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Temporal coherence of high-order harmonics
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Systematic studies of the temporal coherence properties of high-order harmonic radiation are presented.
These complement our previous investigations@Bellini et al., Phys. Rev. Lett.81, 297 ~1998!#, where we
showed the separation of the far-field pattern of high-order harmonics into two distinct spatial regions with
different coherence times. Here we show how the coherence time of the inner and outer regions changes as a
function of the harmonic order, the laser intensity, and the focusing conditions. Good agreement with the
predictions of the semiclassical model of harmonic generation is obtained.@S1050-2947~99!10312-3#

PACS number~s!: 32.80.Rm, 42.65.Ky
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I. INTRODUCTION

High-order harmonic generation has been studied ex
sively during the past years. A good understanding has n
been reached of the fundamental processes behind harm
generation, and the harmonic radiation has been chara
ized through systematic theoretical and experimental stud
Important properties like the pulse length@1,2# and the spa-
tial coherence@3# have been investigated. The harmonic
diation presents a unique source in the extreme ultravi
~XUV ! spectral region, and has recently been used in sev
applications@4#. A characterization of the coherence prope
ties of the source is required for applications such as in
ferometry and spectroscopy in the XUV region. In additio
coherence properties are of fundamental interest for the s
of the dynamics of the harmonic generation process, si
for instance, the temporal coherence gives information ab
the time dependence of the phase of the harmonic radia

In a previous experiment@5#, we measured the tempora
coherence of high-order harmonic radiation created w
100-fs titanium-sapphire~Ti:S! laser pulses. This was don
by studying the far-field interference fringes of harmonic
diation produced in two separate sources, originating fr
the same laser pulse, and therefore phase locked@6#. The
coherence time was measured by varying the time delay
tween the two pulses generating the two harmonic sou
and recording the decrease of contrast in the fringe patt
Very interestingly, we found that the far-field pattern co
sists of two distinct spatial regions with different coheren
times. The inner~central! region has a long coherence tim
comparable to the estimated duration of the harmonic pu
while the outer region has a much shorter coherence time
a few femtoseconds. Our interpretation of the experime
results@5# is based on a semiclassical model for harmo
generation@7–9#. ~A more detailed theoretical analysis wa
also presented in Ref.@10#.!

Briefly, the semiclassical model assumes that an atom
teracting with an intense laser field can be described as
ing only one active electron and only one bound state. T
electron, experiencing the sum of the Coulomb field and
PRA 601050-2947/99/60~6!/4823~8!/$15.00
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intense electromagnetic laser field, can tunnel through
barrier formed by the resulting potential, and subseque
be accelerated by the laser field. For a linearly polarized la
field, the electron may be driven back toward the core a
recombine. When decaying to the ground state, it gives
to the emission of a high-energy photon. For the genera
of some particular harmonic there are several possibletra-
jectoriessuch that the electron returns to the core with t
correct energy, depending on the times of release from
return to the core. In Ref.@11# it was shown that for a har
monic belonging to the plateau region, there are two traj
tories that dominate the generation process. The phase o
harmonic dipole moment is related to that of the electro
wave function, and is classically equal to the action of t
trajectory of the laser-driven returning electron. In particul
it is proportional to the intensity of the driving field. Th
proportionality factor, orphase coefficienta, is closely re-
lated to theexcursion time1 t, the amount of time the elec
tron spends in the continuum. The two trajectories, hav
different excursion times, therefore contribute to the dip
moment with different phase dependencies as a function
the laser intensity.

The interpretation of the experimental results presente
Ref. @5# is based on the above result, namely, that for e
harmonicq there are mainly two contributions to the dipo
moment at the harmonic frequency. Each of these com
nents has a phase that is proportional to the intensity, and
can thus write the amplitude of the dipole moment of theqth
harmonic approximately as

dq~ I !5A1~ I !exp~2 ia1I !1A2~ I !exp~2 ia2I !, ~1!

whereAj (I ) is the strength of the component correspond
to the trajectoryj, anda j is the phase coefficient. Since th
intensity varies both in time and space, the harmonic rad
tion field consists of two components with different tempo

