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Collective oscillations of an interacting trapped Fermi gas

L. Vichi and S. Stringari
Dipartimento di Fisica, Universita` di Trento and Istituto Nazionale per la Fisica della Materia, I-38050 Povo, Italy

~Received 12 May 1999!

We calculate the effects of two-body interactions on the low-frequency oscillations of a normal Fermi gas
confined in a harmonic trap. The mean-field contribution to the collective frequencies is evaluated in the
collisionless regime using a sum-rule approach. We also discuss the transition between the collisionless and
hydrodynamic regimes with special emphasis on the spin dipole mode in which two atomic clouds occupying
different spin states oscillate in the opposite phase. The spin dipole mode is predicted to be overdamped in the
hydrodynamic regime. The relaxation time is calculated as a function of temperature and the effects of Fermi
statistics are explicitly pointed out.@S1050-2947~99!01212-3#

PACS number~s!: 32.80.Pj, 05.30.Fk, 51.10.1y, 67.55.Jd
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The investigation of collective excitations in trappe
atomic gases has become an active research field, stimu
by the experimental realization of Bose-Einstein conden
tion @1#. Because of the high density of the condensate,
teraction effects in cold Bose gases are crucial@2# in order to
explain the experimental results for the collective frequ
cies @3#. In Fermi gases the Pauli exclusion principle mak
the density of the trapped gas more dilute, thereby reduc
the effects of interactions. The equilibrium properties
trapped Fermi gases as well as of Fermi-Bose mixtures h
been already the object of theoretical calculations based
mean-field approaches@4–7#. On the other hand experimen
aiming to produce samples of Fermi gases in conditions
quantum degeneracy are also becoming available@8#.

In this paper we provide a theoretical discussion of int
action effects on the collective oscillations of a trapp
Fermi gas. The very high precision of frequency measu
ments, the large value of the scattering length exhibited
some atomic species and the possibility of pointing out
fects of quantum statistics in the collisional term, make
study of collective oscillations in these systems a promis
area of investigation. We will consider Fermi gases occu
ing two distinct spin states~hereafter called, for simplicity
spin up and spin down, respectively!. In fact only in this case
can the effects of the interaction generated bys-wave scat-
tering be explored. We will further limit the discussion to th
case of excitations of low multipolarity in the normal phas
corresponding to the easiest realization of future exp
ments. In fact the transition to the superfluid phase is p
dicted @9,10# to occur at very low temperatures. For a d
cussion of the oscillations in the superfluid phase see@10,11#.

At very low temperatures collisions are quenched
Fermi statistics and the system is in the collisionless regi
corresponding to the propagation of zero sound in traditio
Fermi liquids@12#. A useful approach to the study of collec
tive excitations in this regime is provided by sum rules@13#.
In this approach the excitation energies can be estim
through the ratio
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between thek53 and k51 momentsmk5*S(E)EkdE of
the dynamic structure factor

S~E!5(
n

u^nuFu0&u2d~E2\vn! ~2!

relative to a given operatorF. For simplicity we have con-
sidered theT50 case, but the formalism can be natura
extended to finite temperature. The momentsm1 andm3 are
easily evaluated in terms of commutators. In fact, using
completeness relation, one can write

m15
1

2
^0u†F†,@H,F#‡u0&, ~3!

m35
1

2
^0u@@F†,H#,†H,@H,F#‡#u0&, ~4!

thereby avoiding the most difficult problem of determinin
the full functionS(E). In Eqs.~3!–~4! u0& is the ground state
of the many-body system. Let us consider a symmetric c
figuration withN↑5N↓5N/2 and the same confining poten
tial Vext

↑ 5Vext
↓ 5Vext for the two spin species. We will evalu

ate the commutators using the mean-field Hamiltonian

H5(
i

pi
2

2m
1Vext1g (

i↑, j↓
d~r i2r j !, ~5!

where g54p\2a/m is the interaction coupling constan
fixed by thes-wave scattering lengtha. By choosing an iso-
tropic harmonic potentialVext(r )5 1

2 mvho
2 r 2 the commuta-

tors with the monopole (F5( i r i
2), quadrupole (F5( i r i

2

23zi
2), and dipole (F5( izi) operators can be easily evalu

ated and one obtains the following results@14#:

vM5A2Ekin16Eho16Eint

Nm^r 2&
52vhoA11

3

8

Eint

Eho
, ~6!

