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Integral boundary conditions for the time-dependent Schralinger equation: Atom in a laser field
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We formulate exact integral boundary conditions for a solution of the time-dependentBgeoequation
that describes an atom interacting, in the dipole approximation, with a laser pulse. These conditions are
imposed on a surfaodoundary which is usually chosen at a finitbut sufficiently remotgdistance from the
atom where the motion of electrons can be assumed to be semiclassical. For the numerical integration of the
Schralinger equation, these boundary conditions may be used to replace mask functions and diffuse absorbing
potentials applied at the edge of the integration grid. These latter are usually introduced in degmToxi-
mately) compensate for unphysical reflection which occurs at the boundary of a finite region if a zero-value
condition is imposed there on the solution. The present method allows one to reduce significantly the size of
the space domain needed for numerical integration. Considering the numerical solution for a one-dimensional
model, we demonstrate the effectiveness of our approach in comparison with some other numerical methods.
[S1050-294{@9)10412-9

PACS numbes): 42.50.Hz, 32.80.Wr, 32.80.Fb, 31.1%

[. INTRODUCTION ods, including the lattice methodsee, e.g., Ref410,11]),
certain practical limitations of the standard approach have
Several nonperturbative theories such as Flodugt now become apparent. They will be discussed below, within
Sturmian-Floquef2], and R-matrix—Floquet[3] methods, the method of integral boundary conditioi8C) proposed
have been developed to treat the time-dependent Siclier ~ In the present work.
equation(TDSE) for an atom interacting with the classical ~ The organization of the paper is as follows. In Sec. II, we
laser field. These methods are particularly suited for modergdive references to other numerical methods and we outline
ate intensities and long laser pulses. However, experimentéie main elements of the suggested IBC approach. In Sec.
techniques are now moving towards generating superintend, the derivation of the boundary conditions with the help of
and supershort laser pulses. New computational methods ate integral equation for a Green’s function is carried out for
required to accommodate these extreme experimental condi?e general three-dimensional case. The cases of a spherical
tions. The numerical solution of the TDSE on a time-spacdoundary and the Coulombic case are considered separately.
grid is a recognized powerful and universal method. Thedn Sec. IV, we consider the one-dimensiofaD) case and
wave-packet dynamics of atom-laser interactions can bé&rmulate some relations needed for calculating the final
studied in great detail. This approach has been found particPectral densities for the electron via the solution obtained in
larly important for the adequate description of such pro-a finite region of space. In Sec. V, a numeric@lrank-
cesses as multiphoton ionizatidMPI), stabilization, and Nicholson-Galerkin method is formulated which uses a fi-
high-harmonics generation. It has been extensively exploretlite difference representation of the integral boundary con-
with one-dimensional mode[g!] as well as for real atomic ditions. In Sec. VI, we apply our IBC theory to the solution
systems. The TDSE calculations on atomic hydroggnon  of @ model-1D TDSE and discuss the results, in comparison
atomic helium[6], on the Coulomb explosion of the;H With the complex coordinate conto(€C) and rigid bound-
molecule[7], as well as the time-dependent calculations ord’y Methods as well as with a method recently suggested by
some one- and two-electron linear molecular ig@khave ~ Bouckeetal. [12]. Section VII concludes the paper.
been reported by several groups. The interrelation between Atomic units are used throughout the paper.
the high-frequency FloquéHFF) theory[9] and the TDSE
method which deals with the wave-packet dynamics, has Il. GENERAL REMARKS
been recently analyzed in R¢f.0]. _ ) ) o )
Despite the marked success of TDSE calculations and the For the laser-induced tlm_e evolution of the initial atomic
development of several highly efficient numerical grid meth-State, the quantum-mechanical problem

i W (x,t)=H(t)W(x,t) (2.1
*Electronic address: ermolaev@ulb.ac.be
"Electronic address: selin@thsund.jinr.ru is formulated as an initial value problem in an infinite do-
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main of the configuration spad® with the requirement that certain advantage of the method in calculating the above

the wave function vanishes at infinity. threshold ionization(ATI) and ionization rates. Their treat-
In the case of a one-electron atom which is presently conment, however, assumes the field-free asymptotic motion of
sidered, the Hamiltoniaki(t) in Eq. (2.1) is taken to be the electron which is not a very accurate assumption, particu-
larly for strong fields and long-range potentials. Also, as a
1 e \?2 consequence of their approach, it was necessary to carry out
H(t)= 5( p— A V(X (220 all calculations in the Kramers-Henneberger frafgi]

where the interaction is localized.

In the present paper, we consider a more general IBC
approach based on a theory of the parabolic potentials of the
simple and double layers. We note that the reduction of the
original differential equations to an integral form using the
Green’s functions, is a method which has been known in

be considered in this papeh is a function of timet only. mathematical physi_cs.for a long .time. Though .it had peen

The electric field £(t) due to A is given by £(t) applied before to elliptic, hyperbolic, and parabolic equations

= (16) A1) [22], apparently, it has not been used yet for the time-
! y dependent Schdinger equation. In our formulation, we use

wherex andp=—iV, are the position and momentum vec-
tors of the electrony(x) is the atomic potential, ardl is the
vector potential of the classical electromagnetic field inter
acting with the atom¢=~ 137 is the velocity of light ane is
the electron charge. In the dipole approximation which will

The numerical solution of Eq2.1), is usually carried out the int 't t th tion 1o | traint
with the zero-value boundary condition imposed at a finite € integral form ot the equation o IMPOSE a constraint on
; ) the solution of the initial value problem. The choice of the

distanceR, from the atom: . :

surface where the constraint has to be applied should be
W (x.t)| = =R forall t. 2 made suph that |t_ would assure the co_rr(a;rgmlclasswal
[WODI=0, [x|=Ro, fora @3 asymptotic behavior of the TDSE solution in the external
egion of the configuration space. The case of a short-range
%otential is considered at length. In principle, the proposed

ethod is free from some restrictions imposed in R&2].

Once the space domain is chosen to be finite, retainin
some rigid boundary conditions causes unphysical reflectio

of the wave packet at the boundary and the reflected part . . .
oreover, it can also be used for a general semiclassical

the packet is fed back into the system. Various technique . . X .
have been developed in order to compensate for the effecfOnstruction of the asymptotic Green's functig@s,24. As

The correction is achieved by either introducing an absorb®" example, a construction Of. the Green's fgnctlon in the

ing component into the atomic potent[dl3], or using mask case of a Coulomb potential will be also considered.

functions[14]. An extension of the latter approach by split-

ting the wave function into two part$or the interaction and 1. BOUNDARY CONDITIONS

asymptotic regions introducing two complementary mask

functions, and propagating two parts of the solution sepa- o

rately, has been considered in Rgt5]. In the series of ~ We are considering the general case of a three-

papers, the boundary correction has been considered by iflimensional spac&®. Let us denote viaG(x,t;x',t') the

troducing complex coordinate contolds]. However, by its  time-dependent Green’s function of the original TD&EL).

