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Measuring the quantum state of an electromagnetic field using the atomic Talbot effect

B. Rohwedder, L. Davidovich, and N. Zagury
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68.528, 21945-970 Rio de Janeiro, RJ, Brazil

~Received 3 December 1998!

Fractional Talbot images in the de Broglie near field of atoms diffracted by a dispersive light grating allow
the measurement of the quantum state of an electromagnetic field in a cavity, in the optical domain. In
particular, the photon-number statistics may be obtained, in principle, through a single experimental realiza-
tion. It may be expressed as a Fourier transform of the atomic density on a plane situated at one-fourth of the
Talbot distance from the light grating. The proposed measurement of the density matrix of a standing light
wave using ‘‘Talbot fingerprints’’ should be feasible within the present state of the art.
@S1050-2947~99!02407-5#

PACS number~s!: 03.75.Be, 32.80.2t, 42.50.2p
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I. INTRODUCTION

The oldest observation of what is now called the ‘‘Talb
effect’’ was described in 1836@1#, at a time when the wave
description of light was still called ‘‘the undulatory hypoth
esis’’ in England. This effect can be observed in the n
field of a plane wave diffracted by a periodic structure, and
associated with a first-order correction beyond ray opt
One should expect that, due to diffraction effects, sim
geometrical shadows of the periodic structure get replac
in the near-field region, by more complex images. Howev
at entire multiples of a fundamental lengthD, exact shadows
~‘‘Talbot images’’! of the grating show up. The lengthD,
commonly referred to as the ‘‘Talbot distance,’’ is express
in terms of the grating periodd and the wavelengthl of the
incident radiation byD52d2/l. The waves exhibit therefore
a periodicity along the propagation direction, after cross
the grating. The first theoretical explanation of this effe
was given by Rayleigh in 1881@2#. A historical review can
be found in@3#. Recent theoretical studies in the context
atom optics can be found in@4–7#.

The Talbot effect has been applied to the comparison
diffraction gratings, in situations where it is not desirable
directly superimpose them. The direct superposition met
was used by Lord Rayleigh, who tested optical gratings
observing the arising Moire´ pattern@8#. Instead of using the
‘‘true’’ shadow, as was done in the superposition meth
one can alternatively use the Talbot self-images that ap
at integral multiples of the Talbot distance~or its half! to test
diffraction gratings. This is especially useful for fragile gra
ings, since it would avoid the mechanical contact betwe
them. This method was preferred in Ref.@9#, where very
fragile, 200 nm and 300 nm period gratings were tested us
sodium atoms. At the same time, this experiment constitu
a nice demonstration of the Talbot effect with atomic mat
waves. Several other experiments also demonstrated the
bot effect with atom waves, using amplitude gratings@10#.
Recently, the virtues of a novel atom detector with high s
tial resolution have been demonstrated by using it to de
Talbot fringe patterns at various distances behind a mic
fabricated structure with a comparatively large grating c
stant of 6.55mm @11#. For finer gratings a direct measur
ment of the atomic density distribution in the near fie
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becomes increasingly difficult, since detectors with the
quired spatial resolution cannot be easily implemented. T
problem can be circumvented with the help of a second g
ing of equal period: by laterally scanning this ‘‘mask’’ whil
measuring the proportion of transmitted atoms, detailed p
tures of the Talbot near field can be obtained. The shap
the more complex images that appear at fractions of the
bot distance can also be determined this way, as long as
open fraction of the ‘‘probe’’ grating is chosen sma
enough. A beautiful example can be found in Ref.@12#,
where the diffraction of argon atoms by a novel type of a
sorptive ‘‘quenching-effect’’ grating made of light~grating
constant 400 nm! is demonstrated@13#.

To the best of our knowledge, the Talbot effect has ne
been confirmed with atoms crossing a strongly detun
standing light field, even though the experimental parame
used to observe far-field diffraction in such a configurati
@14# are ideally suited for demonstrating this near-field effe
as well. Due to the governing dispersive interaction, suc
structure plays the role of a sinusoidal phase grating
atomic de Broglie waves.

