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Interference effects in the decay of resonance states in three-body Coulomb systems
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The lowest!S® resonance state in a family of symmetric three-body Coulomb systems is systematically
studied as a function of the mass-rakibfor the constituting particles. The Siegert pseudostate method for
calculating resonances is described and accurate results obtained by this method for the resonance position
&(M) and widthI'(M) in the interval =M =30 are reported. The principal finding of these calculations is
that the functiorl’ (M) oscillates, almost vanishing for certain valuedvbfwhich indicates the existence of an
interference mechanism in the resonance decay dynamics. To clarify this mechanism, a simplified model
obtained from the three-body Coulomb problem in the liMit> e is analyzed. This analysis extends the range
of M up to M=300 and confirms thdf (M) continues to oscillate with an increasing period and decreasing
envelope asM grows. Simultaneously it points to semiclassical theory as an appropriate framework for ex-
plaining the oscillations. On the basis of Demkov’s construction, the oscillations are interpreted as a result of
interference between two paths of the resonance decay on the Riemann surface of adiabatic potential energy,
i.e., as a manifestation of the Stueckelberg phase. It is shown that the implications of this interpretation for the
period and envelope of the oscillationsIofM) agree excellently with the calculated results.
[S1050-294{@9)09912-9

PACS numbegs): 34.10+x, 31.15.Ja, 36.16:k

[. INTRODUCTION cated issues of quantum mechanics. All this makes the phys-
ics of resonances rich in content and keeps motivating
Resonance phenomena have always attracted much inteesearchers.
est among theorists, and this is understandable. On the one The existing methods of resonance calculations can be
hand, resonances occupy an intermediate position betweejlassified according to whether the enef§yn the Schre
bound states and true continuum scattering processes. ldinger equation is treated as real or complex. In the different
deed, like bound states resonances are described by solutiopgriants of scattering calculations, Kohn variational and sta-
of certain(Sieger} eigenvalue problem formulated in terms pilization methods, one stays on real energy axis. Reso-
of the Hamiltonian of the system, and in contrast to scatternances in this approach are understood and sought as sharp
ing processes they are characterized by just two observabjseaks in the energy dependence of the scattering matrix or
parameters, the resonance posiifband widthI" defined by  some other calculated quantity, and the resonance parameters

the complex energy eigenvalue £ andT" are extracted indirectly via a fitting procedure. Com-
plex variational calculations and complex rotation methods
E=c—iT/2 1 o€ based on the definition of resonances as the solutions to

the Schrdinger equation satisfying the outgoing wave
boundary conditions. The consistent implementation of this
At the same time, in contrast to bound states, resonancgpproach leads one to an eigenvalue problem which in order
eigenfunctions are not localized in a restricted region of conto be solved requires considering complex energies. Such
figuration space but like continuous energy wave functionigenvalue problem was first formulated by Siedéitand
extend to infinity incorporating the influence of asymptoticits solutions are now known as Siegert states. The physical
boundary conditions. Thus resonances convey a more inforesonances are represented by those of the Siegert states
mative message about the system’s dynamics than bourwhose eigenvalues lie close to real energy axis, and the reso-
states while remaining a simpler object for study than connance parameters can be obtained directly from the eigenval-
tinuum processes. On the other hand, there are features pges via Eq(1). Finally, there exist mixed approaches such as
culiar to resonances which justifies placing them into a sepgperturbation theory and Feshbach formalism where the reso-
rate chapter of scattering theory. The very existence ohance eigenvalue is firstly assumed to be purely real and
resonances rests on a subtle balance in the energy exchangdy on the subsequent stage of calculations attains a small
between different degrees of freedom in the system, and theomplex correction characterizing the resonance shift and
two basic mechanisms of their decay, namely, the nonadiawidth. Each of these approaches has its own merits as well as
batic transitions and tunneling, belong to the most compli-demerits; they all have been demonstrated to be capable of
producing accurate numerical results and the choice between
them in any particular situation is a matter of computational
*Electronic address: oleg@muon.imp.kiae.ru convenience or even personal preference. In our opinion, the
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approach based on the Siegert eigenvalue problem has con¢M) as functions of the mass-ratid in the interval 0
ceptual advantages and conceals yet undeveloped potentiali-n <30. The principal and rather unexpected finding here
ties. The point is that the set of Siegert states besides resgs that the functiod” (M) oscillates, almost vanishing at cer-
nances includes also bound and antiboGndual) states and  tain values oM. In order to provide convincing evidence for
possesses certain completeness properties that qualify it agtie correctness of this numerical result we give a detailed
basis suitable for expanding the continuum. This opens account of the hyperspherical elliptic — slow/smooth vari-
possibility to reformulate scattering theory in terms of aable discretizatiofHSE-SVD) representatiof4—6] and the
purely discrete set of state— a long standing ambition SPS method2,3] used in the calculations. Accuracy of the
whose numerical implementation, however, meets seriousalculations matters, so a special effort is paid to demonstrat-
difficulties and still remains an open problem. Perhaps a sang convergence of the results on the example of several
lution to this problem can be found within the Siegert pseu~ealistic three-body Coulomb systems that fall in the consid-
dostate(SPS formulation recently proposed {i2] and thor-  ered interval ofM. Section Il serves as a bridge between
oughly developed for the one-channel casg3ih The reader heavy calculations reported in Sec. Il and qualitative inter-
is referred to these papers for a more detailed discussion ametation of their results to be given in Sec. IV. Here, we
extensive bibliography on the subject, while for the presentliscuss a simplified model obtained from the three-body
purposes it is sufficient to note that as a method for calculatCoulomb problem in the limitM —c. The perturbation
ing resonances the SPS formulation has been shown to pranalysis of this model extends the considered interval of the
vide the highest precision in all studied cases, which includesass-ratio up tdvl =300 and qualitatively confirms the re-

a large number of one-dimensional modg3$ and several sults of Sec. Il. Meanwhile, this model depends Mnin a
realistic three-body Coulomb systefr$y. more transparent manner which makes it clear that an expla-
This work continues a series of studies on the three-bodyiation of the oscillations of (M) should be sought in terms

Coulomb problenj4-7,2,8,9 whose common goal is to ad- of semiclassical theory. In Sec. 1V, without actually devel-
vance the field via the synergism of new mathematical metheping the semiclassical analysis of the problem, on the basis
ods and modern computational resources. Here, we apply thgf Demkov’s construction we show that the major features of
SPS formulation to the systematic study of the lowest resothe calculated dependenEéM) agree excellently with that
nance in a family of symmetric three-body Coulomb systemsiictated by semiclassical theory. This leads us to the inter-
as a function of the ratid of the masses of the constituting pretation of the oscillations df (M) as a result of interfer-
particles. The atomic limitM —0 in this family is repre- ence between two paths of the decay of the resonance state
sented by the two-electron atomic ion HUnderstanding of on the Riemann surface of adiabatic potential energy, i.e., as
interelectron correlation in two-electron atoms is regarded aa manifestation of the Stueckelberg phase. Summary of the
one of the most fundamental problems in atomic physics. Itesults and a brief discussion of possible implications of this
is well known what a strong impetus for the theory wasinterference mechanism conclude the paper in Sec. V.
given by the first experimental observation of resonances in
helium [10], and nowadays experimental studies of high-
lying doubly excited states in two-electron atoms, which be-II ACCURATE CALCULATIONS BY THE SIEGERT
came possible due to significant enhancement of the spectral PSEUDOSTATE METHOD
brightness of modern light sourcd4l], again challenge
theorists. A prototype system in the molecular lift— o Let us begin by specifying more precisely the family of
of the mass-ratio spectrum is the diatomic molecular ionsystems and the state to be dealt with in the following. Con-
H,™. This system is a counterpart of Hwith protons and sider a system of three Coulomb point particles two of which
electrons being interchanged. Both systems are abundant a@re identical and the third one having a charge of the same
hydrogenic plasmas and seem to be equally available fasbsolute value but of opposite sign. lle{=m, and m; be
laboratory observations. However,H is still much less masses and,=Z,=—Z; be charges of the particles. It is
studied experimentally and, on the theoretical side, feweconvenient to introduce modified atomic unfte be abbre-
words are heard abointerproton correlation in H* than  viated as m.a.udefined byms;=|Z5|=%=1; this system of
aboutinterelectroncorrelation in H although, in our opin- units will be used throughout the paper unless explicitly
ion, the former is a no less fundamental problem than thetated otherwise. Then the mass-ratic=m;/mz=m,/ms
latter. We believe the situation will change when spectrodis the only dimensionless parameter characterizing the sys-
scopic studies of K" and its isotopomers will be extended tem. In Table | we list several realistic three-body Coulomb
from the ground12] to excited electronic states, and coun- systems of this type. Some of them are routine objects of
terparts of the resonances that have played so important roexperimental studies while some others have not been de-
in studying two-electron atoms will be observed in thesetected in a laboratory as yet. The list includes systems com-
molecular systems. In between these two extreme limits oposed mostly of stable particles and only mug@ns are un-
the mass-ratidVl there exist many more exotic three-body stable; it can be extended if we admit more exotic unstable
Coulomb systems. In this work, concentrating on one parparticles such as pions™, kaonsK ™, etc., as constituents.
ticular resonance state and tracing it as a functioMdfom  The parameteM in these systems varies over more than 7
H™ to H,", we wish to discuss a very general mechanismorders of magnitude which produces a tremendous change of
which reveals itself in the dynamics of all these vastly dif-the physical properties on the way from two-electron atoms
ferent systems. to diatomic molecules. But what is more important in the
The paper consists of three parts. In Sec. Il we reporpresent context is that the real physical systems are rather
accurate results for the resonance posiigM) and width  densely distributed over this interval M. So it seems to be
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TABLE I. Some realistic three-body Coulomb systems belonging to the family considered in this work.
These systems are characterized by a single dimensionless parlhggténg the ratio of the masses of the
constituting particles. The values bf were obtained using the particles’ masses taken fro8h

