
PHYSICAL REVIEW A DECEMBER 1999VOLUME 60, NUMBER 6
Relativistic partial-wave analysis using the velocity basis of the Poincare´ group
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The velocity basis of the Poincare´ group is used in the direct product space of two irreducible unitary
representations of the Poincare´ group. The velocity basis with total angular momentumj will be used for the
definition of relativistic Gamow vectors.@S1050-2947~99!04012-3#
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I. INTRODUCTION

Resonances are obtained in the scattering of two~or
more! elementary particles, and quasistationary states de
into a two ~or many! particle system with massesmi and
spins si , i 51, 2,.... Relativistic resonances and decayi
states are therefore described in the direct product spac
two irreducible representation spaces of the Poincare´ group
H5H1(m1 ,s1) ^ H2(m2 ,s2). Nonrelativistic resonances an
decaying states have been described by Gamow vectors@1#.
Gamow vectors are characterized by a value of angular
mentum j in the center-of-mass frame and by a comp
energyzR5(ER2 iG/2), representing resonance energyER

and lifetime \/G. They are generalized eigenvectors in
Rigged Hilbert SpaceF,H,F3 of the self-adjoint Hamil-
tonianH with complex eigenvaluezR @1#. Relativistic reso-
nances and unstable particles are characterized by their
~total angular momentum in the center-of-mass frame of
decay products! and the values5sR[(MR2 iG/2)2 of the
invariant mass squareds5(p11p2)25(E22p2) whereMR
is the resonance mass and\/GR is its lifetime. We want to
find relativistic Gamow vectors which are generalized eig
vectors of the total mass operatorM25PmPm5(P1m

1P2m)(P1
m1P2

m) with complex eigenvaluesR and with spin
j. These must be obtained from the direct product sp
H1(m1 ,s1) ^ H2(m2 ,s2).

Eigenspaces ofM2 with real values of invariant masss
and total angular momentumj are obtained by the relativisti
partial wave analysis@2–4# using the Wigner basis, i.e., us
ing momentum eigenvectorsupi ,s3i(mi ,si)& in the spacesHi
and eigenvectorsup, j 3(s, j )& of Pm5P1m1P2m in the direct
product spaceH.

In contrast to the nonrelativistic case, in the relativis
case Lorentz transformations intermingle energy and m
menta. If one wants to make an analytic continuation os
from the values (m11m2)2<s,` to the complex valuessR
„of the pole position in the second sheet of the relativis
S-matrix Sj (s)… this will also lead to complex momenta. T
restrict the unwieldy set of complex momentum represen
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tions @5# we want to construct complex mass representati
of the Poincare´ group P whose momenta are ‘‘minimally
complex’’ in the sense that thoughpm and m are complex,
the 4-velocitiesp̂m[pm /m remain real. This can be carrie
out because, as explained in Sec. II, the four-velocity eig
vectorsup̂, j 3(s, j )& provide as valid basis vectors for the re
resentation space ofP as the usual momentum eigenvecto
Moreover, they are more useful for physical reasoning th
the momenta eigenvectors, because the 4-velocities see
fulfill to rather good approximation ‘‘velocity super
selection rules’’ which the momenta do not@6#. Therefore we
will use the velocity basisup̂i ,s3i(mi ,si)& for the relativistic
partial wave analysis and obtain the Clebsch-Gordan co
cients of the Poincare´ group for the velocity basis. This is
done in Sec. III fors15s250, which applies to the case o
p1p2 in the final state. This gives the velocity eigenvecto
up̂, j 3(s, j )& of the direct product space H
5( j 50

` * (m11m2)2
` dm(s)H(s, j ) from which we obtain the

four-velocity scattering statesup̂, j 3(s, j )6& using the
Lippmann-Schwinger equation as, e.g., done in@7#. The rela-
tivistic Gamow vectorsup̂, j 3(sR , j )6& will be obtained in a
subsequent paper from the scattering states by analytic
tinuation. In the Appendix, we derive the Clebsch-Gord
coefficients for the velocity basis ofP for the general case.

II. VELOCITY BASIS OF THE POINCARE ´ GROUP

We denote the ten generators of the unitary representa
U(a,L) of (a,L)PP, by

Pm,Jmn m,n50,1,2,3. ~2.1!

The standard choice of the invariant operators and of a c
plete set of commuting observables~c.s.c.o.! is

M25PmPm, W52wmwm,

Pi~ i 51,2,3!, S35M 21U~L~p!!w3U 21~L~p!!,
~2.2!

here
4606 ©1999 The American Physical Society
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wm5
1

2
emnrsPnJrs, ~2.3!

M 21 is the inverse square root of the positive definite ope
tor PmPm , and U„L(p)… is the representation of the boo
that depends upon the parameterspm(m50,1,2,3), which are
the eigenvalues of the operatorsPm . Only three of these
parameters are independent in an irreducible representa
because of the relationm25pmpm. The standard boost~‘‘ro-
tation free’’! matrix L .n

m (p) is given by

L .n
m ~p!5

n50 n5n

m50

m5mS p0

m
2

pn

m

pm

m
dn

m2

pm

m

pn

m

11
p0

m

D . ~2.4!

Note thatpm5hmnpn and we use the metric1

hmn5S 1 0

21

21

0 21

D .

It has the property that

L21~p! .n
m pn5S m

0

0

0

D . ~2.5!

