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Integral boundary conditions for the time-dependent Schrödinger equation: Atom in a laser field
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We formulate exact integral boundary conditions for a solution of the time-dependent Schro¨dinger equation
that describes an atom interacting, in the dipole approximation, with a laser pulse. These conditions are
imposed on a surface~boundary! which is usually chosen at a finite~but sufficiently remote! distance from the
atom where the motion of electrons can be assumed to be semiclassical. For the numerical integration of the
Schrödinger equation, these boundary conditions may be used to replace mask functions and diffuse absorbing
potentials applied at the edge of the integration grid. These latter are usually introduced in order to~approxi-
mately! compensate for unphysical reflection which occurs at the boundary of a finite region if a zero-value
condition is imposed there on the solution. The present method allows one to reduce significantly the size of
the space domain needed for numerical integration. Considering the numerical solution for a one-dimensional
model, we demonstrate the effectiveness of our approach in comparison with some other numerical methods.
@S1050-2947~99!10412-8#

PACS number~s!: 42.50.Hz, 32.80.Wr, 32.80.Fb, 31.15.2p
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I. INTRODUCTION

Several nonperturbative theories such as Floquet@1#,
Sturmian-Floquet@2#, and R-matrix–Floquet@3# methods,
have been developed to treat the time-dependent Schro¨dinger
equation~TDSE! for an atom interacting with the classic
laser field. These methods are particularly suited for mod
ate intensities and long laser pulses. However, experime
techniques are now moving towards generating superinte
and supershort laser pulses. New computational method
required to accommodate these extreme experimental co
tions. The numerical solution of the TDSE on a time-spa
grid is a recognized powerful and universal method. T
wave-packet dynamics of atom-laser interactions can
studied in great detail. This approach has been found par
larly important for the adequate description of such p
cesses as multiphoton ionization~MPI!, stabilization, and
high-harmonics generation. It has been extensively explo
with one-dimensional models@4# as well as for real atomic
systems. The TDSE calculations on atomic hydrogen@5#, on
atomic helium @6#, on the Coulomb explosion of the H2

1

molecule@7#, as well as the time-dependent calculations
some one- and two-electron linear molecular ions@8# have
been reported by several groups. The interrelation betw
the high-frequency Floquet~HFF! theory @9# and the TDSE
method which deals with the wave-packet dynamics,
been recently analyzed in Ref.@10#.

Despite the marked success of TDSE calculations and
development of several highly efficient numerical grid me
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ods, including the lattice methods~see, e.g., Refs.@10,11#!,
certain practical limitations of the standard approach h
now become apparent. They will be discussed below, wit
the method of integral boundary conditions~IBC! proposed
in the present work.

The organization of the paper is as follows. In Sec. II, w
give references to other numerical methods and we out
the main elements of the suggested IBC approach. In S
III, the derivation of the boundary conditions with the help
the integral equation for a Green’s function is carried out
the general three-dimensional case. The cases of a sphe
boundary and the Coulombic case are considered separa
In Sec. IV, we consider the one-dimensional~1D! case and
formulate some relations needed for calculating the fi
spectral densities for the electron via the solution obtaine
a finite region of space. In Sec. V, a numerical~Crank-
Nicholson-Galerkin! method is formulated which uses a fi
nite difference representation of the integral boundary c
ditions. In Sec. VI, we apply our IBC theory to the solutio
of a model-1D TDSE and discuss the results, in compari
with the complex coordinate contour~CC! and rigid bound-
ary methods as well as with a method recently suggested
Bouckeet al. @12#. Section VII concludes the paper.

Atomic units are used throughout the paper.

II. GENERAL REMARKS

For the laser-induced time evolution of the initial atom
state, the quantum-mechanical problem

i ] tC~x,t !5H~ t !C~x,t ! ~2.1!

is formulated as an initial value problem in an infinite d
4831 ©1999 The American Physical Society
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main of the configuration spaceR3 with the requirement tha
the wave function vanishes at infinity.

In the case of a one-electron atom which is presently c
sidered, the HamiltonianH(t) in Eq. ~2.1! is taken to be

H~ t !5
1

2 S p2
e

c
AD 2

1V~x!, ~2.2!

wherex andp52 i“x are the position and momentum ve
tors of the electron,V(x) is the atomic potential, andA is the
vector potential of the classical electromagnetic field int
acting with the atom;c'137 is the velocity of light ande is
the electron charge. In the dipole approximation which w
be considered in this paper,A is a function of timet only.
The electric field E(t) due to A is given by E(t)
52(1/c)] tA(t).

The numerical solution of Eq.~2.1!, is usually carried out
with the zero-value boundary condition imposed at a fin
distanceR0 from the atom:

uC~x,t !u50, uxu5R0 , for all t. ~2.3!

Once the space domain is chosen to be finite, retain
some rigid boundary conditions causes unphysical reflec
of the wave packet at the boundary and the reflected pa
the packet is fed back into the system. Various techniq
have been developed in order to compensate for the ef
The correction is achieved by either introducing an abso
ing component into the atomic potential@13#, or using mask
functions@14#. An extension of the latter approach by spl
ting the wave function into two parts~for the interaction and
asymptotic regions!, introducing two complementary mas
functions, and propagating two parts of the solution se
rately, has been considered in Ref.@15#. In the series of
papers, the boundary correction has been considered b
troducing complex coordinate contours@16#. However, by its
nature, these corrections, generally speaking, have to
made at a large distance from the atom and they are app
mate. Moreover, the domain of the configuration spa
where the solution has to be accurately obtained, may
large for ionization rate problems and even larger for treat
MPI @17#. Therefore, though absorbing boundaries and m
functions work as a practical prescription, they do not relie
the numerical integration methods from the necessity of
ing overextended space grids.

A possible way of resolving these difficulties is to refo
mulate the problem and impose some conditions on an in
mediate surface. For time-independent quantal problem
variety of theoretical methods is known, such as, for
ample, theR-matrix method@18# and the finite-range metho
@19#, where either a partial or full scattering problem is fo
mulated within a finite domain ofR3. We also note an ex
tension of theR-matrix method to time-dependent problem
@20#. The present work also uses a partition of the confi
ration space though in a context different from either one
the above methods.

In a recent paper, Bouckeet al. @12# have suggested
particular way of imposing integral boundary conditio
~IBC!. They applied the IBC to a one-dimensional atom w
a short-range potential in a strong laser field, within t
electric-dipole approximation. Their results demonstrate
-
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certain advantage of the method in calculating the ab
threshold ionization~ATI ! and ionization rates. Their treat
ment, however, assumes the field-free asymptotic motion
the electron which is not a very accurate assumption, part
larly for strong fields and long-range potentials. Also, as
consequence of their approach, it was necessary to carry
all calculations in the Kramers-Henneberger frame@21#
where the interaction is localized.

In the present paper, we consider a more general I
approach based on a theory of the parabolic potentials of
simple and double layers. We note that the reduction of
original differential equations to an integral form using t
Green’s functions, is a method which has been known
mathematical physics for a long time. Though it had be
applied before to elliptic, hyperbolic, and parabolic equatio
@22#, apparently, it has not been used yet for the tim
dependent Schro¨dinger equation. In our formulation, we us
the integral form of the equation to impose a constraint
the solution of the initial value problem. The choice of th
surface where the constraint has to be applied should
made such that it would assure the correct~semiclassical!
asymptotic behavior of the TDSE solution in the extern
region of the configuration space. The case of a short-ra
potential is considered at length. In principle, the propos
method is free from some restrictions imposed in Ref.@12#.
Moreover, it can also be used for a general semiclass
construction of the asymptotic Green’s functions@23,24#. As
an example, a construction of the Green’s function in
case of a Coulomb potential will be also considered.