1In previous papers the excursion time was referred to as
return time.
4823 ©1999 The American Physical Society
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4824 PRA 60C. LYNGÅ et al.
and spatial phase behaviors. The spatial variation with in
sity gives rise to a curvature of the phase front, and ther
a different divergence for each field component. This res
in a complex far-field pattern for the total field, with tw
regions, as observed in the experiment@5#. Likewise, the
temporal variation induces a time-dependent freque
variation ~a chirp!, different for each field component. Th
leads to different coherence times for the two spatial regio
The results presented in Ref.@5# are probably some of the
clearest experimental evidence for the semiclassical inter
tation of harmonic generation, since their interpretation
volves the existence of several contributing and interfer
trajectories. However, they were obtained at a constant l
intensity and only for a few low-order harmonics~up to the
15th harmonic!. Measurements of the two coherence tim
for the two spatial regions of the far-field pattern were p
formed only for one harmonic, the 15th, generated in arg

The present work is a follow up of the experiment pr
sented in Ref.@5#. We extend our previous experiment, a
perform more systematic experimental studies, as well a
more detailed theoretical analysis. The coherence time
the inner and outer regions in the far-field profile are stud
as a function of several parameters: harmonic order, la
intensity, and geometrical conditions~position of the gas jet
relative to the laser focus!. We show how the coherenc
times vary as a function of these different parameters,
we compare the results with the predictions of the semic
sical model.

FIG. 1. Experimental setup using the normal-incidence sp
trometer.
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In Sec. II, we describe the experimental setup and
method of analysis which we have employed to determ
the coherence times. Our theoretical model is presente
Sec. III, and the main results of this work are presented
Sec. IV. We summarize in Sec. V.

II. EXPERIMENTAL SETUP AND METHOD

The laser used is the terawatt laser of the Lund Hig
Power Laser Facility@12#, which is based on chirped puls
amplification in titanium-doped sapphire. The laser opera
at 10 Hz, and produces pulses with an energy of up to
mJ in a beam of about 5-cm diameter. The wavelength is
nm and the pulse length around 110 fs.

The experimental setup is shown in Fig. 1. It prese
large similarities with the one used in our previous expe
ment @5#. A Michelson interferometer separates the las
pulse into two identical pulses with a variable time del
between them. The time delay is controlled by manua
translating one pair of mirrors~see Fig. 1!. One mirror is
slightly tilted so that the two beams are not completely p
allel. The beams are focused by a lens placed after the in
ferometer into an argon gas jet. Since the two beams are
exactly parallel they are focused at two slightly different p
sitions, and we produce two sources of harmonics at a c
distance but spatially separated. The harmonic beams f
the two sources are practically superposed in the far fi
giving rise to an interference pattern. A grating is used
select a given harmonic order and project it onto a mic
channel plate, coupled to a phosphor screen. The imag
the phosphor screen is captured with a CCD camera. All
images presented in this paper are single-shot recording

The fringe separation in the far field is given byDy
5Ll/d, just as in a Young’s double-slit experiment, whe
L is the distance between the gas jet~or the image of the gas
jet! and the detection plane where the interference patter
recorded,l is the harmonic wavelength, andd is the distance
between the two sources. A smaller distance between the
foci thus gives a larger fringe separation. For a given foc
ing geometry~and more exactly for a given numerical ape
ture, orf ), the smallest distance between the two foci can
be less than the beam waist diameter. Below that dista
the two fundamental beams interfere and the two harmo
sources cannot be considered as independent. Consequ
for high harmonic orders the focusing geometry has to
chosen to be relatively tight, and the two foci located

c-
r-
FIG. 2. Interference pattern for the 13th ha
monic using a delay between pulses of~a! t50
fs and~b! t525 fs.
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PRA 60 4825TEMPORAL COHERENCE OF HIGH-ORDER HARMONICS
close as possible to be able to resolve the fringes. This i
the detriment, however, of the harmonic yield. Depending
the focusing geometry we typically work with a separati
between the foci of 100–150mm. The laser beams are ap
ertured to a diameter of 9 mm (f 528), except for the results
presented in Figs. 2 and 10 where an aperture of 6 mmf
542) is used. Then they are focused by a 25-cm lens.
estimate the spot sizes to be approximately 80 and 120mm,
respectively. The spot size is taken as the diameter of
Airy disk formed when focusing a top hat intensity functio
~estimating the laser to be 1.5 times diffraction limited!. De-
pending on the laser energy and the size of the aperture
peak laser intensity in each of the two foci is between
31014 and 531014 W/cm2.