One feature shown in~2.4! which we want to make use of, i
that the boostL .n

m (p) does not depend uponp but only upon

the 4-velocity p/m[ p̂. The complete basis system in th
irreducible representation spaceH(m2, j ) which consists of
eigenvectors of the c.s.c.o.~2.2! is the Wigner basis usually
denoted as

up, j 3~m, j !&. ~2.6!

It has the transformation property under the translation (a,I)
and the Lorentz transformation (0,L):

U~a,I!up, j 3&5eipmamup, j 3& ~2.7a!

U~0,L!up,j&5(
j8

uLp,j8&Dj8j~R~L,p!!, ~2.7b!

whereR is the Wigner rotation

R~L,p!5L21~Lp!LL~p!. ~2.7c!

1Some of the references we use here have different conven
e.g.,hmn→2hmn @7#, andL21(p)→L(p) @3#.
-

on,

The Wigner rotation depends upon the ten parameters oL

and upon the parametersp̂m5pm/m. In an unitary irreducible
representation~UIR! there are three independentp̂m and:

up, j 3&5U~L~p!!up50, j 3&, ~2.7d!

where we have omitted the fixed valuesm j as we shall often
do in an UIR. Every vector~of a dense subspace of physic
states! of H(m, j ) can be written according to Dirac’s bas
vector decomposition as

f5E dm~p!(
j

up,j&^p,juf&, ~2.8a!

where one has many arbitrary choices for the measure.
usually chosen to be given by

dm~p!5r~p!d3p, ~2.8b!

where one can choose any~measurable! function r, in par-
ticular a smooth function. The choice ofr is connected to the
‘‘normalization’’ of the Dirac kets through:

^j8,p8up,j&5
1

r~p!
d3~p2p8!djj8 . ~2.8c!

One convention2 for r is the Lorentz invariant measure:

r~p!5
1

2E~p!
, where E~p!5Am21p2. ~2.8d!

The mathematically precise form of the Dirac decomp
sition is the Nuclear Spectral Theorem for the complete s
tem of commuting~essentially self-adjoint! operators. It is
the same as~2.8!, however with well defined mathematica
quantities. The state vectorsf in ~2.8a! must be elements o
a dense subspaceF of the representation spaceH of an UIR:

fPF,H~m, j !; ~2.9!

and the basis vectorsup,j&PF3 are elements of the space o
antilinear functionals onF which fulfill the condition:

^Picup,j&5pi^cup,j& for every cPC. ~2.10a!

This condition means theup,j& are generalized eigenvecto
of Pi , which is also written as

Pi
3up,j&5pi up,j&, ~2.10b!

wherePi
3 is an extension ofPi

†(5Pi); and the ‘‘component
of f along the basis vectorup,j&,’’ the ^p,juf&5^fup,j&* ,
are antilinear continuous functionalsF(f)5^p,juf&* on the
spaceF.

The spaceF is a dense nuclear subspace ofH @9#. @E.g.,
F could be chosen to be the subspace of differentiable v
tors of H equipped with a nuclear topology defined by t
countable number of norms:uufuup5A(f,(D11)pf), where

D5(mPm
2 1(mn

1
2 Jmn

2 is the Nelson operator@10#. But it

n,
2This is the convention of@8,2–4#, but not of@7#
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4608 PRA 60A. BOHM AND H. KALDASS
could also be chosen as another dense nuclear subspa
H.# The three spaces form a Gel’fand triplet, or Rigged H
bert Space

F,H,F3 ~2.11!

and the bra-ket̂u& is an extension of the scalar product(,).
The ^p,juf&5^fup,j&* are the Wigner momentum wave
functions.

The Wigner kets~2.6! are not the only basis system o
H(m, j ) that one can use to expand every vectorfPF. For
every different choice of c.s.c.o. in the enveloping alge
E(P) ~the algebra generated byPm , Jmn) one obtains a dif-
ferent system of basis vectors; in this way one can obt
e.g., Lorentz basis~eigenvectors of the Casimir operators
SO(3,1)Jmn

@3,9#!, or the spinor basis~whose Fourier trans
forms are the relativistic fields@7#! etc. We want to choose
still another basis system, which is similar to the Wign
basis except that it is a basis of eigenvectors of the 4-velo
operatorP̂m[PmM 21 rather than the momentum operat
Pm .

With the 4-velocity operator, one defines the operator

ŵm5
1

2
emnrsP̂nJrs5wmM 21, ~2.12!

and the spin tensor

Smn5emnrsP̂rŵs.

The complete set of commuting observables is then given

P̂m , S3 , Ŵ52ŵmŵm5
1

2
SmnSmn, M2,

~2.13!

and we denote its generalized eigenvectors by

up̂, j 3 ;s5m2, j &, ~2.14!

wherep̂m5pm /m are the eigenvalues ofP̂m .
The basis vector expansion for everyfPF with respect

to the basis system~2.14! is given by

f5(
j 3

E d3p̂

2p̂0
up̂, j 3&^ j 3 ,p̂uf&, ~2.15a!

where we have chosen the invariant measure

dm~ p̂!5
d3p̂

2p̂0
5

1

m2

d3p

2E~p!
~2.15b!

p̂05A11p̂2.

As a consequence of~2.15b!, thed-function normalization of
these velocity-basis vectors is

^j,p̂up̂8,j8&52p̂0d3~ p̂2p̂8!djj852p0m2d3~p2p8!djj8 .
~2.15c!