III. BOUNDARY CONDITIONS

A. Parabolic potentials

We are considering the general case of a thr
dimensional spaceR3. Let us denote viaG(x,t;x8,t8) the
time-dependent Green’s function of the original TDSE~2.1!.
This function is the solution of the problem

Lx,tG~x,t;x8,t8!50, t.t8, x,x8PR3, ~3.1!

whereLx,t5 i ] t2H(x,t), and the conjugate problem

Lx8,t8
* G~x,t;x8,t8!50, t.t8, x,x8PR3, ~3.2!

whereLx8,t8
* 52 i ] t82H* (x8,t8). The same initial condition

G~x,t;x8,t8!→d (3)~x2x8!, t8→t,t.t8 ~3.3!

is applied in both cases. Here the operatorH* is complex
conjugate of the Hermitian HamiltonianH. Note that for ar-
bitrary functions u(x,t) and v(x,t) the expression
u(x8,t8)Lx8,t8v(x8,t8)2v(x8,t8)Lx8,t8

* u(x8,t8) can be trans-
formed into the divergence form

uLx8,t8v2vLx8t8
* u

5 i ] t8~uv !1
1

2
divx8~uDx8,t8v2vDx8,t8

* u!,

~3.4!

where the differential operatorDx,t is given by
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Dx,t[“x2 i
e

c
A~x,t !. ~3.5!

Integrating Eq.~3.4! over a domain of the spaceR3 and time
t gives the well-known Green’s identity.

Let W be an arbitrary finite region ofR3 which includes
the atomic nucleus and is bounded by a piecewise sm
surfaces. The exterior toW will be denoted as usual via
R3\W. Let us take in Eq.~3.4! the functionu(x8,t8) to be
the Green’s functionG(x,t1e;x8,t8), e.0, and the func-
tion v(x8,t8) to be the square-integrable solutionC(x8,t8)
of the original TDSE,

Lx,tC~x,t !50, ~3.6!

with specified initial conditions att5t0. We integrate the
identity ~3.4! with respect to coordinatex8 over the domain
R3\W and with respect to timet8 from t0 to t. The left-hand
side of Eq.~3.4! is identically zero due to Eqs.~3.2! and
~3.6!, and the right-hand side can be integrated by pa
After taking the limite→0, one finds

05 iC~x,t !xW~x!2 i E
R3\W

d3x8 G~x,t;x8,t0!C~x8,t0!

2
1

2Et0

t

dt8E
s
ds8•$GD8C~xs8 ,t8!2C~xs8 ,t8!D* 8G%,

~3.7!

where ds is a vector element of the surfaces which is
pointed outwardW. Here it has been used that the wa
function at large distances tends to zero sufficiently fast
that the surface integral taken over the outer surface at in
ity vanishes.

The functionxW in Eq. ~3.7! is a characteristic function
discontinuous inR3, which is defined@25# as follows:1

xW~x![ lim
e→0

E
R3\W

d3x8 G~x8,t1e,x8,t !

5H 1, xPR3\W,x¹s,

1

2
, xPs,

0, xPW,x¹s.

~3.8!

Let us denote bym and n the values of the wave functio
and its normal derivative ons, thus

Cus5m~xs ,t !, ns•Dx,tCus5n~xs ,t !, ~3.9!

wherens is a unit vector normal to the surfaces and di-
rected outwardW. We introduce functionsv, w, andF asso-
ciated with these quantities, according to

1The convergence of the integral is assured by endowing the
variablet with an infinitesimal imaginary part which has the prop
sign, t→te2 i0.
th

s.

o
n-

v~x,t !52E
t0

t

dt8E
s
ds8 n~xs8 ,t8!G~x,t,xs8 ,t8!,

~3.10!

w~x,t !5E
t0

t

dt8E
s
ds8 m~xs8 ,t8! ns8•Dx8,t8

* G~x,t,xs8 ,t8!,

~3.11!

F~x,t !5E
R3\W

d3x8 C~x8,t0!G~x,t,x8,t0!. ~3.12!

where t0 is the initial moment of time for the initial-value
problem~2.1!.

Due to the singularity ofG, the quantities defined by Eqs
~3.10!–~3.12! can be given a classical interpretation as p
tentials generated by some surface and volume mass d
butions. Similar potentials appear in the general theory
parabolic equations@25#. In the present case of the Schr¨-
dinger equation, we shall use the same terminology as
Ref. @25# and refer to Eqs.~3.10!–~3.12! as parabolic poten-
tials. Thenv is a simple-layer parabolic potential with th
surface densityn, w is a double-layer parabolic potentia
with the surface densitym, and F is the initial-value para-
bolic potential. Making use of these quantities, Eq.~3.7! can
be rewritten as follows:

C~x,t !xW5F~x,t !1
i

2
$v~x,t !1w~x,t !%, xPR3,

~3.13!

for any t.t0. This formula is a general relation satisfied b
the solution of Eq.~2.1! for an arbitrary choice of the region
W enclosed by a surfaces. It has a form of an integra
equation which determines the wave functionC(x,t)
through the parabolic potentials~3.10!–~3.12!. As these po-
tentials are defined in terms of the full Green’s function, E
~3.13! can be used for constructing the solution of Eq.~2.1!
only within some method of successive approximations.

B. Integral boundary conditions

Now we shall discuss an application of Eq.~3.13! which
is important in the numerical solution of Eq.~2.1!. Let us
consider the special case where the pointx is on the surface
s. Then Eq.~3.13! takes the form

m~xs ,t !52F~xs ,t !1 i $v~xs ,t !1w~xs ,t !%. ~3.14!

This relation expresses the fact that values of the wave fu
tion m and its normal derivativesn on the surfaces cannot
be arbitrary functions but must satisfy an integral constra
@26#.

Equation~3.14! can also be obtained by considering t
limiting passage in Eq.~3.13! as x→xs , x¹s. Then the
continuity of the simple-layer potential and the discontinu
of the double-layer potential in the limit should be taken in
account. For the potentialw we have

lim
x→xs

w~x,t !57 im~xs ,t !1w~xs ,t !, ~3.15!
e
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where the upper sign (2) corresponds to approaching th
surface from outside and the lower sign (1) corresponds to
approaching it from inside the internal regionW. Due to the
continuity of the wave function, the limits of Eq.~3.13! from
inside and outside of the surfaces give, of course, the sam
result as Eq.~3.14!.

Equation~3.14! will be the starting point for the deriva
tion of integral boundary conditions to be imposed ons for
the solution of TDSE~2.1! in internal domainW.

First, we shall consider the case of a fast-decaying ato
potential V such as, for instance, the short-range Yuka
potential. Let us denote viaHas the HamiltonianH, Eq.
~2.2!, without the potential termV, i.e.,

H~ t !5Has~ t !1V, ~3.16!

and consider the auxiliary problem

i ] tC̃~x,t !5Has~ t !C̃~x,t !. ~3.17!

The corresponding Green’s function of this problem will
denoted asGas(x,t;x8,t8). Due to the fast decay of the po
tentialV at uxu→`, an arbitrary solution of Eq.~2.1! satisfies
also Eq.~3.17! in the asymptotic region.

It follows from Eq. ~3.16!, that

G~x,t,x8,t8!5Gas~x,t,x8,t8!

2 i E
t8

t

dt9E d3x9 Gas~x,t,x9,t9!

