
PHYSICAL REVIEW A DECEMBER 1999VOLUME 60, NUMBER 6
Effect of atomic recoil on the absorption spectrum of driven V-type atoms

Hong Y. Ling and Anthony Williams
Department of Chemistry and Physics, Rowan University, Glassboro, New Jersey 08080

~Received 29 April 1999!

A numerical method is developed for a V system driven by two counterpropagating laser fields in a
momentum regime where a full quantum-mechanical treatment of the atomic variables is necessary. This
method is based on a transformation by which integral equations, reduced from steady-state optical-Bloch-type
equations involving the atomic center-of-mass momentum, can be transformed into inhomogeneous tridiagonal
vector recurrence equations. The effect of the atomic recoil on the momentum distribution in the absence of the
probe field, and, in particular, the absorption spectrum in a copropagating spectrum configuration is analyzed
and discussed. Special attention is given to the Rayleigh resonance of subnatural linewidth.
@S1050-2947~99!10112-4#

PACS number~s!: 32.80.Pj, 32.70.2n, 42.50.2p, 42.65.2k
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I. INTRODUCTION

An atom can experience a recoil during the absorpt
and emission of radiation as a consequence of the mom
tum conservation. This atomic recoil plays an essential r
in the laser cooling of atoms@1#. Laser cooling and trapping
of atoms eventually led to the recent spectacular display
Bose-Einstein condensation of gaseous atoms@2–5#. Cold
atoms enjoy much reduced Doppler and transit broadeni
and, therefore, are ideal for nonlinear spectroscopy.
Lamb-Dick narrowing was observed by Westbrooket al. @6#
in a fluorescence spectroscopic experiment involving c
Na atoms in three-dimensional~3D! standing waves. Disper
sionlike resonances of subnatural linewidth were repor
independently, by Grisonet al. @7# and Tabosaet al. @8#, in
the absorption spectrum of cold cesium atoms in
magneto-optical traps. Effects similar to those in Refs.@6–8#
were also demonstrated by Verkerket al. @9# and analyzed
by Courtois and Grynberg@10# in 1D laser cooling of cesium
atoms under different polarization configurations. Reco
induced resonances, first predicted by Guo and co-wor
@11,12#, were later observed experimentally by Courto
et al. @13#. More recently, a collective-atomic-recoil las
~CARL! was proposed by Bonifacio and co-workers@14–16#
in an effort to convert atomic kinetic energies into coher
radiation. This has sparked a series of activities, both exp
mental@17,18# and theoretical@19–21#, surrounding CARL.

In this paper, we study the effect of atomic recoil on t
momentum distribution and, especially, the absorption sp
trum of cold V atoms driven by nearly resonant count
propagating pump fields. The absorption spectrum is ca
lated in a copropagating spectrum configuration in which
probe induces the same atomic transition as the copropa
ing pump field. The study is intended to be fully quantu
mechanical in the sense that quantization is performed
both the internal and external degrees of atomic freed
Such a treatment leads to the generalized optical Bl
~GOB! equation for the atomic variables involving th
center-of-mass atomic momentum. To justify this approa
we follow Ref. @22# and limit our study to atoms that hav
relatively narrow atomic lines and are precooled to with
several Doppler cooling limits. Compared to many mu
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level systems@6–9,11,12#, our system does not allow a pho
ton of one direction to be transferred, by stimulated p
cesses, into a photon of opposite direction, a phenome
known as coherent photon redistribution. Coherent pho
redistribution is indeed forbidden inW systems driven by
counterpropagatings1-ands2-polarized fields@23,24# in a
copropagating spectrum configuration. However, in th
studies, the pump fields are assumed to be far off resona
and the calculation is not fully quantum mechanical.

The ‘‘nearly resonant’’ requirement makes it difficult t
apply adiabatic or secular approximations to simplify GO
type equations. In addition, we also leave the arbitrary la
intensity open, so that the results from the dressed-s
theory@25–27# may be tested for very cold atoms. For the
reasons, it is very difficult to carry out this study in an an
lytical manner. The numerical simulation at long time can
problematic @28#. In general, as the interaction time in
creases, on the one hand, one has to increase the sam
rate so that the narrow peaks in the momentum distribu
caused by laser cooling are not smeared; on the other h
one must increase the momentum domain to accommo
the momentum diffusion by spontaneous emission. This w
inevitably lead to a large number of coupled equations~in
the momentum space! at long time. If one simply takes a
numerical integration of GOB equations to find the stea
state solution, it will be very time consuming. In this pape
we follow Refs. @11,12,29,30# and approximate the trans
process with a decay rateg t ~much smaller than any relevan
rates! and a momentum distributionW(p), so that a steady-
state solution can always be reached in aboutg t

21 time. Un-
der such a circumstance, one can, in principle, obtain
steady-state solution by solving linear matrix equatio
However since the dimension of matrices at long time,
just noted, can be large, one may encounter problems in
ent from sparse matrices of large dimension@31#. One can
also follow Refs.@29#, @32# to reduce the coupled steady
state GOB equations into an integral equation involving
single unknown function, and to solve it by an iterativ
method based on the concept of perturbation. However,
approach has a low rate of convergence, especially at l
time and with relatively large pump laser intensities.