The Talbot effect with phase gratings has been conside
before, for electromagnetic waves. As the waves propag
in free space behind the grating, the initially pure pha
modulation eventually gets transformed into a pure am
tude modulation at one-fourth of the Talbot distance@15#.

The attractiveness of atom-optics gratings based on st
ing electromagnetic waves comes from the ease of cali
tion of these devices, by changing the field intensity and
cavity length. However, in the regime of low intensities, o
must pay attention to the quantum nature of the field
volved. It is the purpose of the present paper to include
quantum properties of the field in the Talbot effect f
atomic waves, and to show that the near-field diffraction p
tern at this particular distanceD/4 is highly sensitive to the
quantum field statistics of the diffracting light field. In fac
we will show that under certain conditions the fractional T
bot image atD/4 represents a one-to-one mapping of t
photon-number distribution, and that its inversion is ve
simple, allowing in principle the full determination of th
photon-number distribution of the field through the measu
ment of the atomic density on theD/4 plane. This is a quan
tum nondemolition measurement, since the dispersive in
480 ©1999 The American Physical Society
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PRA 60 481MEASURING THE QUANTUM STATE OF AN . . .
action between the atoms and the field does not change
photon-number distribution. We also show that, by inject
a coherent state into the cavity containing the field to
measured, one can determine from the atomic distribu
the Wigner function of the initial field at any point of phas
space.

As we will show, our method may have some advanta
with respect to other procedures proposed so far for s
reconstruction of optical fields in cavities, and transforms
striking Talbot effect into a useful tool for quantum sta
diagnosis of a standing-wave light field. A series of differe
schemes for this purpose are given in Refs.@16–23#. Closest
to our proposal are the methods discussed in Refs.@20,22#
which also consider two-level atoms in their ground st
interacting dispersively with a standing light field in a cavit
Contrary to our scheme, in which it is of central importan
that the atoms ‘‘see’’ many nodes of the standing wa
these techniques require atoms to cross only a small se
of the optical potential. This obliges one to restrict t
atomic motion by using appropriate slits. Our approach d
not require any such additional and flux-reducing structu
because it makes actual use of the periodicity of the opt
potential from the very beginning.

Also, our proposal differs from those in Refs.@17,19# in
an essential way. In our method the information on
photon-number statistics can be easily obtained, in princi
after a single realization, from the probability density
finding the atoms in each position of a plane parallel to
standing-wave grating. In the quantum nondemoliti
~QND! procedures proposed in Refs.@17,19#, this informa-
tion is obtained after several realizations, the field being p
jected, in each realization, onto a Fock state by the suc
sive detection of the atoms which cross the field grati
Consideration of the near-field region not only leads to a
lytical expressions for the field statistics in terms of t
atomic distribution, which allow the reconstruction of th
field statistics after a single realization, but one also bene
from the redundancy associated with the periodicity of
atomic position pattern.

The proposition presented in@23# is similar to ours in the
sense that a one-to-one mapping of a cavity state on
atomic degree of freedom is performed. While we use
motional state to perform this mapping, the internal atom
structure is employed in that reference. Specifically,
quantum state of the field is impinged on an atomic Zeem
submanifold via an adiabatic transition. A subsequent se
of Stern-Gerlach measurements is used to retrieve the st
information from a series of identically prepared atoms. T
beautiful idea does not require atom detectors with high s
tial resolution as in our scheme. On the other hand, i
limited to atoms with an adequate level structure, and it
quires an additional laser and external magnetic fields. A
its mathematical description is substantially more comp
than in our case.