3V~x9,t9!G~x9,t9,x8,t8!, ~3.18!

where integration overx9 extended to all configuration spac
R3.

We note that the problem~3.17! is simpler than the origi-
nal Eq. ~2.1! and, in some cases, Eq.~3.17! may have an
analytical solution.

Due to the dipole approximation, the asymptotic Ham
tonianHas is given in the velocity gauge by

Has~ t !52
1

2
Dx1 i

e

c
A~ t !•“x , ~3.19!

where the term quadratic inA(t) has been removed from Eq
~2.1! by a simple phase transformation of the wave funct
C.

The explicit form of the Green’s functionGas of the
TDSE with the Hamiltonian~3.19! is

Gas~x,t;x8,t8!5
eiS(x,t;x8,t8)

@2p i ~ t2t8!#3/2
, t.t8, ~3.20!

whereS is the classical action for a particle in the fieldA(t)
taken to be a function of the initial and the final position a
time ~the Hamilton principle function!, that is,

S~x,t;x8,t8!5
@x2j~ t !2x81j~ t8!#2

2~ t2t8!
~3.21!

andj(t) is the classical displacement of the electron due
the field given by
ic
a

-

n

o

j~ t !52
e

cE
t

A~t!dt. ~3.22!

The form ~3.20! of the Gas is determined by the WKB ap
proximation which gives the exact result for the TDSE w
the Hamiltonian~3.19! @27#. This Green’s function can also
be obtained in a straightforward manner from an expans
in terms of the corresponding Volkov statesQk(x,t),

Qk~x,t !5expH ik•@x2j~ t !#2
i

2
k2tJ . ~3.23!

Then

Gas~x,t,x8,t8!5E d3k

~2p!3
Qk~x,t !Qk* ~x8,t8!. ~3.24!

Now we shall use the integral equation~3.18! to replace
the full Green’s functionG in Eq. ~3.14! by the asymptotic
Green’s functionGas as derived above, and obtain th
asymptotic parabolic potentials.

Multiplying both sides of Eq.~3.18! by the density
n(x8,t8) and integrating with respect to timet8 from t0 up to
t and keeping the surfaces fixed, one finds that the simple
layer potentialv satisfies the integral equation

v~x,t !5vas~x,t !2 i E
t0

t

dt9E d3x9 Gas~x,t,x9,t9!

3V~x9,t9!v~x9,t9!. ~3.25!

Here the zero-order termvas is a simple-layer parabolic po
tential constructed as in Eq.~3.10! but with the help of the
asymptotic Green’s functionGas ,

vas~x,t !52E
t0

t

dt8E
s
ds8n~xs8 ,t8!Gas~x,t,xs8 ,t8!.

~3.26!

Similar integral equations can be obtained for the doub
layer parabolic potentialsw andwas as well as for the initial-
value parabolic potentialsF andFas .

The following form of the integral relation~3.13! is ob-
tained by substituting in it the asymptotic equations deriv
above:

C~x,t !xW~x!5Fas~x,t !1
i

2
$vas~x,t !1was~x,t !%

2 i E
t0

t

dt9E d3x9 Gas~x,t,x9,t9!

3V~x9,t9!C~x9,t9!xW~x9!. ~3.27!

The use of asymptotic parabolic potentials in Eq.~3.27! gen-
erally assures the correct asymptotic behavior of the w
function of the original problem~2.1!.

If the potentialV(x,t) is a short-range potential, and th
domainW contains the main region of action forV, then the
last term in Eq.~3.27! is negligibly small since due to the
presence of the characteristic functionxW , the integration
extends only outsideW. Thus, in this case, the equation o
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the boundary has the form~3.14! where the parabolic poten
tials are simply replaced by the asymptotic potentials, i.e

m~xs ,t !52Fas~xs ,t !1 i $vas~xs ,t !1was~xs ,t !%.
~3.28!

This boundary condition is, generally, a linear, nonloc
relationship between the boundary and the initial value of
wave function. We also note that, for the potentials decay
too slowly, Eq. ~3.27! may require the next iteration with
respect toC or some other methods of solution.

C. Spherical boundary of domainW

Now we consider a particular case where the surfaces of
the domainW is a spheresR of large radiusR@a0 wherea0
is an effective radius of interaction. For the sake of simp
ity we assume also that the initial wave functionC(x,t0) is
negligibly small in the outer domain beyondsR . Then the
termFas(x,t) in Eq. ~3.28! can be dropped. Thus, our task
to find the asymptotic expressions for the parabolic pot
tials vas and was on the spheresR . Let us denoten̂
5R21xs ,

Q~ t,t8!5uRn̂2j~ t !1j~ t8!u, ~3.29!

and

v̂~ t,t8!5
Rn̂2j~ t !1j~ t8!

uRn̂2j~ t !1j~ t8!u
. ~3.30!

Making use of these notations, the Green’s function~3.20!
can be written as

Gas~Rn̂,t;Rn̂8,t8!5

expF i
R21Q2

2~ t2t8!
G

@2p i ~ t2t8!#3/2
expF2 i

RQ

t2t8
n̂8•v̂G .

~3.31!

The angle integration in Eq.~3.26! with the Green’s function
~3.31! over sR can be carried out by taking into account t
leading contribution from the points of the stationary pha
in the directionsn̂856v̂. Indeed, the angular part of Eq
~3.31! has, as a distribution, the asymptotic representatio

e2 iln̂•v̂5
2p i

l
$e2 ild~ n̂,v̂!2eild~ n̂,2v̂!%1O~l22!,

~3.32!

where d(n̂,v̂) is the d function on the unit sphere andl
5(RQ/t2t8). Thus, the angle integration in Eq.~3.26!
yields for the potentialvas

vas~Rn̂,t !.2E
t0

t R

Q

dt8

A2p i ~ t2t8!
H expF i

~Q2R!2

2~ t2t8!
Gn~v̂,t8!

2expF i
~Q1R!2

2~ t2t8!
Gn~2v̂,t8!J . ~3.33!

Here we restrict our attention to such electric fields that
classical displacement~3.22! j(t) is bounded for all times. It
l
e
g

-

-

e

e

means that the functionQ(t,t8) in the last expression take
values close toR but it is never zero, provided thatR is
sufficiently large. Then the second term in the integral~3.33!
can be neglected because it contains a rapidly oscilla
exponential att8→t. To estimate the neglected quantity, l
us consider the leading term of the asymptotic expansion
the following integral:

I ~l!5E
t0

t

dt8~ t2t8!2aeil(t2t8)21
g~ t8!, a,2,

~3.34!

wherel→1`, andg(t8) is a smooth nonsingular functio
in the segment @ t0 ,t#. By changing variables,r5(t
2t8)21, this integral transforms to

I ~l!5E
(t2t0)21

1`

ra22 dr eilrg~ t2r21!. ~3.35!

Integrating by parts gives the leading asymptotic term, th

I ~l!52
~ t2t0!22a

il
eil(t2t0)21

g~ t0!1O~l22!.

~3.36!

Taking a51/2 andl52R2 in Eq. ~3.36!, one finds that the
absolute value of the estimated term in Eq.~3.33! is of order

~ t2t0!3/2

RQ~ t,t0!
un„2v̂~ t,t0!,t0…u. ~3.37!

Here it should be taken into account that the values ofm and
n at the initial momentt0 are negligibly small, hence the
second term in Eq.~3.33! can be neglected.