nature, these corrections, generally speaking, have to bENis function is the solution of the problem

made at a large distance from the atom and they are approxi- o , ,

mate. Moreog\]/er, the domain of the configur)fa\tion Egace LaGOGtx 1) =0, t>t', xx' ek’ (31

where the solution has to be accurately obtained, may bﬁ/hereL

large for ionization rate problems and even larger for treating

MPI [17]. Therefore, though absorbing boundaries and mask

functions work as a practical prescription, they do not relieve

the numerical integration methods from the necessity of us-

ing overextended space grids. wherel
A possible way of resolving these difficulties is to refor-

mulate the problem and impose some conditions on an inter-

meQiate surface. .For time—independent guantal problems, il applied in both cases. Here the operatdr is complex

bl :;tey t%;;f‘;‘;;ﬁﬂcg'emgg‘fgsag ';;‘gmi'te?‘r‘;ﬁg o ef?go‘éx conjugate of the Hermitian Hamiltonia. Note that for ar-

[19], where either a partial or full scattering problem is for- bltr?ry, functlon,s ,u(x,t) ,a|,1d *V(X’t), t’he expression

mulated within a finite domain oR3. We also note an ex- 4(X:t )!_x,,t,v(x ’_t ) —v(x",U')L, u(x’,t') can be trans-

tension of theR-matrix method to time-dependent problems formed into the divergence form

[20]. The present work also uses a partition of the configu-

ration space though in a context different from either one of

the above methods. 1
In a recent paper, Boucket al. [12] have suggested a :iat,(uv)+—divx,(uDX,,t,v—vD:, U,

particular way of imposing integral boundary conditions 2 ’

(IBC). They applied the IBC to a one-dimensional atom with (3.9

a short-range potential in a strong laser field, within the

electric-dipole approximation. Their results demonstrate avhere the differential operatd, ; is given by

A. Parabolic potentials

xt=1d—H(x,t), and the conjugate problem

Ly ¢G(xtx,t)=0, t>t', xx'eR% (3.2

*

= 10y —H*(X',t"). The same initial condition

G(x,t;x t)—8®(x—x"), t'—=tt>t" (3.3

ULX/’t/V_VL:,t,U
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e t
Dyt= V=i ZA(X1). (3.9 V(X,t)=—J dt’f do’ v(x, ,t)G(X,t,X;,t"),
' c to o
(3.10

Integrating Eq(3.4) over a domain of the spad& and time
t gives the well-known Green’s identity. t , o ,
Let W be an arbitrary finite region of® which includes W(X’t):ft dt’f do’ (X, ") ng- D GX X, 1),
the atomic nucleus and is bounded by a piecewise smooth 0 7 (3.11
surfaceo. The exterior toW will be denoted as usual via '
R3\W. Let us take in Eq(3.4) the functionu(x’,t") to be
the Green’s functiorG(x,t+ €;x’,t"), €>0, and the func- F(X't):f d3x' (X' ,tg)G(x,t,X",tp). (3.1
tion v(x’,t") to be the square-integrable solutidn(x’,t") RAW
of the original TDSE, ] o . o
wheret, is the initial moment of time for the initial-value
L, ¥ (x,t)=0, (3.6) problem(2.1). _ _ N .
’ Due to the singularity oG, the quantities defined by Egs.
(3.10—(3.12 can be given a classical interpretation as po-
tentials generated by some surface and volume mass distri-
R3\W and with respect to tim¢ fromt, tot. The left-hand  Putions. Similar potentials appear in the general theory of
side of Eq.(3.4) is identically zero due to Eq<3.2) and gf’”abo“c quatlongzs].hlrrl the prhesent case Of. th? Schro .
(3.6), and the right-hand side can be integrated by parts inger equation, we shall use the same terminology as in
After taking the limite—0, one finds Ref. [25] and _refer FO Eqs(3.10-(3.12 as parabt_)llc p_oten-
tials. Thenv is a simple-layer parabolic potential with the
surface densityy, w is a double-layer parabolic potential
Ozi‘P(th)XW(X)_if d3x’ G(x,t;x",tg) W (X ,to) with the surface density., andF is the initial-value para-
AW bolic potential. Making use of these quantities, E2}7) can
be rewritten as follows:

with specified initial conditions at=t,. We integrate the
identity (3.4) with respect to coordinate’ over the domain

o

1(t , ’ ’ 'y s
_Eﬁodt J'da' {GD'W¥(x. ,t")—W¥(x,,t")D*'G}, |
(3.7 ‘I’(x,t))(w=F(x,t)+E{v(x,t)+w(x,t)}, xe R3,

(3.13
where do is a vector element of the surfaee which is
pointed outwardW. Here it has been used that the wavefor anyt>t,. This formula is a general relation satisfied by

function at large distances tends to zero sufficiently fast sehe solution of Eq(2.1) for an arbitrary choice of the region
that the surface integral taken over the outer surface at infing/ enclosed by a surface. It has a form of an integral

ity vanishes._ _ _ . _ equation which determines the wave functioki(x,t)
The functiony,y in Eqg. (3.7) is a characteristic function through the parabolic potential8.10—(3.12. As these po-
discontinuous irk?, which is defined25] as follows! tentials are defined in terms of the full Green’s function, Eq.

(3.13 can be used for constructing the solution of E2}1)

. only within some method of successive approximations.
xw(x)= I|mf d3x’ G(x',t+e,x',t) y PP
e0Jd RBAW
3 B. Integral boundary conditions
1, xe R\W,x & o, ) L .
¢ Now we shall discuss an application of E§.13 which

. 1 is important in the numerical solution of E¢.1). Let us
- ) Xe g, (38) . . ..
2 consider the special case where the paiig on the surface
0, xe W xe o, o. Then Eq.(3.13 takes the form

Xy 1) =2F (X, ,t) +i{v(x,,t)+w(x,,t)}. (3.14
Let us denote by and v the values of the wave function #{ ( v ) Hw( I

and its normal derivative om, thus This relation expresses the fact that values of the wave func-

tion u and its normal derivatives on the surfacer cannot

Wlp=p(xs.1), Ny Dy W[, =v(x,,1), B9  pe arbitrary functions but must satisfy an integral constraint

_ _ (28]
wheren,, is a unit vector normal to the surface and di- Equation(3.14 can also be obtained by considering the
rected outwardV. We introduce functions, w, andF asso-  |imiting passage in Eq(3.13 asXx—X,, X¢o. Then the
ciated with these quantities, according to continuity of the simple-layer potential and the discontinuity

of the double-layer potential in the limit should be taken into
account. For the potentiat we have
The convergence of the integral is assured by endowing the time
variablet with an infinitesimal imaginary part which has the proper lim w(x,t)=Fiu(X,,t) +w(x,,t), (3.15
sign, t—te 0. X—Xg
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where the upper sign<{) corresponds to approaching the et

surface from outside and the lower sig# ) corresponds to &t)=- EJ A(7)dr. (3.22

approaching it from inside the internal regigvi Due to the

continuity of the wave function, the limits of E3.13 from  The form (3.20 of the G, is determined by the WKB ap-

inside and outside of the surfaoegive, of course, the same proximation which gives the exact result for the TDSE with

result as Eq(3.14. the Hamiltonian(3.19 [27]. This Green’s function can also
Equation(3.14 will be the starting point for the deriva- pe obtained in a straightforward manner from an expansion

tion of integral boundary conditions to be imposedmffior  in terms of the corresponding Volkov stat®g(x,t),
the solution of TDSH?2.1) in internal domainw.