Mathematically, every c.s.c.o. is equally valid. But, for
given physical problem one c.s.c.o. may be more useful t
of
-

a

n,

r
ty

y

n

another. For instance a c.s.c.o. that contains physically
tinguished observables~e.g., observables whose eigensta
happen to appear predominantly in nature! is more useful for
calculations in physics than the c.s.c.o. whose eigenvec
are very different from physical eigenstates. Two differe
c.s.c.o.’s lead to different basis systems, whose vectors
be expanded with respect to each other. But this expansio
usually very complicated and intractable, for which reas
the choice of the physically right c.s.c.o. is very importa
for each particular physical problem. This is the reason
which the Lorentz basis of the Poincare´ group is pretty use-
less for physics, because the Casimir operators ofSO(3,1)
are not important observables as compared to the mom
tum. However, the two c.s.c.o.~2.2! and~2.13! are not even
different in an irreducible representation ofP, since its op-
erators differ only by a factor of the operatorM, which is an
invariant. The basis systems~2.6! and~2.14! are therefore the
same, i.e., their values differ by a normalization-phase fac
N(p, j 3)

up̂, j 3~m, j !&5up, j 3~m, j !&N~p, j 3!. ~2.16!

The Poincare´ transformations~2.7! act on the basis vector
~2.16! in the following way

U~a,I!up̂, j 3&5eimp̂mamup̂, j 3& ~2.17a!

U„L~ p̂!…up̂50, j 3&5up̂, j 3&. ~2.17b!

The distinction between the basis vectorsup,j& and up̂,j&
becomes important if one does not have an unitary irred
ible representation ofP but a representation with many dif
ferent values for (m2, j ), e.g.,H5(m2, j % H(m, j ). Then one
has besides the observables~2.1!, additional observablesXa
~generators of an intrinsic symmetry group or a spectr
generating group! and an additional system of commutin
observables:

B5B1 ,B2 ,•••,BN ~2.18!

whose eigenvalues,b5(b1 ,b2 ,•••,bN), characterize the el-
ementary particles described byH(m, j )5H b(m, j ).3 In or-
der that~2.2! and~2.18! combine into a c.s.c.o., the operato
B have to commute withM2,Pm ,WandS3. If also the other
observablesXa , which change the particle species numberb,
commute withM2,Pm ,W and S3, then the combination of
~2.2! and~2.18! gives a useful c.s.c.o. However, if theXa do
not commute withM2 ~i.e., the particle species numbe
changing operatorsXa transform also from one mass eige
state to another mass eigenstate changing also the masmb
into mb8) then theXa will also not commute withPm ,
@Xa ,Pm#Þ0. In this case, it may still happen@6# that a ‘‘ve-
locity superselection rule’’ holds:

@Xa ,P̂m#50 ~or at least@Xa ,P̂m#'0!. ~2.19!

Then combination of~2.18! with ~2.13!, i.e., the

3The quantum numbersb are called the particle species numbe
in @7#.
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P̂i , ŵ3 , Ŵ, M2, B1 ,...,BN ~2.20!

will form a useful c.s.c.o., but the combination of~2.2! with
~2.18! will not. The generalized eigenvectors of~2.20!,
up̂,j,b,m, j &, will then be a much more useful basis syste
for every fPF,H5( % H b(m, j ) than the corresponding
momentum eigenvectors. Using the eigenvectors of~2.20!,
we have the Dirac basis vector expansion:

f5(
m,b

(
j ,j

E d3p̂

2p̂0
up̂,j,b,m, j &^ j ,m,b,j,p̂uf&

for everyfPF. ~2.21!

The momentum eigenvectorsup,j,b . . . & may either not ex-
ist ~if @B,Pm#Þ0), or if they do exist, they are not usefu
because theXa change the value ofp, which then becomes a
function ofb, p5pb . As a consequence, quantities like for
factors depend uponb throughp. In contrast, using the ve
locity eigenvectorsup̂,j,b,•••& under the assumption~2.19!
will lead to form factors with universal~independent ofb)
dependence upon the four-velocity. This was the origi
motivation for the introduction of the velocity-basis vecto
up̂,j,b,•••& @6#.

The subject of the present work is the description of re
tivistic decaying states by representations of the Poinc´
group, combining Wigner’s idea@8# of the description of
stable relativistic particles by an UIR ofP, with Gamow’s
idea of describing decaying particles by eigenvectors w
complex energy. Therefore, we need in the rest frame b
vectors with complex energy, i.e., them ~and thes5m2) in
~2.6! or in ~2.14! has to be continued to complex values e.
to s5(MR2 iG/2)2. This will result in a continuation of the
momentapm to complex values as well and can lead to
enormous complication of the Poincare´ group representa
tions ~see e.g.,@5#!. We want to do this analytic continuatio
in the invariant masss such that thepm are continued to
complex values in such a way that thep̂m5pm /As remain
real. Then, we obtain a smaller class of complex mass
resentations ofP which are as similar in property as possib
to Wigner’s UIR (m, j ). These are the minimally complex
mass representations which we shall denote by (s, j ).