Finally, Refs. @16,18,21# are based on resonant intera
tions and thus do not represent QND measurements. Bec
each atom changes the field population to be measured, t
proposals also require rebuilding the initial field after ea
atom is measured.
the
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II. THE ATOMIC TALBOT EFFECT

We consider here a one-mode standing optical field, p
odic along thex axis, crossed by an orthogonal atomic bea
which propagates along thez axis, as schematically shown i
Fig. 1. We assume, for the sake of simplicity, that the field
well as the atomic beam are uniform along they direction,
and that the amplitude of the light field is constant along
z direction, being confined in the region2L,z,0. Some of
these conditions will be relaxed later on. The atoms are p
pared in the ground state, and we assume that the detu
between the field frequency and the atomic transition f
quencies is sufficiently large so that transitions from t
ground state can be safely neglected. Only the closest-tu
excited state needs to be considered, and the atom ca
taken as a two-level atom. This requires thatuGu2n!D2

1g2, whereG is the amplitude of thex-dependent single-
photon Rabi frequency

g~x!5G sinS 2px

l D , ~1!

n is the characteristic photon number,D is the detuning of
the field from the two-level transition frequency~without
loss of generality we assumeD.0 for notational simplicity!,
andg is the spontaneous emission rate from the excited st
We also assume that the number of spontaneously em
photons in the interaction region is very small, which impli
that uGu2ngt int /(D

21g2)!1, where t int is the interaction
time. Under these conditions, and assuming also thatD@g,
the interaction can be written as

Heff5
\ug~x!u2

D
sza

†a. ~2!

Here the operatorsa anda†, with @a,a†#51, are the annihi-
lation and creation operators corresponding to the stand
wave field mode of frequencyv52pc/l, and sz
5u1&^1u2u2&^2u, whereu1& and u2& refer to the upper
and lower atomic states, respectively.

Furthermore, we assume that the standing wave con
tutes a thin optical medium, so that the transverse kin
energy absorbed by the atom during the interaction is m

FIG. 1. Two-level atoms coming from the left interact with th
field in the cavity and are detected on a substrate atz5D/4.
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482 PRA 60B. ROHWEDDER, L. DAVIDOVICH, AND N. ZAGURY
smaller than the dispersive atom-field coupling. This
known as the Raman-Nath regime@24#. For the standing-
wave interaction given by Eq.~2!, the variation of the kinetic
energy alongx, due to the gradient forcedHeff /dx, will be of
the order of (udHeff /dxut int)

2/2M;(\ktint)
2G4n2/2MD2,

whereM is the atomic mass, andk52p/l. Therefore, the
Raman-Nath regime requires that\(kGtint)

2n/MD!1. This
same condition guarantees that the total displacement o
atom along thex axis in the interaction region is muc
smaller than the wavelength of the standing wave. The li
field becomes then a pure phase grating for the ato
waves, described by the effective interaction~2!. Also, since
the atoms will remain in their lower levelu2& all the time,
one does not need to take the internal degrees of free
into account. For thermal atomic velocities, the kinetic e
ergy associated with the atomic motion along thez axis is
much larger than the amplitude of the dispersive interact
so that the reflection of the atomic beam on the stand
wave is negligible. We assume that the field is described
a density operatorr, with a photon-number distribution
given bypn5^nurun&.

The initial plane atomic wave, normalized to unity de
sity, enters the light field att52t int . In the Raman-Nath
regime considered here, the light field simply acts as a p
phase grating, thus producing, at its exit, and if there arn
photons in the field,

cn~x,0!5einf sin2(2px/l), ~3!

wheref5G2t int /D. Free propagation then leads to

cn~x,t !5A M

i2p\tE2`

`

dx8e( i /\)(M /2t)(x8)2

3einf sin2[2p(x81x)/l] ~4!

behind the grating.
We introduce now the natural variablesX andZ, defined

by

x[
l

2

X

2p
, z5vzt[D

Z

2p
, ~5!

whereD[2(l/2)2/(h/Mvz) is the Talbot distance,vz is the
velocity of the atomic beam in thez direction, andl/2 is the
period of the intensity grating. Atom detectors allow t
measurement of the probability density distribution cor
sponding to Eq.~4!, which can be expressed in terms of
Fourier series expansion@25#:

ucn~x,t !u25 (
j 52`

`

ei jXJj@2nf sin~ jZ !#, ~6!