In this paper, we develop an alternative method to so
4812 ©1999 The American Physical Society
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PRA 60 4813EFFECT OF ATOMIC RECOIL ON THE ABSORPTION . . .
steady-state GOB-type equations. This method can be
vided into two stages. In the first stage, we basically foll
Refs. @29#, @32# and derive a single integral equation fro
the coupled GOB equations. In the second stage, we tr
form the integral equation into an inhomogeneous tridiag
vector recurrence equation, and solve it by the method
matrix continued fraction@33,34#. The method of~matrix!
continued fraction, although popular among the semiclass
laser-cooling studies@35,36#, has, to our knowledge, neve
been generalized to the spectroscopic calculation of atom
a full quantum-mechanical description. The virtue of th
method is that, no matter how large the momentum sp
the dimension of all the matrices involved is limited to t
number of divisions within 2\k, a subspace typically muc
smaller than the relevant momentum space. This pape
organized as follows. In Sec. II, we introduce our model a
present the GOB equations along with the absorption sp
trum formula. Sections III and IV are devoted to the redu
tion of steady-state GOB-type coupled equations into sin
integral equations that are essential to the calculation of
atomic momentum distribution and absorption spectrum. T
numerical method will be outlined in Sec. V. Section V
presents and discusses the numerical results, with an em
sis placed on recoil-related phenomena. A brief summar
provided in Sec. VII.

II. THEORETICAL MODEL AND EQUATIONS
OF MOTION

Figure 1 shows a schematic diagram of a degene
driven V system. The dipole allowed transitions are driv
independently, by pump laser fields of frequenciesv32 and
v12, wave vectorsk and2k, and amplitudesF32 andF12.
In addition, a weak probe field of frequencyvp , wave vector
k, and amplitudeFp is applied between levels 3 and 2.F12,
F32, and Fp are slowly-varying amplitudes of space an
time defined in the expansion for the total field,

F̂~ ẑ,t !5 1
2 ~eW32F32e

2 iv32t1 ikẑ1eW12F12e
2 iv12t2 ikẑ

1eW32Fpe2 ivpt1 ikẑ!1H.c., ~1!

where the fields are polarized in such a way thatm32
5^3um̂•eW32u2& andm125^1um̂•eW12u2& ~along with their com-
plex conjugates! are the only surviving matrix elements of

FIG. 1. A schematic diagram of three-level V-type atoms driv
by two counterpropagating pump laser fields~solid arrows! and
probed by a weak field~dashed arrows!.
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dipole operatorm̂. We choose to work in a space spanned
ui, p&, wherei is the index to the internal atomic energy leve
andp is the momentum eigenvalue of the atomic center-
mass momentum operator. In this space, the atomic Ha
tonian

ĤA5(
i
E dpS \V i21

p2

2M D u i ,p&^p,i u, ~2!

is diagonalized, where\V i2 is the energy of leveli relative
to the ground energy, while the interaction Hamiltonia
ĤL2A52m̂•F̂, under the rotational-wave approximation,
reduced to

ĤL-A52E dp~\E12e
2 iv12tu1,p2\k&^p,2u1H.c.! ~3!

2E dp~\E32e
2 iv32tu3,p1\k&^p,2u1H.c.!

2E dp~\Epe2 ivptu3,p1\k&^p,2u1H.c.!, ~4!

where E125m12F12/2\, E325m32F32/2\, and Ep
5m32Fp/2\ are the Rabi frequencies of the correspond
fields. The time evolution of the atomic density-matrix o
erator,r8, in Schrödinger’s picture, is governed by

dr8

dt
52

i

\
@ĤA1ĤL-A ,r8#1S sr8

dt D
inc

, ~5!

where (dr8/dt) inc is the short-hand notation for random
fluctuation and transit interaction. For simplicity, the tran
process is simulated with a decay rateg t , sufficiently small
so thatg t

21 can be regarded as the interaction time resulti
for example, from atoms entering and leaving the interact
region @11,12,29#, and an external pumping rate to th
ground level,g tW(p), whereW(p) is the normalized atomic
momentum distribution in the absence of any coherent fie
As usual, the effect of random fluctuation is described by
population decay rate from levele to 2, Ge2 , the lifetime of
the levele, Ge

215(g t1Ge2)21, and the relevant dephasin
ratesge25g t1Ge2/2 and g315g t1(G121G32)/2, wheree
51 or 3. Following the concept of momentum fami
@37,29#, we introduce a set of slowly varying density-matr
elements:

r11~p,t !5r118 ~p2\k,p2\k!,

r22~p,t !5r228 ~p,p!,

r33~p,t !5r338 ~p1\k,p1\k!,

r21~p,t !5r218 ~p,p2\k!e2 iv12t,
~6!

r23~p,t !5r238 ~p,p1\k!e2 iv32t,

r13~p,t !5r138 ~p2\k,p1\k!ei ~v122v32!t,

r j i ~p,t !5r i j* ~p,t ! if iÞ j ,
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4814 PRA 60HONG Y. LING AND ANTHONY WILLIAMS
where r i j8 (p,p8)5^p,i ur̂8u j ,p8&. Equations ~2!–~5! along
with the consideration of transit and random interactions
sult in the following GOB equations:

d

dt
r11~p,t !52G1r11~p,t !1 i @E12r21~p,t !2c.c.#, ~7a!

d

dt
r33~p,t !52G3r33~p,t !1 i @E32r23~p,t !2c.c.#

1 i @Epe2 iDtr23~p,t !2c.c.#, ~7b!

d

dt
r12~p,t !52n12~p!r12~p,t !1 iE12@r22~p,t !2r11~p,t !#

~7c!

2 iE32r13~p,t !2 iEpe2 iDtr13~p,t !, ~7d!

d

dt
r32~p,t !52n32~p!r32~p,t !1 iE32@r22~p,t !2r33~p,t !#

~7e!

2 iE12r31~p,t !1 iEpe2 iDt@r22~p,t !2r33~p,t !#, ~7f!

d

dt
r31~p,t !52n31~p!r31~p,t !1 i @E32r21~p,t !

2E12* r32~p,t !#1 iEpe2 iDtr21~p,t !, ~7g!

d

dt
r22~p,t !5G12E

2\k

1\k

dqN~q!r11~p1\k1q,t !

1G32E
2\k

1\k

dqN~q!r33~p2\k1q,t !

2g tr22~p,t !1g tW~p!

2 i @E12r21~p,t !2c.c.#

2 i @E32r23~p,t !2c.c.#

2 i @Epe2 iDtr23~p,t !2c.c.#. ~7h!