The optical quality and mechanical stability of the Mic
elson interferometer is critical to obtain accurate and rep
ducible data. The dielectric mirrors~50-mm diameter! are of
l/10 flatness. The beam splitter (60380 mm2) is chosen to
be rather thin~3 mm! in order to limit the influence of non
linear effects. Probably as a consequence of the small th
ness, the beam splitter used in our setup, in spite of thel/10
flatness requirement, presents a curvature. This lead
slightly different divergences in the two beams after refl
tions on opposite sides of the beam splitter. The two foci
therefore not strictly in the same plane. The minimization
this effect is another reason for us to use a relatively ti
focusing geometry.

Working in the above mentioned intensity region mea
that we are around the saturation intensity for argon~about
331014 W/cm2). We perform measurements in argon up
the 31st harmonic order, which corresponds to the cu
region where the harmonic intensity decreases rapidly w
the process order. We also observe interference fringe
neon. However, due to the tight focusing geometry the h
monic yield is too low for systematic studies.

Two different setups are used for the spectral analysi
the harmonic radiation. For the lower-order harmon
~13th–23rd! we use a normal incidence spectrometer with
spherical grating~1200 lines/mm!. The normal-incidence
spectrometer~shown in the figure! is well suited for an
analysis of lower-order harmonics where a large numbe
photons are available, but for high-order harmonics the
flectivity of the grating is too low~typically 2–3 %!. For the
studies of the 17th–31st harmonics, we use a graz
incidence toroidal grating with 700 lines/mm and a reflect
ity of about 10%. This allows us to collect a larger number
photons, but to the detriment of the spatial profile. Inde
astigmatism and other aberrations are more severe with
use of a grazing incidence grating.

Figure 2 shows the far-field pattern of the 13th harmo
for two different time delays,t, between the pulses~a! 0 fs
and ~b! 25 fs. The peak intensity is approximately
31014 W/cm2. Two distinct spatial regions can be seen,
inner intense region and an outer less intense region. Frin
exist in both regions in~a! while the fringes in the oute
region have disappeared in~b!, demonstrating that the cohe
ence time in the inner region is longer than in the outer. T
confirms and generalizes the results of Ref.@5#, since the
same effect is observed here at a higher laser intensity,
a different setup and laser system, and for a different h
monic order.
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The experimental studies presented below consist in m
suring the coherence time in different regions of the spa
profile as a function of several parameters. The cohere
time is equal to the half-width at half-maximum of the cur
V(t) representing the visibility of the fringes in some spat
region as a function of the delay between the two pul
@13#. The visibility is defined by the ratioV5(I max
2Imin)/(Imax1Imin), whereI max (Imin) is the maximum~mini-
mum! intensity in the spatial region considered. The visib
ity is theoretically equal to 1 when the two pulses are te
porally overlapped and have equal intensity, and decrease
a function of the time delayt. To determine experimentally
the visibility curveV(t), we record several images at diffe
ent time delays. For each image we calculate the visibility
a given spatial region and thereby determine the~local! co-
herence time by plottingV(t). This procedure is very time
consuming. Since the aim of this work is to study the var
tion of the coherence time as a function of different para
eters and to compare the results with the predictions of
semiclassical model, we have concentrated on study
trends rather than accurately determining absolute coher
times. Therefore, for the systematic studies presented be
we use an alternative, more approximate, method. It cons
of recording the time delays at which our eye stops or beg
seeing interference fringes. The time span over which
fringes are visible to the eye is then calibrated against
coherence time measured by recording a visibility curve.
find that our ‘‘eye’s visibility time’’ corresponds to the co
herence time multiplied by a factor of 3.7. Below we refer
this eye’s visibility time, divided by the factor 3.7, as th
experimental coherence time.

III. THEORETICAL BACKGROUND

We first recall some elementary definitions and resu
related to the temporal coherence properties of an elec
magnetic field, before applying them to the particular case
harmonic generation.