For this minimal analytic continuation to be possible,
must be compatible with the boost~2.7d! and ~2.17b!. The
crucial observation is that the boostsL(p) are in fact, ac-
cording to ~2.4! only functions of p̂m5pm /As; L(p)
5L( p̂). As a consequence, the operators representing
boostU„L(p)…5U„L( p̂)… are functions of the real paramete
p̂ and not of complex parametersp. This means they are th
same operator functions in all the subspaces of the di
sum(mb , j % H(mb , j ) and of the continuous direct sum

(
j ,n

E
m0

2

m1
2

% H n~s, j !dm~s! ~2.22!

of the irreducible representations

H~s, j !, s5pmpm5E2p2. ~2.23!
l

-
re

h
is

,

p-

he

ct

If we consider in~2.22! only ~continuous! direct sums with
the same value forj 5 j R thenU(L) for any Lorentz trans-
formationL is, according to~2.7c!, the same operator func
tion of the six parameters which are given by the threep̂m or
the threevm:

S p̂0

p̂mD 5S S 12
v2

c2 D 21/2

S 12
v2

c2 D 2 1/2

vmD ~2.24!

and the three rotation angles~e.g., Euler angles in the res
frame!. The analytic continuation ins can therefore be ac
complished without affecting the Lorentz transformation
The Lorentz transformations in the minimally-complex ma
representation are represented unitarily by the same op
tors U(L) as in Wigner’s UIR (m, j R). At rest, on
u0, j 3(s, j R)&, only the time translations ofP will be repre-
sented non-unitarily for complex values ofs. And using
~2.17b! only the labels in the velocity basisup̂, j 3(s, j R)& is
complex. The basis vector decomposition~2.21! using the
velocity basis,

f5(
j 3

E dm~s!E dm~ p̂!up̂, j 3~s, j !&^~s, j ! j 3 ,p̂uf&

for fPF,H~s, j !, ~2.25!

is therefore more suitable than~2.8! that uses the momentum
basis, becausep̂ is independent ofs while p5Asp̂ is not. If
we deform the contour of integration fors from the real axis
as in ~2.22! into the complexs-plane then the integral ove
dm(p̂) in ~2.25! remains unaffected.

III. RELATIVISTIC KINEMATICS
FOR „TWO-PARTICLE … RESONANCE SCATTERING

Continuous direct sums like~2.22! appear in the case o
scattering experiments of two relativistic particles like e.
the process

e1e2→r0→p1p2, ~3.1a!

or the more theoretical process

p1p2→r0→p1p2. ~3.1b!

These processes predominantly happen in thej P512 partial
amplitude if ther-meson mass region is selected for t
invariant mass square

s5~p11p2!25Er
21pr

2 , Er5E11E2 , pr5p11p2,

~3.2!
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4610 PRA 60A. BOHM AND H. KALDASS
wherep1 andp2 are the momenta of the two pionsp1, p2.4

The relativistic one particle states are given by an irreduc
representation spaceH ni(mi ,si) of the Poincare´ group P.
The independent,interaction-free two-particle states~or n
particle states!— like the p1p2 system in ~3.1b!— are
given by the direct product of the irreducible representat
spaces H(m1 ,s1) and H(m2 ,s2): H n1(m1 ,s1)
^ H n2(m2 ,s2)[H. Empirical evidence suggests that th
resonances in processes like~3.1! appear in one partial am
plitude with a given value of resonance spinj R ~e.g., j r

P

512). Therefore, the first problem is the reduction of t
direct productH(m1 ,s1) ^ H(m2 ,s2) into a direct sum of
H n(s, j ); the second problem is how to go from the fr
two-particle system to the interacting two-particle system

The first problem has been solved in general@2–4#

H[H n1~m1 ,s1! ^ H n2~m2 ,s2!

5E
(m11m2)2

`

dm~s!(
nsl

(
j

% H nsl~s, j !. ~3.3!

The sums in~3.3! extend over

j 5
0 1 ••• if s11s25 integer

1/2 3/2 . . . if s11s25half integer
,

and the degeneracy indices (l ,s) for a given j are summed
over

s5s11s2 , s11s221, . . .us12s2u

l 5 j 1s, j 1s21, j 1s22, . . . j 2s.

Here j represents the total angular momentum of the co
bined p1p2 system; one of these values will be the res
nance spinj R . The degeneracy indices (s,l ) for each fixed
value of j are the total spin angular momentum and the to
orbital angular momentum of the twop, respectively. The
quantum numbern is summed over all channel numbers th
can be obtained by combining the species numbersn1 andn2
of the twop.

Instead of the invariant mass squares5pmpm5E22p2

that we have used in~3.3! one often usesw5As, the invari-
ant mass or the energy in the center of mass system o
two particlesn1 ,n2 @2–4#. The choice of the measure

dm~s!5r~s!ds,
~3.3a!

~or if one usesw, of dm~w!5r~w!dw!

depends upon the normalization of the system of general
basis vectors of~3.3!. We shall use

r~s!51, and then r~w!52w ~3.3b!

4Though our discussions apply with obvious modifications to
general case of

112131•••→Ri→181281381•••

these generalizations lead to enormously more complicated e
tions. For the sake of simplicity, we shall therefore consider a re
nance scattering process like~3.1!.
le

n

-
-

l

t

he

ed

if we label the basis byw so that we do not change th
‘‘normalization’’ of the kets. The resonance space will b
related~but will not be identical! to a subspace of~3.3! with
a definite value of angular momentumj „e.g., j 5 j 3

P512 in
case of ther-resonance of~3.1!…. This is based on empirica
evidence; resonances appear in one particular partial am
tude with a particular value of resonance spinj 5 j R ~though
it may happen that there are more than one resonance in
same partial amplitude, but at different resonance ene
sR1

,sR2
,•••). We will therefore single out a particular sub

space

H nls5E
(m11m2)2

`

ds% H nls~s, j ! ~3.4!

with definite degeneracy or/and channel quantum numb
h5 ls, n.