Here, in addition toD5vp2v32, we have introduced

n12~p!5g122 id128 ~p!,d128 ~p!5d121
k

M
p, ~8a!

n32~p!5g322 id328 ~p!,d328 ~p!5d322
k

M
p,

~8b!

n31~p!5g312 id318 ~p!,d318 ~p!5d328 ~p!2d128 ~p!,
~8c!

n j i ~p!5n i j ~p!* if iÞ j , ~8d!

where d128 (p), d328 (p), and d318 (p) are the Doppler-shifted
laser detunings, andd125v122V122v r and d325v32
2V322v r are the laser detunings with respect to the rec
frequency shiftv r5\k2/2M . The atomic momentum redis
tribution by spontaneous emission is summarized in the
tegrations in Eq.~7h!. Due to the randomness in the spon
-

il

-
-

neous emission, an excited atom of momentump1q with
q<u\ku has theN(q) probability of becoming a ground
atom of momentump, where

N~q!5
3

8\k F11S q

\kD 2G , ~9!

assuming the emitted photons to bes1 or s2 polarized@22#.
To calculate the absorption spectrum of the probe fie

we follow the perturbative approach@38# by expanding

r i j ~p,t !5r i j
~0!~p!2 i @Epr i j

~1!~p,D!e2 iDt

2Ep* r i j
~1!~p,2D!eiDt#, ~10!

correct to the first order in the amplitude of the probe fie
wherer i j

(0)(p) is the steady-state solution without the pro
field, andr i j

(1)(p,D)@r i j
(1)(p,2D)5r j i

(1)* (p,D)# is the probe
induced modulation at the frequencyD and in the unit of
2 iEp ~and hence is independent ofEp!. The equations for
r i j

(0)(p) andr i j
(1)(p,D) can be derived from Eq.~8! and are

left in Appendix A as references. The absorption spectrum
the context of this study shall be directly related to the m
roscopic polarization at positionz, given by P32(z,t)
5m23r328 (z,t)1c.c., wherer328 (z,t) is the density-matrix el-
ement in the position space, and can be obtained by
transformation@11#

r328 ~z,t !5
1

2p\ E E dp dp8 expF i
~p82p!z

\ Gr328 ~p8,p!.

~11!

In this problem, because of the absence of the coherent
ton redistribution, and the assumption that the loaded ato
are distributed uniformly over the space,r328 (p8,p) is non-
zero only if p85p1\k. This fact together with the defini
tions for the slowly varying density-matrix elements, allow
us to arrive at

r328 ~p8,p!5r32~p!e2 iv32td~p82p2\k!. ~12!

A polarization componentr328 (z,D,t), given by

r328 ~z,D,t !52 iEp

1

2p\
F E r32

~1!~p,D!dpGe2 ivpt2 ikz,

is seen to oscillate at the frequency and travel along
direction of the probe field, when Eq.~12! is inserted into
Eq. ~11! andr32(p) is replaced with its perturbative expan
sion @Eq. ~10!#. In analogy with the absorption coefficien
introduced in the semiclassical theory, we define the abs
tion spectrum~at an arbitrary unit! as

a~D!5ReF E r32
~1!~p,D!dpG . ~13!

III. INTEGRAL EQUATION FOR r22
„0…

„P…

In this section, we seek to derive, from Eqs.~A1!, an
integral equation forr22

(0)(p) along with the relations that ca
facilitate its numerical implementation outlined in Sec.
We begin by substitutingr12

(0)(p)@r21
(0)(p)# andr32

(0)(p)@r23
(0)
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3(p)#, obtained from Eqs.~A1c! and ~A1d! ~together with
their complex conjugates!, into Eqs.~A1a! and ~A1b!. This
operation results in two contributions to the excited popu
tions. The first can be traced to the single-photon~SP! pro-
cess. The effect of the SP process on the atomic populat
is represented by the SP absorption~emission! rates:

a12~p!5
2g12

g12
2 1d128

2 I 12, a32~p!5
2g32

g32
2 1d328

2 I 32,

whereI 125uE12u2 andI 325uE32u2 are the corresponding lase
intensities. The other is associated with the excited coh
encer31

(0)(p)@r13
(0)(p)#. To trace their origin, we solve Eqs

~A1c!–~A1e! together with their complex conjugates wi
the goal of expressingr31

(0)(p)@r13
(0)(p)# in terms of the popu-

lation terms. This leads to

r31
~0!~p!5

E12* E32

z31
Fr22

~0!2r11
~0!

n21
1

r22
~0!2r33

~0!

n32
G , ~14!

wherez31(p)5G31(p)2 iS31(p), and

G31~p!5g311
I 32g12

g12
2 1d128

2 1
I 12g32

g32
2 1d328

2 , ~15!

S31~p!5d318 1
I 32d128

g12
2 1d128

22
I 12d328

g32
2 1d328

2 . ~16!

The fact thatr31
(0)(p) @Eq. ~14!# is proportional to the produc

of the two field amplitudes suggests that the latter is the w
of two-photon~TP! process, and can, therefore, be describ
by three TP absorption~emission! rates. They are, respec
tively, the net escaping rate of the atoms at level 1,

A11~p!52I 12I 32

~g12
2 2d128

2!G3112g12d128 S31

~g12
2 1d128

2!2~G31
2 1S31

2 !
; ~17!

the net escaping rate of atoms at level 3,

A33~p!52I 12I 32

~g32
2 2d128

2!G3122g32d328 S31

~g32
2 1d328

2!2~G31
2 1S31

2 !
; ~18!

and finally, the population exchange rate between leve
and 3,

A~p!52I 12I 32

~g12g321d128 d328 !G311~g21d128 2g12d328 !S31

~g12
2 1d128

2!~g32
2 1d328

2!~G31
2 1S31

2 !
.

~19!