A. Definition of the coherence time

The temporal coherence is characterized theoretically
the first-order correlation function

G (1)~rW,t!5 lim
T→`

1

TE0

T

E~rW,t1t!E* ~rW,t !dt, ~2!

whereE denotes the electromagnetic field. The modulus
the normalized correlation function~also called the degree o
temporal coherence! coincides with the visibility function
introduced above, which can be measured experimentally
half-width at half-maximum is the coherence timeTc .

The correlation functionG (1)(rW,t) is the Fourier trans-
form ~FT! of the power spectrumuẼ(rW,v)u2, Ẽ denoting the
FT of the fieldE. Consequently, the~local! spectral band-
width, defined as the full width at half-maximum of th
power spectrum, is inversely proportional to the cohere
time. The proportionality factor depends on the shape of
field amplitude. For example, for a Gaussian functio
TcDn50.44 ~with Dn5Dv/2p). The coherence time is in
general shorter than the pulse duration, and equal to it fo
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4826 PRA 60C. LYNGÅ et al.
FT-limited pulse. The measurement of the coherence tim
different regions of the spatial profile provides informati
on the space-dependent spectral content of the harmoni

Next we consider a field whose temporal dependence
be written as exp@2i„v0t1f(t)…# ~here we neglect the effec
of a finite pulse duration on the spectrum, concentrating
the phase variation!. The spectral bandwidth is equal to th
frequency variation, the so-called chirp, during the pu
given by Dv5Ddf(t)/dt. The coherence time is thus
measure of the chirp of the radiation at a given point
space.

According to the semiclassical description of harmo
generation, briefly described in Sec. I, a harmonic field c
be approximately written as@see Eq.~1!#

Eq~rW,t !5A1exp„2 ia1I ~rW,t !…1A2exp„2 ia2I ~rW,t !….
~3!

For the sake of simplicity, we neglect for the moment t
temporal variation of the amplitudes of the two contrib
tions. As explained in Ref.@5#, the different spatial variation
of the phase of the two contributions leads to their spa
separation in the far field. The measurement of the cohere
time in the two~inner and outer! spatial regions gives infor
mation on the frequency variation of the two componen
This frequency variation, given byDv j (t)5D@]f j (t)/]t#
5Da j@]I (t)/]t#, presents a common term, namely, the d
rivative of the fundamental field, and a factor specific to t
trajectory: the phase coefficienta j . The coherence time is
therefore approximately proportional to 1/a j . Comparing the
coherence times corresponding to different contributio
thus gives information on the relative phase coefficients
the corresponding trajectories. The coherence time there
gives direct information on the fundamental process~the
electronic trajectories!, leading to the emission of harmonic
@10#.

In the following we present the predictions of calcul
tions, with different levels of complexity, of the variation o
the coherence time~or some parameter proportional to it! for
the two main trajectories contributing to harmonic generat
as a function of the harmonic order. The underlying assum
tion of our analysis is that the temporal and spatial separa
of the harmonic radiation into two components, and the c
responding coherence times, are closely related to the sin
atom dynamics. More specifically they are related to
phase imposed on the harmonic dipole moment by the
namics of the electron in the continuum. These results
then compared to the experimental data in Sec. III B.

First we use the classical model from Ref.@8# to describe
the electronic motion in the continuum. Then we proceed
calculate the dipole moment in a much more sophistica
way, by numerical integration of the time-dependent Sch¨-
dinger equation@14#. The third step in our calculations als
includes propagation of the generated radiation through
nonlinear medium.

B. Classical model

Using the classical model introduced in Ref.@8#, we omit
the influence of the atomic core and consider only the mo
of a free electron in a laser field. We also consider a fi
with a slowly varying amplitude, so that it can be treated
in
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approximately constant during a single optical cycle. T
force that the electron experiences is proportional to the la
electric fieldE5E0sin(vt), and the solution of the classica
equations of motion for the electron can be written as

v~ t,t0!52v0cos~vt !1v0cos~vt0!,

~4!

x~ t,t0!5
1

v
„2v0sin~vt !1v0sin~vt0!…

1~ t2t0!v0cos~vt0!.

Herev05qE0 /mv, and we assume that the electron esca
from the atom at the positionx50 at timet5t0 with a null
initial velocity.

Depending ont0, the electron may follow different route
in the continuum. A pictorial representation of the electr
trajectories for different emission times is shown in Fig.
Examining just the first half optical cycle, it can be eas
observed that the electrons emitted while the field is grow
in absolute value (0, t,T/4) are accelerated away from
the core and never return to it: such trajectories do not c
tribute to the process of harmonic generation@trajectory~a!