The reduction~3.3! is usually done using the Wigner mo
mentum kets~2.6! in which the Clebsch-Gordan coefficien
are given by@2–4#:

^p1s13p2s23@m1s1 ,m2s2#up j3@w j #,h&, ~3.5!

whereh now denotesh5n,l ,s.
For the reasons mentioned above we want to work w

the 4-velocity eigenketsu p̂, j 3@w, j #,h& which are eigenvec-
tors of the operators

P̂m5~Pm
(1)1Pm

(2)!M 21, M25~Pm
(1)1Pm

(2)!~P(1)m1P(2)m!
~3.6!

with eigenvalues

p̂m5S Ê5
p0

w
5A11p̂25 p̂0

p̂5
p

w

D ~3.7!

and eigenvaluesw25s. In here,P̂m
( i ) are the 4-velocity op-

erators in the one particle spacesH ni(mi ,si) with eigenval-
ues p̂m

i 5pm
i /mi . The Clebsch-Gordan coefficients are t

transition coefficientŝ p̂1p̂2s13s23@m1s1 ,m2s2#u p̂ j 3@w j #,h&
between the direct product basis

u p̂1s13m1s1& ^ u p̂2s23m2s2&[u p̂1p̂2s13s23@m1s1 ,m2s2#&
~3.8!

and the angular momentum basisu p̂ j 3@w j #,h&.
To obtain the Clebsch-Gordan coefficients, one follo

the same procedure as given in the classic papers@2–4# for
the Clebsch-Gordan coefficients~3.5!. This will be done in
the Appendix, where the general case will be discussed. H
we shall restrict ourselves to the special cases150,s250 to
avoid the inessential complications due to theSO(3)
Clebsch-Gordan coefficients for the angular momentum c
plingss1^ s2→s, s^ l→ j and the occurrence of the Wigne
rotationsR(L21( p̂),p̂i) of the inverse boostL21( p̂) which
will enter in ~3.5!. Also for the process~3.1b! this is suffi-
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cient, sincesp15sp250. There is no degeneracy of the a
gular momentum basis vectors in this case andu p̂ j 3@w j #& is
given in terms of~3.8! by

u p̂ j 3@w j #&5E d3p̂1

2Ê1

d3p̂2

2Ê2

u p̂1p̂2@m1m2#&

3^ p̂1p̂2@m1m2#u p̂ j 3@w j #& ~3.9!

for any~m11m2!2<w2,` j 50,1,•••

The choice of the measured3p̂i /2Êi(p̂i)5d3pi /mi
22Ei is the

same as~2.15a!.
From the 4-translation invariance~conservation of

4-momentum! it follows that the Clebsch-Gordan is of th
form

^ p̂1p̂2u p̂ j 3@w j #&5d4~p2r !^^ p̂1p̂2u p̂ j 3@w j #&&,

wherer[p11p2 . ~3.10!

The reduced matrix element in the center-of-mass is in a
ogy to the non-relativistic case given by@11#

^^ p̂1
cmp̂2

cmu0j 3@w j #&&5Yj j 3
~e!m̃ j~w,m1 ,m2!, ~3.11!

wherem̃ j (w,m1 ,m2) is a function ofw ~or s) which depends
upon our choice of ‘‘normalization’’ for the basis vecto
u p̂ j 3@w j #& in ~3.9!. The equations~3.10! and~3.11! are com-
bined into

^ p̂1p̂2u p̂ j 3@w j #&

52Ê~ p̂!d3~p2r!d~w2e!Yj j 3
~e!m j~w,m1 ,m2!

with e25r 25~p11p2!2, ~3.12!

where againm j (w,m1 ,m2) is a function that fixes the
d-function ‘‘normalization’’ of u p̂ j 3@w j #&. The unit vectore
in ~3.11! is chosen to be in the c.m. frame the direction
p̂1

cm52m2 /m1p̂2
cm . In general it is obtained from the rela

tive ‘‘4-momentum’’ qm of Michel and Wightman@2# by ei

5L21(p) i
.mqm . The m j (w,m1 ,m2) and m̃ j (w,m1 ,m2) are

some weight functions which are determined from the
quired ‘‘normalization’’ of the 4-velocity kets~3.9!. Since
for a fixed value of@w j # these generalized eigenvectors a
the basis of the irreducible representation spaceH(w, j ) of
the Poincare´ group, we want them to be normalized lik
~2.15b!, which in ~3.9! has been already assured by t
choice of the invariant measured3p̂i /2Êi . Therefore, in anal-
ogy to ~2.15c!, we take for the normalization of the bas
vectors~3.9! to be

^ p̂8 j 38@w8 j 8#u p̂ j 3@w j #&52Ê~ p̂!d3~ p̂82p̂!d j
38 j 3

d j 8 jd~s2s8!,

where Ê~ p̂!5A11p̂25
1

w
Aw21p2[

1

w
E~p,w!. ~3.13!

The d-function normalizationd(s82s)51/2wd(w2w8) in
~3.13! is a consequence of the choice~3.4! for the measure.
l-

f

-

After we have chosen the normalization as in~3.13!, one
determines the weight functionm j (w,m1 ,m2) using ~3.9!.
The result is:

um j~w,m1 ,m2!u25
2m1

2m2
2w2

AlS 1,S m1

w
D 2

,S m2

w
D 2D

, ~3.14!

wherel is defined by@2#:

l~a,b,c!5a21b21c222~ab1bc1ac!.