With these preparations, we reduce Eqs.~A1a! and ~A1b!
into steady-state rate equations, from which we express
excited populations in terms of the ground population as

r11
~0!~p!5c12~p!r22

~0!~p!,r33
~0!~p!5c32~p!r22

~0!~p!, ~20!

where

c12~p!5
R12~G31R32!2A~G31A!

~G11R12!~G31R32!2A2 , ~21a!
-

ns

r-

k
d

1

he

c32~p!5
R32~G11R12!2A~G11A!

~G11R12!~G31R32!2A2 , ~21b!

and

R12~p!5a12~p!2A11~p!, R32~p!5a32~p!2A33~p!.
~22!

Finally, we combine Eqs.~A1a!, ~A1b!, and~A1f!, and trans-
form the result with the help of Eqs.~20!, into an integral
equation for a single unknown functionr22

(0)(p), in the form
of

g tW~p!52G32E
2\k

1\k

dqN~q!c32

3~p2\k1q!r22
~0!~p2\k1q!

1L~p!r22
~0!~p!2G12E

2\k

1\k

dqN~q!c12

3~p1\k1q!r22
~0!~p1\k1q!, ~23!

where

L~p!5g t1G1c12~p!1G3c32~p!.

It is clear that oncer22
(0)(p) is determined, the rest atomi

variables can simply be obtained algebraically with the h
of Eqs.~20! and ~14!, and additional relations in Eqs.~A1!.

IV. INTEGRAL EQUATION FOR r22
„0…

„P,D…

In this section, we follow the same steps in Sec. III
derive, from Eqs.~A2!, an integral equation forr22

(1)(p,D),
and to establish equations necessary for the numerical ca
lation of r32

(1)(p,D) and hence the absorption spectrum@Eq.
~13!#. Note that in arriving at Eqs.~A2!, we have introduced
and shall continue to use a notational convention: a n
variable f̃ (p,D) is introduced if there exists such a functio
f (p) in Sec. III that f (p)5 f̃ (p,0). For example, the intro-
duction of a variableñ12(p,D) @Eq. ~A3d!# is based on the
fact thatñ12(p,0) equalsn12(p) @Eq. ~8a!#. This convention
allows Eqs.~A2! to be organized in a similar format to tha
of Eqs. ~A1!. Hence the solution tor i j

(0)(p,D) can also be
handled in a ‘‘rate’’ equation approach. Here the quotat
marks serve as a reminder that the ‘‘rates’’ introduced be
do not have physical meanings, and, as matter of fact, are
even real. The benefit, however, is that the solution to E
~A2! can now be described in a language consistent with
description of the solution to Eqs.~A1!. First we introduce
two ‘‘SP rates’’

ã12~p,D!5I 12F 1

ñ21
1

1

ñ12
G , ã32~p,D!5I 32F 1

ñ23
1

1

ñ32
G
~24!

to account for the contributions by SP processes. Next,
trace the origin of the TP contributions to
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r13
~1!~p,D!52 i

E32*

z̃13ñ12

r13
~0!1

E12E32*

z̃13

F r22
~1!2r11

~1!

ñ12

1
r22

~1!2r33
~1!

ñ23
G , ~25!

r31
~1!~p,D!52

1

z̃31

r21
~0!2 i

E12*

z̃13ñ32

@r33
~0!2r32

~0!#

1
E32E32*

z̃31

F r22
~1!2r11

~1!

ñ21

1
r22

~1!2r33
~1!

ñ32
G , ~26!

where

z̃13~p,D!5 ñ131
I 12

ñ23
1

I 32

ñ12
, ~27a!

z̃31~p,D!5 ñ311
I 12

ñ32
1

I 32

ñ21
. ~27b!

We then introduce three TP rates

Ã11~p,D!5I 12I 32F 1

ñ12
2 z̃13

1
1

ñ21
2 z̃31

G , ~28a!

Ã33~p,D!5I 12I 32F 1

ñ32
2 z̃31

1
1

ñ23
2 z̃13

G , ~28b!

Ã~p,D!5I 12I 32F 1

ñ12ñ23z̃13

1
1

ñ21ñ32z̃31
G ~28c!

to describe the TP contributions. Again, by solving the t
simultaneous rate equations, we connectr11

(1)(p,D) andr33
(1)

3(p,D) to r22
(1)(p,D) by the following algebraic relations:

r11
~1!~p,D!5c10~p,D!1 c̃12~p,D!r22

~1!~p,D!, ~29a!

r33
~1!~p,D!5c30~p,D!1 c̃32~p,D!r22

~1!~p,D!, ~29b!

where

c10~p,D!5
u1~ G̃31R̃32!1u2Ã

~ G̃11R̃12!~ G̃31R̃32!2Ã2
, ~30a!

c30~p,D!5
u2~ G̃11R̃12!1u1Ã

~ G̃11R̃12!~ G̃31R̃32!2Ã2
, ~30b!

and

u1~p,D!52 i
E12*

ñ12
S 12

I 32

ñ12z̃13
D r13

~0!1
E32* E12

ñ21z̃31

r21
~0!

1 i
E32* I 12

ñ21ñ32z̃31

~r33
~0!2r22

~0!!, ~31a!
u2~p,D!52r23
~0!1 i

I 32E12*

ñ23ñ12z̃13

r13
~0!1

E32* E12

ñ32z̃31

r21
~0!

2 i
E32*

ñ32
S 12

I 12

ñ32z̃31
D ~r33

~0!2r22
~0!!. ~31b!