FIG. 4. Return kinetic energies~solid line!, expressed in units of
the ponderomotive energy, and excursion timest ~dashed line! of
the electrons as a function of their release timet0.

FIG. 3. Schematic representation of the electron trajectorie
the continuum, corresponding to different emission times. For
sake of clarity, only the first half period of the laser field is an
lyzed. Trajectory~a! represents a trajectory where the electron
accelerated away from the core and does not contribute to harm
generation. Trajectory~b! returns to the core with zero kinetic en
ergy.
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PRA 60 4827TEMPORAL COHERENCE OF HIGH-ORDER HARMONICS
in the figure#. If the electron escapes at the peak of the fi
oscillation (t5T/4), its trajectory brings it back to the cor
with a zero velocity after a full optical period@trajectory~b!
in the figure#. Electrons emitted when the field is decreasi
in absolute value (T/4,t,T/2) come back and recombin
with the core in a shorter time and with higher kinetic ener
~the high kinetic energy corresponds to a large slope w
crossing the time axis!. Finally, electrons which escape int
the continuum when the field is close to zero (t'T/2) spend
a very short time before recombination, and acquire jus
small amount of kinetic energy from the field.

In Fig. 4 we plot the return kinetic energy~expressed in
units of the ponderomotive energy,Up}I ) and the timet
spent in the continuum@t5t r2t0, wheret r is the recombi-
nation time defined byx(t r ,t0)50] as functions of the emis
sion timet0.

The kinetic-energy curve presents a well-defined p
corresponding to the maximum energy acquired by electr
during the oscillation in a field of given intensity. This valu
of the kinetic energy, added to the ionization energyI p of the
atom, determines the maximum energy of the emitted p
tons and corresponds to the well known cutoff lawEcutoff
'I p13.17Up @8,15#. Harmonics close to the cutoff com
from electrons that escape into the continuum only durin
restricted time intervalt'0.3T ~see Fig. 4!.

On the other hand, for a given electron energy bel
3.17Up , there are always two possible release times wit
each half period of the laser field. For relatively low ene
gies, there may be additional, longer, trajectories that br
electrons back to the core, but their contribution to harmo
generation is small, and we do not consider them here.

Harmonics in the plateau are then essentially generate
two different classes of electrons, with two different relea
times and, correspondingly, different amounts of time sp
in the continuum. Electrons released shortly after the pea
the field oscillation have a much longer excursion time co
pared to those released when the field amplitude is appro
ing zero. These distinct classes of electrons are respon
for the two components observed for harmonics generate
the plateau.

In Sec. III A we discussed how the coherence timeTc j is
proportional to 1/a j . The phase coefficienta j is closely re-
lated to the excursion timet j , and the variation ofa j as

FIG. 5. Coherence times, calculated as the inverse of the ex
sion times, using a simple classical model, as a function of
ponderomotive energy (Up}Il2).
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function of photon energy follows that oft j . Therefore, in
Fig. 5, we plot the inverse of the two classical excursi
times 1/t1 and 1/t2, to illustrate thevariation of the coher-
ence times with the harmonic order~as well as with the lase
intensity!. In the figure, we see how the two curves mer
when the photon energy~electron return kinetic energy plu
ionization potential! increases, becoming identical when th
cutoff energy is reached.

C. Single-atom calculations

A much more sophisticated description of the electr
dynamics is achieved by considering a ‘‘real’’ atom in
strong laser field, and solving the time-dependent Sch¨-
dinger equation~TDSE!. The calculation is performed in
several steps, described in detail in previous pap
@10,14,16#. Briefly, we start by numerically integrating th
TDSE for an argon atom interacting with a short laser pul
as described in Ref.@14#. The calculation is performed for a
laser pulse with a given peak intensity, and the harmo
spectrum is calculated by Fourier transforming the tim
dependent dipole moment. We then use an adiabatic app
mation to extract the intensity dependence of the stren
and phase of each harmonic, as described in Ref.@16#. Hav-
ing obtained the intensity dependence of the dipole mom
dq(I ), for each harmonic, we perform a quantum path ana
sis @10,17# of the harmonic phase, in order to extract t
weights of the different paths@Aj ; see Eq.~1!# and their
corresponding phase coefficients (a j ) as function of the in-
tensity. Briefly, for each intensityI 0 we multiply the dipole
moment with a window functionWI 0

(I ) which has its maxi-

mum at I 5I 0. The Fourier transform ofdq(I )WI 0
(I ) then

yields the distribution of reciprocal intensities, or phase c
efficients,a, at the intensityI 0:

AI 0
~a!5E dq~ I !WI 0

~ I !exp~ iaI !dI. ~5!