First, we shall consider the case of a fast-decaying atomic _ _ [
potential V such as, for instance, the short-range Yukawa @k(x,t)—exp{|k-[x—§(t)]—§k L (3.23
potential. Let us denote vi#l,s the HamiltonianH, Eqg.
(2.2), without the potential ternv, i.e., Then
H(t)=Hag(t) +V, (3.16 d3k
Gas(x,t,x',t’)zf—sﬁ)k(x,t)’If(x’,t’). (3.29
and consider the auxiliary problem (27)
10,0 (x,t)=H ()T (x,1). (3.17 Now we shall use the integral equati¢®.18 to replace

the full Green’s functiorG in Eq. (3.14 by the asymptotic

The corresponding Green’s function of this problem will be Gréen’s functionG,s as derived above, and obtain the
denoted asS,(x,t;x’,t'). Due to the fast decay of the po- @Symptotic parabolic potentials. _
tential vV at |x| —, an arbitrary solution of Eq2.1) satisfies Multiplying both sides of Eq.(3.18 by the density
also Eq.(3.17) in the asymptotic region. v(x',t") an_d integrating Wlth respect to timé from tq up to
It follows from Eq.(3.16), that t and keeping the surfage fixed, one finds that the simple-
layer potentialv satisfies the integral equation
G(x,t,x",t")=G(x,t,x',t")

t
t v(x,t)zvas(x,t)—if dt”f d3X” G (X, t,X",1")
—iJ,dt”J d3X" G, q(X,t,X",t") to
t XV(X V(X" E). (3.25
X V(X" t")G(X" 1" X" t'), (3.18
Here the zero-order term,s is a simple-layer parabolic po-
where integration ovex” extended to all configuration space tential constructed as in E¢3.10 but with the help of the

RS . s .
1 asymptotic Green'’s functio®,,
We note that the probleit8.17) is simpler than the origi-

nal Eq. (2.1 and, in some cases, E(3.17 may have an v L .
analytical solution. Vas(X,t) =~ . dt’ [ do'v(X, 1) Gas(X, 1%, 1),
Due to the dipole approximation, the asymptotic Hamil- 0 (3.26

tonianH ¢ is given in the velocity gauge by

Similar integral equations can be obtained for the double-
layer parabolic potentiale andw, as well as for the initial-
value parabolic potentials andF ..

The following form of the integral relatio3.13 is ob-
where the term quadratic i(t) has been removed from Eq. tained by substituting in it the asymptotic equations derived
(2.1 by a simple phase transformation of the wave functionabove:

Had(t) = — %AXH SA(t)-VX, (3.19

v,
The explicit form of the Green’s functioB, of the 3 i
TDSE with the Hamiltoniar(3.19 is T xw(X)=Fas(x,t) + z{vas(x’t)+Was(X,t)}
IS 1) 'ftdt"f X Gagl X1, ")
G, (Xt x' t')y=——"""""—, t>t', 3.2 - X Bagd X 1LX,
asl ) 2 (Lt (3.20 to

XV(X" "W (x",t" xX"). 3.2
whereSis the classical action for a particle in the fidqt) ( ¥ Jxw(x) (3.29

taken to be a function of the initial and the final position andThe use of asymptotic parabolic potentials in E2j27) gen-

time (the Hamilton principle functiop that is, erally assures the correct asymptotic behavior of the wave
, 12 function of the original probleng2.1).
S(X.t:x’ t,):[x—f(t)—x +E()] (3.21) If the potentialV(x,t) is a short-range potential, and the
T 2(t—t") domainW contains the main region of action ft then the

last term in Eq.(3.27) is negligibly small since due to the
and &(t) is the classical displacement of the electron due tgresence of the characteristic functigg,, the integration
the field given by extends only outsid®V. Thus, in this case, the equation on
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the boundary has the for3.14) where the parabolic poten- means that the functio@(t,t’) in the last expression takes
tials are simply replaced by the asymptotic potentials, i.e., values close tdR but it is never zero, provided tha& is
sufficiently large. Then the second term in the inted8aB3

can be neglected because it contains a rapidly oscillating
exponential at’ —t. To estimate the neglected quantity, let
us consider the leading term of the asymptotic expansion of
he following integral:

(X 1) =2F 3o(X,, 1) + i{Vas(Xa )+ Wad(X, :t)}'
(3.28

This boundary condition is, generally, a linear, nonlocal
relationship between the boundary and the initial value of thé
wave function. We also note that, for the potentials decaying
too slowly, Eq.(3.27) may require the next iteration with

respect to¥ or some other methods of solution.

C. Spherical boundary of domain W

Now we consider a particular case where the surtacd
the domainw is a sphererg of large radiuR>a, wherea,

t ) o
|(x)=ft dt' (t—t')~2e™M=t"g(tr),  a<2,
0
(3.34

wherex— +o0, andg(t’) is a smooth nonsingular function
in the segment[ty,t]. By changing variables,p=(t
—t")"1, this integral transforms to

is an effective radius of interaction. For the sake of simplic-

ity we assume also that the initial wave functit(x,ty) is

negligibly small in the outer domain beyontk. Then the
termF ,¢(x,t) in Eq.(3.28 can be dropped. Thus, our task is

+ oo .
'(”:f " 2dpetrgt-p Y. (339
(t—tg)

to find the asymptotic expressions for the parabolic pOte”Integrating by parts gives the leading asymptotic term, thus

tials v,s and w,s on the sphereog. Let us denoteh
=R x,,
Q(t,t)=[Rn—&t)+ &1t')], (3.29

and

RN— &(t)+ &(t')
IRN— &)+ &t')|

Making use of these notations, the Green’s functidr20

can be written as
R+Q?
expgi———
2(t—t") p[ RQ., .
ex —|ﬁn cmW|.

[27i(t—t')]%?
(3.30)

o(tt)= (3.30

G,s(RN,ERN t7) =

The angle integration in E¢3.26) with the Green'’s function
(3.3)) overog can be carried out by taking into account the
leading contribution from the points of the stationary phase
in the directionsh’ =+ @. Indeed, the angular part of Eq.
(3.31 has, as a distribution, the asymptotic representation

oo 2

i .. PN
T{e*'xﬁ(n,w)—e”‘é(n,—w)}+O()C2),
(3.32
where 8(n,®) is the & function on the unit sphere and

=(RQ/t—t’). Thus, the angle integration in Ed3.26
yields for the potential/ ¢

o [R__av (Q-R?|
Vag(RN,t)= W0 ) ex I2(t—t’) v(o,t")
QR .

eX[{Im v(— w,t )] (333)

(t—tg)>

e g (tg) O 7).

(3.3

Taking a=1/2 and\ =2R? in Eq. (3.36, one finds that the
absolute value of the estimated term in E2.33 is of order

I(\)=—

(t—19)*

RQ(tt) (3.39

|v(— o(t,to) o).

