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Collective oscillations of an interacting trapped Fermi gas
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We calculate the effects of two-body interactions on the low-frequency oscillations of a normal Fermi gas
confined in a harmonic trap. The mean-field contribution to the collective frequencies is evaluated in the
collisionless regime using a sum-rule approach. We also discuss the transition between the collisionless and
hydrodynamic regimes with special emphasis on the spin dipole mode in which two atomic clouds occupying
different spin states oscillate in the opposite phase. The spin dipole mode is predicted to be overdamped in the
hydrodynamic regime. The relaxation time is calculated as a function of temperature and the effects of Fermi
statistics are explicitly pointed oytS1050-2947@9)01212-3

PACS numbgs): 32.80.Pj, 05.30.Fk, 51.18y, 67.55.Jd

The investigation of collective excitations in trapped between thek=3 andk=1 momentsm,= [ S(E)EdE of
atomic gases has become an active research field, stimulatéte dynamic structure factor
by the experimental realization of Bose-Einstein condensa-
tion [1]. Because of the high density of the condensate, in-
teraction effects in cold Bose gases are crydain order to
explain the experimental results for the collective frequen-
cies[3]. In Fermi gases the Pauli exclusion principle makesrelative to a given operatdf. For simplicity we have con-
the density of the trapped gas more dilute, thereby reducingidered theT=0 case, but the formalism can be naturally
the effects of interactions. The equilibrium properties ofextended to finite temperature. The momenisandm; are
trapped Fermi gases as well as of Fermi-Bose mixtures haveasily evaluated in terms of commutators. In fact, using the
been already the object of theoretical calculations based ofPmpleteness relation, one can write
mean-field approachéd—7]. On the other hand experiments 1
aiming to produce samples of Fermi gases in conditions of __ t
quantum degeneracy are also becoming availggile My 2<0|[F [H.FHI0), &

In this paper we provide a theoretical discussion of inter-
action effects on the collective oscillations of a trapped
Fermi gas. The very high precision of frequency measure-
ments, the large value of the scattering length exhibited by
some atomic species and the possibility of pointing out efthereby avoiding the most difficult problem of determining
fects of quantum statistics in the collisional term, make thehe full functionS(E). In Egs.(3)—(4) |0) is the ground state
study of collective oscillations in these systems a promisingf the many-body system. Let us consider a symmetric con-
area of investigation. We will consider Fermi gases occupyfiguration withN; =N =N/2 and the same confining poten-
ing two distinct spin stateghereafter called, for simplicity, g V0=V, = Ve for the two spin species. We will evalu-
spin up and spin down, respectivelin fact only in this case 4t the commutators using the mean-field Hamiltonian
can the effects of the interaction generatedshyave scat-

tering be explored. We will further limit the discussion to the p?
case of excitations of low multipolarity in the normal phase, H=> 2—'+Vext+ g 8- r, 6)
corresponding to the easiest realization of future experi- L il
ments. In fact the transition to the superfluid phase is pre- 5 ) ) ] )
dicted [9,10] to occur at very low temperatures. For a dis- Where g=4mA“a/m is the interaction coupling constant
cussion of the oscillations in the superfluid phase[¢eelq.  fixed by theswave scattering length. By choosing an iso-

At very low temperatures collisions are quenched bytropic harmonic potentiaVe(r)=3maw;,r* the commuta-
Fermi statistics and the system is in the collisionless regimelors with the monopole K==r?), quadrupole F=3;r?
corresponding to the propagation of zero sound in traditionat 3zi2), and dipole F=Z,z) operators can be easily evalu-
Fermi liquids[12]. A useful approach to the study of collec- ated and one obtains the following resultsf]:
tive excitations in this regime is provided by sum rul&s].
In this approach the excitation energies can be estimated \/ZEkin+ 6Eot 6En 3 Eint
through the ratio wy= =

Nm(r2)

mz Eiint Eno 3 Ejnt
how=\— 1 wo= —=2w 1—--— 7
m, (1) =\ Nm(r?) ho\V1=7 Epe (7)
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S<E>=; |(n|F|0)|28(E i wy) ®)

1
m3:§<0|[[FTvH]![H1[H1F]]]|0>1 (4)