A first estimate of the coherence times isTc j}1/a j . The
results obtained in argon, for a peak intensity of
31014 W/cm2, are presented in Fig. 6. These coheren
times agree qualitatively well with those obtained by t
classical calculation~Fig. 5!.

As explained in Sec. III A, the above approximation f
the coherence times considers only the phase variation o
field components, and neglects the effect of a finite pu

r-
e

FIG. 6. Coherence times, calculated as the inverse of the p
coefficientsa1 ~corresponding to the short trajectory! anda2 ~cor-
responding to the long trajectory!, as a function of harmonic order



nt
e

,
th

T
x
m
rp

b

h
ul

F
n

ics
A

m

g
on
o
a
ld
ry

io
e
ic
in
-
if

he
t
d
e
t

ca

wn
co-
sics
the

the
nt

a

re-
co-
nic
the

ns
al-

size
ine
nds.

tion
ted

th
tio
ry
at
lid
o

tion
y of

he

4828 PRA 60C. LYNGÅ et al.
duration. This is valid when the induced chirp is domina
which is not the case for the component with the long coh
ence time~top curve in Figs. 5 and 6!. For this component
the spectral broadening induced by the finite duration of
harmonic pulse~the Fourier-transform limited bandwidth! is
comparable to the bandwidth induced by the dipole chirp.
account for the finite pulse duration in a simple and appro
mate way@18#, we assume a Gaussian variation for the a
plitude of the harmonic field and a linear frequency chi
bj , proportional to the phase coefficienta j . The time de-
pendence of each component of the harmonic field can
written as Ej (t)5exp„2aHt22 i (v0t2bj t

2)…, where aH

52 ln 2/TH
2 , andTH is the harmonic pulse duration. For suc

a field, the coherence time is shorter than the harmonic p
duration by the factorA11(bj /aH)2. In Fig. 7, we show the
coherence times calculated in the same conditions as in
6, but accounting for the finite-pulse duration of the harmo
ics ~dashed lines!. We assume here that all the harmon
have a pulse length equal to half that of the fundamental.
expected, the longest coherence times are affected the
by the finite pulse duration.

D. Calculations including propagation

Finally, we perform a complete calculation includin
propagation, and thereby phase matching, of the harm
field through the nonlinear medium. We use the single-at
dipole moment—calculated as a function of the intensity—
a source term of the nonlinear part of the polarization fie
and solve the wave equation in the paraxial and slowly va
ing envelope approximations by numerical propagat
through the medium. This method was described extensiv
for instance, in Ref.@16,19#. We then calculate the harmon
spectrum at the exit of the medium, by Fourier transform
the ~space-dependent! harmonic time profile. From the spec
trum, which presents a superposition of two curves with d
ferent widths@10#, we obtain the bandwidth and hence t
coherence time of each of the two components. Note tha
this calculation very few approximations have been ma
We automatically take into account the small intensity d
pendency of the phase coefficients, since we are using
full dipole moment as a source term in the macroscopic

FIG. 7. Coherence times, calculated using the inverse of
phase coefficients, and also accounting for the finite pulse dura
~dashed line!. Solid diamonds correspond to the short trajecto
and open circles to the long trajectory. Coherence times calcul
in a fully macroscopic calculation are drawn with a solid line. So
triangles correspond to the short trajectory, and open squares t
long trajectory.
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culation. The results are presented in Fig. 7~solid lines!. The
behavior of the coherence times is quite close to that sho
with dashed lines. This leads to the conclusion that the
herence times are essentially governed by the simple phy
contained in the classical model, with the correction that
effect of a finite pulse duration must be accounted for.