System M System M
eel(T) 0.181 9200610 3 ddB 1.999 0075
eedD) 0.2724437K 103 ttp 2.9937170
eepH™) 0.544 617 0K 103 ppur 8.880 2445
eeu’ 0.4836332X10 2 ddu 17.751675
ot 0.3761528% 10! ttu 26.584 939
ppd 0.563327 1% 10! upet 206.768 26
mup 0.112609 51 ppe(H,™) 1836.1527
p_pt 0.33403291 dde(D,") 3670.4830
Ed 0.500 248 25 tte(T,") 5496.921 6
eee (Ps) 1

sensible instead of focusing on individual systems to studyvork we use the HSE-SVD representation introduced in
continuousvariation of their physical properties as a function [4—6]. This representation has proven to be very efficient and
of M, and this is the approach adopted in this work. Thisaccurate for calculating bound states, resonances, elastic and
defines the systems and now we turn to the state. We shakarrangement scattering processes in various three-body
consider the lowest resonance state of 8 symmetry, Coulomb system$4-7,2,8,9 and recently it has been ex-
where S stands for zero total angular momentuby=0; 1  tended to studying atom-diatom chemical reactipfih,15.
indicates that the state is symmetric under permutation of thelowever, in spite of numerous applications a consistent ac-
identical particles, by analogy with two-electron atomscount of this approach and its potentialities still waits to be
where this notation would mean “singlet”; arelstands for  written. Here, we summarize necessary details specifically
even parity indicating that the state is symmetric under thdor systems of the type defined above.
inversion of space, which is the only option for Sistate. In The HSE-SVD representation rests on two pillars: a good
other words, we shall consider the state whose approximateoordinate system which reveals an approximate symmetry
classification changes, &8 increases, from &€ in terms of  of the three-body Coulomb problem and the idea of adiabatic
the independent electron quantum numbers in the atomiseparability between hyperradius and hyperangular variables
limit M—0 to 3doy,v=0 in terms of the united atom quan- for systems with Coulomb interactions. We begin with the
tum numbers defining the electronic state and the vibrationatoordinate system. Let, i=1,2,3, give the positions of the
quantum number defining the internuclear motion in the moJparticles in the center-of-mass frame, with the particles 1 and
lecular limit M—o. An alternative classification of this 2 being identical, and let;;=|r;—r;| be the interparticle
resonance state in terms of hyperspherical elliptic quanturdistances. Note that the vectarsare linear dependent,
numbers that applies universally throughout the whole range
of M is discussed below. M(ry+r2)+r5=0. @)

In this section, first we give a summary of the HSE-SVD
representation specifically for the one-parametric family ofWe introduce two sets of mass-scaled Jacobi coordinates:
symmetric three-body Coulomb systems defined above, then

we reduce the problem of calculating resonances in such sys- 1+2M rs—r,
tems to an algebraic eigenvalue problem for Siegert pseu- X1= 1+1M r, Y127"o—F7m7——, (33
dostates, and finally we present our numerical results. 1+1M
_[1+2M r{—rs
. o =\ 7m0 T2 Vo= T—— (3b)
A. Hyperspherical elliptic—slow/smooth variable discretization 1+1M V1+1/M

(HSE-SVD) representation

The Schidinger equation for a three-body system after These sets are related to each other by the Smith kinematic
the separation of the center-of-mass motion for states witkotation[16]
zero total angular momentum of interest here contains three
independent variables. A common strategy in solving such Xo —cosy —siny)\ (X
multidimensional equations numerically consists in expand- = '
. N . . Y2 Y1
ing the solution in terms of some set of basis functions. The
ch0|ce of the basis and the.partlcu!ar.structure.of the EXPanthere the rotation parameteris a function ofM defined by
sion defines a representation. This is the point where the
matters of physics and calculation meet in the sense that the

(4)

siny  —cosy

more a priori knowledge about the system is built into the tany = vi+2M 0< _r (5)
representation the more numerically efficient it is. In this M =2
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For each of the sets we introduce the corresponding hypers the hyperspherical adiabaiielSA) Hamiltonian,
angle:

- - 16
. Fa 0" cosn—cos¢
tan(x,/2)= —=——— sx;:=m, (63
r(Xl ) X mrl X1 5 ; ; J
X ﬁ—g(cos Zy—cosf)a—§+ %(cosn—cos 27)%
tar(y,2) = =2 o<y,<m. (6D
? X2 \J1+2Mr,’ 2o (14

This definition differs from that of Delvelsl 7] by the factor is theL =0 component of the Smith’s grand angular momen-
1/2 which is due to Kuppermari.8]. Now we introduce the UM operator squared 9],
hyperradius

—8 sin¢&/4)cod nl4) cog &/2)+ cog 5/2)

R=\M(r?+r2)+ri=X2+y>=Jx2+v2, 7) C(&,n)=
N 1try)rr3 N 1TY1 2TY2 (&m) T C0S7—COSE
O0sR=x,
and the hyperspherical elliptitiSE) coordinateq4] + , (15
V1+(1+1/M)cog é/2)cod 7/2)
§=x1tx2, 2y<§E<2m—2y, 8
is the effective charge representing the Coulomb potential
N=X1" X2, T 2ys=7n=<2y. ©®  energy 9e Tep J P
In terms of the variableR, ¢, and » the interparticle dis-
tances are expressed by 1 1 1 C(&n) (16)
&+ 3z fiz ra R
r3=V1+1/M Rsin( T) , (108

and E is the total energy of the system measured from the
-7 three-body breakup threshold. Note that the first term in Eq.
riz=v1+1M Rsin( ) (10p (15 comprises both 1-3 and 2-3 attractive interparticle po-
tentials, and the second term describes repulsion between the
R identical particles 1 and 2.
. The boundary conditions for Eg12) consist of the con-
f1 N\/1+(1+1/M)cos{§/2)cos( m/2), (109 dition of regularity of the wave functioW? everywhere in
configuration space and the physical asymptotic boundary
thus R defines the size of the three-body triangle aggdr condition atR—o. The latter depends on the problem under
define its shape. As was demonstrated by previous expereonsideration and for the present case will be specified in the
ence[4-7,2,8,9, these variables are especially convenientnext section. The former amounts to the requirementifor
for treating the three-body Coulomb problem and we shalto be regular at singular points of E(L.2). These singulari-
use them as coordinates in configuration space. The surfacées must be properly treated in the numerical solution and it
of constantR are hyperspheres, and the hyperangular variis important to realize their location. There are two types of
ables €, 7n) define the position of a point on hypersphere.singularities: those of the kinetic energy, which are singulari-

e
N

The volume element in these coordinates is given by ties of the coordinate system, and those of the potential en-
) ergy. The coordinate systenR(¢,#n) produces singularities
_ 5 _ at the points where the volume eleméht) vanishes, that is
v 4 sin ZyR (cosy—cosé)dRd:d, (1) at the originR=0 and on four rays emanating from the

o ) ) . origin and crossing hypersphere &t 4)=(2y,=2v) and
where the normalization factor is chosen to yietd/6, i.e., (2m—27,%27y), i.e., at the apexes of the () rectangle

the volume of unit sphere in 6D space, upon integrating ovefefined by Eqs(8) and (9). The Coulomb potentiall6) is

the regionR<1. The Schrdinger equation readg,5] singular at the points of interparticle collisions, that is again
at the originR= 0, which is the three-body coalescent point,
1 9 H.(R)+15/8 o and at _the two-body coglgscent points.lying on three rays
5 —+t—— —EJIR PV (R,&,7)=0, emanating from the origin and crossing hypersphere at
IR R (£,7)=(27y,—27v) and (2y,+27y) for the case of collisions

(12) in the pairs 2—3 and 1-3, respectivéthe first term in Eq.
(15)], and at ¢, )= (27— 2v,0) for collisions between the
where particles 1 and 2the second term in Eq15)]. The Coulomb
Lo singularities on the raysé(n)=(2vy,*=2vy) are attractive;
Had R)=3A5+RC(&, ) (13)  these rays form the skeleton of the region of localization of
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the wave function shaping its large-scale structure in con- <@V|q>ﬂ>:5

figuration space and their coincidence with two of four sin-

gular rays of the coordinate system greatly facilitates th

numerical solution. The third Coulomb singular rag, %)

= (27— 2v,0) lies apart from singularities of the coordinate

system which creates a local problem for numerical treat- <F>Ef2w—27d§f27 dn(cosy—cosé) X F(£.m)

ment, however, this singularity is repulsive and produces less 2y —2y '

an effect on the spacial structure of the wave function. (22
Equation(12) is written in a form that suggests treating

the variablesR and &, ) separately. Indeed, following the o an arbitraryF (¢, 7). Substituting expansiofl?) into Eq.
hyperspherical methot20-23 in solving this equation we (1) gne can obtain a set of algebraic equations defining the
are going to exploit the idea of adiabatic separability be-yefficientsc;,. This will be done in the next section, while
tweenR and ¢, 7). Among several currently used technolo- f he tasks here it remains to describe our method of solving
gies of implementing this idea in practical calculations theghe Hsa eigenvalue probleri9).
one proposed ifi6] has proven to be the most efficient. Fol-  The method is based on the recently found symmetry of
lowing [6] we seek the solutions to E(L2) in the form of 6 three-hody Coulomb problefa] which affords approxi-
the slow/smooth variable discretizati¢8VD) expansion mate separation of the variablésand 7 in Eq. (19). The
idea is to substitute Eq19) by an auxiliary separable prob-
Novr lem which is much easier to solve and whose solutions will
V(R & n)=— > > c,m(R®,(&7R). (17  provide a basis for subsequent variational solution of Eq.
R™5 =1 (19). To implement this approach, first of all it should be
noted that the grand angular momentum operéitdy, which
Here the radial part is represented by a finite set of interreplays a role of the kinetic energy in E(L9), is separable in

(21)

Vi

Swhere the notatiol- - -) means

lated pointsR; and basis functionsri(R), i=1,... Npyr,  the HSE coordinatest(#). A general functional structure of
whose most essential property is the potential energy which is separable in these coordinates
simultaneously withA 2 is
"= cosy—cosé’

where the integration goes over the intervalRofvhere ex-
pansion(17) applies. The particular choice of this set de- h ; f ; Y lit th
pends on the asymptotic boundary condition and for the\t/a\:‘f:gg\?e(?thgddg%;?)in?(;eiv?(:bg)t;ig unctions. We spiit the
present case will be specified in the next section. The angular '
part in Eq.(17) is represented by the solutions of the HSA C(&7)=CO(& ) +CO(¢ ), (24)
eigenvalue problem
whereC®)(£, ) is given by Eq.(23) and thus is separable,
[Haf R —U(R)]D (& 7;R)=0. (19 a}ndC(’)(g, 7n) is the residue_. Let us proceed leaving thg func-
tions a(¢) and b(#%) undefined for the moment. We intro-