Except for the normalization factorm, which follows from
our chosen normalization~3.13!, the values of the Clebsch
Gordan coefficients~3.12! is quite obvious.5 It expresses mo-
mentum conservation and the only factor that one may
puzzled about is that it should be consistent with t
4-velocity normalization expressed by thed3(p̂82p̂), p̂
5p/w in ~3.13!. Therewith, we have obtained by~3.9! with
~3.8! and~3.12! a system of basis vectors for the space~3.3!
~with s15s250) which is the representation space of sc
tering processes like~3.1b!. As expected, the basis vecto
are outside the Hilbert space;u p̂ j 3@w j #&PF3.H.F. They
have definite values of angular momentumj and invariant
massw[As;6 we shall define the Gamow vectors~describ-
ing r0) in terms of linear combinations of these c.m.-ener
eigenvectors with a definite value ofj. However, since the
resonances form and decay under the influence of an in
action and theu p̂ j 3@w j #& are interaction-free eigenvectors o
the ‘‘free-particle’’ Hamiltonian

K5P1
01P2

0 ~3.15!

we have to go from the free-particle basis vectors~3.9! to the
interaction-basis vectors. This can be done in analogy to
non-relativistic case and may be justified in two ways:

~1! One assumes that the time translation generator for
interaction system has two terms~@7# Ch. 3!, H0 and the
interactionV

H5H01V ~3.16!

in such a way that to each eigenvector ofH0 with eigenvalue

E5wA11p̂2,

H0u p̂ j 3@w j #&5Eu p̂ j 3@w j #&, ~3.17!

there correspond eigenvectors ofH with the same eigenvalue

Hu p̂ j 3@w j #6 int&5Eu p̂ j 3@w j #6 int&. ~3.18!

5A formula like ~3.12! is also given and explained in section 3
of @7# which for s50, s15s250 agrees with~3.12! except for the
normalization factor~3.14!. For sÞ0, siÞ0, see Appendix.

6Written in terms of Hilbert spaces,dm(s) means Lebesgue inte
grations. However, within the rigged Hilbert space mathemat

one can choose for̂fu p̂ j 3@w j #& a smooth function and use Rie
mann integration and assign to each vector a well defined valuw
~not just up to a set of measure zero!
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Since vectors are not completely defined by the requirem
that they be eigenvectors of an operator with a given eig
value @but may differ by a phase factor~phase shifts! or
unitary transformation~S-matrix! in case of degeneracy# we
have added the additional label int. This additional spec
cation of the eigenvectors can be chosen in a variety of w
that are connected with the spacesF that one admits, i.e.
with initial and final boundary conditions~as explained for
the non-relativistic case in@11#!. Since~3.16! may be a ques-
tionable hypothesis in relativistic physics a second justifi
tion does not make use of the existence of the Hamilton
splitting ~3.16!.

~2! One assumes the existence of anS-operator and of
Mo” ller operators V1 and V2. V1 transforms non-
interacting statesf in which are prepared by an apparatus
away from the interaction region into exact state vectorsf1,

V1f in5f1, f1~ t !5e2 iHtf1, ~3.19!

which evolve with the exact time-evolution operatorH. V2

transforms observablesucout&^coutu registered by the detec
tor placed far away from the interaction region into the ve
tors c2 which evolve with the exactH in the interaction
region:

V2cout5c2, c2~ t !5eiHtc1, ~3.20!

wheret is the time in the c.m. frame. The basis vectors
the free-particle space and the interaction-basis vectors
then assumed to be related by7

u p̂ j 3@w j #6&5V6u p̂ j 3@w j #&. ~3.21!

If ~3.16! also holds then the symbolV6 at the center-of-
mass is given by the solution of the Lippmann-Schwing
equation

u0j 3@w j #6&5S 11
1

w2H6 i e
VD u0j 3@w j #&. ~3.22!

The vectorsu p̂ j 3@w j #6& are obtained from the basis vecto
at restu0j 3@w j #6& by the boost~rotation-free Lorentz trans
formation! U(L( p̂)) whose parameters are thep̂m and whose
generators are the interaction-incorporating observables

P05H, Pm, Jmn , ~3.23!

i.e., the exact generators of the Poincare´ group ~ @7# section
3.3). These vectors~3.22!, which for a fixed value of@w j #
span an irreducible representation space of the Poin´
group with the ‘‘exact generators,’’ will be used for the de
nition of the relativistic Gamow vectors. The values ofj and
s5w2 are j 5 integer ~for s15s250 otherwise also half in-
teger! and (m11m2)2<s,`. The value ofj will be fixed
and represents the resonance spin; the same we do with
ity and the degeneracy quantum numbers (n, h). The values

7In nonrelativistic scattering off a fixed target one assumes
the up1& related by~3.21! to theup& are not eigenvectors ofP since
@V,Pi #Þ0.
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of s we shall continue from the physical values into t
complex plane of the relativisticS-matrix.
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APPENDIX: REDUCTION OF THE DIRECT PRODUCT
OF TWO ONE-PARTICLE UIR OF P

The discussion here follows the one in Ref.@4# with the
difference that here the two particle irreducible represen
tion spaces are labeled by the square of the total invar
masss instead ofw5As; and the velocity basis are use
instead of the momentum basis.

We discuss here the reduction of the direct product of t
one-particle irreducible representation spaces of the Poin´
group@m1 ,s1# ^ @m2 ,s2# into a continuous direct sum of ir
reducible representation~irrep! spaces@s, j # of invariant
mass squareds and spinj. This has been done in@2–4# using
the Wigner basis systems of momentum eigenvectors. H
we shall do it using the 4-velocity basis vectors of the Po
carégroupP and obtain the Clebsch-Gordan coefficients
P for the velocity basis. For the one particle spaces,
choose the c.s.c.o.~2.13! with the generalized eigenvector
~2.14!. Thus, the one particle spacesH(m, j ) are labeled by
the massm and the spinj of the particle. In analogy to the
case of one-particle, a two-particle irrep space is labeled
the square of the total invariant masss5(p11p2)2 and the
total angular momentumj of the two particles. The two-
particle irrep space is denoted byH n

h(s, j ), where h is a
degeneracy label andn is a particle species label. Thus th
reduction problem is written as

H~m1 ,s1! ^ H~m2 ,s2!5(
j h

E
(m11m2)2

`

% H n
h~s, j !ds.