IV. EXPERIMENTAL RESULTS

We measure the variation of the coherence times of
two regions for different harmonic orders for two differe
intensities, 231014 W/cm2 ~dashed lines in Fig. 8! and 4
31014 W/cm2 ~solid lines in Fig. 8!. We observe two re-
gions with different coherence times: an outer region with
short coherence time~open circles!, and an inner region with
a longer coherence time~solid diamonds!. The coherence
time for the outer region is approximately constant with
spect to both harmonic order and intensity, whereas the
herence time for the inner region decreases with harmo
order and increases with intensity. The dependence on
harmonic order is very similar to the theoretical predictio
~Fig. 7!. There is some difference regarding the absolute v
ues for the coherence times~Figs. 7 and 8!, especially for the
outer region but the trends are the same. Let us empha
again that the aim of our measurements is not to determ
accurate coherence times, but to study variations and tre

FIG. 9. Coherence times measured experimentally as a func
of intensity for the 23rd harmonic. The inner region is represen
by diamonds, and the outer region by circles.
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FIG. 8. Coherence times measured experimentally as a func
of harmonic order. The dashed lines correspond to an intensit
231014 W/cm2 and the solid lines to an intensity of 4
31014 W/cm2. The inner region is marked with diamonds and t
outer region with circles.
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FIG. 10. Interference pattern for different fo
cus positions for the 13th harmonic:~a! the focus
is 2.4 mm before the gas jet;~b! the focus is in
the center of the gas jet; and~c! the focus is 1.8
mm after the gas jet.
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The difference between theory and experiment might sim
be due to some systematic error owing to our method
determining the experimental coherence times.

The behavior of the coherence time with respect to int
sity is presented in Fig. 9, where the coherence time for
23rd harmonic is plotted for increasing intensities. The
herence time of the inner region increases with increas
intensity, whereas the outer region remains relatively ins
sitive. An increase of the intensity corresponds to mov
harmonics in the plateau region away from the cutoff. A
cording to our theoretical understanding presented above
two trajectories and hence the two coherence times sh
therefore differ more and more as the intensity is increas
This agrees with our experimental observations.

In Fig. 10, the influence of the focus position relative
the gas jet is illustrated. We record the interference pat
while moving the position of the focus through the gas jet
the 13th harmonic. The beam is apertured to a diameter
mm, and the peak intensity is estimated to be
31014 W/cm2. We see how the relative importance of th
two regions varies for the different conditions. In~a!, where
the focus is before the gas jet, the outer region has dis
peared and harmonics are emitted only in the inner region
~b! and ~c!, where the focus is positioned in the gas jet, a
after the gas jet, respectively, both regions can be seen.
figure illustrates clearly how phase-matching conditions
fluence the contributions of the two trajectories different
When the focus is before the gas jet, we see only the co
bution due to the shortest trajectory~with excursion time
t1). The contribution of the other, longer, trajectory is n
properly phase matched. This agrees well with theoret
calculations presented in Ref.@10#. As the focus is moved
through the gas jet, the contribution of the other traject
~with excursion timet2) is better phase matched and t
outer region becomes visible. In~c! the outer region is
slightly annular, which is consistent with previous measu
ments of the spatial profile of the harmonic radiation@20#.
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We also find that the coherence times in the two regions
not depend on the focus position. This is because they
essentially determined by the single-atom dynamics, and
by propagation effects.

V. CONCLUSION

We have studied the coherence times of high-order h
monics produced in argon. The spatial profiles in the far fi
separate into two distinct spatial regions having different
herence times, in agreement with previous results. We h
measured the coherence times of the inner and outer reg
as function of the harmonic order, the laser intensity, and
position of the gas jet.

The coherence times vary both as a function of the h
monic order, and as a function of the laser intensity, in go
agreement with the predictions of the semiclassical mode
this model, the two dominating quantum paths contribut
to the generation of some particular harmonic are disti
when the harmonic is deep in the plateau region, and bec
more alike as the harmonic approaches the cutoff region.
observe this effect on the coherence times, which dire
reflect the electronic trajectories. This is a clear experime
signature of the semiclassical model. The fact that we
enhance one or the other of the two regions by macrosc
cally changing the focusing conditions is in good agreem
with predictions taking into account phase matching of
two components of the field in the nonlinear mediu
@10,21#.
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