The case of the potentialwas can be dealt with in a com
pletely analogous manner. As a result, the asymptotic fo
of relation ~3.28! is found to be as follows:

m~ n̂,t !5E
t0

t R

Q

expF i
~Q2R!2

2~ t2t8!
Gdt8

A2p i ~ t2t8!

3H m~v̂,t8!S Q2R

t2t8
2

e

c
v̂•A~ t8!D 2 in~v̂,t8!J .

~3.38!

In the particular case ofA[0, this relation reduces to on
obtained in Ref.@12#.

D. Coulomb potential

Now we shall consider the case of a Coulomb potent
Due to a slow rate of decay, it causes the specific ph
distortion in the time-independent Coulomb Green’s funct
at large distances, in comparison with the short-range po
tials. This effect should be taken into account while derivi
the boundary conditions. Following the general method o
lined above, we have to construct a semiclassicalGas which
will be used in the exterior domainR3\W. We shall achieve
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that by considering an approximationGc(x,t;x8,t8) to the
time-dependent Coulomb Green’s function which satis
the following equation:

i ] tGc52
1

2
DxGc1 i

e

c
A•“xGc1

a

uxu
Gc , ~3.39!

together with the initial condition~3.3!. As follows from the
physical arguments~see, e.g., Ref.@29#!, the motion of the
particle is semiclassical at distances much larger than B
radius. Thus, for our purposes, it should be possible to ap
the WKB techniques@24#. The functionGc is sought as a
product:

Gc5C~x,t;x8,t8!eiS(x,t;x8,t8), ~3.40!

whereC andS are arbitrary real-valued functions. Substitu
ing Eq. ~3.40! into Eq. ~3.39! yields the following system:

H ] tC
21divxH C2S“xS2

e

c
AD J 50,

] tS1
1

2
~“xS!22

e

c
A•“xS1

a

uxu
5

DxC

C
.

~3.41!

The first line in Eq.~3.41! is the continuity equation for the
densityC. The second line, with the right-hand side set to
zero, is the Hamilton-Jacobi equation for the action desc
ing the classical motion of the atomic electron. The left-ha
side of this equation is identically zero if the functionS is
taken to be the integral of the Lagrange function calcula
along the classical trajectory of particleX(t;x,x8), with the
end pointsx andx8 for t5t8 andt5t, respectively. That is

S5E
t8

t

dtH F Ẋ~t!1
e

c
A~t!G2

2
2

a

uX~t!u
J . ~3.42!

We note that if the Coulomb potential is absent in Eq.~3.41!
then the exact trajectoryX0(t) is

X0~t!5
x2j~ t !2x81j~ t8!

t2t8
~t2t8!1j~t!2j~ t8!1x8,

~3.43!

and the action of Eq.~3.42! evaluated along this trajectory i
exactly the expression~3.21!. Moreover, if the density func-
tion C is taken to be independent of the space variables,

C5@2p i ~ t2t8!#23/2 ~3.44!

then both equations in Eq.~3.41! are identically satisfied
provided thata50. The resulting function coincides wit
the Green’s function~3.20!.

In the case ofaÞ0, we shall introduce an approximatio
which is similar to the eikonal approximation for the tim
independent case~see Ref.@28#!. Namely, the solution of Eq
~3.41! is obtained by evaluating the actionS in Eq. ~3.42!
along the free trajectoryX0(t) given by Eq.~3.43!, i.e.,

S'S02Z, ~3.45!
s

hr
ly

e
-

d

d

whereS0 is the expression~3.21!. In Eq. ~3.45!, the phase
distortionZ is defined as

Z~x,t;x8,t8!5aE
t8

t dt

uX0~t!u
, ~3.46!

and the densityC is the same as above in Eq.~3.44!. Note
that this approximation does not work if the classical traje
tory X0(t) passes through the Coulomb center because in
latter case the integral~3.46! is not defined. Below we ex-
clude this case from consideration.

In order to estimate an error in such a model, we first n
that the functionZ satisfies~within the assumptions state
above! the Laplace equation

DxZ50. ~3.47!

Thus, the continuity equation~3.41! holds exactly. Second
the actionS, Eq. ~3.45!, satisfies the Hamilton-Jacobi equ
tion in Eq. ~3.41! only approximately. After some manipula
tions one finds that the error@thus, it is a relative error for the
solution of Eq.~3.39! in the form of Eq.~3.40!# is

1

2
~“xZ!2;a2

~ t2t8!2

r4
, ~3.48!

wherer is the distance of closest approach, from the Co
lomb center to the trajectoryX0(t;x,x8). This estimate can
be useful for choosing the grid size for the numerical in
gration of the TDSE if one uses the approximation toGc
considered above.

The phase distortionZ depends on the particular form o
the electric fieldA(t) and it should be considered in eac
case separately. However, in the field-free case it is ev
ated explicitly to give

Z(0)~x,t;x8,t8!5a
t2t8

ux2x8u
ln

uxuux2x8u1x•~x2x8!

ux8uux2x8u1x8•~x2x8!
.

~3.49!

We note the formal correspondence between this expres
and the asymptotic distortion term in the phase of the s
tionary Coulomb Green’s functionGc(x,x8,E1 i0) @28# pro-
vided that one treats the factort2t8/ux2x8u in Eq. ~3.49! as
(2E)21/2.

Considering the field-free case for the spherical bound
of radiusR@1, in exactly the same way as it was done
Sec. III C, one finds the asymptotic form of the bounda
equation~3.28! with the Coulomb corrections, as follows:

m~ n̂,t !5E
t0

t
expF2 i

a

R
~ t2t8!Gdt8

A2p i ~ t2t8!

3H 2
a~ t2t8!

2R2
m~ n̂,t8!2 in~ n̂,t8!J . ~3.50!

Here we note that the knowledge of the asymptotic form
Gc in the singular directionn̂852n̂ is not required in the
approximation~3.50!.
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IV. APPLICATION TO 1D PROBLEM

A. Boundary conditions

We assume that the potentialV(x) of a model 1D atom
operates in the domainWPR which is a finite intervala2

,x,a1 . Adjacent to it are two half-open intervals:x,a2

~region I! and x.a1 ~region II! separated fromW by the
boundariesx5a6 . Let us denote the values of the wav
function C(x,t) and its derivative Dx,tC(x,t)[@]x
2 ie/cA(t)#C(x,t) at the boundaries of regions I and II a

C~a7 ,t !5m I ,II ~ t !, Dx,tC~a7 ,t !5n I ,II ~ t !. ~4.1!

The Green’s functionGas in the 1D case is

Gas~x,t;x8,t8!5
eiS(x,t;x8,t8)

A2p i ~ t2t8!
, t.t8, ~4.2!

where the actionS is given by Eq.~3.21!. The boundary
equations~3.28! are then written as follows:

m I ,II ~ t !52Fas
I ,II ~a7 ,t !1 i $vas

I ,II ~a7 ,t !1was
I ,II ~a7 ,t !%,

~4.3!

where the parabolic potentials are defined by

vas
I ,II ~x,t !56E

t0

t n I ,II ~ t8!dt8

A2p i ~ t2t8!
eiS(x,t;a7 ,t8), ~4.4!

was
I ,II ~x,t !57 i E

t0

t m I ,II ~ t8!dt8

A2p i ~ t2t8!

3S ]S

]x8
1

e

c
A~ t8!D eiS(x,t;a7 ,t8), ~4.5!

Fas
I ,II ~x,t !5E

I ,II

C~x8,t0!dx8

A2p i ~ t2t0!
eiS(x,t;x8,t0). ~4.6!