vQ5AEkin1Eho

Nm^r 2&
52vhoA12

3

4

Eint

Eho
, ~7!
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vD5vho, ~8!

where Eint5g*r(r )2dr /4 is the mean-field interaction en
ergy, Eho5mvho

2 *r 2r(r )dr /2 is the potential oscillator en
ergy, Ekin5^0u( i pi

2/2mu0& is the kinetic energy relative to
the ground state, andr5r↑1r↓ is the total density of the
gas. In deriving the second equalities in Eqs.~6!, ~7! we have
used the virial theorem@2#

2Ekin22Eho13Eint50, ~9!

which allows one to calculate the deviations of the collect
frequencies from the ideal gas prediction 2vho in terms of
the ratioEint /Eho. Differently from the quadrupole and th
monopole, the dipole frequency is not affected by inter
tions. In fact this mode corresponds to the oscillation of
center of mass of the gas driven by the external harmo
potential. It is worth noticing that results~6!–~8! hold also in
the case of trapped bosons@14#, provided one uses the co
responding expression for the interaction energy. In the c
of Bose-Einstein condensed gases the ground-state ki
energy is strongly quenched by interactions and, for largeN,
the ratioEint /Eho is equal to 2/3@see Eq.~9!#. In this limit
one recovers the resultsvM5A5vho and vQ5A2vho pre-
dicted by the hydrodynamic theory of superfluids@14#. Con-
versely, in the Fermi case the interaction energy is, in m
cases, only a small perturbation that can be safely estim
using the Thomas-Fermi expression@15#

r~r !5S 2m

\2 D 3/2
1

3p2
@m02Vext~r !#3/2 ~10!

for the ground-state density. In this equationm0
5(3N)1/3\vho is the chemical potential of the Fermi ga
fixed by the normalization condition. Using expression~10!
for the density one obtains the result

Eint

Eho
5a

N1/6a

aho
, ~11!

where a581923A2331/6/2835p2.0.50, while aho
5(\/mvho)

1/2 is the usual harmonic oscillator length. Inte
action effects are governed by the combinationN1/6a/aho
showing that in order to emphasize the role of interaction
is much more efficient to increase the ratioa/aho rather than
the number of atoms. The ratio~11! can also be cast in th
form Eint /Eho.0.3kFa where kF5@2m(3N)1/3vho/\#1/2 is
the Fermi momentum of the trapped gas@15#.

In an analogous way one can calculate the frequenc
the out-of-phase oscillations, hereafter called spin exc
tions. We report here the result for the most relevant s
dipole mode excited by the operatorF5( i↑zi2( i↓zi . This
mode corresponds to a relative oscillation of the centers
mass of the spin-up and spin-down clouds and is the an
of the giant dipole resonance exhibited by atomic nuc
@16#. The frequency of the spin dipole mode is found to b

vSD5Avho
2 2

g

mNE u]zru2dr.vhoS 12a8
N1/6a

aho
D ,

~12!
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wherea85128A231/6/35p2.0.63 and, in the second equa
ity, we have used the ground-state density~10! to evaluate
the interaction contribution to first order in the scatteri
length. Notice that interactions affect the spin-dipole mo
through the same combination of parameters characteri
the ratio ~11!. Typical values for the fermionic isotope o
potassium show that interaction effects are rather small.
example, usingN553105 and a/aho5631023, one finds
that the dipole frequency decreases by;3%. Significantly
larger corrections are predicted in the case of6Li where the
scattering length is a factor 10 larger and negative. No
that the integrals characterizing the interaction contribut
to the collective frequencies, are calculated here atT50 and
would decrease at higher temperature. We also note tha
T50, sum rules provide an upper bound to the frequency
the lowest state excited by the operatorF. However, if one
considers first-order corrections in the interaction constana,
the sum rule bounds~6!–~8!, ~12! can be shown to corre
spond to the exact value of the collective frequencies.