whereJj is a Bessel function. In this form it becomes evide
that the diffraction pattern is not only periodic along t
grating axisX but also along the propagation axisZ. Equa-
tion ~6! thus defines a doubly periodic function in theX-Z
plane. Although this is not evident from Eq.~4!, the same
statement applies to the wave amplitude itself. That is
essence of the so-called Talbot effect.
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III. PHOTON STATISTICS AND WIGNER FUNCTION

In the strong coupling regime it is nowadays possible
achieve values off larger than unity. Figure 2 depicts th
density distribution of atoms scattered by a light field in t
number statesn51, n52, and n53, respectively, atz
5D/4, whenf5p is assumed. It is evident from these pi
tures that in this regime near-field imaging becomes stron
dependent on the governing field statistics. The natural qu
tion arises, if it is also possible to unambiguously read
the field photon statistics from the Talbot pattern it produc
That this question is not trivial can be inferred from the fa
that the intensity distribution observed, for instance, at
Talbot distanceD or its half is just constant and thus pro
vides no information about the electromagnetic field. W
will show, however, that the fractional Talbot image atD/4
contains the full information needed.

Indeed, atZ/2p51/4 ~that is,z5D/4), Eq.~6! reduces to

ucn~x,t !u2512sin~nf cosX!. ~7!

If instead of a Fock state one has a photon-number dis
bution pn , the intensityI measured by the detector, norma
ized so thatI 51 if there is no field in the cavity, is given by
the superposition

I ~X![12 (
n51

`

pn sin~nf cosX!. ~8!

If f>p, it is straightforward to show, using the Fourie
theorem, that the coefficientspn (n.0) are given by

pn5
2f

p E
a

b

dX sinX sin~nf cosX!@12I ~X!#, ~9!

with a5cos21(p/f) andb5cos21(0), while p0512(1
`pn .

Equation~9! shows that the photon-number distribution c
be obtained in a very simple way from the atomic distrib
tion. This result is a peculiarity of the near field. In the f
field there does not seem to exist a simple analog to Eq.~9!
for the retrieval of information on the photon-number dist
bution of the electromagnetic field.

It is easy to see whyp0 cannot be obtained directly from
the atomic distribution: the atomic wave function is n
changed if there are no photons in the cavity. The perio
structure ofI (X) allows the above integration to be replac

FIG. 2. Density distribution of atoms scattered by a light field
the number statesn51 ~solid line!, n52 ~dashed line!, andn53
~dotted line!. z5D/4, G2t int /D5p.
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PRA 60 483MEASURING THE QUANTUM STATE OF AN . . .
by an average over many periods of the atomic distributi
thus enhancing the information content of the measured d

The restrictionf5G2t int /D>p has a simple physica
meaning: a small coupling term implies that only weak d
tortions of the initially plane de Broglie wave front will tak
place. Contributions corresponding to different photon nu
bers are then virtually indiscernible for smalln. This condi-
tion is compatible with recent experimental data. In a hig
finesse optical cavity coupling constants as high asG/2p
5120 MHz have already been achieved@26# ~one should
remark, however, that the particular setup described in
reference is not useful for our purpose: the pronounced n
uniformity of the field distribution in the cavity used b
those authors prevents the realization of a phase grating
the needed periodicity!. In order to getG2t int /D.p, for an
interaction timet int'100 ns, andD'10GAn andn'1 it is
sufficient to haveG/2p.50 MHz. Typical values for one-
fourth of the Talbot distance are in the millimeter range~if
l5500 nm and ldB50.2 Å we get D'1 cm). One
should note that iff@p the Talbot pattern oscillates ver
fast, rendering more difficult the application of this metho
Therefore one should have ideallyf;p.