Before proceeding farther, it is instructive to conside
special case whereV(x) is a zero-range potential determine
by the boundary condition at the origin

n II ~0,t !2n I~0,t !52¸m~0,t !. ~4.7!

This condition corresponds to the potentialV of the form
¸d(x). In this case, the domainW consists of one point,x
50, that isW5$0%. It is easy to check that the half sum o
Eqs. ~4.3! gives, due to Eq.~4.7!, a Volterra equation for
C(0,t), thus

C~0,t !5E
2`

1`

dx8 Gas~0,t,x8,t0!C~x8,t0!

2 i¸E
t0

t

dt8Gas~0,t,0,t8!C~0,t8!. ~4.8!

This equation provides the complete solutionC(x,t). Alter-
natively, it can be obtained directly from the original TDS
~for details see Ref.@30#!.

This limiting case is a good illustration of our gener
conclusion: In the IBC method, the size of the regionW
where the numerical solution is to be found, depends only
the decaying properties of the potentialV. As will be shown
in the numerical example below, the suggested method
imposing boundary conditions allows the regionW to be
chosen sufficiently small, despite the presence of a str
laser electric field.

B. Evaluation of spectrum

We shall now consider how the energy spectrum of p
toelectrons can be extracted using solution~2.1! which is
known in the internal domainW. It will be assumed that the
pulse of the electric field has a finite duration and the cor
sponding vector potentialA(t) is equal to zero before an
after the action of the pulse. Let the electron be initially in
bound state

Cn~x,t !5e2 iEntcn~x!. ~4.9!

The transition amplitudeAqn to the final continuum states

C1,2E
(2) 5e2 iEtc1,2E

(2) ~4.10!

is given by the usual rule

A6qn5^C1,2E
(2) uC~ t !&. ~4.11!

In the above expressions the following notations are us
the functionscn(x) andc1,2E

(2) are eigenstates of discrete an
continuous spectra of the Hamiltonian~2.2! where A[0,
with eigenenergiesEn andE. The subscripts 1 and 2 corre
spond to the positive and negative directions of the fi
momentum6q, q51A2E, respectively. The wave func
tion C(x,t) is the solution of the TDSE~2.1! at time t.T,
whereT is the moment when the pulse is switched off.

The spectral distributionpn(E) of electrons ejected with
energy E, is given by a sum over directions of the fin
momenta,

pn~E!5
1

2p
~ uA qnu21uA2qnu2!. ~4.12!

The factor (2p)21 fixes the normalization of the function
c1,2E

(2) (x).
Also, the probabilitypn8n of the transition to a bound fina

stateCn8 is given by

pn8n5u^Cn8uC~ t !&u2. ~4.13!

By virtue of completeness of the basis set of functio
c1,2E

(2) (x) andcn(x), the conservation law for the total prob
ability has the form

E
0

1` dE

A2E
pn~E!1(

n8
pn8n51. ~4.14!

The amplitudesA6qn are a sum of three integrals fo
regions I, II, andW, correspondingly:

A6qn5S E
2`

a2

1E
a1

1`

1E
a2

a1 DC1,2E
(2) * C dx. ~4.15!
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If the solution of the problem~2.1! is known in the internal
region W, e.g., as a result of some numerical calculatio
with the boundary conditions~4.3!, then one can evaluate th
integrals for regions I and II by continuing the internal so
tion into these regions with the help of the equations:

C I ,II ~x,t !5Fas
I ,II ~x,t !1

i

2
$vas

I ,II ~x,t !1was
I ,II ~x,t !%,

~4.16!

and using the asymptotic form of functionsc1,2E
(2) * 5c2,1E

(1) .
These are listed in the table below:

c1E
(1) c2E

(1)

I eiqx1ae2 iqx be2 iqx

II beiqx e2 iqx1geiqx

where coefficientsa(E), b(E), andg(E) are theS-matrix
elements for scattering on the potentialV.

Let us introduce two integral transforms:

Ĉ I~q,t !5E
2`

a2

dx eiEt1 iqxC~x,t ! ~4.17!

and

Ĉ II ~q,t !5E
a1

1`

dx eiEt2 iqxC~x,t !. ~4.18!

Making use of Eqs.~4.17!, ~4.18!, and~4.15! one finds the
following expression for the amplitudes:

S A2qn

Aqn
D 5S Ĉ I~q,t !

Ĉ II ~q,t !
D 1S a b

b g D S Ĉ I~2q,t !

Ĉ II ~2q,t !
D

1S Ea2

a1

C2E
(2)* C dx

E
a2

a1

C1E
(2)* C dx

D , ~4.19!

where in the right-hand side, the time dependence at lart
is only via a trivial phase factor.

Next, the solutionC(x,t) extended into the external re
gions I and II with the help of Eq.~4.16!, is substituted into
Eqs. ~4.17!–~4.18!. Then the transformsĈ I ,II (q,t) are ex-
pressed as a sum of the transformed parabolic potential

Ĉ I ,II ~q,t !5
i

2
v̂as

I ,II ~q,t !1
i

2
ŵas

I ,II ~q,t !, ~4.20!

where

v̂ I ,II ~q,t !56E
t0

t

dt8n I ,II ~ t8!Ĝas
I ,II ~q,t;a7 ,t8!, ~4.21!

and
s ŵI ,II ~q,t !57E
t0

t

dt8m I ,II ~ t8!D* 8Ĝas
I ,II ~q,t;a7 ,t8!.

~4.22!

In order to simplify calculations, we assume that all bou
states including the initial statecn(x) are negligibly small in
the regions I and II so that the termsF̂ I ,II (q,t) can be dis-
carded.

The mixed Green’s functionsĜas
I ,II (q,t;x8,t8) above are

obtained by applying transforms~4.17!–~4.18! to the Green’s
function Gas(x,t;x8,t8), with respect to its first space var
ablex. The evaluation of the functionsĜas

I ,II gives

Ĝas
I ,II ~q,t;x8,t8!5e6 iq[ j(t)1x82j(t8)] 1 iEt8F~zI ,II !,

~4.23!

where

zI ,II 52qAt2t8

2
7

a72j~ t !2x81j~ t8!

A2~ t2t8!
, ~4.24!

andF(z) is the Fresnel integral,

F~z!5
1

Ap i
E

z

1`

eir2
dr. ~4.25!

Thus, Eqs.~4.19!–~4.25! give the ionization amplitudes
A6qn in a closed form. These amplitudes are time indep
dent for anyt.T.

Now we consider the asymptotic representation of E
~4.19!, generally, for large timest@T. In this case, the ab
solute values of the argumentszI andzII in the Fresnel inte-
gral (t8 is fixed!

zI ,II 52qA t

2
1O~ t21/2!, t→1`. ~4.26!

are large within the whole domain of thet8 integration in
Eqs.~4.21! and~4.22! except the vicinity of the upper limitt.
On the other hand, one can expect that in the internal reg
W the wave function at large times contains mainly t
bound states~if there are no zero modes in the potentialV).
This is because the scattered wave packet disperses o
large volume ast increases. Thus, the contribution to th
integrals ~4.21! and ~4.22! from the vicinity of the upper
limit t is small due to the small magnitude ofm andn which
are determined by the values of the bound states at
boundariesa6 . In the rest of the integration domain, th
asymptotic expansion for the Fresnel integralF(z) @31# can
be used:

F~z!55 11
eip/4

2zAp
eiz2

1O~z23!, z→2`,

eip/4

2zAp
eiz2

1O~z23!, z→1`.

~4.27!

One can neglect the terms of order 1/z in the expansion
~4.27!, provided that the following condition is valid:
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Et@1. ~4.28!