This equation subject to the regularity boundary conditionsduce separable approximations to the HSA Hamiltoi),

has only a discrete spectrum of solutions which depeni on

1
as a parameter. The eigenvalu¢gR) converted to HE(R)= §A§+ RCE)(¢,7), (25)
U,(R)+15/8 and to the HSA eigenvalue problefh9),
W,(R)= e (20)

[HRR) -UPRIPP (£ nR)=0. (26)
and the eigenfunctions® ,(&,7;R) numbered by »  Seeking the solutions to this equation in the form
=1,2,... inorder of increasindJ ,(R) are called the HSA
potentials and channel functions, respectively. For Rrne 435,35)(6, 7R =f,(&R9, (7R), (27)
HSA channel functions form a complete orthogonal basis on
hypersphere. We normalize it by for the functionsf Vs(g;R) andgys(n;R) one obtains

d d
8d—§(cos 2y—cos¢) G Ra(&)+ U(VSS)(R)(cos 2y—cosé)~A,(R) |f,(&R)=0, (283

d d
[Sﬁ(cosn— COS 2y) ﬁ —Rb(7n)+ U(V‘Z)(R)(cosn— COS 2y) +AVS( R)}gys( 7;R)=0, (28b)
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whereA,,S(R) is the separation constant. Thus each solutiorseparability becomes exact in each of the liniks-0 and

o : . separability depends oM and, as will be shown in Sec.
andA, (R) giving the integrals of motion of the separable Il A, becomes exact in the molecular imM —o. Thus

problem(26) or, alternatively, by a pair of the hyperspherical ysa potentials and channel functions can be approximately
elliptic quantum numbers, andn,, giving the numbers of = ¢|assified by the HSE quantum numbé2s), and this clas-

zeros of the solutions to Eq&288 and (280), respectively.  gification applies universally throughout the whole range of
This specifies the index, labeling the solution$27) as R and to all the systems.

Let us comment on the accuracy of this method of solving
Eqg. (19). It is relatively easy to solve Eq$28) with the
Functions(27) provide a basis for expanding the HSA chan- accuracy of the eigenvalues?)(R) andA, (R) approaching

S

ve=(Ng,n,), nNgn,=01,.... (29

nel functions, the machine precision. Thus obtained separable [§2gjss
in one-to-one correspondence with the solutions of (E6),
D (&7 R)= PE(E ' R). 30 that is for e_ach HSA_ChanneI function there is a single domi-
& mR) ;S Vag @y (6 miR) (30 nant term in expansio(80) whose contribution to the norm

approaches 1 &—0 andR— o and is typically of the order
Substituting this expansion into E¢L9) one obtains an al- 0.9 in between, excluding the localized regions of the
gebraic eigenvalue problem defining the HSA potentialsayoided crossings of the HSA potenti@R0). So the varia-
U,(R) and the coefficients, , : tional error caused by inevitable truncating expangg) to
a finite number of terms is not essential and can be easily
0) ) py_ _ reduced. In our calculations the number of separable basis
% (RGP IV (R = UL (R v, =0, (3D functions usually exceeds the desired number of HSA chan-
nel functions by a factor 2—3. It should be noted that for
where symmetric systems and states of “singlet” symmetry of in-
O — (S ()] (8) terest here only terms with evem, should be included in
Cws—<<bvslc |(Dus> 32 expansion(30). The principal source of errors in the present
numerical scheme is the repulsive Coulomb singularity aris-
and it is assumed that the separable be&f$ is normalized  jng from the second term in Eq15). This singularity pre-
by the same cond|t|o(2;). _ . vents achieving high precision in calculating matrix elements
Now we have to define the potential functioagf) and  (32) which limits the final accuracy of the HSA potentials by
b(7). The evident goal in choosing them is to minimize the 5 relative error~ 108,
term C(VZLS in Eq. (31), i.e., to minimize the role of the non- e finish discussing the HSE-SVD representation by the
separable part of the potentié?4). The best separable ap- following remark. Taking into account good separability of
proximation would be obtained by defining these functionsEq. (19) one could skip the step of solving E(31) and
self-consistently5]. However our experience shows that it is switch in the SVD expansiofil7) from HSA to separable
much more convenient in practice to use the asymptoticallyangular basis,
adapted potentials defined by]

1 Npvr 5
a(£)=(cosn—cost)C(&,7)] =2y, B33 VREM= g 2 2 G mRIL(ER)G(R).
b(7)=[(cosn—cosé)C(¢,7)—a(é)]|s—z,. (33D (35)

This causes no a substantial loss in the quality of separabill "iS @PProach would open the possibility to perform a selec-
ity. Indeed, as was already mentioned above, except at small€ choice of the separable basis functions to be included in
R the HSA channel function® (¢, 7;R) are localized near €xPansion(35) depending on their HSE quantum numbers

two attractive Coulomb singularities a£,() = (27, % 27), (2_9), which may greatly simplify treating states belonging to

therefore for good separability functid@3) must approxi- higher HSA cha_mnels. However for the present purposes it is
mate the effective charg€(¢,7) most importantly in the preferable to stick to E¢17).

vicinity of these points. It can be shown that fa¢¢) and

b(7n) defined by Eqs(33) B. Siegert pseudostatdSP eigenvalue problem

B The HSE-SVD representation summarized above pro-
(cos7—cosE)C(£ )l (.7 (27229 =A(6) +b(7) vides a framework which enables one to calculate different
+O[(£=2y)(nF29)]. (34) properties of and processes in three-body Coulomb systems.
In this section we show how using this representation in
Thus functiong33) not only correctly reproduce the constant combination with the SPS method introduced [ and
terms in the expansion of the left hand side in B#) which  more fully developed if3] one can calculate resonances. To
define the two-body Coulomb spectrum of the asymptoticdhis end we have to complete the previous formulation by
values of the HSA potential§20) at R—o, but also the specifying those its elements which depend on the problem
linear terms which define the Stark splitting. The relationshipand have been left undefined above.
between the HSA eigenvalue problé®) and the separable First, we discuss the asymptotic boundary condition. Fol-
approximation to it26) can be summarized as follows: The lowing the approach pioneered by Siegért we shall seek
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resonances among the solutions to the Sdinger equation  which transforms the interval 9R<R,, into —1sx=<1.
(12) which contain only outgoing waves &—«. Taking  Then the radial basis is defined by
into account the requirement of regularity of the wave func-

. . . . N
tion ¥, such solutions may exist only for a discrete set of B2 =(03) 4 1 D(03)
generally complex energids, thus we are dealing with an mi(X)=(1+x) nzl \/Zipnfl(xi)Pnfl(X)- (41
eigenvalue problem. The solutions to this problem are called
Siegert states. For practical purposes it is convenient to inHereﬁ(O'e‘)(x) n=0.1 areJacobi polynomials orthogo-
n b L yr

troduce Siegerpseudostatedefined as solutions to E¢L2)
satisfying the outgoing wave boundary condition imposed a;
a finite distance from the origif2],

nal on the intervalxe[—1,1] with the weight (:x)3,
fvhere the tilde means that the polynomials are normalized,

so that
ik |RE R ) =0 (36) '
JR 6% . Jilﬂ'i(x)ﬂ'j(x)dxz Sij » (42)
Here the momenturk is related with the energi that ap- andX;, o;, i=1,2,... Npyr, are abscissas and weights of
pears in Eq(12) by the correspondindlpyr-point Gauss-Jacobi quadrature. This
basis satisfies Eq(18), where the integration oveR
E=Eq+k%/2, (37 e[0,R,,] should be replaced by the integration ovet
[—1,1]. The pointsR; in Egs.(17) and(18) are defined by;
Substituting expansiofil7) into Eq. (12) and using Egs.
Eo=—pul2 (39 (18), (19), (36), and(42) we obtain the HSE-SVD represen-

tation of the SPS eigenvalue problem,

is the ground state energy for each of the pairs 1-3 and 2—-3 TLiUu— i 127~
giving the boundary of the continuum for the present prob- [(KH+L+U=Eop) ~ikRyl —2kplc=0. (43

lem, and Herec is the vector of coefficients in E417), and the bold-

face characters denote the SVD matrices defined by their

M matrix elements:
K=1%m (39

K K;iO —radial kinetic energy, (4439

v,J 1] v, m
is the reduced mass of the particlesot 2) and 3. Equation

(36) restricts the region of configuration space to be consid-
ered in calculations by the interior of the hypersphere of
radiusR,,, which renders the SPS method practical. How-

ever simultaneously this makes the results dependent on the

Pivju=pijOi,j, —radial weight, (44b)

Li,j.=LijOi,;. —Blochoperator, (440

cutoff radiusR,,, and it should be understood that for ob- Uivju=Uu(Ri) 8, —HSA potential energ)z,440)
taining physically meaningful results one must analyze con-
vergence afR,, increases. As was demonstrated &), the  where
SPS eigenvalues corresponding to individually observable
states of the system, which includes bound, weakly anti- 1 (1 dm(x) ,dj(X) 15
bound, and narrow resonance states, rapidly stabiliZé,as iJ:EJ_l dx (1+x) de+§5ij , (459
grows; the others never do. Thus resonances can be calcu-
lated by solving the SPS eigenvalue problem, Efg) and 1 1
(36), and looking for such solutions that become independent Pij :ZRﬁ‘f m(x)(1+x)27rj(x)dx, (45b)
of R, for sufficiently large values of this parameter. Other -1
computational possibilities in scattering theory opened by the
Lij=mi(1)m;(1) (4509

SPS formulation are discussed[,3].
Next, we define the radial basis in the SVD expansionare the DVR matrices. and
(17). In order to satisfy Eq(18) it is convenient to use a !
discrete variable representatiddVR) basis[23] constructed Oiy i u={ D (&R P (& 7,R)) (46)
of suitable orthogonal polynomialgs]. The polynomials SR
should be chosen taking into account that the wave functiois the overlap matrix. The DVR matricé45) can be calcu-
(17) must satisfy the regularity boundary conditionR 0 lated analytically, see Appendix C if8]. They have the
and the outgoing wave boundary conditi86) at R=R,,.  dimensionNp,g. The HSA potential§44d) and the overlap
Restricting ourselves to classical orthogonal polynomialsmatrix (46) can be obtained by solving the HSA eigenvalue
these conditions define the radial basis uniquely. For numeriproblem(19). Retaining theN., lowest HSA channels in the
cal treatment it is convenient to introduced a new variable SVD expansion(17), the SVD matriceg44) will have the
instead ofR, dimensionNgyp= NpyrN¢n. Having thus defined all the ma-
trices in Eq.(43), it remains to solve the equation. Notice
x=2R/R,—1, R=3R(1+Xx), (400  that this is a quadratic eigenvalue problem with respeét to
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The desired resonance eigenvalue can be found iterativel
which, however, requires to know a good initial guess. Al-
ternatively, Eq.(43) can be linearized by reducing to the
form

0 I c
(—Zpl(K+L+U)+2EO 2p1RmL) ( ikc)

-k C
ke

' (47)

w'W (R) (m.a.u.)

where0 and| are zero and unit matrices of the dimension
Nsyp. This is a linear eigenvalue problem with respeckto
of the doubled dimension N, and it can be solved by
standard routines.