Here,R̃12, R̃32, c̃12(p,D), andc̃32(p,D) @including L̃(p,D)
in Eq. ~32!# can be obtained by a simple transformatio
placing a curly hat on every variable in the definitions f

these variables in Sec. III. For example,R̃12(p,D)

5ã12(p,D)2Ã11(p,D) corresponds to R12(p)5a12(p)
2A11(p) @the first relation in Eq.~22!#. In contrast,u1(p,D),
u2(p,D), c10(p,D), andc30(p,D) cannot find their analogs
in Sec. III, since they depend onr i j

(0)(p). By combining Eqs.
~A2a!, ~A2b!, and~A2i!, and with the help of Eqs.~29!, we
finally arrive at an equation involving integrals of a sing
unknown function,r22

(1)(p,D),

2G̃1c10~p,D!2G̃3c30~p,D!

1G2E
2\k

1\k

dqN~q!c10~p1\k1q,D!

1G32E
2\k

1\k

dqN~q!c30~p2\k1q,D!

52G32E
2\k

1\k

dqN~q!c̃32~p2\k1q,D!r22
~1!~p2\k

1q,D!1L̃~p,D!r22
~1!~p,D!

2G12E
2\k

1\k

dqN~q!c̃12~p1\k1q,D!r22
~1!~p1\k

1q,D!, ~32!

in a format similar to Eq.~23!. Oncer22
(1)(p,D) is solved,

r32
(1)(p,D) can be obtained through various algebraic re

tions.

V. OUTLINE OF NUMERICAL METHOD

It is now clear that the key to the solutions to Eqs.~A1!
and ~A2! is to develop efficient algorithms for solving Eq
~23! and ~32!. In this section, we show that Eq.~23! @Eq.
~32!# can be cast into an inhomogeneous tridiagonal vec
recurrence equation, and hence, can be solved by the me
of matrix continued fraction. To begin with, we divideq
between2\k and 1\k into L divisions and replace the
integrals in Eq.~23!, with the Simpson’s rule@31#. This pro-
cess turns Eq.~23!, into
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g tW~nDp!52G32

Dp

3 (
l 52L

0

bl 1LN~\k1 lDp!c32~~n

1 l !Dp!r22
~0!
„~n1 l !Dp…1L~nDp!r22

~0!~nDp!

2G12

Dp

3 (
l 50

L

blN~2\k1 lDp!c12~~n

1 l !Dp!r22
~0!
„~n1 l !Dp…, ~33!

wherep5nDp, bl54 if l is odd, andbl52 if l is even, with
the exception thatb05bL51. Note that in arriving at the
form for the first integral in Eq.~33!, we have made the
transformation l 2L→ l along with the conditionLDp
52\k. Equation~33! can be put into a compact form

g tW~nDp!5 (
l 52L

L

An
l r22

~0!
„~n1 l !Dp…, ~34!

where

An
05L~nDp!2G12

Dp

3
N~2\k!c12~nDp!

2G32

Dp

3
N~\k!c32~nDp!,

An
l 52G12

Dp

3
blN~2\k1 lDp!c12„~n1 l !Dp… if l .0,

An
l 52G32

Dp

3
bl 1LN~\k1 lDp!c32„~n1 l !Dp… if l .0.

By using the standard procedure@34#, we transform Eq.~34!
into an inhomogeneous tridiagonal vector recurrence eq
tion

Qn
2cn211Qncn1Qn

1cn115r n , ~35!

wherecn and r n are vectors ofL dimension defined as

cn5S r22
~0!
„~Ln!Dp…

r22
~0!
„~Ln11!Dp…

]

r22
~0!
„~Ln1L21!Dp…

D
and r n5S g tW„~Ln!Dp…

g tW„~Ln11!Dp…
]

g tW„~Ln1L21!Dp…
D ,

respectively, whileQn’s are matrices ofL3L defined as

~Qn
1! i j 5ALn1 i 21

j 2 i 1L ,~Qn
2! i j 5ALn1 i 21

j 2 i 2L ,~Qn! i j 5ALn1 i 21
j 2 i ,

with An
l 50 if u l u.L. We can then solve Eq.~35! with the

matrix continued fraction method@33,34#. It is apparent that
the matrices involved all have the same dimensionL, typi-
cally much smaller than the total number of divisions. T
same algorithm can be used to obtain the solution to Eq.~32!
when L(p), c12(p), c32(p), and g tW(p) are replaced,
a-

respectively, with L̃(p,D), c̃12(p,D), c̃32(p,D), and
2G̃1c10(p,D) 2 G̃3c30(p,D) 1 G12*2\k

1\kdqN(q)c10(p 1 \k
1q,D)1G32*2\k

1\kdqN(q)c30(p2\k1q,D).

VI. NUMERICAL SIMULATIONS AND DISCUSSIONS

To focus, we limit our study to symmetrical systems
which G125G32[G, g125g32[g, d125d32[dL , E125E32
[EL , and I 125I 32[I L . In our simulation,\k is chosen to
be the unit for the momentum andG to be the unit for any
rates and frequencies;W(p) is assumed to be a normalize
Gaussian function,

W~p!5
1

A2pDpD

e2~p/DpD!2
, ~36!

whereDpD is the half-width at exp(21); the upper and lower
momentum limits are set between four and eight tim
6DpD depending on the momentum spread; the momen
is sampled at a rate of ten divisions per\k. Finally, we note
a relation vD5kp/M52v rp/\k that might be implicitly
used to make conversions between the Doppler shiftvD and
the atomic momentump.