PRA 60 COLLECTIVE OSCILLATIONS OF AN INTERACTING . .. 4735

b= Oho, (8)  wherea’=128,23"%/3572=0.63 and, in the second equal-
ity, we have used the ground-state densit)) to evaluate
where E;, =g/ p(r)?dr/4 is the mean-field interaction en- the interaction contribution to first order in the scattering
ergy, Eno=mwi./r?p(r)dr/2 is the potential oscillator en- length. Notice that interactions affect the spin-dipole mode
ergy, Exin=(0|Z; pi2/2m|0> is the kinetic energy relative to through the same combination of parameters characterizing
the ground state, and=p,+p, is the total density of the the ratio(11). Typical values for the fermionic isotope of
gas. In deriving the second equalities in E@B, (7) we have  potassium show that interaction effects are rather small. For

used the virial theorer] example, using\=5x10° and a/ap,=6x10" 3, one finds
that the dipole frequency decreases b8%. Significantly
2Eyin— 2Enot 3Ein=0, (9 Jlarger corrections are predicted in the casélifwhere the

, L . scattering length is a factor 10 larger and negative. Notice
which allows one to calculate the deviations of the collectiveya; the integrals characterizing the interaction contribution
frequencies from the ideal gas predictiomg in terms of 4, the collective frequencies, are calculated herE=a0 and
the ratioE;y /Ey,. Differently from the quadrupole and the \yo|q decrease at higher temperature. We also note that, at
monopole, the dipole frequency is not affected by interact_g sym rules provide an upper bound to the frequency of
tions. In fact this mode corresponds to the oscillation of thgne |owest state excited by the operaForHowever, if one
center of mass of the gas driven by the extemnal harmonigysigers first-order corrections in the interaction consiant
potential. It is worth noticing that result§)—(8) hold also in  he sym rule boundé5)—(8), (12) can be shown to corre-
the case of trapped bosofts4], provided one uses the cor- gnonq 1o the exact value of the collective frequencies.
responding expression for the interaction energy. In the Case 1y resuits derived above can be easily generalized to the
of Bose-Einstein condensed gases the ground-state kinelise of deformed traps in which the external potential reads
energy is strongly quenched by interactions and, for Idige , (1) = mw? (x2+y2+122%)/2 and\ = w,/w, is the defor-

A . - . B ex z
the ratioE,/Ey, is equal to_Zli{see Eq.(9)]._|n this limit 1\ ation parameter of the trap. By assuming that interaction
one recovers the resulisy = V5w, and wo= \2wp, pre- effects are smaller than the unperturbed splitting between the
dicted by the hydrodynamic theory of superfluldg]. Con-  4iq| and axial frequencies, one finds simple results also in

versely, in the Fermi case the interaction energy is, in MOSthis case. The new decoupled frequencies, associated with
cases, only a small perturbation that can be safely esnmatetﬂe radial and axial excitation OperatOFSadiaFEiXiz eri2

using the Thomas-Fermi expressits] and Faxia,=2izi2, become, to first order &, w aqia=2®,

om 32 1 and w o= 20,(1—3/16aNY%a/a,,,) showing that only the
p(r):(_m _[MO_Vext(r)]s/z (10) axial mode is affected by the interaction. The oscillator
2] 3n* length ap,= (%/mw)¥? is here defined in terms of the geo-

metrical average_): w, N3 of the three frequencies. For the

for the ground-state density. In this equatiopg oo gi . : :
. ) . ; pin dipole mode resulil2) is easily generalized to both the
=(3N)"%iwp, is the chemical potential of the Fermi gas, .o jia| and axial directions. One  findso o= o, (1
fixed by the normalization condition. Using expressia0) — ' N¥ea/ay) and o= o (1— a'NYea/an,) rada
axia z .

for the density one obtains the result So far we have ignored the effects of collisions. If the