C. Results

Before discussing results, let us summari;e the basic step (2/M)1/2uR (m.a.u.)
of the present numerical procedure. For a given value of the
mass ratioVl one has: FIG. 1. Two lowest hyperspherical adiabatic potentlg(R)

(i) To fix the parameterR,, andNpyg of the SVD expan-  defined by Eqs(19) and (20) as functions of the hyperraditR
sion (17) and to solve the HSA eigenvalue problé®) for  defined by Eq(7) for three representative systems ranging from the
the Npyr values of hyperradiuR=R; retaining theN¢, low-  atomic (M =0) to the moleculari =) limit of the mass-ratiov,

est solutions. see Table I. The upper potential supports the resonance state of
(i) To calculate the overlap matri}6) and to construct interest here, while the lower one represents the only decay channel.

the matrices in Eq(43). w is the reduced mass for each of the pairs which can form a bound
(iii) To solve the SPS eigenvalue problem in either of thestate, see Eq39) . Here and in all the following figures and tables

forms Eq.(43) or Eq. (47). in this paper, m.a.u. stands for modified atomic units defined in the

(iv) To repeat the previous steps for increased values dyeginning of Sec. II.

Rm: Novr, anchh until convergence of the eigenvalue rep- for all values ofM. The additional factok/2 is introduced to
resenting the desw.ed resonance state with respect to each r‘ﬂéke the abscissa in Fig. 1 equal to the distance between the
these parameters is achieved. heavy particles 1 and 2 in the molecular linhit—x, see

This procedure yields the resonance positioand width Sgc_. Il A. The pqtent[al curves shown in. Fig. 1. provide the
T for the givenM. Repeating it for different values of one ~ Minimum theoretical input needed for discussing the reso-
obtains the functiong(M) andT'(M) which are in the focus nance state of interest here. This state can be defined as the

of the present study. In this section we report the numericalloweSt. Feshbach resonance sup_ported by the uppei}
results. potential curve, while the lower{=1) curve represents the
only decay channel. The=1 andv=2 HSA channels can
be classified by the HSE quantum numbeng,(,) of the
1. Hyperspherical adiabatic potentials dominant separable component in expansid@) as (0,0)
and (0,2), respectively. So the resonance state of interest
here can be identified by the tripleng,n,,v)=(0,2,0),
Swherev is the vibrational quantum number defining the mo-
tion in R.

Figure 1 shows two lowest HSA potentials defined by
Egs.(19) and(20) calculated for three representative system
ranging from the atomic Ml—0) to the molecular M
—o0) limit of the mass-ratio spectrum, see Table I. The
M-dependent factors multiplyingV,(R) and R are intro-
duced in order to bring systems corresponding to vastly dif-
ferent values oM to a common scale in this figure. These  Figure 2 gives an example of the distribution of the SPS
factors result from the following consideration. In the systemeigenvalues in complex energy plain calculated forake"
of units we use herém.a.u) a characteristic energy is given System with some particular values of the paramekgys
by the reduced mags of the particles Xor 2) and 3, see Eq. Novr, andNe,. The eigenvalues were obtained by solving
(39). Dividing W,(R) by  makes the curves shown in Fig. Eq. (47) and converting from the momentukto the energy

1 to converge to the same “hydrogenic” thresholdsRat E_dor_naln using Eq(37). Some general features of this dl_s—
_ _ tribution common to all systems studied can be summarized
—o0, namely, to—0.5 for v=1 and to—0.125 forv=2,

indenendently oM. We shall use this reduced ener scaleas follows.(i) For the lowest HSA channel, there is a finite
P 4y ' o ; 9y SCAC, mber of real eigenvalues lying on the left of the channel
for presenting all the results in this section. A characteristi

: ; : . Ghreshold— 0.5 (notice the reduced energy scale in the fig-
interparticle distance is &/ and, as follows from EQsi2)  ye) which represent bountexponentially decayingor an-

and (7), a characteristic value of the hyperradishen is  (ihound (exponentially growing without an admixture of the
VM/ . Dividing R by this factor leads to a good coincidence decaying solution states supported by this channel. In the
between the positions of the minimum of the lowest curvecase shown in Fig. 2, there is one bound and one antibound

2. Siegert pseudostate eigenvalues
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0.08 T T — alistic systems. The corresponding values of the mass-ratio
* . . . .
I e * ] M used in the calculations are given in Table I. In all the
006 . " 7 cases, the resonance positiboonverges rather easily within
004 | 0'002 at least six significa_nt digits. This level of accuracy agrees
s ] ‘ I with that of our earlier calculations of bound and resonance
S g02f 0.0014 .:, states in various three-body Coulomb systems. As was men-
3 I l s ‘ L." u.;.-,.,_-‘ tioned above, in the present numerical scheme it is limited by
Ly 000 Fre g R e the accuracy of calculating matrix elemefi2). As can be
c %, S el seen from the tables, the accuracy of calculating the reso-
= 002} ‘e, -0.0011 R nance width" rapidly deteriorates a¥l grows, and this is
e Te., S understandable. In the present metidodndI” are obtained
0.04 |- * . 0002 — via Eqg. (1) from the real and imaginary parts of the same
0.06 | e, . ] complex number giving the SPS energy eigenvalue. So the
| e . ] ratio I'/€ is limited from below by round-off errors which
008 R S S S are not less than 132 using the double precision arithmetic.
0.6 0.5 0.4 0.3 0.2 -0.1 0.0 As M grows,I" rapidly decreases whil€ stays almost con-

stant, and the ratid'/£ reaches this limit already foM
~30. This sets an upper boundary on the valuedlafhich

FIG. 2. The distribution of the Siegert pseudostate energy eigencan be treated by the present method. Accordingly, in the
values defined by Eq$37) and(43) [or (47)] for theeee™ system  following we restrict ourselves to reporting results only for
(M=1) calculated with the parameteRs,=100, Npy,g=60, and the interval G=M =<30. It should be noted that this interval
N.=40. All the eigenvalues shown are converged with respect tancludes most of the realistic systems listed in Table |. Be-
Npvr andNg,. The arrows indicate the eigenvalues that also con-sides demonstrating convergence, Tables 11-VI present the
verge aR;,, grows. The bold arrow indicates the resonance state otonverged results which are the best reported estimates of
interest here. Notice that the vertical scale in the box is extendethe resonance parameters for the considered systems as can
with respect to that in the rest of the figure by the factor of 20. pe seen from the comparison with other calculations, when

eigenvalue lying on the top of each other indicated by theavallable.

leftmost arrow. Besides these real eigenvalues, there is a
parabola-like branch formed by complex eigenvalues lying . )
on the right of the channel threshold which represent the OuUr final results for the function§(M) andI'(M) are
discretized continuum of the lowest chann(@l) This struc-  Presented in Table VIl and shown by solid circles and
ture repeats itself for higher HSA channels with one differ-squares in Fig. 3. They were calculated with the parameters
ence: the eigenvalues lying on the left of the channel threshrRm, Npyr, andNg, varying with M, as dictated by the tests
old acquire an imaginary part and represent resonance stateb convergence discussed above. The resonance position
supported by the channel. Because of the Coulomb degeg(M) is a featureless function. Multiplied by ™%, it is
eracy, there ar@ HSA channels converging to theh hy-  bounded by the second hydrogenic threshel@.125 from
drogenic threshold—0.5h? at R—c and, consequently, above and by the minimum of the=2 curve in Fig. 1 taken
there aren parabola-like branches representing discretizeds a function oM from below. The arrow in Fig. @) indi-
continua, one for each of the channels. In Fig. 2 one cagates the position of this minimum in the limil —o; the
Clearly dIStInngh the described structure aI‘Qund the threeorresponding numerica' Va|ue iS given in the |ast entry Of
lowest thresholdsi=1, 2, and 3; to resolve higher thresh- ap|e viI. AsM grows,&(M) monotonically approaches this
olds the cutoff radiuR,,, must be increased. value from above. Such behavior &fM) could be expected
Now we discuss how this distribution depends on the pa; priori looking at Fig. 1, and the heavy calculations re-
rametersRy,, Npyr, and Ne,. The latter two parameters ported here merely provide accurate numbers. The situation

?heglg%tsh:i S(Iazne\/z;[utazer:t?]selrsrg] it2|e ngf,[\),eixgamﬂg?a @" with the resonance width (M) is quite different. The decay
9 pidly IR BR ch  of the resonance occurs via nonadiabatic coupling between

increase, and the farther on the left they lie in Fig. 2 the SA channels which corresponds to enerav exchange be-
faster they converge. Thus all the eigenvalues shown in thE| P 9y 9

figure are converged with respect Mpyr and Ng,. The tween different degree_s of freedom in the sys_tem.Ms
dependence of the eigenvalues on the cutoff radysis grows, two of the particles become much heavier than the

quite different. In accordance with the resultd8f, only the  third one, and the energy exchange becomes less efficient, so
bound and resonance state eigenvalues converg®.as thatl'(M) mustdecrease vanishing in the lit—, asis
grows; all the others never do, becoming instead more antpdicated in the last entry of Table VII. However along with
more densely distributed along the continuum branches. Thiis expected decreasing the functibM) exhibits rather
converging eigenvalues are indicated by arrows in Fig. 2unexpected oscillations. It has five distinct minima in the
The lowest resonance lying on the left of the second hydrointerval 0sM <30 atM~1.54, 5.77, 11.6, 19.1, and 28.0
genic threshold—0.125 and indicated by the bold arrow is where it becomes vanishingly small. For locating their posi-
the one we are interested in here. In the following, only thistions we have performed additional calculations whose re-
resonance state will be discussed. sults are not included in Table VII but are shown in Fig.
3(b). As can be seen from the figure, the valued'¢M) at
adjacent minima and maxima differ by several orders of
Tables II-VI demonstrate convergence of the resonancemagnitude, so the oscillations are very pronounced. Discov-
parameters andI” calculated for several representative re-ering these oscillations is the principal result of the calcula-

u'Re E (m.a.u.)