Figure 2 shows the momentum distributions produced
der the condition that the pump fields have a low Rabi f
quency (EL50.1G) and are red detuned (dL520.5G), with
the rest parameters beingv r50.2G andg t50.001G. At such
a low Rabi frequency,

G,g@ae2~P!@Aee~p!,A~p! ~e51 or 3!, ~37!

so that Eqs.~21! can be approximated asce2(p)'ae2(p)/G
!1. For this reason, the excited populations@Eqs. ~20!# are
almost unobservable in Fig. 2. The ground momentum d
tribution @Fig. 2~b!#, on the other hand, experiences a sign
cant change compared toW(p) @Fig. 2~a!# due to the mo-
mentum redistribution by absorption and spontane
emissions. The number of absorption and spontaneous e
sion cycles in an interaction timeg t

21 can be estimated by
a12(p)/g t under condition~37!. a12(p)/g t equals 200 atp0
5udLu\k/2v r51.25\k, where the atoms are on resonan
with the atomic transitions, and equals 3 atp520\k. This

FIG. 2. ~a! W(p) and ~b! r22
(0)(p) for a case of a low Rabi

frequency EL50.1G with additional parametersv r50.2G, g t

50.001G, dL520.5G, andDpD510\k. r11
(0)(p) and r33

(0)(p) are
extremely small.



hy

is
m

th

fo
th

ta
r

f
o

di
ly
e

5,

e ac
nds
How-

o
osi-

t
o-

ump
h
oes

hape

d
tion

two
s
d
be
ype

uch

e

e
he

en-
he

4818 PRA 60HONG Y. LING AND ANTHONY WILLIAMS
difference, together with the Doppler effect, explains w
the atoms around6p0 are piled up aroundp50 while those
at large momentums are virtually untouched. Figure 3 d
plays the momentum distributions produced with the sa
parameters as in Fig. 2 except thatEL5G. At such a high
laser intensity,ae2(0)52gI L /(g21dL

2)'1.6G.G, so that
saturation develops as is supported by Figs. 3~c! and 3~d!. In
addition, the narrow peak aroundp50 in Fig. 3~b! is broader
than its a counterpart in Fig. 2. This broadening is due to
ac-Stark effect, which has been incorporated intoce2(p) @Eq.
~21!# via the two-photon rates,Aee(p) andA(p) @Eqs.~17!–
~19!#. Further, in Fig. 3, a significant heating is developed
the atoms of large momentums since there, although
cooling force is small, the momentum diffusion by spon
neous emission can still be quite large. In fact, the numbe
optical pumping cycles at the momentum as large as 20\k is
a12(20\k)/g t'30, still quite larger than 1. The use o
a12(p)/g t for the estimation is justified because at large m
mentums, inequality~37! still holds.

Figures 4 and 5 are the absorption spectra correspon
to the momentum distributions of Figs. 2 and 3, respective
In Fig. 4, an almost homogeneously broadened line shap
the atomic transition frequencyV32(D52dL50.5G)
emerges from the Doppler-broadened profile of widthDvD
54G(DpD510\k). At a laser intensity as large as in Fig.

FIG. 3. ~a! W(p), ~b! r22
(0)(p), ~c! r11

(0)(p), and~d! r33
(0)(p) for a

case of a high Rabi frequencyEL5G with additional parameters th
same as in Fig. 2.

FIG. 4. The absorption spectrum corresponding to the mom
tum distributions in Fig. 2. The inset is an enlarged view of t
Rayleigh resonance atD50.
-
e

e

r
e

-
of

-

ng
.
at

this line gives way to the Rabi sidebands, as a result of th
Stark shift. No exact formulas exist to locate the sideba
because the dressed states are now velocity dependent.
ever, an inspection of Fig. 5 indicates that while the tw
sidebands on the negative side are mixed, those on the p
tive side are located approximately at1(I L1I L)1/2'
11.5G and 12(I L1I L)1/2'13G, in qualitative agreemen
with the prediction from the dressed-atom theory for the h
mogeneously broadened atoms driven by resonant p
fields @25–27#. Also evident in Figs. 4 and 5 is the Rayleig
resonance of subnatural linewidth. This resonance underg
a dramatic change as the laser intensity increases. Its s
has evolved from pro-Lorentzian~the inset in Fig. 4! to dis-
persionlike~the inset in Fig. 5! type. The spectrum on the re
side of the Rayleigh resonance has changed from absorp
to gain. Let us characterize the Rayleigh resonance with
parameters: a peak~maximum! value and a width defined a
the spectroscopic distance between the peak location anD
50 ~not as the peak to peak width since no minimum can
located if the resonance is shaped in a pro-Lorentzian t
like the inset in Fig. 4!. Figure 6 shows how~a! the peak and
~b! the width change with the pump Rabi frequencyEL ~with
the rest parameters the same as in Fig. 4 or 5!. Both the peak
and width increase withEL up to a certain point, beyond
which they begin to decrease. The width decreases at a m

n-

FIG. 5. The absorption spectrum corresponding to the mom
tum distributions in Fig. 3. The inset is an enlarged view of t
Rayleigh resonance atD50.

FIG. 6. The dependence of~a! the peak and~b! the width of the
Rayleigh resonance on the laser Rabi frequencyEL , with additional
parameters the same as in Fig. 2.
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faster rate than the peak. Our simulation~not shown! indi-
cates that the Rayleigh resonance is more of Lorentzian
at smallEL , where the peak and width experience a m
dramatic increase, and is more of a dispersionlike type
largeEL , where the peak and width decrease.

To trace the origin of the Rayleigh resonance, we take
approach @11,12,39# or first discussing the concept o
‘‘closed’’ system. LetrT

(0)(p)5S i 51
3 r i i

(0)(p) and rT
(1)(p,D)

5S i 51
3 r i i

(1)(p,D), respectively, be the total population an
total probe-induced population modulation of a moment
group. If the Doppler width is much larger than\k, the
atomic recoil can be ignored. Under this condition, one fin
from Eqs.~A1! and ~A2! that

rT
~0!~p!5W~p! and rT

~1!~p,D!50. ~38!

Equations~38! mean that both the total population and t
total probe-induced population modulation are conser
within a specific momentum group, or, equivalently, that t
members of each momentum group form a closed syst
This is no longer the case when the atomic recoil is ta
into consideration. To illustrate this, we introduce the to
population rT(t)5*2`

1`S i 51
3 r i i (p,t)dp. It can be shown

from Eqs.~8! that

drT~ t !/dt52g trT~ t !1g t .