E. NELN collisional frequency is much larger than the frequency of
—_nt_ ' (11) the collective excitations then the system is in the hydrody-
Eho 8ho namic regime, also known as first sound regime. An impor-
tant question is whether the transition between the collision-
where a=8192x \2x3"%28357?=0.50, while a, less and hydrodynamic regimes takes place in the degenerate
= (filmwye) % is the usual harmonic oscillator length. Inter- or classical regime for our trapped gases. Let us first discuss
action effects are governed by the combinatidH®/an,  the collective frequencies of a trapped Fermi gas in the full
showing that in order to emphasize the role of interactions ihydrodynamic regimeésee[17] for a recent discussionin
is much more efficient to increase the radiay, rather than  the spherical case the quadrupole frequency becan@?s
the number of atoms. The ratid1) can also be cast in_the = 2wy, instead of Eq.(7). This result is independent of
form Ejn/Epe=0.%ea where ke=[2m(3N)"wno/h]"?is  tatistics and holds also for a classical §48]. The reduc-
the Fermi momentum of the trapped das). tion with respect to the collisionless value is due to the fact
In an analogous way one can calculate the frequency oat in the collisional regime, the only restoring force for
the out-of-phase oscillations, hereafter called spin excitagy face excitations arises from the external field. For the
tlpns. We report_here the result for the most relevan_t SPiftonopole frequency one instead finds that reggiltholds
dipole mode excited by the operatér=2;z— X,z . This  gi50 in the hydrodynamic regime. The above analysis can be
mode corresponds to a relative oscillation of the centers of g extended to the case of deformed tréiig where one
mass of the spin-up and spin-down clouds and is the analoggs that, in the absence of mean-field effects, the collective

of the giant dipole resonance exhibited by atomic nucleirequencies coincide with the ones holding for a classical gas
[16]. The frequency of the spin dipole mode is found to be [18].

" Collisions are expected to have more dramatic conse-
g N*"a
mN ano

quences on the spin dipole oscillation, since they do not con-
serve the spin current and consequently give rise, in the hy-
(12 drodynamic regime, to a pure diffusive mode. The
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investigation of the spin dipole mode is consequently ex- 3 i
pected to be a sensitive test of the role of collisions and,
possibly, of quantum statistics. The equations for the spin 2.5 - N
dipole oscillation can be easily obtained starting from the \

Boltzmann equation where the effects of Fermi statistics are 2
included in the collisional integral. For a first estimate let us
ignore the mean-field effect, which is responsible for the
frequency shift of Eq(12). Using the method of the averages
recently developed if20] for classical trapped gases, one
obtains the following coupled equations:

—_
15
=

1

(9t<ZT_ZL>_<VZT_VZJ,>:O1 (13) 0.5
(9'[<VZT_VZL>+w§<ZT_Zl>:<(VZT_VZl)IC0">1 (14 0
where the averagé) is taken in both coordinate and mo- t

mentum space. The collisional term is given by FIG. 1. Spin dipole relaxation functidisee Eq(20)] as a func-

tion of the reduced temperatute T/Tz. The classical prediction

6
om® 2 14 (dashed lingis also shown.

((vyr=vz)leon)=— e Nj drdv,dv,dQ|vy — vy
The relaxation timg17) is easily evaluated at high tem-

X (Viz= Vo) [(1= 1) (1= f2 )1, 65 perature where the effects of Fermi statistics are negligible.
, , In this case it takes the form
—fpfo (-1 (1=F5)], (15
1 2
whereo=4ma? is the total cross sectiow; andv, are the =37 (19
cl

velocities of the particles 1 and 2 after the collision, dnd

f| are the distribution functions relative to the two spin com- _ ; ; ‘i

l ! where y,=vywop(0)/2 is theclassical collisional rateyy,
ponents, normalized to MIh)3fderde(m/h)3ffldrdv _ :(SKBTP/Wmt)llz is the thermal velocity, an¢(0)=pT(Ot)
=N/2. 'I_'he coII|S|on_aI term can_be_ est_lmated b_y assuming, p,(0) is the central density of the gas. At temperatures
that during the oscillation the distribution functions of the smaller than the Fermi temperatuie = (3N)Y% w/Kg