In the latter case, no contribution fromĈ I ,II (2q,t) comes to
the amplitude~4.19!. Also, by virtue of orthogonality be-
tween the bound statescn and the scattering statesc1,2E

(2) , the
integrals over the internal regionW in the expression~4.19!
can be neglected. As a result, the transition amplitudes
determined in this approximation byC I ,II (q,t) only. Their
final form in terms of the probability flux is given by

A6qn.6eif6E
t0

t

dt8 j @C~x,t8!,Q6q~x,t8!#ux5a6
.

~4.29!

Here the values of the phasesf6 are not important for
evaluation of the functionpn(E) and the fluxj (t) is given by

j @C,F#5
i

2
$CD* F* 2F* DC%, ~4.30!

whereQk(x,t) is the Volkov function~3.23!.
One can expect that expression~4.29! gives a reasonably

accurate approximation for not very small energiesE or for
sufficiently large timest so that condition~4.28! is satisfied.
The approximative equality in Eq.~4.29! becomes exact un
der simultaneous passing to the limitst→1` and ua6u
→1`. Thus, in this limit, expression~4.29! represents the
summing up of the probability flux through a remote surfa
over all times. The error in Eq.~4.29! is of order (Et)21/2

because it is determined by the leading neglected term 1z in
the asymptotic expansions~4.27!. This quantity tells what
part of the outgoing wave packet~its components with en
ergy E) still remains in the domainW at the moment of
time t.

Expression~4.29! can be also applied in the movin
Kramers-Henneberger frame provided that the flux has b
transformed correspondingly. In this case, the expres
~4.29! is reduced to the time-energy Fourier transform of
wave function at the boundary which is fixed in the K
frame. Equation~3.10! in @12# corresponds to this method o
evaluating the energy spectrum of photoelectrons.

V. NUMERICAL METHOD

Now we formulate a numerical method which will be a
plied below to solve a one-dimensional TDSE~2.1! on a
time-space grid. In the velocity gauge, the 1D Hamilton
H(t) ~2.2! takes the form:

H~ t !5
1

2
px

22
e

c
A~ t !px1V~x!. ~5.1!

For time integration, we employ the Crank-Nicholso
scheme that provides the accuracy of orderO(t2) for each
time stept. The operator form of this scheme is

S I 1
i t

2
H~ tk11/2! DCk115S I 2

i t

2
H~ tk11/2! DCk,

tk5t01kt, ~5.2!
re

e

en
n

e

where the solutionCk(x) discretized with respect to time
corresponds toC(x,tk) and depends only on the space va
ablexPR. The time pointtk11/25tk1t/2 is the intermediate
point betweentk andtk11. This scheme will be implemente
with the help of the Galerkin method~e.g., Ref.@32#!. In this
way, a system of algebraic finite difference equations is
tained at each stepk. In the internal regionW, the solution
Ck is sought as an expansion on a set of basis functi
h j (x),

Ck~x!5(
j

uj
kh j~x!, xPW. ~5.3!

Below in all calculations we use the cubicB splines@33#
as a set of the basis functionsh j (x).

Following the Galerkin method, one reduces Eq.~5.2! to
the system of inhomogeneous algebraic equations with
spect touk11, thus

(
j

H m̂j 8 j1
i t

2
ĥ0 j 8 j

k11/2J uj
k112(

j
H m̂j 8 j2

i t

2
ĥ0 j 8 j

k11/2J uj
k

5
i t

2
h j 8~a1!n II ~ tk11/2!2

i t

2
h j 8~a2!n I~ tk11/2!. ~5.4!

This system is a result of projecting Eq.~5.2! onto the func-
tions h j 8 . The matrix m̂ is the overlap matrix,m̂j 8 j

5(h j 8 ,h j ). The Hermitian matrixĥ0
k11/2

ĥ0 j 8 j
k11/2

5E
a2

a1

dxH 1

2
h j 8

8 h j81
ieA~ tk11/2!

2c

3~h j 8h j82h j 8
8 h j !1Vh j 8h j J ~5.5!

corresponds to the quadratic form for the second-order
ferential operatorH(tk11/2) in Eq. ~5.1! constructed on the
elementsh j , without the surface terms. These latter are c
lected in the right-hand side of Eq.~5.4!.

Thus, in order to close the system~5.4! ~i.e., made it
self-consistent! the boundary conditions are required to e
press n I ,II (tk11/2)'(nk11

I ,II 1nk
I ,II )/2 in terms of mk

I ,II and
mk11

I ,II . To achieve this, let us consider the finite differen
representation of Eq.~4.3! on the mesh gridtk . The inte-
grand contains the square root singularity at the end point,
so the quadrature rule chosen for the representation of
integral over time should take into account this singu
point. The following rule on the uniform knot sequence wi
the stept was chosen:

E
0

kt

t21/2f ~ t !dt'(
s50

k

as
(k) f ~st!, a0

(k)5
4t1/2

3
,

ak
(k)5a0

(k)$~k21!3/22~k23/2!k1/2%, ~5.6!

as
(k)5a0

(k)$~s21!3/222s3/21~s11!3/2%.

This composite rule is obtained by dividing the integrati
interval @0,kt# into k subintervals @st,st1t#, s
50,1, . . . ,k21, and then applying to each subinterval t
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simple weighted interpolatory rule@34# of the first degree of
precision~i.e., exact on any polynomial of first degree! with
the weight functiont21/2.

With the help of rule~5.6!, the finite difference represen
tation of the boundary conditions takes the form

nk
I ,II 56

~2p i !1/2

ia0
(k)

mk
I ,II 1 f k

I ,II , ~5.7!

and f k
I ,II is

f k
I ,II 52 (

s50

k21 S ak2s
(k)

a0
(k) D eiSks$ns

I ,II 2 iPksms
I ,II %

7
~2p i !1/2

ia0
(k)

2Fas
I ,II ~ tk!. ~5.8!

Here

Sks5
@j~ tk!2j~ ts!#

2

2~ tk2ts!
, Pks5

j~ tk!2j~ ts!

tk2ts
1

e

c
A~ ts!.

~5.9!

Thus, using Eqs.~5.7!, ~5.3!, and ~5.4! one finds the final
form of the system of algebraic equations,

S m̂1
i t

2
ĥk11/2Duk115S m̂2

i t

2
ĥk11/2Duk1

i t

2
dk11/2,

~5.10!

where

ĥ j 8 j
k11/2

5ĥ0 j 8 j
k11/2

1
~2p i !1/2

2ia0
(k) $h j 8~a2!h j~a2!

1h j 8~a1!h j~a1!%, ~5.11!

and

~dk11/2! j5h j~a1!
f k

II 1 f k11
II

2
2h j~a2!

f k
I 1 f k11

I

2
.

~5.12!

The choice of functionsh j in the form of B splines gen-
erates the system~5.10! with band matrices. The inversion o
such matrices can be efficiently carried out by the Ga
elimination method.

From the computational point of view, the main effort
solving Eq. ~5.10! with a large numberNt of time steps
comes from the need for summing up in the boundary eq
tions ~5.8!. The computational time required for that grow
as Nt

2 , whereas the time required for inverting equatio
~5.10! grows asNxNt , whereNx is a number of the basi
functionsh j ~see also the discussion in Ref.@12#!. For ex-
ample, in our IBC calculations presented in the next sect
we useNx5200 B splines. Then forNt5104, the evaluation
of vectorsdk in Eq. ~5.12! takes'80% of the total compu-
tational time.