The results derived above can be easily generalized to
case of deformed traps in which the external potential re
Vext(r )5mv'

2 (x21y21l2z2)/2 andl5vz /v' is the defor-
mation parameter of the trap. By assuming that interact
effects are smaller than the unperturbed splitting between
radial and axial frequencies, one finds simple results als
this case. The new decoupled frequencies, associated
the radial and axial excitation operatorsF radial5( ixi

21yi
2

and Faxial5( izi
2 , become, to first order ina, v radial52v'

and vaxial52vz(123/16aN1/6a/aho) showing that only the
axial mode is affected by the interaction. The oscilla
length aho5(\/mv̄)1/2 is here defined in terms of the geo
metrical averagev̄5v'l1/3 of the three frequencies. For th
spin dipole mode result~12! is easily generalized to both th
radial and axial directions. One findsv radial5v'(1
2a8N1/6a/aho) andvaxial5vz(12a8N1/6a/aho).

So far we have ignored the effects of collisions. If th
collisional frequency is much larger than the frequency
the collective excitations then the system is in the hydro
namic regime, also known as first sound regime. An imp
tant question is whether the transition between the collisi
less and hydrodynamic regimes takes place in the degen
or classical regime for our trapped gases. Let us first disc
the collective frequencies of a trapped Fermi gas in the
hydrodynamic regime~see@17# for a recent discussion!. In
the spherical case the quadrupole frequency becomesvQ

HD

5A2vho instead of Eq.~7!. This result is independent o
statistics and holds also for a classical gas@18#. The reduc-
tion with respect to the collisionless value is due to the f
that, in the collisional regime, the only restoring force f
surface excitations arises from the external field. For
monopole frequency one instead finds that result~6! holds
also in the hydrodynamic regime. The above analysis can
also extended to the case of deformed traps@17# where one
finds that, in the absence of mean-field effects, the collec
frequencies coincide with the ones holding for a classical
@18#.

Collisions are expected to have more dramatic con
quences on the spin dipole oscillation, since they do not c
serve the spin current and consequently give rise, in the
drodynamic regime, to a pure diffusive mode. T
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4736 PRA 60L. VICHI AND S. STRINGARI
investigation of the spin dipole mode is consequently
pected to be a sensitive test of the role of collisions a
possibly, of quantum statistics. The equations for the s
dipole oscillation can be easily obtained starting from
Boltzmann equation where the effects of Fermi statistics
included in the collisional integral. For a first estimate let
ignore the mean-field effect, which is responsible for t
frequency shift of Eq.~12!. Using the method of the average
recently developed in@20# for classical trapped gases, on
obtains the following coupled equations:

] t^z↑2z↓&2^vz↑2vz↓&50, ~13!

] t^vz↑2vz↓&1vz
2^z↑2z↓&5^~vz↑2vz↓!I coll&, ~14!

where the averagê & is taken in both coordinate and mo
mentum space. The collisional term is given by

^~vz↑2vz↓!I coll&52
sm6

4ph6

2

NE drdv1dv2dVuv12v2u

3~v1z2v2z!@~12 f 1↑!~12 f 2↓! f 1↑8 f 2↓8

2 f 1↑ f 2↓~12 f 1↑8 !~12 f 2↓8 !#, ~15!

wheres54pa2 is the total cross section,v18 andv28 are the
velocities of the particles 1 and 2 after the collision, andf ↑ ,
f ↓ are the distribution functions relative to the two spin co
ponents, normalized to (m/h)3* f ↑drdv5(m/h)3* f ↓drdv
5N/2. The collisional term can be estimated by assum
that during the oscillation the distribution functions of th
two spin species behaves, in velocity space,
f ↑↓(vx ,vy ,vz)5 f 0(vx ,vy ,vz6u), where f 0 is the distribu-
tion function of each component at thermal equilibrium. Th
corresponds to a rigid displacement of the velocity Fe
distributions of the two spin components in opposite dir
tions. One findŝ vz↑2vz↓&52u and, by developing the in
tegral ~15! to first order inu, one can finally write

^~vz↑2vz↓!I coll&52
^vz↑2vz↓&

t
, ~16!

where

1

t
5

sm7

24ph6NKBT
E drdv1dv2dVuvu~v2v8!2

3 f 0~v1! f 0~v2!@12 f 0~v18!#@12 f 0~v28!# ~17!

defines the relevant relaxation time of the spin dipole os
lation. In Eq. ~17! we have definedv5v12v2 and v85v18
2v28 . As a consequence of Eq.~16! the equations of motion
~13!, ~14! for the spin dipole oscillation take the simple for
of a damped harmonic oscillator. Looking for solutions
the forme2 ivt the dispersion law is given by

v52
1

2t
~ i 6A4vz

2t221! ~18!