4. Final results

3. Convergence
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TABLE Il. Convergence of the present calculations of the lowl&Stresonance state ime pwith respect
to the cutoff radiusR,, and the numbers of the radial basis functidiys,r and the HSA channel functions
N, in the SVD expansiofil7). The resonance positighand widthI” were obtained from the corresponding
SPS energy eigenvalue via EG) and are given in m.a.u. The numbers in parentheses give the uncertainty
in the last digit quoted. The converged values of the resonance parametérs a@148695(1) a.u. and
I'=0.1731(1)x 10 ? a.u., in agreement with Reff2]. We are not aware of any other calculations of this
resonance state for a finite value of the proton mass.

_M*lg
Rm Npvr/Neh 10 20 30
40 40 0.1487747 0.1487753 0.148 7756
— 50 0.1487747 0.1487753 0.148 7755
50 40 0.1487746 0.1487752 0.148 7754
— 50 0.1487747 0.1487752 0.148 7754
— 60 0.1487747 0.1487752 0.148 7754
60 60 0.1487750 0.1487756 0.148 7758
70 60 0.1487748 0.1487754 0.148 7756
Converged 0.148 715)
10X w1
Rm Npvr/Neh 10 20 30
40 40 0.17321 0.17317 0.17317
— 50 0.17321 0.17317 0.17317
50 40 0.17320 0.17318 0.17319
— 50 0.17322 0.17319 0.17319
— 60 0.17322 0.17318 0.17319
60 60 0.17319 0.17317 0.17318
70 60 0.17318 0.17313 0.17314
Converged 0.17321)

PRA 60

TABLE lIl. The same as in Table Il, but fee". The converged values of the resonance parameters are
£=-0.076 0304(1) a.u. andf =0.4304(1)x10 % a.u. The complex rotation results for this resonance

state aref=—0.07 60304 a.u. anB=0.43x10"% a.u.[24].

_Mflg
R Novr/Nen 10 20 30 40 50
100 40 0.152 0581 0.152 0605 0.152 0608 0.152 0608 0.152 0609
— 50 0.152 0582 0.152 0605 0.152 0608 0.152 0608 0.152 0609
— 60 0.152 0581 0.152 0605 0.152 0608 0.152 0608 0.152 0609
150 50 0.152 0586 0.152 0608 0.152 0611 0.152 0611 0.152 0611
— 60 0.152 0582 0.152 0605 0.152 0608 0.152 0608 0.152 0609
— 70 0.152 0582 0.152 0605 0.152 0608 0.152 0608
Converged 0.1520611)
100X w1
R Novr/Nen 10 20 30 40 50
100 40 0.860 87 0.860 62 0.86071 0.860 58 0.860 60
— 50 0.85901 0.860 76 0.86067 0.86057 0.860 59
— 60 0.859 95 0.860 64 0.860 66 0.86060 0.86059
150 50 0.861 25 0.86273 0.862 31 0.862 06 0.86167
— 60 0.858 85 0.86072 0.86080 0.86071 0.86073
— 70 0.85912 0.860 76 0.860 79 0.860 75
Converged 0.86071)
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TABLE IV. The same as in Table II, but fgypw. The converged values of the resonance parameters are
£=—0.146 404(1) a.u. andl'=0.304(1)X 10 ®u a.u.

—u le
R Npvr/Nen 10 20 30
70 40 0.162 8874 0.162 8903 0.162 8909
— 50 0.162 8874 0.162 8903 0.162 8909
— 60 0.162 8874 0.162 8903 0.162 8909
90 50 0.162 8874 0.162 8903 0.162 8909
— 60 0.162 8874 0.162 8903 0.162 8909
— 70 0.162 8874 0.162 8903 0.162 8909
130 80 0.162 8874 0.162 8903 0.162 8909
Converged 0.162891)
10°x w1
R Npvr/Nen 10 20 30
70 40 0.3391 0.3388 0.3383
— 50 0.3383 0.3387 0.3383
— 60 0.3373 0.3386 0.3382
90 50 0.3384 0.3383 0.3378
— 60 0.3364 0.3374 0.3369
— 70 0.3361 0.3378 0.3379
130 80 0.3365 0.3380 0.3378
Converged 0.3381)

TABLE V. The same as in Table Il, but fatdu. The converged values of the resonance parameters are
£=-0.157099(1) a.u. and’=0.69(1)x 10 % a.u., in agreement with R€f2]. The variational result for
the position of this resonance stateis —0.15 7 09 a.u.[25].

—u le
Rm Npvr/Nen 10 20 30
90 50 0.165 9466 0.165 9483 0.165 9487
— 60 0.165 9466 0.1659483 0.165 9487
— 70 0.165 9466 0.1659483 0.165 9487
110 60 0.165 9466 0.165 9483 0.165 9487
— 70 0.165 9466 0.165 9483 0.1659487
— 80 0.165 9466 0.165 9483 0.165 9487
160 90 0.165 9466 0.1659483 0.165 9487
Converged 0.165 949)
10°X w1
Rm Npvr/Neh 10 20 30
90 50 0.731 0.743 0.729
— 60 0.748 0.744 0.727
— 70 0.723 0.744 0.726
110 60 0.750 0.742 0.727
— 70 0.723 0.743 0.725
— 80 0.718 0.743 0.726
160 90 0.721 0.743 0.725

Converged 0.731)
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TABLE VI. The same as in Table Il, but fdtx. The converged values of the resonance parameters are
£=-0.161370(1) a.u. andl’'=0.3(1)x 10 % a.u.

— qulg
R Npvr/Neh 10 20 30
90 60 0.167 4386 0.167 4396 0.167 4399
— 70 0.167 4386 0.167 4396 0.167 4399
110 70 0.167 4386 0.167 4396 0.167 4399
— 80 0.167 4386 0.167 4396
160 90 0.167 4386 0.167 4396 0.167 4399
Converged 0.167440)

100 1T

Rm Npvr/Nen 10 20 30
90 60 0.65 0.76 0.64
— 70 0.65 0.75 0.60
110 70 0.21 0.38 0.20
— 80 0.21 0.34
160 90 0.21 0.39 0.19
Converged 0.31)

tional part of this work. The remaining part of the paper isAs will be shown in this section, this model preserves all the
devoted to clarifying the underlying physical mechanism. major features of the dependence bhof the full-scale
three-body Coulomb problem discussed above but, at the
same time, it is more transparent and unambiguously points
to the direction where an explanation of the oscillations
should be sought.

Ill. PERTURBATION ANALYSIS OF A SIMPLIFIED
MODEL

The oscillations of the resonance widitfM) found nu-
merically in the previous section certainly require some
gualitative interpretation. As a step towards such an interpre- A. Born-Oppenheimer model

tation, we believe it will be useful to consider a simplified Consider equations of Sec. Il A in the limi#8). In the

model obtained from E¢12) in the limit following, all the quantities obtained in this limit from their
counterparts in Sec. Il A and properly rescaled, if needed,
M — o0, (48)  will be denoted by the same notation with a bar. But we shall

TABLE VII. Present accurate results for the positi&fM) and widthI'(M) of the lowest'S® resonance
in a family of symmetric three-body Coulomb systems as functions of the massMatithe results(in
m.a.u) are rounded to six and three significant digits§6M) andI' (M), respectively, independently of the
actual accuracya[b]=ax 10°.

M —ptE(M) p~ (M) M —prEM) =T (M)
0 0.148 776 0.173-02] 16 0.165 530 0.619-08]
1 0.152 061 0.8€1-04] 17 0.165776 0.228-08]
2 0.155 143 0.168-04] 18 0.166 004 0.437-09]
3 0.157 221 0.319- 04] 19 0.166 215 0.286-11]
4 0.158 756 0.118-04] 20 0.166 412 0.140-09]
5 0.159 953 0.131-05] 21 0.166 596 0.329-09]
6 0.160915 0.531-07] 22 0.166 768 0.366-09]
7 0.161 709 0.573-06] 23 0.166 930 0.319-09]
8 0.162 380 0.546-06] 24 0.167 083 0.23% 09]
9 0.162 956 0.342- 06] 25 0.167 227 0.17% 09]

10 0.163458 0.86707] 26 0.167 363 0.539-10]

11 0.163901 0.766- 08| 27 0.167 493 0.1106-10]

12 0.164 295 0.2Q%-08] 28 0.167616 0.162-11]

13 0.164 650 0.118-07] 29 0.167 733 0.595-11]

14 0.164 970 0.19%-07] 30 0.167 846 0.78711]

15 0.165 262 0.115-07] 0 0.175049 0
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HereR is the distance between the heavy particles 1 and 2,

and (E;) are plane elliptic coordinates defining the position
of the light particle 3 in the coordinate system with foci at

the particles 1 and 2. Note that the new coordinaRs (7)
do not depend on the mass-ralif in contrast to the coor-
dinates R,&,7) used above. The volume elemefitl) in
these coordinates becomes

FIG. 3. Bold circles and squares: accurate results for the resqyhere

nance positionf(M) and widthI'(M) calculated by the Siegert

pseudostate method, the same as in Tables II-VII. Solid and dashed
curves: the results obtained by perturbation analysis of the Born-

Oppenheimer mode{a) The solid curve shows the results (M)
obtained by solving Eqg68). The arrow indicates the valug~)
given in the last entry of Table VI(b) The solid and dashed curves
show the results fol’ (M) calculated by Eqs(71a and (71b),
respectively.

not put a bar over;; since the interparticle distances do not

depend on the particles’ masses. From &gj.we have

P
’)/|M~>°C_ MH ’

so the limit(48) can be also understood &s-0. It is con-
venient to introduce new rescaled coordinates in configur
tion space,