Clearly, at steady staterT(t)51, which, together with Eq.
~10!, leads to two normalization conditions

E
2`

1`

rT
~0!~p!51 and E

2`

1`

rT
~1!~p,D!dp50, ~39!

specific forrT
(0)(p) andrT

(1)(p,D). The functions satisfying
Eqs. ~39! are not necessarily same as those satisfying E
~38!. In summary, our system is closed globally with rega
to the atoms of all the momentum groups, but remains o
for the atoms local to the momentump; that is,

rT
~0!~p!ÞW~p! and rT

~1!~p,D!Þ0. ~40!

The spectroscopic features, apart from the Rayleigh re
nance, can mostly be accounted for by the first inequality
Eq. ~40!. For example, the nearly homogeneously broade
line shape in Fig. 4 is a direct consequence ofrT

(0)(p) being
different fromW(p) due to laser cooling~Fig. 2!. The Ray-
leigh resonance, on the other hand, is the work of the sec
inequality in Eq. ~40!. To illustrate this point, we divide
according to Ref.@39#, a~D! @Eq. ~13!# into a recoil-induced
parta r(D) and a background partab(D). The spectroscopic
terms proportional torT

(1)(p,D) are grouped intoa r(D),
while the rest all go toab(D). It is evident thata r(D) must
come from the atomic recoil sincerT

(1)(p,D) @consequently
a r(D)# vanishes in the absence of the atomic recoil. Suc
division is carried out in Appendix B, and the results a
summarized in Eqs.~B5!–~B8!. Figure 7 comparesa~D!,
a r(D), andab(D) for the Rayleigh resonance in Fig. 5.
shows thata r(D) @Fig. 7~b!# indeed determines the shape
the Rayleigh resonance whileab(D) @Fig. 7~c!# serves as a
background offset to the total signala~D! @Fig. 7~a!#. In fact,
this behavior holds for all the examples given in this pap
pe
t
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n
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nd
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r.

The line shape ofa r(D) depends critically onrT
(1)(p,D). In

Fig. 8, we display several real@rT
(1)(p,D)# with different D

using the same parameters as in Fig. 5. First, the area u
each curve is zero, in accordance with the second relatio
Eq. ~39!. Second, asuDu increases,rT

(1)(p,D) diminishes
quickly. This can be understood as follows@9,23,24#. The
combined field of the probe and copropagating fields os
lates at a beat frequencyD. As a result, the population is
modulated with the same frequency. The modulation de
of the total population of a momentum group is the amp
tude of rT

(1)(p,D). This population grating~in the time do-
main! contributes to the absorption spectrum by scatter
part of the pump field into the component at the frequen
and along the direction of the probe field. If the combin
field oscillates much faster than the system can respond
response of the system will be weak. In another words
uDu@1/t, wheret characterizes the response time of the s
tem, the amplitude ofrT

(1)(p,D) will be small. The maxi-
mum response happens approximately arounduDu'1/t.
Sinceg t

21 is viewed as the interaction time, we expect th

FIG. 7. The decomposition of~a! a~D! into a recoil-induced part
~b! a r(D) and a background part~c! ab(D) for the Rayleigh reso-
nance corresponding to Fig. 5.

FIG. 8. The real part ofrT
(1)(p,D) as a function of momentump

for ~a! D520.004G, ~b! D520.2G, ~c! D52G, and ~d! D
522G. The rest of the parameters are the same as in Fig. 3~or
Fig. 5!.
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4820 PRA 60HONG Y. LING AND ANTHONY WILLIAMS
in our systemt21 be proportional tog t . Consequently, as
illustrated in Fig. 9, asg t increases, the width@Fig. 9~b!# and
peak@Fig. 9~a!# of the Rayleigh line increase and decrea
respectively.

VII. SUMMARY

In this paper, we have developed a numerical method
which V systems driven by nearly resonant counterpropa
ing pump fields can be analyzed in the momentum reg
where a full quantum-mechanical treatment of the atom
variables is necessary. This method consists of first redu
the steady-state GOB-type equations into a single inte
equation whose solution holds the key to the rest ato
variables, second transforming the integral equation into
inhomogeneous tridiagonal vector recurrence equation,
finally solving it by the method of matrix continued fractio
This has the advantage of limiting the dimension of the m
trices to the number of divisions in 2\k, a subspace typically
much smaller than the entire momentum space. Equip
with this method, we have performed numerical studies
the momentum distribution in the absence of the probe fi
and, in particular, the absorption spectrum in the copropa
ing spectrum configuration, with our research interest be
focused on recoil-related phenomena. The effect of
atomic recoil has been demonstrated with examples bot
low and relatively high pump laser intensities. In particul
the origin of the Rayleigh resonance of subnatural linewi
has been traced to the spectroscopic contribution assoc
with the total probe-induced population modulation of a s
cific momentum group,rT(p,D). However, we are unable t
obtain any analytical descriptions of the resonance,
partly to the fact that, in the nearly resonant interaction, b
r22

(0)(p) and r22
(1)(p,D) have to be determined in a sel

consistent manner. For this reason, this study only give
limited view of the dependence of the Rayleigh resonance
the atom-field parameters. In a future studies, we hope
gain further insight into the formation of the Rayleigh res
nance of subnatural linewidth by developing asymptotic
pressions that can give better guidance to numerical inve
gations.
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FIG. 9. The dependence of~a! the peak and~b! the width of the
Rayleigh resonance on the transit decay rateg t . The rest param-
eters are the same as in Fig. 3~or Fig. 5!.
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APPENDIX A: STEADY-STATE EQUATIONS

r i j
(0)(p) satisfies the following set of coupled equations

G1r11
~0!~p!5 i @E12r21

~0!~p!2c.c.#, ~A1a!