~A1!

As in ~2.14!, the two-particle basis vectors ofH n
h(s, j ) have

as the only continuous variables the total four velocity of t
two particles and the square of the total invariant mass of
two particles. These basis vectors are denoted by:

u p̂s@sj #h,n& ~A2!

with the normalization:

^ p̂8s8@s8 j 8#h8,n8u p̂s@sj #h,n&52p̂0dnn8d j j 8dss8dhh8d
3~ p̂

2p̂8!d~s2s8!, ~A3!

wheres is the three-component of the total angular mome
tum j. We denote the basis vectors ofH(m1 ,s1)
^ H(m2 ,s2) by:

u p̂1s1@m1s1#& ^ u p̂2s2@m2s2#&

[u p̂1s1@m1s1#,p̂2s2@m2s2#&, ~A4!

at



ffi

rs

,
-

ch

le

l

e

e

n

l-
s

tion
ents

PRA 60 4613RELATIVISTIC PARTIAL-WAVE ANALYSIS USIN G . . .
where s1 ,s2 are the three-components of the spinss1 ,s2
respectively. In order to obtain the Clebsch-Gordan coe
cients,

^ p̂1s1@m1s1#,p̂2s2@m2s2#u p̂s@sj #h,n&, ~A5!

of the reduction~A1!, we start by relabeling the basis vecto
in ~A4! by usings, p̂ and the unit vectorn̂5(p12p2)/up1
2p2u as continuous parameters~we note that both sets

$ p̂1 , p̂2% and $ p̂, n̂, s% consist of six independent param
eters!. Thus, we can write:

u p̂1s1@m1s1#, p̂2s2@m2s2#&[u p̂n̂s,s1@m1s1#s2@m2s2#&.
~A6!

In the rest frame of both particles, i.e., for

p̂5 p̂R5S 1

0

0

0

D ,

we can expand the unit vectorn̂ in terms of orbital angular
momentum basis vectors:

un̂&5(
l l 3

u l l 3&^ l l 3un̂&5(
l l 3

u l l 3&Yll 3
* ~ n̂!. ~A7!

We can further use the angular momentum Clebs
Gordan coefficients to combine the two spins,s1 ands2, to
give a total spins with three componentm, which in turn is
added to the orbital angular momentuml with three compo-
nent l 3 to form a total angular momentumj with three com-
ponents. This gives the basis vector for the two-partic
irrep space

u p̂s@sj # ls; m1s1 ,m2s2&. ~A8!

Thus, the degeneracy labelh in ~A2! designates the tota
spin s and the total orbital angular momentuml of both par-
ticles; and the massesm1 , m2 and spinss1 , s2 of both
particles are included in the particle species labeln. Thus,
~A1! can be rewritten in more details as:

H~m1 ,s1! % H~m2 ,s2!5(
j ls

E
(m11m2)2

`

% H n
ls~s, j !ds,

~A9!

where s5us12s2u,us12s2u11,•••,s11s2

j 5u l 2su,u l 2su11,•••,l 1s.

With ~A6! and ~A7!, we deduce that in the rest frame, th
Clebsch-Gordan coefficients of~A9! are given by:
-

-

^ p̂1s1@m1s1#,p̂2s2@m2s2#,nu p̂Rs@sj #,h,n8&

52Nn~s!dnn8u~s2~m11m2!2!d3~p11p2!

3d~s2~p11p2!2!

3(
l 3m

Cs1s2
~sm,s1s2!Csl~ j s,m l 3!Yll 3

~ n̂!,

~A10!

whereNn(s) is a normalization factor. Having obtained th
Clebsch-Gordan coefficients in the rest frame~A10!, we can
use the boost operator~2.17b! to obtain the Clebsch-Gorda
coefficients in a general frame:8

^ p̂1s1@m1s1#,p̂2s2@m2s2#,nu p̂s@sj #h,n8&

5^ p̂1s1@m1s1#,p̂2s2@m2s2#,nuU„L~p!…u p̂Rs@sj #h,n8&

52p̂0Nn~s!dnn8u~s2~m11m2!2!d3~p2p12p2!

3d~s2~p11p2!2! (
s18s28

D
s

18s1

s1* @R~L21~p!,p1!#

3D
s

28s2

s2* @R~L21~p!,p2!#

3(
l 3m

Cs1s2
~sm,s18s28!Csl~ j s,m l 3!Yll 3

~e!, ~A11!

whereR(l,p) is the Wigner rotation given in~2.7c! and

e5
L21~p!~p12p2!
→

uL21~p!~p12p2!
→

u
.

The normalization factorNn(s) depends upon our norma
ization choice~A3!. Before discussing how to obtain it, let u
first introduce the following notations:

G~s1s1 ,s2s2 ,sm!5 (
s18s28

D
s

18s1

s1* @R„L21~p!,p1…#

3D
s

28s2

s2* @R„L21~p!,p2…#

3Cs1s2
~sm,s18s28!, ~A12a!

Yj s ls~e,m!5(
l 3

Csl~ j s,m l 3!Yll 3
~e!. ~A12b!