Here it should be taken into account that the valueg a@ind
v at the initial moment, are negligibly small, hence the
second term in Eq(3.33 can be neglected.

The case of the potential, s can be dealt with in a com-
pletely analogous manner. As a result, the asymptotic form
of relation(3.29 is found to be as follows:

(Q-R)?
) tReXF{I—Z(t—t’) dt’
#NO= ) QT o)
X|M(&),t’)(ﬂ—9&)-A(t’) —iy(&,,t’)].
t—t' C
(3.39

In the particular case oA=0, this relation reduces to one
obtained in Ref[12].

D. Coulomb potential

Now we shall consider the case of a Coulomb potential.
Due to a slow rate of decay, it causes the specific phase
distortion in the time-independent Coulomb Green’s function
at large distances, in comparison with the short-range poten-
tials. This effect should be taken into account while deriving
the boundary conditions. Following the general method out-

Here we restrict our attention to such electric fields that thdined above, we have to construct a semiclass&alwhich

classical displacemei(8.22 &(t) is bounded for all times. It

will be used in the exterior domaiR®\ W. We shall achieve
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that by considering an approximatid®(x,t;x’,t’) to the ~ whereS, is the expressior3.21). In Eq. (3.45, the phase
time-dependent Coulomb Green’s function which satisfieglistortionZ is defined as

the following equation: t d
r
Z(x,t;x"t')= —_—T, 3.4
( =) Xl )] (349

and the densityC is the same as above in E@®.44). Note

together with the initial conditiori3.3). As follows from the that this approximation does not work if the classical trqjec—
physical argumentssee, e.g., Ref29]), the motion of the 0y Xo(7) passes through the Coulomb center because in the
particle is semiclassical at distances much larger than BoH@tter case the integraB.46 is not defined. Below we ex-
radius. Thus, for our purposes, it should be possible to appl§lude this case from consideration.

the WKB techniqueg24]. The functionG, is sought as a In order to estimate an error in such a model, we first note
product: that the functionZ satisfies(within the assumptions stated

above the Laplace equation

(44

1 e
1 0{Ge=— EAXGC+i EA- V,G.+ Ix]

G., (3.39

— oyl +1) @l S EX )
G.=C(x,t;x,t")e : (3.40 A,Z=0. (3.47)
whereC and S are arbitrary real-valued functions. Substitut-

Thus, the continuity e tio(8.41) holds exactly. Second,
ing Eq. (3.40 into Eq. (3.39 yields the following system: us inuity equatio(8.41 S exacty ¢

the actionS Eg. (3.49, satisfies the Hamilton-Jacobi equa-
tion in Eq. (3.41) only approximately. After some manipula-

4,C2+div, CZ( VXS—EA) ] =0, tions one finds that the errihus, it is a relative error for the
¢ (3.4 solution of Eq.(3.39 in the form of Eq.(3.40] is
1 e a AC '
9S+5(V,8)2——A-V,S+—=——. 1 t—t')?
St (VS A Vs x|  C E(VXZ)2~a2( 4) , (3.48
p

The first line in Eq.(3.4)) is the continuity equation for the ] .

densityC. The second line, with the right-hand side set to beherep is the distance of closest approach, from the Cou-
zero, is the Hamilton-Jacobi equation for the action describlomb center to the trajectorf(o(7;x,x"). This estimate can
ing the classical motion of the atomic electron. The left-handP€ useful for choosing the grid size for the numerical inte-
side of this equation is identically zero if the functigis  9ration of the TDSE if one uses the approximationGe
taken to be the integral of the Lagrange function calculate@onsidered above.

along the classical trajectory of partic 7;x,x’), with the The phase distortioZ depends on the particular form of

case separately. However, in the field-free case it is evalu-

) e 2 ated explicitly to give
: X(7)+ <A(7)
= - t—t’ X[[x=x"|+x- (x—x’
S J;;dT 2 |X(7')| . (342 Z(O)(X,I;X’,t’):a | || | ( ) .
[x=x"] |X"||[x=x"] +x"- (x=x")
We note that if the Coulomb potential is absent in E341)
then the exact trajecton)y(7) is (349
) ) We note the formal correspondence between this expression
X&) —x & . S, and the asymptotic distortion term in the phase of the sta-
Xo(7)= t—t’ (7=t)+&(r) = &) +x, tionary Coulomb Green'’s functio@.(x,x’,E+i0) [28] pro-
(3.43  vided that one treats the factort'/|x—x'[ in Eq.(3.49 as
(ZE)_]'/Z.

and the action of E((3.42 evaluated along this trajectory is ~ Considering the field-free case for the spherical boundary

exactly the expressio(8.21). Moreover, if the density func- of radiusR>1, in exactly the same way as it was done in

tion C is taken to be independent of the space variables, Sec. llIC, one finds the asymptotic form of the boundary
equation(3.28 with the Coulomb corrections, as follows:

C=[2mi(t—t")] %2 (3.49
. a 12 ’
then both equations in Eq3.41) are identically satisfied R texr{_lﬁ(t_t |
provided thata=0. The resulting function coincides with p(nt)= fto Rai(t—t')

the Green'’s functiorni3.20.

In the case oftv# 0, we shall introduce an approximation alt—t')
which is similar to the eikonal approximation for the time- { -

,u(ﬁ,t’)—iv(ﬁ,t’)]. (3.50

independent cadsee Ref[28]). Namely, the solution of Eq. 2R?

(3.41) is obtained by evaluating the acti@in Eq. (3.42 )

along the free trajectory(7) given by Eq.(3.43, i.e. Here we note that the knowledge of the asymptotic form of
G, in the singular directiom’ = —n is not required in the

S~Sy—Z, (3.45 approximation(3.50.
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IV. APPLICATION TO 1D PROBLEM where the numerical solution is to be found, depends only on

the decaying properties of the potentialAs will be shown

in the numerical example below, the suggested method of
We assume that the potentid(x) of a model 1D atom imposing boundary conditions allows the regiw to be

operates in the domaiw e R which is a finite intervala_  chosen sufficiently small, despite the presence of a strong

<x<a, . Adjacent to it are two half-open intervats<a_ laser electric field.

(region ) and x>a_ (region ll) separated fromWV by the

boundariesx=a.. . Let us denote the values of the wave

function W(x,t) and its derivative D, W (X,t)=[dy .