The time stept for the integration of Eq.~5.1! with the
laser pulse~6.5! was chosen to satisfy the conditiontUp
!1, where Up is the ponderomotive potential. Forv
s

a-

s

n,

50.1 a.u., the step t was typically taken to be
531022 a.u. for E050.1 a.u., and 2.531022 a.u. for E0
50.2 a.u.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Model

For an illustration of the IBC method, we now consid
the solution of the time-dependent Schro¨dinger equation that
describes a one-dimensional atom modeled by the Po¨schl-
Teller potentialVPT(x) @35#. This potential was used earlie
in Ref. @12# and our results will allow a direct comparison
their work:

VPT~x!52
V0

cosh2 x
, uxu,`. ~6.1!

For V051, this potential supports only one bound state,

c0~x!5
1

A2 coshx
, ~6.2!

with eigenenergyE0520.5 a.u., and a continuum of sca
tering states

c1,2E
(1) ~x!5

iq7tanhx

11 iq
e6 iqx. ~6.3!

It follows from Eq. ~6.3! that there is an additional rea
pseudobound state, forV051,

c1~x!5tanhx, ~6.4!

with E50. This state becomes a true bound state if
strength of the potential is increased by takingV0.1.

The vector potentialA(t) generating the laser electri
field E(t) was chosen in all calculations in the form of
square pulse,

A~ t !5H 2
cE0

v
sinvt, 0<t<T5

2pN

v
.

0, t,0, t.T,

~6.5!

where the duration of the pulseT is defined in terms ofN
periods of the laser angular frequencyv.

B. Wave packets

First, we consider the integration of the TDSE, Eqs.~5.1!,
~6.1!, and ~6.5!, with the atom being initially in the ground
state~6.2!. In these calculations, two sets of the peak fie
parameterE0 were used for an eight-cycle square pulse w
v50.1 a.u.:~i! E050.1 a.u., and~ii ! E050.2 a.u., with the
excursion amplitude of the electronj0 being 10 and 20 a.u.
respectively.

Integration with respect to time was carried out for t
full duration of the pulse, 0<t<T.

In all calculations by the IBC method the boundaries
the internal regionW were taken to bea6510 a.u. as shown
in Fig. 1~a! and the integral boundary conditions~4.3! were
imposed ata6 . The numerical solution inW was obtained
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by using the Crank-Nicholson-Galerkin method describ
above. Because the initial state~6.2! falls off exponentially,
the termsFas

I ,II in Eq. ~4.3! at the boundaries are of orde
;1025, and these terms were neglected. The potentialVPT
vanishes even more rapidly, so that the solution could
accurately extended to the external regions I and II by us
the asymptotic representation~4.16!.

For comparison, the same problem has been also so
numerically ~a! by the complex coordinate contour metho
@16# and~b! by imposing the rigid boundary conditions~2.3!
at the outer edge of a very large space grid.

(a) CC method. The complex coordinate contourC(x) is
shown in Fig. 1~b! wherel 1 , l 2, andu specify the integration
domain on the complex planex. The principal moment of
this method is that the complex parts ofC(x) provide expo-
nential decay of the functionseikC(x) for x. l 1 ande2 ikC(x)

for x,2 l 1. The rate of this decay depends on the an
u, 0,u,p/2.

Thus, the outgoing wave packets moving from the orig
disappear on the complex part of the contourC(x) as they
propagate past6 l 1. Reflection of the wave packets from
rigid boundaries that are taken sufficiently far from the orig
is strongly suppressed in this case. The lengthl 2 and angleu
must be chosen in such a way that the outgoing wave pac
are not appreciably scattered back towards the origin by
action of the electric field and potential beyond6 l 1. At least
two parameters,l 2 and u, are needed to be specified whi

FIG. 1. ~a! Division of spaceR into regions I, II, andW for
integration by the IBC method. Boundaries of internal regionW are
a65610 a.u. The initial ground state~supported by the Po¨schl-
Teller potential! has eigenenergyE0520.5 a.u.~b! The contour
C(x) in the complexx plane used in the CC calculations of th
same problem.
d

e
g

ed

e

,

ts
e

using the CC method. Below, for definiteness, we assu
that l 15 l 2. Then only the angleu is left to be adjusted to
select a contourC(x) best for integration. For too sma
anglesu, reflection takes place at the boundaries. On
other hand, ifu is too large this leads to a collapse of th
scheme because the wave packets returning back to smx
grow exponentially on the complex parts of the conto
C(x).

The wave packets obtained at the end of the pulset
5T) by the CC method as well as by the IBC method, a
displayed in Figs. 2~a! and 2~b!. As shown in~b! below, the
IBC results in these graphs are virtually exact.

In Fig. 2, we use a contourC(x) with l 15 l 2510 a.u. so
that the length of the real part ofC(x) is taken the same as i
the IBC calculations. The angleu is chosen to achieve th
best possible agreement with the IBC solution on the inter
210<x<10. In Fig. 2~a!, agreement between the CC an
IBC is moderate. However, there is a huge difference
tween the wave packets in Fig. 2~b!. This indicates that the
chosen dimensions ofC(x) are too small. It follows, in fact,
from our numerical experiments that for the fieldE0
50.1 a.u., l 1 should be taken at least 30 a.u., and for t
field E050.2 a.u., at least 50 a.u. Thus, the size of the s
tial grid which is required in the CC calculations is about t
times larger than the grid for the IBC method provided th
we want to obtain a comparable accuracy of the numer
solutions.

(b) Rigid boundary method. As our numerical experi-
ments show, the numerical solution which uses the reflec

FIG. 2. Wave-packet dynamics after application of an eig
cycle square laser pulse withv50.1 a.u.~a! E050.1 a.u.;~b! the
same withE050.2 a.u. Solid curve—solution obtained by the IB
method; broken curve—solution obtained by the CC method.
the IBC method, boundaries are at610 a.u. For the CC method
the contourC(x) has parametersl 15 l 2510 a.u. The best angleu
is 10° in ~a! and 5° in~b!.
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~i.e., rigid boundary! conditions~2.3! needs spatial grids with
the boundaries at leasta6561000 a.u. forE050.1 a.u.,
anda6561500 a.u. forE050.2 a.u. These large grids ar
consistent with earlier calculations by Eberly and co-work
@36# who used the reflective boundary condition~2.3!. In Fig.
3 we present the absolute difference between the solut
obtained by the IBC method and by the reflective bound
method~2.3!, displayed in the interval210<x<10 a.u. It
can be seen that both solutions agree with each othe
within 1025.

These results clearly demonstrate the superiority of
IBC method. We point out that the grid required in th
method is determined by the decaying rate of the ato
potentialV(x) only. On the contrary, in the CC method a
well as in the method which uses reflective conditions
type ~2.3!, the spatial grid size depends largely on the la
field parameters and has to be taken larger and larger a
quiver j0 increases.

Finally, we note that similar difficulties exist in th
method of Bouckeet al. @12# where the Hamiltonian is as
sumed to be asymptotically field free. One needs to use
Kramers-Henneberger frame, and the size of the grid a
depends on the quiverj0. In the wave-packet calculation
@12# which we have repeated here, Bouckeet al. had to take
the boundaries of the spatial grid at650 a.u.~to compare
with 610 a.u. in our calculations!.

The IBC method allows also to take a scattering st
~6.3! as the initial state for the TDSE. Then the soluti
gives cross sections for the free-free and free-bound la
induced transitions. The excellent quality of the IBC co
tinuum solutions can be ascertained by comparing with
exact calculations using large grids and proper logarith
derivatives imposed at the boundaries. We note that the
method cannot be applied in the latter case because the
dent plane wave contained in the scattering state expo
tially grows on the contourC(x).