G3r33
~0!~p!5 i @E32r23

~0!~p!2c.c.#, ~A1b!

n12~p!r12
~0!~p!5 iE12@r22

~0!~p!2r11
~0!~p!#2 iE32r13

~0!~p!,
~A1c!

n32~p!r32
~0!~p!5 iE32@r22

~0!~p!2r33
~0!~p!#2 iE12r31

~0!~p!,
~A1d!

n31~p!r31
~0!~p!5 i @E32r21

~0!~p!2E12* r32
~0!~p,t !#, ~A1e!

g tr22
~0!~p!5G12E

2\k

1\k

dqN~q!r11
~0!~p1\k1q!

1G32E
2\k

1\k

dqN~q!r33
~0!~p2\k1q!1g tW~p!,

2 i @E12r21
~0!~p!2c.c.#2 i @E32r23

~0!2c.c.#,
~A1f!

r i j
~0!~p!5r j i

~0!* ~p!, if iÞ j . ~A1g!

The coupled equations forr i j
(1)(p,D) are

G̃1~D!r11
~1!~p,D!5 i @E12r21

~1!~p,D!2E12* r12
~1!~p,D!#,

~A2a!

G̃3~D!r33
~1!~p,D!52r23

~0!~p!1 i @E32r23
~1!~p,D!2E32* r32

~1!

3~p,D!#, ~A2b!

ñ21~p,D!r21
~1!~p,D!52 iE12* @r22

~1!~p,D!2r11
~1!~p,D!#

1 iE32* r31
~1!~p,D!, ~A2c!

ñ12~p,D!r12
~1!~p,D!5r13

~0!~p!1 iE12@r22
~1!~p,D!2r11

~1!~p,D!#

2 iE32r13
~1!~p,D!, ~A2d!

ñ23~p,D!r23
~1!~p,D!52 iE23* @r22

~1!~p,D!2r33
~1!~p,D!#

1 iE12* r13
~1!~p,D!, ~A2e!

ñ32~p,D!r32
~1!~p,D!5@r33

~0!~p!2r22
~0!~p!#1 iE32@r22

~1!~p,D!

2r33
~1!~p,D!#2 iE12r31

~1!~p,D!, ~A2f!

ñ13~p,D!p13~p,D!
~1! 52 i @E32* r12

~1!~p,D!2E12r23
~1!~p,D!#,

~A2g!

ñ31~p,D!r31
~1!~p,D!52r21

~0!~p!1 i @E32r21
~1!~p,D!2E12* r32

~1!

3~p,D!#, ~A2h!
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g̃ t~D!r22
~1!~p,D!5r23

~0!~p!2 i @E12r21
~1!~p,D!2E12* r12

~1!

3~p,D!#2 i @E32r23
~1!~p,D!2E32* r32

~1!

3~p,D!#1G12E
2\k

1\k

N~q!r11
~1!~p1\k

1q,D!dq1G32E
2\k

1\k

N~q!r33
~1!~p2\k

1q,D!dq, ~A2i!

where

G̃1~D!52 iD1G1 , ~A3a!

G̃3~D!52 iD1G3 , ~A3b!

g̃ t~D!52 iD1g t , ~A3c!

ñ12~p,D!5g122 i @D1d128 ~p!#, ~A3d!

ñ32~p,D!5g322 i @D1d328 ~p!#, ~A3e!

ñ31~p,D!5g312 i @D1d318 ~p!#, ~A3f!

ñ j i ~p,D!5g i j 2 i @D2d i j8 ~p!#, if iÞ j . ~A3g!

APPENDIX B: DERIVATION OF aR„D… AND aB„D…

As a first step, we replacer31
(1)(p,D) in Eq. ~A2f! with Eq.

~26!, and solve forr32
(1)(p,D), with the result

r32
~1!~p,D!5

1

ñ32
S 12

I 1

z̃31ñ32
D S r33

~0!2r22
~0!1 i

E12

ñ32z̃31

r21
~0!

2 i
I 12E32

z̃31ñ32ñ21

~r22
~1!2r11

~1!!1 i
E32

ñ32
S 12

I 12

z̃31ñ32
D

3~r22
~1!2r33

~1!!. ~B1!

Next, we insert Eqs.~29! into the definition forrT
(1)(p,D)

5S i 51
3 r i i

(1)(p,D) to obtain

r22
~1!~p,D!52

c101c30

11 c̃121 c̃32
1

1

11 c̃121 c̃32
rT

~1!~p,D!,

~B2!
an

ys

n,
tt.
which, together with relations~29!, leads to

r11
~1!~p,D!5

c10~11 c̃32!2c30c̃12

11 c̃121 c̃32
1

c̃12

11 c̃121 c̃32
rT

~1!~p,D!,

~B3!

r33
~1!~p,D!5

c30~11 c̃12!2c10c̃32

11 c̃121 c̃32
1

c̃32

11 c̃121 c̃32
rT

~1!~p,D!.

~B4!

By inserting Eqs.~B2!–~B4! into Eq.~B1! and separating the
terms proportional torT

(1)(p,D) from the rest, we find that
r32

(1)(p,D)5r32
(1)(p,D)b1r32

(1)(p,D) r , where

r32
~1!~p,D!b5

1

ñ32
S 12

I 12

z̃31ñ32
D ~r33

~0!2r22
~0!!1 i

E12

ñ32z̃31

r21
~0!

1 i
I 12E32

z̃31ñ32ñ21

F ~c101c30!~11 c̃12!

11 c̃121 c̃32

1c10G
2 i

E32

ñ32
S 12

I 12

z̃31ñ32
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11 c̃121 c̃32
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and

r32
~1!~p,D!r52 irT

~1!~p,D!
E32

ñ32~11 c̃121 c̃32!
F I 12

z̃31ñ21

~1

2 c̃12!1S I 12

z̃31ñ32

21D ~12 c̃32!G . ~B6!

Accordingly, the absorption spectrum is divided intoa(D)
5ab(D)1a r(D), where

ab~D!5E r32
~1!~p,D!bdp, ~B7!

a r~D!5E r32
~1!~p,D!rdp. ~B8!
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