(49

R=yR|  =r,, O<R=wx, (50)
— & M3t ry3 —
== = , 1l<g=oo, 51
2 I—— ¢ (51
— 7 l32— 13 —
=_— , 1=»yp=<1. 52
22 —— 7 (52)

dV=13dV|y .= mR3(&— »?)dRdédy, (53
and the Schidinger equatior(12) takes the form
1 # HuR) S —
Mot R —E |RY¥(R,&,7)=0. (54
Here
Had R)=7*Had R)|m_»=3A5+RC(£,7), (59
KSE’)/ZAaM—WC
e _ 2 1)—+ —=(1— 2—, 56
7 Lg(f )a§+a (1-7°) (56)
and
S —4¢  a(d)+b(n)
CEM=rCEmhwg 1=
(57)
E(E)Eﬁ =—1-4g+& (58a
M— o0
—— _b(#n) —
=——| =1-7~
b(7) 2y |, (58b)

In the operator(56) one can easily recognize the three-
dimensional Laplacian multiplied by-R? expressed in

terms of the coordinatest(n), so A_20/(2R2) is the kinetic
energy of the light particle 3. It should be noted that the
azimuthal degree of freedom corresponding to the rotation of
this particle about the axis joining the particles 1 and 2 is
absent for the present calse- 0, which explains the absence
of the azimuthal term in Eq56). Function(57) is the po-

tential energy of the systeif16) multiplied by R. Thus the
%econd term in Eq(54) gives the total energy of the light
particle 3 moving in the potential field created by the two

heavy particles 1 and 2 clamped in space at the dist&ce
from each other plus the potential energy of interaction be-
tween them. This term does not depend\dnThe first term

in Eq. (54) is the kinetic energy of the relative motion of the
heavy particles 1 and 2 where, again, the centrifugal energy
corresponding to the rotation of the interparticle axis 1-2 is
absent for the present cakse=0. This term is inversely pro-
portional to the reduced mas4/2 of the heavy particles and
this is where all the dependence of E&4) on M left in the

limit (48) is concentrated.
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For evident reasons, the system described by(%.will separability of the HSA eigenvalue proble(h9) in HSE
be called the Born-Oppenheim@0O) model. Similarly to  coordinates in the limi{48). Seeking the solutions to Eq.
Sec. Il A, we introduce the Born-Oppenheimer adiabatic(59) in the form
(BOA) eigenvalue problem

[Had R) — UL (R)1®,(&,7;R)=0. (59) (€, 7R =T (ER G 7R, (60)

This equation allows separation of the variab}j_eand;, o o
which confirms the made above statement regarding exaéor the functionsf,(£;R) andg,(#»;R) one obtains

zd%(?—nd%—R_a@+U;(R)<§2—l)—%Kv RI[fER=0, (61

g.(7:R)=0. (61b)

d —_ d — — — — —
2-—(1-7°)-=—Rb(7) + U (R)(1— 7°) + :A,(R)
dny dn

Apart from some inessential differences in notation and the We could continue this analysis of the BO model along
definitions of the adiabatic poten“hj;(R) and the separa- the lines of Sec. Il A and Il B and obtain accurate results

: T o ; : imilar to that reported in Sec. Il C. This development would
tion constantA,(R), Egs.(61) coincide with equations de- simi L . :

scribing the two center Coulomb problem in prolate spheroi-be lljnterestlng mf |t|self§|rr110e though the IBO .mod(.al 'S ijO\.Nn
dal coordinate§26]|. The differences are explained by our to be very useiful and has many applications in studying

wish to demonstrate the continuous transition from E28) bound states and various scattering processes in diatomic
Eas.(61) in the limit (48). The indexy. b ified molecules, we are not aware of any its applications to calcu-
to Egs.(61) in the limit (48). The index» can be specified as |54ing resonances. However this would not clarify the origin

of the oscillations of'(M) which is sought here. So instead
we turn to perturbation theory which proves to be more help-
ful for the present purposes than accurate calculations.

= VIm_==(Ng,n,), ngn,=01,..., (62)

wheren; andn’; give the numbers of zeros of the solutions
to Egs.(61a and(61b), respectively. The exact classification
of the solutions to Eq(59) by the plane elliptic quantum
numbers (z,n;) naturally results in the limit48) from the We are interested in the lowest resonance state described
approximate classification of the solutions to EtP) by the by Eq.(54). As M grows, the motions of the heavy and the

hyperspherical elliptiquantum numbersn¢,n,). However  |ight particles represented in E(4) by the variableRR and
to comply with convention adopted in the two center Cou-(g’n)' respectively, become decoupled and the resonance

lomb problem[26], in the following instead ofif¢,n;) We  yigth (M) vanishes. An adequate approach for treating
shall use the united atom quantum numbers. Thus the tWQ,ch narrow resonances consists in first assuming the reso-
lowest solutions to Eq.(59) corresponding to i¢,n;)  pance state to be purely bound and then calculating its width
=(0,0) and (0,2) will be denoted bysiry and Hoy, re-  py perurbation theory. Apparently the earliest recipe to
spectively. The eigenvalues of EG9) converted to implement this approach was given by Fermi's Golden Rule;
— — later on, its physical content was enriched by Fg2ig and
V_Vg(ﬁ)EWV(RHMMO:U;_( ) (63) its consistent mathematical formulation was developed by

R? Feshbach 28]. Following [27], the resonance width for the
BO model(54) can be estimated as
2
- = ¢o> dﬁ‘ .
BO

fo<¢f MR R
where (66)

o 1 - where ¢, and ¢ are two approximate solutions to EG4)
(F)BOEJ ng dn(&2— p>)XF(&,7) (65) corresponding to the same eneilgy £ and belonging to the
1 -1 discrete and continuous parts of the spectrum, respectively.
_ Unless one goes into complexities associated with the rigor-
for an arbitraryF(,7), will be called the BOA potentials oys definition of Feshbach’® and O spaces[28], these
and channel functions, respectively. Without going into fur-fynctions remain undefined and can be chosen basiragon
ther details we note that the difference betwd&¥(R) and  noc arguments. In the present situation the choice is rather

W,(R) for largeM is ~1/M. evident. The resonance state of interest here is supported by

B. Fermi-Fano-Feshbach perturbation analysis

and the eigenfunctions normalized by o
1 9 HyR)

(PP )po= 8, (64) I'=2m

vu
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the second BOA channelddry. Accordingly, we define the
bound state wave functiot, by

Yo(R.€,7) = Fo(R) Paqy (£, 7R), (67)
where the radial functioﬁo(ﬁ) satisfies the equation =)
© -0.
( o2 N E
— +M[E—W3q, (R)]|Fo(R)=0, 68 . 03r T
= FMIE= Wag, (R)] | FolR) @8a = 0%
e 041} J
the boundary conditions = i 1Sc5g
05
Fo(0)=Fo(R)|g.»=0, (68b) sl ]
and the normalization condition 0 é 1'0 1'5 2'0 2'5 30
. R (m.a.u.)
f F3(R)dR=1. (680
0

FIG. 4. Solid curves: two lowest adiabatic potentidls(R) for
the Born-Oppenheimer model defined by E¢89) and (63) as

functons of the distand® between the identical particles defined by
g. (50). Dashed curve: the nonadiabatic coupling between the

states 04 and Jo defined by Eq(72). Ry is the position of the
minimum of the 3o potential;R; is the turning point on theso,

ﬁ,_,_ =F-(R)D. _,_,ﬁ, 69 potential for the energf=_¢; ﬁb is the closest to the real axis
ve(R&m) e(R) 15"9(§ 7R €9 branch point connecting the sheetso}, and Joy .

The resonance positiofiis given by the lowest eigenvalue
of Egs.(68). The decay of the resonance can occur only int
the lowest BOA channelsoy. So similar equations defin-
ing the continuous energy wave functigi read

where
characterizes the strength of nonadiabatic coupling between

. the channels doy and 3oy. The two formulag(71g and
Fe(R)=0, (708  (714a differ by the second derivative terms neglected in the
derivation. These terms contain an additional small factor
1/\M, as compared with the first derivative term retained in
— M Egs. (71), and they should be neglected in the lint8).
Fe(0)=0, Fe(R)|r-= V7K Si KR+ 6], (70D Formulas(71a and(71a would be identical if functior(72)
were independent dR.
E— N — , Thus the procedure of calculating the resonance param-
f Fe(R)Fe/(R)dR=5(E—E'). (709 eters&(M) and I'(M) in the present simplified treatment
consists of the following stepsi) constructing the two low-
Here K = \/m and 8 is the phase shift for elastic e;t BOA channelsdoy and 3109 and the nonadlapatlc cou-
scattering by the lowest BOA potential. plmg between then(72) by solving Eqs.(6'1), and(ii) solv-
Substituting functiong67) and (69) into Eq. (66) and ne- g Eds. (68) and (70) and calculating integrals71) for
glecting terms containing the second derivatives of the BoAdifferent values of the mass-rat@.
channels with respect t&, one obtains

d? — —
(ﬁ—'_ M[E_Wlsu'g(R)]

0

C. Results
87| [=dF«(R) __ _]? . .
o f 2 Pies ws (R)Fo(R)AR| (713 The two lowest BOA potentials defined by E¢S9) and
M2|Jo dR g (63) relevant to discussing the resonance state of interest

here are shown by the solid curves in Fig. 4. The abscissa in
o dFo(ﬁ) 2 this figure coincides with that in Fig. 1 in the lim(48). The
f dR| , (71b

Fg(ﬁ)PlsUgYSdgg(ﬁ) — solid curves in Fig. 4 would be indistinguishable by the eye

M?| Jo dR from that in Fig. 1 if plotted together, the difference being of
the order 14 ~ 10 for the ppe system. The dashed curve
where in Fig. 4 represents functio(i72). The maximum of this
= = — function atR~5.4 indicates the center of the region of strong
P1s0y 2oy (R) = |<¢1S”g|a/&R|qD3d“g>BO| nonadiabatic coupling between the involved states.

The resonance positiofi(M) obtained by solving Egs.
(68) is shown by the solid curves in Figs(aB and Fa). At
small M, there is a considerable difference between the BO
results and the accurate results reported in Sec. Il C, as can
(72 be seen from Fig. &). But this difference disappears in the

4( q_)lsag|g(gz — 7)Y ‘3st9> BO
UIS(TQ(E) - U3d0'g(§)
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-0.15 pr—— 1 ————7——— 7T grands in Eqs(71) oscillate too rapidly and the integrals
(a) become too small.