We show now how to extract from the fractional Talb
image atz5D/4 complete information about the state of t
electromagnetic field, through the measurement of
Wigner representation. The Wigner quasiprobability dis
bution W(a) corresponding to the standing-wave field a
lows the calculation of symmetrically ordered products
field operators as classical-like phase-space integrals,
the operatorsa anda† replaced by thec-numbersa anda* ,
respectively@27#. It completely characterizes the quantu
state of the field, and can be obtained from the form
@27,29#

W~a!5
2

p (
n50

`

~21!npn~2a!, ~10!

wherepn(2a) is the photon-number distribution of the fie
obtained by coupling the cavity to a classical source t
displaces the original field in phase space by the comp
amplitude2a @28# ~this can be implemented by injectin
light from a well-stabilized laser, working sufficiently abov
threshold; the whole experiment must be done during a t
much smaller than the coherence time of the laser!. The nor-
malization in Eq. ~10! is chosen so that*d2aW(a)51,
where d2a stands ford(Rea)d(Im a). We note that the
same expression was used to determine the Wigner dist
tion corresponding to the center-of-mass motion of a trap
ion at NIST @29# and of atoms diffracted from a Youn
double slit in Konstanz@30#. A similar procedure, propose
for microwave fields@31#, involves the measurement of in
ternal states of two-level atoms which cross the cavity fie
after a displacement in phase space. In our case, howev
is possible to directly express the Wigner function in ter
of the atomic center-of-mass distribution. Indeed, from E
~9! and ~10!, and the expression forp0, it is easy to show
that, if I 2a(X) is the atomic distribution after the phas
space displacement of the original field by2a, then

W~a!5
2

p H 11
2f

p E
a

b

dX
@12I 2a~X!#sinX

sin~f cosX! J . ~11!
,
ta.
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This equation expresses the Wigner function of the cav
field in terms of the atomic distribution on a plane situated
one-fourth of the Talbot distance from the standing-wa
grating. One should note that the integrand is not singula
X5p/2: it follows indeed from Eq.~8! that for this value of
X it converges tô n&.

In practice, in order to measure the Wigner function a
point a of phase space, one would displace the field to
measured by2a, and then send the atoms across the fie
measuring their distribution on a plane at the proper positi
A detector with high (!l/2) spatial resolution is needed fo
this experiment. The deposition of the atoms on a substra
a viable method. The deposited structure can be obse
either with scanning probe techniques@32# or in real time by
optical diffraction @33#. Although the intrinsic size of the
atoms, their mobility on the surface, and shot noise due
their finite number set basic physical limits to the metho
there is also a big advantage: all the information is stored
a stripe of finite width and, due to the periodicity of th
deposited atom layer, there is a high amount of redunda
in the information content, which can be made use of
averaging over many periods.

It is interesting to compare the above procedure with
far-field version of this experiment. The corresponding ba
expression may be obtained by expanding the sinuso
phase factor in Eq.~4! in terms of plane waves, using th
generating identity for Bessel’s functionsJj (a),

eia sin k5 (
j 52`

`

Jj~a!ei jk , ~12!

and considering the free propagation to the far-field regi
one gets the well-known expression for thej th-order diffrac-
tion intensity@14#:

I j

I
5 (

n50

`

pnJj
2S n

G2T

2D D . ~13!

One should note, as mentioned before, that an invers
formula like Eq.~9! does not seem to exist in the far-fie
region.

IV. ABERRATION EFFECTS

In any real experiment the assumptions which led to
above model can only be satisfied in an approximate man
Departures from the expected behavior may be caused
series of effects that strongly depend on the specific exp
mental conditions. In this section we discuss the influence
some sources of aberrations on the quality of the propo
QND measurement.

A. Finite aperture

We have assumed that a plane wave reaches the c
field at timet52t int . Collimating slits in the atom beam, th
limited size of the physical cavity, and the Gaussian wa
dimensions of a typical electromagnetic mode, howev
naturally define afinite entrance aperturea of the system and
give rise to the distinction of a near and a far field. T
question of how much the Talbot images are distorted du
an entrance pupil has been repeatedly addressed in the l
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484 PRA 60B. ROHWEDDER, L. DAVIDOVICH, AND N. ZAGURY
ture @3#. A quite general approach is given in Ref.@34#. Here
we prefer to numerically compare the idealized near-fie
image ~7! at z5D/4 with its aperture-limited counterpart.
Under the assumption of a rectangular entrance slit profi
the condition

D

4
!

a2

h/Mvz
~14!

for the observation plane to be in the near field is very we
fulfilled. Indeed, this condition does not depend on th
atomic momentum, but only on the grating period/apertu
ratio, as (l/2)2!2a2. Figure 3 shows the results for the
intensity as a function ofX when there is a Fock state with
n51 inside the cavity and the size of the aperture isa
510l. One can see that the distortions in the intensity a
quite small~dashed line! as compared with the results of Sec
III of this paper~solid line! and should not affect very much
the determination ofpn even when only 20 grating periods
are illuminated.