—ie/cA(t)]¥(x,t) at the boundaries of regions | and Il as W€ shall now consider how the energy spectrum of pho-

toelectrons can be extracted using soluti@il) which is

V(as,t)=u"'(t), Dy W(as,)=»""(t). (4.D)  known in the internal domaikV. It will be assumed that the
pulse of the electric field has a finite duration and the corre-
The Green’s functiorG s in the 1D case is sponding vector potentiah(t) is equal to zero before and
after the action of the pulse. Let the electron be initially in a
bound state

A. Boundary conditions

B. Evaluation of spectrum

eiS(x,t;x’,t’)
GasX, ;X' 1) = =—=eeee, >t 4.2
2mi(t=t") Vo (x, 1) =e Enty(x). 4.9
where the actiorS is given by Eq.(3.21). The boundary

equations(3.29 are then written as follows: The transition amplituded,, to the final continuum states

p (0 =2F5 (s O+ v (as b+ whl(as ), Wid=eFyia (4.10
4.3
“-3 is given by the usual rule
where the parabolic potentials are defined by

Asqn=(PiZ V(D). (4.1
t VI,II(t/)dt/ . ,
1L — iS(x,t;as ,t") . . .
Vas (X,1)== . me T (4.4 In the above expressions the following notations are used:
° the functionsy,(x) and ¢(1,72)E are eigenstates of discrete and
() dt continuous spectra of the Hamiltonid®.2) where A=0,
W'a'é'(x,t)= Fi| ——— with eigenenergie&, andE. The subscripts 1 and 2 corre-
to\2mi(t—t') spond to the positive and negative directions of the final
momentum=gq, q=+2E, respectively. The wave func-
> ‘9_8+ SA(t’) eiS(xtiaz ) (4.5 tion W(x,t) is the solution of the TDSKE2.1) at timet>T,
ox' € ’ whereT is the moment when the pulse is switched off.
The spectral distributiop,(E) of electrons ejected with
. P (x' to)dX’ S 1o e energy E, is given by a sum over directions of the final
as (X,1) h“\/W—to)e : (4.6)  momenta,
Before proceeding farther, it is instructive to consider a po(E)= %(|Aqn|2+|A—qn|2)- (4.12

special case whel¢(x) is a zero-range potential determined

by the boundary condition at the origin . o .
The factor (27)~* fixes the normalization of the functions

01— 1" (01)=22%u(0}). @7 PiAx).
) - Also, the probabilityp,,r, of the transition to a bound final
This condition corresponds to the potentidlof the form  giatew | is given by
»8(X). In this case, the domaiw consists of one pointx

=0, that isW={O}. It is easy to check that the half sum of Prn= (¥ ¥ (1)|2 (4.13
Egs. (4.3 gives, due to Eq(4.7), a Volterra equation for
w(0t), thus By virtue of completeness of the basis set of functions
.. z//(lji)(x) and y,(x), the conservation law for the total prob-
‘I’(O,t)zf dx’ Gag(0t, X, to) ¥ (X' to) ability has the form
t t= dE 2 —
x| dUGL(OLO)W(OL). (49 o JBE Pa(E)+ 2 Pnrn=1. (4.19
0
This equation provides the complete solutiiix,t). Alter- The amplitudesA.q, are a sum of three integrals for
natively, it can be obtained directly from the original TDSE regions |, Il, andw, correspondingly:

(for details see Ref.30]).

This limiting case is a good illustration of our general A, = fa‘+f+°°+fa+ VLW dx.  (4.19
conclusion: In the IBC method, the size of the regidh —an e Ja, Ja ) ME
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If the solution of the problent2.1) is known in the internal

region W, e.g., as a result of some numerical calculations

with the boundary conditiong!.3), then one can evaluate the
integrals for regions | and Il by continuing the internal solu-
tion into these regions with the help of the equations:

W () =FL (x, )+ {v'”(xt)+w'”(xt)}

(4.16
and using the asymptotic form of functions 2* = y5'L .
These are listed in the table below:
(+) (+)
1E 2E
I giaxy ge~iax Beiax
I Be'dx e 19X+ yglax

where coefficientsy(E), B(E), and y(E) are theSmatrix
elements for scattering on the potential
Let us introduce two integral transforms:

\ir'(q,t)=fa_dx dEtriaag (x t) (4.17)
and
\if”(q,t)=J+wdx oy (x t). (4.18

Making use of Eqs(4.17), (4.18, and(4.15 one finds the
following expression for the amplitudes:

(Aqn) :( ¥'(q,1) ) +(a B)( \if'<—q,t))
Agn | \¥'qp) VB v/ \¥'(=q1)
f WE* P dx
, (4.19
J W{* W dx

where in the right-hand side, the time dependence at large
is only via a trivial phase factor.

Next, the solution¥ (x,t) extended into the external re-
gions | and Il with the help of Eq4.16), is substituted into

Egs. (4.17—(4.18. Then the transforma"''(q,t) are ex-
pressed as a sum of the transformed parabolic potentials,

Phi(q, t)— vI "(q, t)+ w' "(q,1), (4.20

where

o'v”<q,t)=iftd"V"“(t')Gas gtiast'), (4.21
to

and
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1,1
as

(g,t;az,t").
(4.22

In order to simplify calculations, we assume that all bound
states including the initial staté,(x) are negligibly small in
the regions | and Il so that the terré&''(qg,t) can be dis-
carded.

The mixed Green’s function&.!'(q,t;x’,t’) above are
obtained by applying transforni4.17)—(4.18 to the Green's
function G, ¢(x,t;x’,t"), with respect to its first space vari-
ablex. The evaluation of the function8.!' gives

N t
Wl’”(q,t):IJ dtllul,ll(tr)D*rG
to

é!a,él(q,t;xr,tr)=eiiq[g(t)er'7§(t')]+iEt’q)(Z|'”),

(4.23
where
Zin=—q \/?1 & f(;)(t—_xt,‘;‘ &) , (4.29
and®(z) is the Fresnel integral,
P(z)= i_fweiﬂz dp. (4.29
N

Thus, EQgs.(4.19—-(4.25 give the ionization amplitudes
A.qn in a closed form. These amplitudes are time indepen-
dent for anyt>T.

Now we consider the asymptotic representation of Eqg.
(4.19, generally, for large times>T. In this case, the ab-
solute values of the argumergsandz,;, in the Fresnel inte-
gral (t' is fixed

t
Z|'||:_Q\/%+O(t_1/2), t— +oo,

are large within the whole domain of thé integration in
Eqgs.(4.21) and(4.22 except the vicinity of the upper limit

On the other hand, one can expect that in the internal region
W the wave function at large times contains mainly the
bound statesif there are no zero modes in the potentgl

This is because the scattered wave packet disperses over a
large volume ag increases. Thus, the contribution to the
integrals (4.21) and (4.22 from the vicinity of the upper
limit t is small due to the small magnitude @fand» which

are determined by the values of the bound states at the
boundariesa.. . In the rest of the integration domain, the
asymptotic expansion for the Fresnel integhd]z) [31] can

be used:

(4.2

iml4
1+ ——e”+0(z7 %), 72—,
2z\
®(2)= e (4.27)
2
——e+0(z7%), z—o+oo.
22@

One can neglect the terms of orderz ih the expansion
(4.27), provided that the following condition is valid:
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Et>1. (4.28 where the solution¥*(x) discretized with respect to time

corresponds toV (x,t,) and depends only on the space vari-
In the latter case, no contribution frol'!'(—q,t) comesto  ablexe R. The time point,, 1=, + 7/2 is the intermediate
the amplitude(4.19. Also, by virtue of orthogonality be- POint betweert, andt,. ,. This scheme will be implemented

tween the bound statefs, and the scattering stat&é’a)z, the  With the help of the Galerl_<in _m_ethd_é.g., Ref[32)). _In thi_s
integrals over the internal regio# in the expressi6m4.19 way, a system of algebraic finite difference equations is ob-

can be neglected. As a result, the transition amplitudes ar@ikn_ed at each steg In the internal regiorW, the solution
determined in this approximation b¥'''(g,t) only. Their P is sought as an expansion on a set of basis functions

final form in terms of the probability flux is given by 7i(X),
‘ t K(y) — k
Avgr= e AU [U (60,0000 Tlcea, V0= 2 Um0, xeW. 63
to =
(4.29

Here the values of the phases. are not important for
evaluation of the functiop,,(E) and the flux(t) is given by

Below in all calculations we use the culicsplines[33]
as a set of the basis functiong(x).