To summarize this section, the main conclusion which we
would like to make here is that both the full-scale three-body
s -01mH 0 -0.175+0.0427M ™ - Coulomb problen{12) and the BO mode(54) obtained from
5 Eqg. (12) in the limit (48) lead to a very similar behavior of
the resonance width(M). Therefore an explanation of the
oscillations ofI'(M) could be sought on the basis of Eq.

. (54). But the motion inR described by this equation, which
couples the BOA channels and causes the decay of the reso-
— nance state, becomesmiclassicaln the limit (48). Indeed,

it is well known that the case of large masses is formally
10T T T T equivalent to the semiclassical situatiba-0: in both cases
(b); the coefficient of the second derivative term in the Sehro
}i ] dinger equation goes to zero. Thus an explanation of the
HES ] oscillations ofl'(M) should be sought in terms of semiclas-
13: RS ] sical theory.

—~ 107°F ]

u.)

-0.17

EM) (m.a

1 IV. QUALITATIVE DISCUSSION IN TERMS
N, ] OF SEMICLASSICAL THEORY

i AR ] The physics defining the existence of a resonance is quite
107 , Vi ] different from and generally speaking much simpler than that

[ W ] defining its decay. For existence of a resonance state, as well

L AN ] as for existence of a bound state, certain quantization condi-
tions imposed on a finite classically accessible region of con-
Ao figuration space must be satisfied. One can imagine a ball
250 300 bouncing between walls in a box which gives a good intui-
tive picture of the underlying dynamics. On the other hand,

M (m.a.u.) decay of a resonance consists in passing from a finite to an

FIG. 5. Solid and dashed curves: results for the resonance pos'irJflnlte classically accessible region through a classically in-

tion (M) and width'(M) obtained from the Born-Oppenheimer accessible barrier or a narrow classically accessible tunnel.

model, i.e., the same as the corresponding curves in Fig. 3, but fo$UCh passing or _tunnellng 1S beYO”d our |ntU|t|0n_S|nce we
a wider interval of the mass-ratidl. Dotted curves: the semiclas- 90 Not have classical laws of motion under the barrier. In this

sical results obtaine¢h) from Eq. (75) and (b) by fitting the enve-  Situation one often resorts to mathematical abstractions

lope of the Born-Oppenheimer results by that dictated by E&g. which help to restoreT an intuitive picture of the d_yn§1m|cs. .

and(79). One of such abstractions that proves to be essential in semi-
classical theory is complex coordinate. Complexification of a

limit (48) where the functiorf(M) defined by any of Egs. poordinate_implies analyticgl continuation of the correspo_nd-
(12), (54), and (68) approaches from above the minimum of N9 potentla_l energy function. For muln_chan_nel scattgrmg
the 3o, BOA potential indicated by the arrows in FiggaB problems th.IS leads tQ the concept _of adlaba}tlc potential en-
and 5a) and given in the last entry of Table VII. ergy as a S|.ngle multivalued analytical function of the scat-
The resonance widthi(M) calculated according to Egs. tering coordinate. Thus, fo_r the three-body Cqulomb problem
(718 and (71b) is shown by the solid and dashed lines, re-(12), EQs.(19) and(20) define the HSA potentialV(R) as a
spectively, in Figs. @) and 3b). As can be seen from Fig. Multivalued function of complex hyperradiés andW,(R)
3(b), the BO results are very similar to the accurate result9Ve different branches of this funcpon. Similarly for the_BO
reported in Sec. |1 C. In both cases, the functiogM) os-  Model (54): Egs. (59) and (63) define the BOA potential
cillates with an increasing period and decreasing envelope a4(R) as a multivalued function of complex distanRebe-
M grows. A more detailed inspection of the figure shows thatween the particles 1 and 2, ami,(R) give its different
the periods and envelopes of these oscillations are rathéranches. The Riemann surface of such multivalued potential
close for the two cases. The main difference is that there is functions consists of as many sheets as many channels are in
phase shift between the oscillations which, however, alsthe problem. The sheets are connected by branch points
exists between the BO results obtained from E@4a and  forming a single potential energy surface. This surface is the
(71b). Because now we calculate nB{M) directly but the  key object in semiclassical theory providing an arena where
integrals in Egs(71), with the same intrinsic accuracy of the dynamics of the system takes place, while the dynamics
calculations we can treat much smaller value¥' @), thus itself is viewed as traveling over the surface. Such a view-
being able to essentially extend the considered intervil.of point on the dynamics was pioneered in classical papers by
In fact, with the present numerical procedure for solving EqsLandau[29] and later on it has been used by many authors,
(68) and(70) which is based on the Numerov method we canespecially in theory of chemical reactiof30—33. In Ref.
extend our calculations up thl =300, which restricts the [34] this viewpoint was formulated as a research program
interval of M shown in Fig. 5. For even largé¥l, the inte-  and recently it has become known as Demkov’s construction.

(M) (m.a.u

Yy BN T

PO YT ST VT SR W ST WU TR
0 50 100 150 200
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The Demkov’s construction is currently receiving wide rec-slow varying function independent M. Thus the integrands
ognition via the framework of the hidden crossing theoryin Egs.(71) are oscillatory functions with a bell-shaped en-
proposed by Solov'e{35], see Refs[36—40. Here, we shall velope. The phase of these oscillations with respect to the
use it for interpreting the oscillations df(M). But let us  envelope varies wittM. This results in oscillations of the
first return a step back and show how complex coordinateftegrals(71), which technically explains the oscillations of
and a multivalued potential energy naturally arise in ther(M)_ In fact, the integral§71) become equal to zero for
theory. . _ ) o ) certain values ofM which means zero resonance width
Consider equations of Sec. lll B in the lini#8). Firstwe (), je., for such values o the resonance state turns
discuss the behavior of the resonance posifi). LetR,  into bound state embedded into continuum. However this is
be the position of the minimum of the upper BOA potential gn artifact of approximations assumed by E@$) and(71).
shown in Fig. 4, and let As M grows, integrands in Eq$71) become highly oscillat-
ing functions and the integrals rapidly decrease. This causes
essential difficulties in calculating the integrals numerically,
_ — = = o which is a common problem in calculations of semiclassical
where vo=Waq, (Ro) and v,=3Wsq, (Ro). Substituting  matrix elements. A solution to this problem was given in
this expansion into Eq(68a and treating the higher terms [29] and consists in using the saddle point method. This re-

Wsgo, (Rl R, =Vot Va(R-Rp)*+ -+, (73

perturbatively, in the lowest order we obtain quires to analytically continue the integrand into complex
- (Mv,)¥8 o values_ of the integration variab.IEin the case of Eq471),
Fo(R)|m—w=——,—xH — 3(Mv2)"A(R—Ry)?] and this is how complex coordinate comes into play. If both
m (74) functionsF(R) andFg(R) in Eqgs.(71) were substituted by

semiclassical approximations like that given by E@6),
and then it can be showf29,43 that the saddle points of the

integrand are defined by/lsog(ﬁ) =W3d(,g(§), i.e., they are

1/2 _°
Va . (75) branch points of the BOA potentidV/(R). This is how one

M comes to the concept of a multivalued potential energy func-
tion.

EM)|m—w=Vo+

Equation(75) gives the two leading terms of the expansion Now we return to Demkov’s construction and outline a
of (M) in powers of 1MY2. The first term here is the value

of the potential in the minimum, and the second term is E{)hysmally transparent although somewhat speculative pic-

half of the vibrational quantum corresponding to oscillations ure of the resonance decay dynamics. Suppose a state with

near the minimum. We remark that these terms are the san%ge wave functior(67) is prepared and placed into the upper

. ) : potential well in Fig. 4. Because this wave function is not an
e ot emen e of s o, S solton o €915, he sate il spred i e

- . ! . : seeking a way to escape from the region where it is initially
fl_clents in Eq.(73) obtained in the present calculations areocalized. But it cannot just jump from the upper to the lower

R,~8.83416450, vo~~0.175049036, ~ and vz  potential curve, since this would cause an abrupt change of
~0.18238085% 10" %, which coincide in all digits quoted the wave function. So it descends continuously flowing down
with the values given if41]. The function defined by Eq. gajong the path on the Riemann surface of the BOA potential
(75) is plotted by the dotted curve in Fig(&. Except at W(R) that starts from the real axis ®~R, on the upper

small M, this curve is very close to the solid curve obtained — )
by solving Eqs(68) numerically. sheet, goes around a branch pdRyt connecting the sheets

Now we turn to the resonance widf{M). Consider the 1soq and 3oy, and returns back to the real axis @t
three factors defining the integrands in EG&L) separately. ~ReR,, which approximately corresponds to the position of
As follows from Eq.(74), function Fo(R) is localized near the maximum of the nonadiabatic couplifig?), but now on
the pointﬁzﬁo having the width|§—§o|~1/M Y4 \which f[he lower shee_t. Then there are two ways to proceed: ree_lch—

ing the real axis the flux can go to the right or to the left in
Fig. 4. The former path leads directly to fragmentation re-
gion R—o0, while choosing the latter path the flux firstly

experiences reflection at the turning poRt on the lower

vanishes in the limit48). For largeM, an approximate semi-

classical solution of Eq$70) in the regionR>R; is given by
— M (R — — > : ,
Fe(R)= —si j,K(R’)dR’+7T/4 , (76 BOA potential, and only then goes to fragmentation region.
7K(R) R The two paths lead to the same final state and their contri-

where butions to the outgoing flux aR— add coherently. This
results in interference pattern seen as the oscillations of the
K(R)=/MTE—W. R, 7 resonance width'(M).
(R) \/ [ 15"9( )] 77 Thus the oscillations of’(M) can be interpreted as a
= . . . ' = result of interference between two paths of the decay of the

and Ry is .the turr_ung p0|nt. defmeol/zb)K(.Rt)—O. Thus esonance state. Let us provide some additional arguments to
Fe(R) oscillates with the period-1/M~“which for largeM  sypport this interpretation. Basing on the outlined above pic-
becomes smaller than the width of the functieg(R). The  ture the functional structure df (M) can be specified as
third factor, namely, the nonadiabatic couplifig2), is a follows:
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— —a(M) i —r r 1 rrrrrxr v 1T T
r'(M)=a(M)e “Msirp(M). (78) 300 | J
The three factors in this formula have different origins and I s
we discuss them separately. 250 F 4
The exponential factor in E¢78) arises from the fact that ','°
the semiclassical action accumulated along any path connec _ ,99b . 0.828(1+nY P i
ing two sheets of the Riemann surface of potential energy 5 ' s
inevitably acquires imaginary part which is the larger the @ [ 6 ]
farther from the real axis lies the corresponding branch pointg 150 | ¢ T
Ry . The presence of such exponential factor in the expres- . [ o
sion for probability of any nonadiabatic transition was first & 100 |- . .
realized in[29]. This factor is the most important in E(/8) L o,'°' ]
since it defines the order of magnitudelafM). The expo- 50 k- o i
nent «(M) is usually called the Massey parameter. In the I T
present case it is a function & which can be expanded as 0 _Q__Q.?-‘?' L
0 5 10 15 20
_ 12 *-1
a(M)|y_w=aM +a0+M—l/2+ (79 n