B. Gaussian cavity mode profiles

Another source of distortions comes from the geometry
the cavity, and manifests itself in two ways. First, the stan
ing electromagnetic wave has a transverse dependen
which we simulate through anX dependence of the form
w(X)5w0$@11h(X/a)2#%1/2, which is typical of a Gaussian
mode of a resonator@35#. The dotted and the dash-dotted
lines in Fig. 3 represent the situation wherea510l and
whenh50.04 andh50.10, respectively. As we can see in
the figure, the discrepancies with the results forI (X) ob-
tained in Sec. II are quite small.

Furthermore, the electromagnetic mode is not flat toppe
since sharp edges are never realized in actual experime
The turning on of the coupling~1! may be modeled by some
smooth functionf that describes the cross-sectional shape
the laser beam

g~x,z5vzt !5 f ~ t !G sinS 2px

l D . ~15!

FIG. 3. IntensityI (X) at z5D/4 for ~a! infinite aperture~solid
line!; ~b! a510l, h50 ~dashed line!; ~c! a510l, h50.04
~dotted line!; ~c! a510l, h50.10 ~dash-dotted line!.
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One easily shows, in the same way as in Ref.@36#, that our
results remain true for anyf, as long as the turning on i
adiabatic and the time variablet is replaced by t
5*dt f2(t). Thus, by changing the parametrizations of tim
accordingly and making sure that the region of interestz
5D/4) is well outside the interaction area, the two descr
tions essentially coincide.

C. Chromatic aberration

The Talbot effect depends strongly on the wavelength
is thus mandatory to study how much the velocity distrib
tion in a realistic atom beam distorts the near-field intens
distribution. For this purpose we have made a series of
merical simulations using a Gaussian distribution of velo
ties. We find that, as long as the mean photon number of
field is not too high, longitudinal velocity dispersions as hi
as a few percent do not change appreciably the values
tained for the photon statistics and the Wigner function fro
Eqs.~9! and~10!. In Figs. 4 and 5 we show, as an examp
the results obtained for the photon distribution for a coher
state and a cross section (Rea.0,Ima50) of the Wigner
function for a Fock state withn̄51, when we consider dis
persions of 1% and 2% of the mean longitudinal veloci
We observe that the measurement is only minimally dete
rated when such rather moderate longitudinal veloc
spreads are assumed@the value shown forp0 is calculated
from p0512(n51

` p(n) and therefore accumulates the e
rors in the determination of allp(n)#.

D. Transverse incoherence

The required lateral coherence of the atomic wave fr
will usually be achieved with a collimating slit@9#, very
much like in Talbot’s seminal work@1#. As noted in both
these references, a narrower slit produces better ima
since it represents a more accurate realization of a p
source. In such a configuration, our assumption of a pl
atomic wave front at the grating plane is only approximat

FIG. 4. Simulation of photon distribution for a coherent sta

with n̄51 when the velocity distribution is Gaussian, with varian
Dvz . For each value ofn, the three columns represent, from left
right, the photon statistics for the original field distribution, and t

distributions forDvz50.01v̄z andDvz50.02v̄z . G2 t̄ int /D5p. p0

is obtained fromp0512(1
`pn .
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PRA 60 485MEASURING THE QUANTUM STATE OF AN . . .
fulfilled. It is well known, however, that a wave front o
constant curvature keeps the form of the Talbot images in
and only amounts to a shadowlike magnification of th
size, proportional to the distance away from the grating@3#,
and to which our measurement scheme is insensitive. W
no loss of generality, we will thus retain our initial, plan
wave illumination assumption. Lateral incoherence may th
be modeled by adding the intensities~not the amplitudes! of
the near-field diffraction patterns produced by paraxial pla
waves which cross the light grating at different angles. T
oblique incidence is described by initial lateral velociti
vxÞ0.