Following the Galerkin method, one reduces Ef2) to
the system of inhomogeneous algebraic equations with re-
spect touX"?, thus

. _ > (r}‘J'jJFI;Tﬁg;;m]Ujk“—z (ﬁm—'{ﬁéﬁ’z] uj
where® ,(x,t) is the Volkov function(3.23. ] ]

One can expect that expressi@h29 gives a reasonably ir ir
accurate approximation for not very small enerdiesr for = gnj,(agv”(tkﬂ,z)—g 7@ ) v (tkr1). (5.9
sufficiently large timeg so that condition(4.28) is satisfied.

The approximative equality in E¢4.29 becomes exact un-
der simultaneous passing to the limits++o and |a.|
—+o0. Thus, in this limit, expressiofd.29 represents the
summing up of the probability flux through a remote surface= (7177
over all times. The error in Eq4.29 is of order Et) /2 . " oAt
because it is determined by the leading neglected terinl/ ﬁkjlfzzf +dx[—77f,77f + 1eAtr 1)
the asymptotic expansior@.27. This quantity tells what o'} 2t 2¢c
part of the outgoing wave packéts components with en-
ergy E) still remains in the domai'Ww at the moment of
time t.

Expression(4.29 can be also applied in the moving i i
Kramers-Henneberger frame provided that the flux has beefP'responds to the quadratic form for the second-order dif-
transformed correspondingly. In this case, the expressioffrential operatoH(ty. 1) in Eq. (5.1) constructed on the
(4.29 is reduced to the time-energy Fourier transform of the€lémentsy; , without the surface terms. These latter are col-
wave function at the boundary which is fixed in the KH lected in the right-hand side of E(.4). _ _
frame. Equatior(3.10 in [12] corresponds to this method of ~ Thus, in order to close the syste(d.4) (i.e., made it
evaluating the energy spectrum of photoelectrons. self-consistentthe boundary conditions are required to ex-

press v (s 1)~ (vl + w2 in terms of ui"' and
i ; ; ; - ;
Mi+1- TO achieve this, let us consider the finite difference
V- NUMERICAL METHOD representation of Eq4.3) on the mesh grid,. The inte-

Now we formulate a numerical method which will be ap- grand contains the square root singularity at the end pgpint
plied below to solve a one-dimensional TDSE1) on a so the quadrature rule chosen for the representation of the
time-space grid. In the velocity gauge, the 1D Hamiltonianintegral over time should take into account this singular

j[\If,CI)]:iE{\IfD*CD*—CD*D‘I’}, (4.30

This system is a result of projecting E®.2) onto the func-
tions #;;. The matrix m is the overlap matrix,m;;

). The Hermitian matrixhf" /2

X (myrm = nm) N mpm; (5.5

H(t) (2.2) takes the form: point. The following rule on the uniform knot sequence with
the stepr was chosen:
1 e
H(t)= Epi— SADPHV(X). (5.1) o k 4,12
f A ndt=2 alt(sn), afd=—5—,
0 s=0

For time integration, we employ the Crank-Nicholson
: 2
s_cheme that provides the accuracy of or@rr ) for each a(kk)=agk){(k— 1)32— (k—3/2)k¥2, (5.6
time stepr. The operator form of this scheme is

al¥=ald{(s—1)%%- 2%+ (s+1)%3.

i iT
I+ EH(tkH/z) ‘I’kﬂz(' - ?H(thrl/Z))\pka

This composite rule is obtained by dividing the integration
interval [Ok7] into k subintervals [s7,s7+ 7], S
ty=totkr, (5.2 =0,1,... k=1, and then applying to each subinterval the
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simple weighted interpolatory rulg4] of the first degree of =0.1 a.u., the stepr was typically taken to be
precision(i.e., exact on any polynomial of first degiegith  5x 1072 a.u. for§,=0.1 a.u., and 2810 2 a.u. for &

the weight functiort =2, =0.2 a.u.
With the help of rule(5.6), the finite difference represen-
tation of the boundary conditions takes the form VI. NUMERICAL RESULTS AND DISCUSSION
1,11 +(2Wi)l/2 | ”+f| 1 (5 7) A. Model
Yk T ia(()k) al ko ' For an illustration of the IBC method, we now consider

the solution of the time-dependent Satlirger equation that
andf,' is describes a one-dimensional atom modeled by theciie
Teller potentialVp1(x) [35]. This potential was used earlier

(k) - i i i
ay’ in Ref.[12] and our results will allow a direct comparison to
fill=— 2 (W) eSes{vg! —iP ey} their work:
_(27Ti)1/2 111 Veor(X)=— Vo X| <o (6.1
+ —iag‘) 2F s (). (5.9 pT(X) costix’ [X|<ce. )
Here For Vy=1, this potential supports only one bound state,
[é(t)— 9T Et)—éty) e _ 1
-_ - —_ X)= Y 6.2
Tt Sy + SA(ty). Po(X) 12 cost (6.2
(5.9

with eigenenergyey=—0.5 a.u., and a continuum of scat-
Thus, using Eqs(5.7), (5.3), and (5.4) one finds the final tering states
form of the system of algebraic equations,
ig+tanhx _.
—e ' (6.3

YR =

~ 17 Ky i_Tdk+1/2 1+iq
2 b

i7.
m-+ 2hk+ll2) uk+l_(m_ 2hk+l/2 u

(5.10 It follows from Eq. (6.3 that there is an additional real
pseudobound state, fofp=1

where
s ¥1(x) =tanhx, (6.9
Rlt12_ pkr vz, (27i) _ _ .
i’ 0j'] 2ia (k) {m(a-)n;(a-) with E=0. This state becomes a true bound state if the
strength of the potential is increased by takig>1.
+ np(ag) ni(a)}, (5.1 ~ The vector potentialA(t) generating the laser electric
field £(t) was chosen in all calculations in the form of a
and square pulse,
fil + i fl+f) cé 27N
k+a/2 & (a_ )~ ~ Zsinot, 0<t<T=—
(d"1)= py(ay) @)= —. A={ @ Shet, 2 65
(512 0, t<0, t>T,

The choice of functionsy; in the form of B splines gen-
erates the syste®.10 with band matrices. The inversion of
such matrices can be efficiently carried out by the Gaus
elimination method.