With the above notations,~A11! is written as

8Formula (3.7.5) in@7#, which corresponds to~A11! but for dif-
ferent choices of basis and normalizations, is missing the rota
matrices factors that appear in the Clebsch-Gordan coeffici
away from the rest frame, as exhibited in~A11!.
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^ p̂1s1@m1s1#,p̂2s2@m2s2#,nu p̂s@sj #h,n8&52p̂0Nn~s!dnn8d
3~p2p12p2!d~s2~p11p2!2!

3(
m

G~s1s1 ,s2s2 ,sm!Yj s ls~e,m!. ~A13!

In order to obtain the normalization factorNn(s), we insert a complete set of basis vectors~A4! in
^ p̂8s8@s8 j 8#h8,n8u p̂s@sj #h,n& and use~A13!. Upon doing so, we obtain:

^ p̂8s8@s8 j 8#h8,n8u p̂s@sj #h,n&5 (
n9s1s2

E d3p̂1

2p̂1
0

d3p̂2

2p̂2
0 ^ p̂8s8@s8 j 8#h8,n8u p̂1s1@m1s1#,p̂2s2@m2s2#,n9&

3^ p̂1s1@m1s1#,p̂2s2@m2s2#,n9u p̂s@sj #h,n&

5~2p̂0!2uNn~s!u2dnn8d
3~p2p8!d~s2s8!

3 (
s1s2

(
mm8

E d3p̂1

2p̂1
0

d3p̂2

2p̂2
0

d3~p2p12p2!d~s2~p11p2!2!

3G* ~s1s1 ,s2s2 ,s8m8!G~s1s1 ,s2s2 ,sm!Yj 8s8h8
* ~e,m8!Yj sh~e,m!. ~A14!
Using the unitarity of the rotation matrices:

(
s

Ds8s
* j Ds9s

j
5ds8s9

and the identity

(
s1s2

Cs1s2
~sm,s1s2!Cs1s2

~s8m8,s1s2!5dss8dmm8 ,

we find that

(
s1s2

G* ~s1s1 ,s2s2 ,s8m8!G~s1s1 ,s2s2 ,sm!5dss8dmm8 .

~A15!

With the identity~A15!, ~A14! can be written as:

^ p̂8s8@s8 j 8#h8,n8ups@sj #h,n&

5~2p̂0!2uNn~s!u2dnn8d
3~p2p8!d~s2s8!dss8

3 (
m l 3l 38

Csl8~ j 8s8,m l 38!Csl~ j s,m l 3!

3E d3p̂1

2p̂1
0

d3p̂2

2p̂2
0

d3~p2p12p2!

3d„s2~p11p2!2
…Yl 8 l

38
* ~e!Yll 3

~e!. ~A16!

In order to solve the integration in~A16!, namely
I 5E d3p̂1

2p̂1
0

d3p̂2

2p̂2
0

d3~p2p12p2!

3d~s2~p11p2!2!Yl 8 l
38

* ~e!Yll 3
~e!

5
1

m1
2m2

2E d3p1

2p1
0

d3p2

2p1
0

d3~p2p12p2!

3d~s2~p11p2!2!Yl 8 l
38

* ~e!Yll 3
~e!, ~A17!

we perform the change of variables~as in equation (4.9) in
@2#!:

p15
~s1m1

22m2
2!

2s
r 1

l1/2~s,m1
2 ,m2

2!

2As
q

p25
~s2m1

21m2
2!

2s
r 2

l1/2~s,m1
2 ,m2

2!

2As
q ~A18!

where

l~a,b,c!5a21b21c222~ab1ac1bc!.

With these new variables, we find that

d~p1
22m1

2!d~p2
22m2

2!d3~p2p12p2!d~s2~p11p2!2!

5
4s3/2

l3/2~s,m1
2 ,m2

2!

1

2p0
d~q211!d~r •q!d4~r 2p!

~A19a!

d4p1d4p25
l2~s,m1

2 ,m2
2!

16s2
d4rd4q ~A19b!

and
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e5L21~p!q
→

. ~A19c!

Using ~A19!, the integration~A17! becomes:

I 5
1

m1
2m2

2

1

2p0

l1/2~s,m1
2 ,m2

2!

4As
E d4qd~q211!d~p•q!

3Yl 8 l
38

*
„L21~p!q
→

…Yll 3
„L21~p!q
→

…. ~A20!

Performing the change of variablee5L21(p)q in ~A20!, we
obtain:

I 5
1

m1
2m2

2

1

2p0

l1/2~s,m1
2 ,m2

2!

8s E dV~e!Yl 8 l
38

* ~e!Yll 3
~e!

5
1

m1
2m2

2

1

2p0

l1/2~s,m1
2 ,m2

2!

8s
d l l 8d l 3l

38
. ~A21!

Using ~A21! and the identity
d

.

-

d

l.

.

rly
on
ri-

-
,

e
rs

a
-
tiv
fac
(
m l 3

Csl~ j 8s8,m l 3!Csl~ j s,m l 3!5d j j 8dss8 ,

~A16! finally becomes:

^ p̂8s8@s8 j 8#h8,n8u p̂s@sj #h,n&

5~2p̂0!uNn~s!u2
1

m1
2m2

2

l1/2~s,m1
2 ,m2

2!

8s3

3dnn8d j j 8dss8dhh8d
3~ p̂2p̂8!d~s2s8!. ~A22!

Comparing~A22! with ~A3!, we find that:

uNn~s!u25
8m1

2m2
2s3

l1/2~s,m1
2 ,m2

2!
. ~A23!
,
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