When considering fluctuations aroundvx50, the change
in the interaction timet int due to the nonorthogonal incidenc
on the light mode can be completely neglected due
Dvx /vz!1 for any realistic beam. On the contrary, the la
eral displacement of the quarter Talbot image is independ
of vz and thus highly sensitive to variations invx . If we are
able to maintain the varianceDvx smaller than the one
photon recoil velocity the errors in the determination of t
photon statistics and the Wigner function are not too large
is shown in Figs. 6 and 7. If this is not the case, it is s
possible, in principle, to retrieve the true Wigner function
the velocity distribution is known, since the process is coh
ent. Let us exemplify this procedure in the case of a typic
Gaussian velocity distribution. Let

B~X!5
1

A2ps
E

2`

`

dX8e2(1/2)[(X82X)/s] 2
I ~X8! ~16!

be the blurred image to be deconvoluted. The rationali
distribution widths is measured in units of photon mome
tum, i.e.,

s5
1

4

MDvx

h/l
. ~17!

By expanding bothB and I into Fourier series,

FIG. 5. Simulations for a cross section of the Wigner distrib
tion when the velocity distribution is Gaussian. The solid line re
resents the true Wigner function for a Fock state withn51, while

the dashed and the dotted lines are simulations forDvz50.01v̄z and

Dvz50.02v̄z . G2 t̄ int /D5p.
ct
r

th

n

e
s

o

nt

s
l

r-
l,

d

B~X!5 (
j 52`

`

Bje
iX j , I ~X!5 (

j 52`

`

I je
iX j , ~18!

one finds, after reinsertion into Eq.~16!, that the Fourier
coefficientsBj and I j are related through

I j5Bje
(s2/2) j 2

. ~19!

In an experiment, one would probably deal directly with t
Fourier components ofB as read off from the deposited ato
layer. Inasmuch as higher coefficients fall off exponentia
with s2, the velocity distribution width should not be to
broad. Nonetheless, the actual limitation ons is not given by
the photon-recoil velocity but depends only on the ability
resolve higher spatial frequencies inB. Formally, one can
expressI directly in terms ofB by resumming the series~18!.
The inverse of Eq.~16! then reads

-
-

FIG. 6. Simulation of photon distribution when the transver
velocity is Gaussian with varianceDvx , for a coherent state with

n̄51. For each value ofn, the four columns represent, from left t
right, the original field distribution, and the distributions forMDvx

equal to 0.025h/l, 0.050h/l, and 0.10h/l. G2t int /D5p. p0 is
obtained fromp0512(1

`pn .

FIG. 7. Simulations for a cross section of the Wigner distrib
tion when the velocity distribution is Gaussian. The solid line re
resents the true Wigner function for a Fock state withn51, while
the dashed, dash-dotted, and dotted lines are simulations forMDvx

equal to 0.025h/l, 0.050h/l, and 0.10h/l. G2t int /D5p.
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I ~X!5expH 2
s2

2 S d

dXD 2J B~X!. ~20!

V. CONCLUSIONS

We have considered in this paper the near-field diffract
pattern of atomic beams which interact dispersively with
standing electromagnetic wave, taking into account the qu
tum structure of the electromagnetic field. We have sho
that the Talbot effect is highly sensitive to the quantum s
tistics of the field. Based on this remark, we have propose
scheme for the measurement of the quantum state of op
fields in cavities using Talbot ‘‘fingerprints,’’ in which the
structure of the de Broglie near field of atoms diffracted b
light grating is used to determine the photon-number dis
ys
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rc
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tt.
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bution and the Wigner function of the field in the cavity. O
method does not require successive reinitializations of
experiment: in principle, a single realization allows the r
construction of the quantum state of the field.
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