. ) . X o

?’VO Spin SE?C'eS beha_tl/es, 'r:‘ \;eIQC|tK j'pa.cs, 4%he effects of statistics become important and, fer 0, the
11V Vy Vo) =To(Vy vy v 2 U), Wherefy is the distribu- o5y ati0n time becomes larger and larger exhibiting the typi-

tion function of each component at thermal equilibrium. Th's_cal behavior of Fermi systems. A similar behavior has been

cprr(_aspc_)nds to a rigid dis_placement of the veloci_ty F.erm'recently shown to occur in the relaxation of the motion of a
d'|str|but|on?' oc]; the two sp_|n2 comzorl;enés 'HIODPOS'?? d_'rec'classical particle inside a degenerate trapped Fermjifis
tlons.l (ige |r]1c_ iVZTd_VZ.Q_ U and, f_y vae oping the in- By a proper change of the variables entering the collisional
tegral (19 to first order inu, one can finally write integral (17), the dimensionless quantity,= can be written

in the useful form(for oscillations along the radial direction

(Vg1 =V ) oty = — M (16)  one should consider the quantigy, 7= w,7/\):
T
1 4 a\2 [T
where :_)\*2/3 Nl/3_ Fl — ' (20)

w, T 3% 8nho Te

1 om’ . . . . .. .

- 6—f drdvldv2d9|v|(v—v’)2 whereF(t) is a dimensionless function, sensitive to Fermi

T 24wh°NKgT statistics, which determines the temperature dependence of

the relaxation time. This function is plotted in Fig. 1. For
large values of the reduced temperatureT/Tg it ap-
proaches the classical behaviot, While for t smaller than

1, one observes, as expected, important deviations due to
quantum effects. At very low temperatures the functdi)

can also be calculated analytically and we find

X fo(vi)fo(vo)[1=fo(v)I[1-Fo(vp)]  (17)

defines the relevant relaxation time of the spin dipole oscil
lation. In Eq.(17) we have defined/=v,—v, andv’'=v;
—Vv5. As a consequence of E(L6) the equations of motion
(13), (14) for the spin dipole oscillation take the simple form
of a damped harmonic oscillator. Looking for solutions of F(t)=8m2t2. (21)
the forme™'“! the dispersion law is given by
L Of course, resulf21) holds above the superfluid transition.
_ . 5 The figure shows that the system will be in the collisionless
0= (=40~ 1) (18 regimg both at sufficiently hi{l}h and low temperatures. In the
first case the gas is classical and collisions are rare because
showing that the oscillations become overdampedvjt-  the density is very low. In the second one the gas is degen-
<1/2. erate and collisions are rare because of Fermi statistics. The
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possibility for the system to reach the overdamped regiméemperatures one can easily renormalize these values by in-
w,7<1/2 depends in a crucial way on the value of the physi-cluding the mean-field effect through Ed.2).

cal parameters entering E0). The maximum value of In conclusion, we have provided a systematic discussion
F(t), reached at~0.4, is~ 1.6 so that the condition for the Of interactions effects on the propagation of collective oscil-
exsince of overdamping s gen by/N*Aalja,,~21 12100 In tapped Ferm gases, n the collsioness regime
(f.o.r the. spin dipole 9‘?‘,%'”?,20” along the rad|§1l axis thg €O mean-field effects. The predicted shifts should be visible in
dition is instead \"""N™a|/an,>2.1). This condition o ariments due to the high precision of frequency measure-
should be easily achievable in the case of lithium. For exyents. Collisions are responsible for the damping of the os-
ample, choosing a spherical trap with=5X10° anda/an, cillations and their effect turns out to be very sensitive to
=—-3X%102, one finds overdamping for 0<2T/Tg<0.8. Fermi statistics. Overdamped oscillations are predicted to oc-
For lower temperatures the system will exhibit a transition tocur in the case of the spin dipole oscillation and should be
the collisionless regime where the spin oscillation is dampedisible in lithium due to the high value of the scattering
according to Eq(18). In the case of‘%, where the value of length. The present analysis can be naturally extended to

the scattering length is much smaller, the system is expecteiEiC'Ude asymmetric configurations with different numbers of

to be always far from the hydrodynamic regime. Neverthe-2{0ms in the two spin statesi(#N,) and/or different trap-
ng potentials Y1+ Vi, -

less, an accurate investigation of the damping might reved' Note added | X erimental evid . .

the effects of Fermi statistics also in this case. In fact, the, | orc 2dd€d In proolExpermental evidence of quantum
: . . . degeneracy effects in trapped Fermi gases has been reported

damping of the spin oscillation is predicted to strongly de-in [21]

crease at low temperatures in contrast to the classical behav- '

ior. Notice that the above estimates are based on the unper- Useful discussions with D. GagQOdelin, A. Smerzi, H.

turbed valuew, (w,) for the spin dipole frequency. At low Stoof, and F. Zambelli are acknowledged.
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