From the computational point of view, the main effort in B. Wave packets
solving Eq. (5.10 with a large numbem, of time steps First, we consider the integration of the TDSE, E@s]),
comes from the need for summing up in the boundary equa6.1), and (6.5), with the atom being initially in the ground
tions (5 8). The computational time required for that grows state(6.2). In these calculations, two sets of the peak field
as Nt , Whereas the time required for inverting equationsparamete&, were used for an eight-cycle square pulse with
(5.10 grows asN,N;, whereN, is a number of the basis w=0.1 a.u.(i) £,=0.1 a.u., andii) £&,=0.2 a.u., with the
functions 7; (see also the discussion in R¢L2]). For ex-  excursion amplitude of the eIectr@ra being 10 and 20 a.u.,
ample, in our IBC calculations presented in the next sectiongespectively.

where the duration of the pulskis defined in terms ofN
geriods of the laser angular frequenoy

we useN, =200 B splines. Then foN,= 10" the evaluation Integration with respect to time was carried out for the
of vectorsd® in Eq. (5.12 takes~80% of the total compu- full duration of the pulse, &t<T.
tational time. In all calculations by the IBC method the boundaries of

The time stepr for the integration of Eq(5.1) with the  the internal regioW were taken to ba. =10 a.u. as shown
laser pulse(6.5 was chosen to satisfy the conditiat , in Fig. 1(a) and the integral boundary conditio%.3) were
<1, where U, is the ponderomotive potential. Fap  imposed ata. . The numerical solution iW was obtained
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(b) FIG. 2. Wave-packet dynamics after application of an eight-
cycle square laser pulse with=0.1 a.u.(a) £,=0.1 a.u.;(b) the
Re x same with€,=0.2 a.u. Solid curve—solution obtained by the IBC
method; broken curve—solution obtained by the CC method. For
FIG. 1. (a) Division of spaceR into regions I, Il, andw for the IBC method, boundaries are atl0 a.u. For the CC method,
integration by the IBC method. Boundaries of internal regidare  the contourC(x) has parameterls=1,=10 a.u. The best angle
a.==10 a.u. The initial ground statgupported by the Rehl- is 10° in(a) and 5° in(b).
Teller potential has eigenenergf,=—0.5 a.u.(b) The contour
C(x) in the complexx plane used in the CC calculations of the
same problem.

using the CC method. Below, for definiteness, we assume
thatl,;=1,. Then only the angl® is left to be adjusted to
by using the Crank-Nicholson-Galerkin method describedselect a contoulC(x) best for integration. For too small
above. Because the initial stai®.2) falls off exponentially, anglesé, reflection takes place at the boundaries. On the
the termsFL.' in Eq. (4.3 at the boundaries are of order other hand, if¢ is too large this leads to a collapse of the
~10°5, and these terms were neglected. The poteMial  scheme because the wave packets returning back to gmall
vanishes even more rapidly, so that the solution could bgrow exponentially on the complex parts of the contour
accurately extended to the external regions | and Il by using(X).
the asymptotic representatidf.16). The wave packets obtained at the end of the putse (

For comparison, the same problem has been also solved T) by the CC method as well as by the IBC method, are
numerically (a) by the complex coordinate contour method displayed in Figs. @) and 2b). As shown in(b) below, the
[16] and(b) by imposing the rigid boundary conditio2.3) IBC results in these graphs are virtually exact.
at the outer edge of a very large space grid. In Fig. 2, we use a contol®(x) with I,=1,=10 a.u. so

(a) CC methodThe complex coordinate conto@(x) is  that the length of the real part 6f(x) is taken the same as in
shown in Fig. 1b) wherel, |,, and# specify the integration the IBC calculations. The anglé is chosen to achieve the
domain on the complex plarve The principal moment of best possible agreement with the IBC solution on the interval
this method is that the complex parts@¢x) provide expo- —10<x=<10. In Fig. 2a), agreement between the CC and
nential decay of the functions““™ for x>1, ande k™  IBC is moderate. However, there is a huge difference be-
for x<—1,. The rate of this decay depends on the anglgween the wave packets in Fig(l®2. This indicates that the

0, 0<O<ml2. chosen dimensions @(x) are too small. It follows, in fact,
Thus, the outgoing wave packets moving from the origin,from our numerical experiments that for the fielg,
disappear on the complex part of the cont@(x) as they =0.1 a.u., I, should be taken at least 30 a.u., and for the

propagate past-1,. Reflection of the wave packets from field £,=0.2 a.u., at least 50 a.u. Thus, the size of the spa-
rigid boundaries that are taken sufficiently far from the origintial grid which is required in the CC calculations is about ten
is strongly suppressed in this case. The lerigthnd angle# ~ times larger than the grid for the IBC method provided that
must be chosen in such a way that the outgoing wave packetge want to obtain a comparable accuracy of the numerical
are not appreciably scattered back towards the origin by theolutions.

action of the electric field and potential beyond;. At least (b) Rigid boundary methodAs our numerical experi-
two parametersl,, and ¢, are needed to be specified while ments show, the numerical solution which uses the reflective
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FIG. 3. Absolute differencfA | in units of 10°°, between the
solution obtained by the IBC method with. =+10 a.u. and the
rigid-boundary solution which uses a very large space gad (
~*+1000 a.u.):(i) solid curve—foréy=0.1 a.u., andi) broken
curve—for &£=0.2 a.u. Integration steps: Ax=0.1 a.u.;
7=5%10"2 a.u. for(i) and 7=2.5x 102 a.u. for(ii).

(i.e., rigid boundaryconditions(2.3) needs spatial grids with
the boundaries at least. = 1000 a.u. for§,=0.1 a.u.,
anda.==*1500 a.u. forf,=0.2 a.u. These large grids are
consistent with earlier calculations by Eberly and co-workers
[36] who used the reflective boundary conditi@?3). In Fig.

IOg 10 P(E)

b bbb b b S o

log,, p(E)

R S

ERMOLAEYV, PUZYNIN, SELIN, AND VINITSKY

\
AU

A
€,=0.1(an.)’ e
e, 2
0123456780910111213141516
E/o
£=04 (au.
N €03 au
/w S
€01 (au) -~

E/®

01234 5 67 8 910111213141516

PRA 60

3 we present the absolute difference between the solutions FIG. 4. The energy distributiop(E) of laser-ejected electrons

method(2.3), displayed in the interval-10=<x<10 a.u. It
can be seen that both solutions agree with each other
within 1075,

L eaks are clearly seen.
These results clearly demonstrate the superiority of thé y

IBC method. We point out that the grid required in this
method is determined by the decaying rate of the atomi
potential V(x) only. On the contrary, in the CC method as
well as in the method which uses reflective conditions of

type (2.3), the spatial grid size depends largely on the laser
field parameters and has to be taken larger and larger as the

quiver &, increases.
Finally, we note that similar difficulties exist in the

p=

£5

402’

obtained by the IBC method and by the reflective boundar)to_r several values of the field,. A 16—cycle_square_ laser pulse,
with angular frequencw=0.5 a.u. The functiomp(E) is obtained
t%sing (a) the full expression(4.19 for amplitudes, andb) the

asymptotic expressiof®.29. The pondermotive shifts of the ATI

.frequencyw of the field was chosen equal to the binding
%nergy of the ground stat&,|, ®=0.5 a.u.
Taking into account the pondermotive sHiff,,

(6.6)

method of Bouckeet al. [12] where the Hamiltonian is as- the positionE, of the peaks in the spectra is approximately
sumed to be asymptotically field free. One needs to use th@iven by the equation

Kramers-Henneberger frame, and the size of the grid also

depends on the quivef,. In the wave-packet calculations
[12] which we have repeated here, Bouakeal. had to take
the boundaries of the spatial grid at50 a.u.(to compare
with =10 a.u. in our calculations

The IBC method allows also to take a scattering stat
(6.3) as the initial state for the TDSE. Then the solution
gives cross sections for the free-free and free-bound lase
induced transitions. The excellent quality of the IBC con-
tinuum solutions can be ascertained by comparing with th
exact calculations using large grids and proper logarithmi
derivatives imposed at the boundaries. We note that the C

method cannot be applied in the latter case because the inci

dent plane wave contained in the scattering state expone
tially grows on the contou€(x).