C. Energy distribution p„E…

First, we consider the energy spectrum of photoelectr
ejected by the laser pulse. The computed energy distribu
p(E) for the electrons which are initially in the ground sta
~6.2!, is shown in Fig. 4 for several values ofE0. The angular

FIG. 3. Absolute differenceuDCu in units of 1025, between the
solution obtained by the IBC method witha65610 a.u. and the
rigid-boundary solution which uses a very large space grid (a6

'61000 a.u.):~i! solid curve—forE050.1 a.u., and~i! broken
curve—for E050.2 a.u. Integration steps: Dx50.1 a.u.;
t5531022 a.u. for ~i! andt52.531022 a.u. for ~ii !.
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frequencyv of the field was chosen equal to the bindin
energy of the ground stateuE0u, v50.5 a.u.

Taking into account the pondermotive shiftUp ,

Up5
E 0

2

4v2
, ~6.6!

the positionEn of the peaks in the spectra is approximate
given by the equation

En5nv2uE0u2Up . ~6.7!

This corresponds to absorbing by the electron the energyn
photons. For the laser parameters used in Figs. 4, the
dermotive shiftsUp which enter Eq.~6.7!, are 0.16, 0.09, and
0.01 a.u. forE050.4, 0.3, and 0.1 a.u., respectively. The
values give a reasonable estimate of the exact nume
shifts obtained in the present calculations. A discussion
the peaks in the photoelectron spectra shown to be pa
produced as a result of Stark-shifted bound-state multipho
resonances can be found in Ref.@37#.

The spectral distributions, shown in Figs. 4~a! and 4~b!
have been obtained in two different ways. In Fig. 4~a!, the
spectral distributionsp(E) are calculated using the full am
plitudesA6q0 ~4.19!–~4.25!. For t5T, this gives the exact
result for p(E). On the other hand, the distributions in Fi
4~b! have been obtained using the flux expression~4.29!,
with t taken up toT. The latter is valid only under condition
~4.28!. It can be seen from Fig. 4 that for the particul
choice of laser parameters, the asymptotic expression~4.29!
gives a good estimate for the energy distributionp(E). The

FIG. 4. The energy distributionp(E) of laser-ejected electron
for several values of the fieldE0. A 16-cycle square laser pulse
with angular frequencyv50.5 a.u. The functionp(E) is obtained
using ~a! the full expression~4.19! for amplitudes, and~b! the
asymptotic expression~4.29!. The pondermotive shifts of the AT
peaks are clearly seen.
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positions and heights of the ATI peaks are correctly rep
duced. However, at the bottom of continuum, the asympt
expression~4.29! cannot be applied and one needs to use
full expression~4.19!.

As Figs. 4 show, the asymptotic formula forp(E) works
better for stronger fieldsE0. Qualitatively, this is because th
electrons leave domainW faster when exposed to strong
fields. For a fixed value ofT, this facilitates the condition
~4.28.! We also point out that the fast oscillations seen
some curves in Figs. 4 can be traced to the steep front o
pulse~6.5!.

At small intensities of the field, the exact energy distrib
tionsp(E) can be used for establishing the validity region
the standard perturbation theory.

As an illustration, we consider transitions from the~even-
parity! ground statec0(x) of Eq. ~6.2! to the ~odd-parity!
pseudobound statec1(x) of Eq. ~6.4!, with energyE50.

As the first example, we takev5uE0u50.5 a.u. The
leading term is one-photon absorption,n51. In the lowest
~first! order of perturbation theory,p(E) is generally given
by

p(1)~E!5
1

2p (
s51

2 U E
0

T

dt eiVt^cs,q
(2)u

e

c
pA~ t !uc0&U2

5
pE 0

2V

cosh2
pq

2

sin2
~V2v!

2
T

~V22v2!2
, V5E2E0 .

~6.8!

A comparison between both methods for the transition
the E50 level, is presented in Fig. 5@‘‘1st perturbation
theory ~PT!’’ and ‘‘ n51’’ curves#. As can be seen, in thi
case, perturbation theory works well up toE0'0.01 a.u.

As the second example, we takev50.25 a.u. The lead-
ing term is now two-photon absorption. It follows immed
ately from the parity consideration that the second-or
term p(2)(E50) vanishes, and the leading term of perturb
tion theory is p(3)(E50). In Fig. 5, the corresponding

FIG. 5. Comparison between the exact calculations and pe
bation theory. Probability densityp(E50) as a function of the lase
field E0, for the electron transition from the ground state withE0

520.5 a.u. to a pseudobound state withE50. A 16-cycle laser
pulse with angular frequencyv50.5 a.u. (n51) and eight-cycle
pulse withv50.25 a.u. (n52).
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curves are marked ‘‘3rd PT’’ and ‘‘n52.’’ The validity re-
gion of perturbation theory extends, in this case, up toE0
'0.03 a.u.

D. Ionization probability

For the comparison of our calculations with the calcu
tions performed in Ref.@12#, we evaluate the ionization
probability of the atom,w(E0),

w512p00 ~6.9!

where the ground-state probabilityp00 is given, at the end of
the square pulse, by Eq.~4.13!. As in Ref. @12#, we used
four- and eight-cycle pulses with the angular frequencyv
50.2 a.u.

The curves~see Fig. 6! produced in these calculations a
identical with the ionization curves in Fig. 3~a! of Ref. @12#.
The ionization minima in Fig. 6 are due to the effect
channel closing caused by the dynamical shift of the fr
electron energy,Up , Eq. ~6.6!. Neglecting the ac Stark shif
in the ground state, ann-photon channel is open only if

nv1E0.Up . ~6.10!

This formula gives atv50.2 a.u. the threshold fields equ
to E050.13, 0.22, and 0.28 a.u. for closingn53, 4, and
5-photon channels. The second-order account of the ac S
shift of theE0 reduces these threshold values by some 6
The minima positions in the calculated ionization probabil
are found to be in good agreement with the above estim
for n53 and 5, but it is not as good forn54 whereE0
passes through the critical value 0.22 a.u. for the overbar
ionization.

VII. CONCLUSIONS

We have applied the general theory of parabolic potent
to the solution of the time-dependent Schro¨dinger equation
for an atom interacting with the classical laser field. T
method is used to impose on the wave function the ex
boundary conditions, on an intermediate surface in the c
figuration space. These conditions are then used in the
merical solution of the equation. In this way, the doma

r- FIG. 6. Square laser pulse with angular frequencyv50.2 a.u.
Variation of the ionization probabilityw with the laser fieldE0 at
the end of a four-cycle~broken curve! and eight-cycle~solid curve!
pulse.
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where spatial integration must be carried out numerically
be substantially reduced. The method is based on divid
the configuration space into an internal domain where
quantum-mechanical description is required, and an exte
domain where the motion of the electron is assumed to
semiclassical. For short-range atomic potentials, the accu
asymptotic behavior of the solution is represented by
time-dependent Green’s function for a free electron mov
in the external~laser! electric field. This allows us to formu
l.,
s.

hy

l.,
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late integral boundary conditions ons in terms of the
asymptotic parabolic potentials. The long-range Coulo
potential can also be included into consideration. Numer
examples considered in the paper demonstrate the ad
tages of the present theory. The wave packets, energy s
tra, and ionization probabilities have been obtained by t
method and compared wherever possible with earlier ca
lations. Application of the method to 3D cases will be t
subject of later publications.
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