showing that the oscillations become overdamped ifvzt
,1/2.
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The relaxation time~17! is easily evaluated at high tem
perature where the effects of Fermi statistics are negligi
In this case it takes the form

1

tcl
5

2

3
gcl , ~19!

where gcl5v thsr(0)/2 is theclassical collisional rate,v th
5(8KBT/pm)1/2 is the thermal velocity, andr(0)5r↑(0)
1r↓(0) is the central density of the gas. At temperatu
smaller than the Fermi temperatureTF5(3N)1/3\vho/KB
the effects of statistics become important and, forT→0, the
relaxation time becomes larger and larger exhibiting the ty
cal behavior of Fermi systems. A similar behavior has be
recently shown to occur in the relaxation of the motion o
classical particle inside a degenerate trapped Fermi gas@19#.
By a proper change of the variables entering the collisio
integral ~17!, the dimensionless quantityvzt can be written
in the useful form~for oscillations along the radial directio
one should consider the quantityv't5vzt/l):

1

vzt
5

4

34/3p
l22/3S N1/3

a

aho
D 2

FS T

TF
D , ~20!

whereF(t) is a dimensionless function, sensitive to Fer
statistics, which determines the temperature dependenc
the relaxation time. This function is plotted in Fig. 1. F
large values of the reduced temperaturet5T/TF it ap-
proaches the classical behavior 1/t, while for t smaller than
1, one observes, as expected, important deviations du
quantum effects. At very low temperatures the functionF(t)
can also be calculated analytically and we find

F~ t !58p2t2. ~21!

Of course, result~21! holds above the superfluid transition
The figure shows that the system will be in the collisionle
regime both at sufficiently high and low temperatures. In
first case the gas is classical and collisions are rare bec
the density is very low. In the second one the gas is deg
erate and collisions are rare because of Fermi statistics.

FIG. 1. Spin dipole relaxation function@see Eq.~20!# as a func-
tion of the reduced temperaturet5T/TF . The classical prediction
1/t ~dashed line! is also shown.
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PRA 60 4737COLLECTIVE OSCILLATIONS OF AN INTERACTING . . .
possibility for the system to reach the overdamped reg
vzt,1/2 depends in a crucial way on the value of the phy
cal parameters entering Eq.~20!. The maximum value of
F(t), reached att;0.4, is;1.6 so that the condition for the
existence of overdamping is given byl1/3N1/3uau/aho.2.1
~for the spin dipole oscillation along the radial axis the co
dition is instead l21/6N1/3uau/aho.2.1). This condition
should be easily achievable in the case of lithium. For
ample, choosing a spherical trap withN553105 anda/aho

52331022, one finds overdamping for 0.2,T/TF,0.8.
For lower temperatures the system will exhibit a transition
the collisionless regime where the spin oscillation is dam
according to Eq.~18!. In the case of40K, where the value of
the scattering length is much smaller, the system is expe
to be always far from the hydrodynamic regime. Neverth
less, an accurate investigation of the damping might rev
the effects of Fermi statistics also in this case. In fact,
damping of the spin oscillation is predicted to strongly d
crease at low temperatures in contrast to the classical be
ior. Notice that the above estimates are based on the un
turbed valuevz (v') for the spin dipole frequency. At low
v.
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e
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er-

temperatures one can easily renormalize these values b
cluding the mean-field effect through Eq.~12!.

In conclusion, we have provided a systematic discuss
of interactions effects on the propagation of collective os
lations in trapped Fermi gases. In the collisionless regi
interactions renormalize the collective frequencies throu
mean-field effects. The predicted shifts should be visible
experiments due to the high precision of frequency meas
ments. Collisions are responsible for the damping of the
cillations and their effect turns out to be very sensitive
Fermi statistics. Overdamped oscillations are predicted to
cur in the case of the spin dipole oscillation and should
visible in lithium due to the high value of the scatterin
length. The present analysis can be naturally extende
include asymmetric configurations with different numbers
atoms in the two spin states (N↑ÞN↓) and/or different trap-
ping potentials (Vext

↑ ÞVext
↓ ).

Note added in proof.Experimental evidence of quantum
degeneracy effects in trapped Fermi gases has been rep
in @21#.
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