FIG. 6. M, gives the position of thath minimum of the reso-
Fitting the envelope of the BO results foi(M) obtained nance widthI'(M) for the Born-Oppenheimer model. Solid and
from Eqgs.(71) by the functione™ 1M \which corresponds  Open circles—numerical results obtained from E@4a and(71b),
to retaining only the first term in Eq(79), we find a; respectively. Dashed line is a fit to the numerical results according
~3.91+0.01. The dotted curve in Fig.(5 shows this fit. t© Eds.(78) and(80).

One can see that, indeed, it very well reproduces the envgsiting the numerical results fovl , by this function, we find
lope of I'(M). Using this fit, the estimate of the resonance 4, ~ 3.45+0.01 andg,~ — 3.14+0.01. This fit is shown by
width for the molecular ion K" is T'<10"® a.u. meaning the dotted curve in Fig. 6; it excellently reproduces the cal-
the lifetime = 10*® years which is essentially longer than the culated values oM.
age of universe. Thus the considered resonance statg'in H  These two factors in Eq78) have a very general nature
and other molecular systems listed in the end of Table | caand are well understood. Thus, for example, the hidden
be with confidence treated as truly bound. crossing theory35] should be able to yield the correct val-
The oscillatory factor in Eq(78) describes interference ues of the Massey paramet@(M), as was demonstrated by
effects which always exist in the presence of turning points@ number of applications36—40. Perhaps it could also pre-
The origin of this factor was first realized j#4] and (M)  dict the values of the Stueckelberg phas@), although in
is called the Stueckelberg phase. This factor varies betweentdiS case to achieve good quantitative agreement with accu-
and 1 and in many situations, e.g., in calculations of totaf@t€ results will be more difficult becase of the dynamical
cross sections of nonadiabatic transitions, it can be replacef'as€ Which is not accounted for by the theory. Indeed, the

by its average value 1/2. However this is not always the Casgalculatlons reported ifd0] demonstrate strong dependence

ALY . f the position of the dip in recombination probability on
and in situations where Stueckelberg phase is close to a muy jetails of the theoretical model. It should be noted that in

interference explains the small values of tBevave cross the most appropriate framework for calculatingM) and

. e ST >
sections for Ps formation ie” +H collisions[39] and for ;1) at least it is hardly possible to do this staying on real
muon transfer in theltu system[9,42]; destructive interfer-  coordinate axis, see the Appendix. The nature of the third

ence produces a dip in recombination probability for the refactor in Eq.(78), i.e., the preexponerai(M), is more subtle.
action “He+“He+ *He—*He+“He, [40]; and, eventually, it |t is defined by the Stokes’ phenomenon and is not generally
is destructive interference which causes the widfM) of  known, except for a few exactly solvable problems; see, e.g.,
the resonance discussed in this work to almost vanish at ces recent review{45]. In particular, this factor is not ac-
tain values ofM. The Stueckelberg phasg(M) is approxi- counted for by the hidden crossing thedi35]. However
mately equal to the real part of the difference between aca(M) is usually a slow varying function as compared with
tions accumulated along two paths on the Riemann surfacgée two other factors and replacing it by a constant does not
of potential energy, but it also includes an additional termproduce any visible changes in log-scale plots such as Figs.
the so-called dynamical phad&0]. In the present case 3(b) and §b).

¢(M) can be expanded as To conclude this section, we have seen that semiclassical
theory may be very helpful providing a transparent qualita-

B 2 b1 tive picture of the phenomenon. Whether it is capable of

M) = $1M T2+ o+ M_1’2+ T (80 providing its quantitative description remains an open ques-

tion to answer which goes beyond the scope of this paper.
The solid[open circles in Fig. 6 show the values d
=M, for which the integral(71a [(71b)] vanishes. This hap-

pens wheng(M)=mn, which definesM,. Retaining the In this paper we have analyzed the lowéSf resonance
first two terms in Eq(80) we obtainM ,= (7n— ¢q)?/ ¢3. state in a family of symmetric three-body Coulomb systems

V. SUMMARY OF RESULTS AND DISCUSSION
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as a function of the ratidv of the masses of the constituting realistic three-body Coulomb systems is not, of course, a
particles. The results of accurate calculations by Siegentontinuous parameter, the results of this work can be applied
pseudostate method of the resonance positiphl) and also to charged excitons in semiconductetg]. The effec-
width T'(M) in the interval B=M <30 are reported. This tive masses of electrons and holes in such systems can vary
interval includes several realistic three-body Coulomb syseonsiderably and the oscillations B{M) could be probably
temseep ee€", ppu, ddu, andttu for which the most observed experimentally.

accurate to date estimates of the resonance parameters have

been obtained. But the principal finding of these calculations ACKNOWLEDGMENTS

is thatI'(M) oscillates as a function dfl, which reveals an

interference mechanism in the resonance decay dynamics. O.I.T. thanks V.I. Osherov and H. Nakamura for many
The perturbation analysis of a simplified model obtaineduseful discussions on the different aspects of semiclassical
from the three-body Coulomb problem in the linhit— o theory. We would like to thank R. More for reading the
extends the considered interval of the mass-ratio upto Manuscript. One of u€O.1.T.) gratefully acknowledges par-
=300, confirming thal’ (M) continues to oscillate with an tial support from INTAS under Grant No. 97-11032, “The-
increasing period and decreasing enveiopMagrows_ Si- oretical Study of Exotic Atomic and Molecular SyStemS.”
multaneously it suggests that the mechanism of the oscilla-

tions could be interpreted in terms of semiclassical theory. APPENDIX: MISLEADING TEMPTATION

The key role in such interpretation belongs to what is cur- ) ) ) .
rently known as the Demkov’s constructif4]. Decay of a We.suspect that reading Sec. IV a temptatlon rmght arise
resonance in this approach amounts to passing from the inf® derive a formula for the resonance widt{M) in the

tial Riemann sheet of the adiabatic potential energy correlMit (48) by substituting functiong74) and (76) into Egs.
sponding to the closed channel to a lower sheet correspond?/?) and estimating the integrals. Indeed, there is no doubt
ing to the open channel around a branch point connecting thi@t function(74) provides a very good point-to-point ap-
sheets. Then the oscillations B{M) can be interpreted as a Proximation to the exact solution of E¢&8) for sufficiently
result of interference between two paths of the resonanc"9€M. The same holds for functiof¥6) in respect to Egs.
decay, one of which goes directly to fragmentation region(70), at least in the vicinity of the poifR=R, where inte-
while the other one first passes through the turning point ofgrals in Eqs(71) seem to accumulate. The nonadiabatic cou-
the lower sheet. In other words, the oscillationd'¢M) are  pling (72) is a slow varying function and can be replaced by
a manifestation of the Stueckelberg ph§44] well known  the constantPy=P;s, 34, (Ro). Acting this way, one
from analysis of different two-state mod¢@0-33,43. The  \you|d obtain forl'(M) formula of the form(78), where the
dependences dv of the envelope of the functiofi(M) and |eading terms in the expansions of the preexponent factor

of the period of its oscillations obtained on the basis of thisa(M)' the Massey parameter(M), and the Stueckelberg
interpretation agree excellently with the present numericahhases(M) for largeM are given by

results. This warrants more detailed study of the multivalue

adiabatic potential energy for the three-body Coulomb prob- 12 1 0.29
, . a 0 .

lem and further development of the Demkov’s construction a(M)=16P3 7 ~ , (A1)
in the framework of the hyperspherical method. vit MY M3

The discussed interference mechanism of the oscillations
of I'(M) clearly has a very general nature. Similar oscilla- KS
tions should exist also in the dependence of resonance width a(M)=———-~7.64\ 2 (A2)
on some other parameters, for example, the vibrational quan- (Mvz)
tum number of the resonance state and the total angular mo- -~
mentum of the system. At the same time, variation of not any _ | Rop i dp ~ 12
parameter can cause oscillations. Thus the width of the ¢(M)= f‘t K(R)AR'~4.8M (A3)

252 1S? resonance state in two-electron atoms is known to be

a monotonic function of the nuclear chargtb]. The oscil- where K (R) = \/M[VO—V_Vl (R)] andK,=K(Ry). Com-
S(Tg .

lations found in this work raise a very interesting question Ozparing this equations with expansiof&) and (80) one can
hether it i ibl i f th
whether it is possible by varying some parameters of t <ee that the values of the parameters~3.91 and ¢,

system to achieve exactlgero resonance width, which ™ ) - . .
would mean the existence of bound states embedded in th~e3'45 obtained from fitting the numerical results, as dis-

continuum of the three-body Coulomb problem. Note thatcussed in Sec. IV, are quite different from the values

there is not any general law that would forbid such a possi~7.64 and¢,~4.82 that follow from Eqs(A2) and (A3).

bility. The oscillations also have a more practical implica- This is not surprising because in order to obtain correct val-

tion: calculations of resonance width by approximate methues of the exponentially small integralgl) functions(74)

ods, like Fermi's Golden Rule, although giving the correctand (76) must approximate the exact solutions of E(&8)

envelope for a wide range of some parameter can yield and (70) with exponentially small error, which is not the

completely wrong result for any its particular value. case. Thus the discussed temptation is misleading and should
We conclude by noting that although the mass-rstiin be avoided.
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