C. Energy distribution p(E)

Ep=nw—|Eo|—U,.

(6.7)

This corresponds to absorbing by the electron the energy of
photons. For the laser parameters used in Figs. 4, the pon-
dermotive shiftdJ , which enter Eq(6.7), are 0.16, 0.09, and

.01 a.u. for§;=0.4, 0.3, and 0.1 a.u., respectively. These
}/_alues give a reasonable estimate of the exact numerical
shifts obtained in the present calculations. A discussion of
éhe peaks in the photoelectron spectra shown to be partly
Lproduced as a result of Stark-shifted bound-state multiphoton
fesonances can be found in RES7].
_ The spectral distributions, shown in Figgajand 4b)
ave been obtained in two different ways. In Figa)4 the
spectral distributionp(E) are calculated using the full am-
plitudes A. 4o (4.19—(4.25. Fort=T, this gives the exact
result forp(E). On the other hand, the distributions in Fig.
4(b) have been obtained using the flux expressiér29,

First, we consider the energy spectrum of photoelectronsith t taken up toT. The latter is valid only under condition
ejected by the laser pulse. The computed energy distributiof%.28. It can be seen from Fig. 4 that for the particular
p(E) for the electrons which are initially in the ground state choice of laser parameters, the asymptotic expresgi@9)

(6.2), is shown in Fig. 4 for several values &f. The angular

gives a good estimate for the energy distribut(t). The
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FIG. 5. Comparison between the exact calculations and pertur- FIG. 6. Square laser pulse with angular frequeacy0.2 a.u.
bation theory. Probability density(E=0) as a function of the laser Variation of the ionization probabilityv with the laser fields, at
field &, for the electron transition from the ground state with  the end of a four-cyclébroken curvgand eight-cyclésolid curve
=—0.5 a.u. to a pseudobound state Wik-0. A 16-cycle laser pulse.
pulse with angular frequency=0.5 a.u. =1) and eight-cycle

pulse withw=0.25 a.u. (=2). curves are marked “3rd PT” andi=2." The validity re-
gion of perturbation theory extends, in this case, uggo

positions and heights of the ATI peaks are correctly repro~0.03 a.u.

duced. However, at the bottom of continuum, the asymptotic

expression4.29 cannot be applied and one needs to use the

full expression(4.19).

As Figs. 4 show, the asymptotic formula fp(E) works For the comparison of our calculations with the calcula-
better for stronger field§,. Qualitatively, this is because the tions performed in Ref[12], we evaluate the ionization
electrons leave domaiWw faster when exposed to stronger probability of the atomw(&y),
fields. For a fixed value of, this facilitates the condition
(4.28) We also point out that the fast oscillations seen in w=1-pgo (6.9
some curves in Figs. 4 can be traced to the steep front of the
pulse(6.5). where the ground-state probabiliby, is given, at the end of

At small intensities of the field, the exact energy distribu-the square pulse, by E@4.13. As in Ref.[12], we used
tionsp(E) can be used for establishing the validity region of four- and eight-cycle pulses with the angular frequeacy

D. lonization probability

the standard perturbation theory. =0.2 a.u.

As an illustration, we consider transitions from tleven- The curvedsee Fig. 6 produced in these calculations are
parity) ground stateyo(x) of Eq. (6.2) to the (odd-parity  identical with the ionization curves in Fig(@ of Ref.[12].
pseudobound statg, (x) of Eq. (6.4), with energyE=0. The ionization minima in Fig. 6 are due to the effect of

As the first example, we take=|E,|=0.5 a.u. The channel closing caused by the dynamical shift of the free-

leading term is one-photon absorption=1. In the lowest electron energyJ,,, Eq.(6.6). Neglecting the ac Stark shift
(first) order of perturbation theonp(E) is generally given in the ground state, an-photon channel is open only if

by

no+Ee>U,. (6.10
1 4| (T e 2
pW(E)= — D, f dt &yl 1= pA(t)| o) This formula gives atv=0.2 a.u. the threshold fields equal
2m =11 Jo ne to £=0.13, 0.22, and 0.28 a.u. for closing=3, 4, and
Q- ) 5-photon channels. The second-order account of the ac Stark
5 SIP——T shift of the E, reduces these threshold values by some 6%.
_ mE o) 2 O=E—E The minima positions in the calculated ionization probability
T (Q%—?)? o are found to be in good agreement with the above estimate
costf == for n=3 and 5, but it is not as good far=4 where&,

passes through the critical value 0.22 a.u. for the overbarrier
(6.8 ionization.

A comparison between both methods for the transition to
the E=0 level, is presented in Fig. b‘lst perturbation
theory (PT)” and “n=1" curves|. As can be seen, in this We have applied the general theory of parabolic potentials
case, perturbation theory works well up&g~0.01 a.u. to the solution of the time-dependent Sdlirger equation

As the second example, we take=0.25 a.u. The lead- for an atom interacting with the classical laser field. The
ing term is now two-photon absorption. It follows immedi- method is used to impose on the wave function the exact
ately from the parity consideration that the second-ordeboundary conditions, on an intermediate surface in the con-
term p?(E=0) vanishes, and the leading term of perturba-figuration space. These conditions are then used in the nu-
tion theory is p®(E=0). In Fig. 5, the corresponding merical solution of the equation. In this way, the domain

VII. CONCLUSIONS
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where spatial integration must be carried out numerically camate integral boundary conditions oo in terms of the

be substantially reduced. The method is based on dividingsymptotic parabolic potentials. The long-range Coulomb
the configuration space into an internal domain where th@otential can also be included into consideration. Numerical
guantum-mechanical description is required, and an externaxamples considered in the paper demonstrate the advan-
domain where the motion of the electron is assumed to béages of the present theory. The wave packets, energy spec-
semiclassical. For short-range atomic potentials, the accuratea, and ionization probabilities have been obtained by this
asymptotic behavior of the solution is represented by thenethod and compared wherever possible with earlier calcu-
time-dependent Green’s function for a free electron movindations. Application of the method to 3D cases will be the

in the externallase) electric field. This allows us to formu-

subject of later publications.
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