significantly,

4 § S this length scale becomes important. The origin is the com-
! / petition between thg, term, Figs. 6¢) and 7c) for example,

’ and the kinetic term in the GP equation. This length is seen

in Fig. 6(a) and the left-hand side of Fig.([).

(3) There is another length controlled by the kinetic term,
and conditions other thag, andgs. In this model system,
“conditions” means the boundary conditions at each edge.
When the spin state of the system varies along the lowest
energy line ofEg and the total density does not vary, the
length scale of the density variation of the components is
governed by neitheag,, norgs. In other words, by neith&l)

&, nor (2) &. The characteristic length is controlled by the
boundary conditions in the one-dimensional cases: the left-
hand side of Fig. @) and Fig. 7a). They correspond to the
line (b) in Fig. 6(c) and the line(a) in Fig. 7(c).

As for the previous three-dimensional calculations, type
(3) of these length scales explains the difference between the
results of the 3DGP and the 3DTF in FiggaRand Zb). The
magnetic-field parameteppsandg determine the characteris-
tic length when 3DGP is used. It is neithgr nor &;. We
note that the, ; and{_,; components have the finite density
at z=0 in Fig. 2a). This long length scale is explained by
the minimum energy line of thgs term in the GP equation
(or Eg). This is the|{_4]=|{, 4| line of Fig. 6c).

density [1020m—3m]

V. SUMMARY AND CONCLUSION

We have investigated the spinor BEC systems based on
the generalized GP equation extended to the cases where the
BEC has the spin degrees of freedom. The spatial structure
of the domain wall which is the interface of the different spin
states of BEC is analyzed by solving the GP equation for
both rotationally symmetric(around thez axis) three-
dimensional and one-dimensional cases. The former case
simulates the actual experimental situation of Sterejel.

[6]. Our calculations show that the simple TF approximation
taken by Stengeet al. can be justified and yields the correct

0 e, 12 value of the interaction constant of the spin channel which
0 0.5 [ turns out to be antiferromagnetic in the present hyperfine
© — state F=1 of *Na atoms. The full GP solutions in both

. . . ) three- and one-dimensional cases reveal a long length scale

FIG. 7. The one-dimensional systems with negatge (a, . . . . . 9 gth s
—2.75nm, a,=2.56 nm). The chemical potentialx s associated with the interaction of the spin channel, yielding
435<10%° m 3xg,. (a) The density variation of the three com- the large overlapping region between the immiscible compo-
ponents when the boundary condition is imposed that'€Nts(€.g., 0 and+1).
(1¢+1l,[Zol,[£-4))=(0,0,1) at z=—10um and (1,0,0) atz
=10 um. (b) The density variation of the three components when ACKNOWLEDGMENT
the boundary condition is imposed that|{(4],|Z0l,|Z-1]) CKNO G

=(0,1,0) atz=—10 um and (1,0,0) ag=10 um. (c) The land- The authors thank S. Inouye for valuable discussions on
scape of;. The labelda) and(b) correspond to the above figures, their spin-domain experiments.

(a) and (b), respectively.

On the other hand, there are three types of length scales in
system with the spin freedom. APPENDIX: RELATIVE PHASES OF ¢

(1) &», which is explained above. This becomes dominant The relative phases of the three component condensate

when the total density varies. This is not Significant in theSQ/\/ave functions are determined such that the energy density
one-dimensional systems because their densities are almastthe g term

uniform. In three-dimensional calculations, ttegal density

profile along the axis in Fig. 1, which is gentler than that in )

3DTF (no corresponding figure in this papeis explained E _9s 2 2 * (F.); i (A1)
by &, . S22\ T e
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is minimized under the condition that the amplitudesfoére fixed. This is because the other term&iare not affected by
the choice of phases. We assume that

(¢1,b0.d—1)=(B1€'"1,Bg,B_1€"7-1), (A2)

whereB;(=0) andvy, are real numbers. The amplitud@sare fixed and we determing to minimizeEg. From Eq.(Al) we
obtain

ZES d’% * * \2 * * \2 2 2 12y2
9 = 7[(¢1 thr1t 1+ %)= (P — Pt d_1— d* )]+ (| a|*— % 4]%)
_ Bg 2 H H 2 2 2 2
—?[(2,310037’1"‘2,371005771) +(2B;18iny;—2B_3siny_1)°]+(B1—BZ1)
=283 BT+ B2 1+ 21810t yi+ y_1) ]+ (BT— B2 1)% (A3)
Wheng¢>0, E, is minimized withy,+ y_,=a. Therefore, we can také as
(¢1.40,4-1)=(B1,Bo,—B-1)- (A4)

Whengs<O0, y;+v_1=0. Therefore,
(p1,00,¢-1)=(B1,B0,8-1)- (A5)
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