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Relativistic partial-wave analysis using the velocity basis of the Poincargroup
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The velocity basis of the Poincagroup is used in the direct product space of two irreducible unitary
representations of the Poincageoup. The velocity basis with total angular momentumill be used for the
definition of relativistic Gamow vector$S1050-29479)04012-3

PACS numbes): 11.80.Et, 11.30.Cp, 11.86m, 03.80+r

[. INTRODUCTION tions[5] we want to construct complex mass representations
of the Poincaregroup P whose momenta are “minimally
Resonances are obtained in the scattering of tao complex” in the sense that though, andm are complex,
more elementary particles, and quasistationary states decatie 4-ve|ocitieqaﬂz p,./m remain real. This can be carried
into a two (or many particle system with masses; and  out because, as explained in Sec. Il, the four-velocity eigen-

spinss;, i=1, 2,....Relativistic resonances and decaying vectors|p,j(s,j)) provide as valid basis vectors for the rep-
states are therefore described in the direct product space gfsentation space @ as the usual momentum eigenvectors.
two irreducible representation spaces of the Poingaoep  Moreover, they are more useful for physical reasoning than
H="H1(my,s;) ®H,(M;,S,). Nonrelativistic resonances and the momenta eigenvectors, because the 4-velocities seem to
decaying states have been described by Gamow vedtprs fulfill to rather good approximation “velocity super-
Gamow vectors are characterized by a value of angular maselection rules” which the momenta do rj6{. Therefore we

mentumj in the center-of-mass frame and by a complexwill use the velocity basi$p; ,s5(m;,s;)) for the relativistic
energy zg=(Egr—iI'/2), representing resonance eneilgly  partial wave analysis and obtain the Clebsch-Gordan coeffi-
and lifetime 7/T". They are generalized eigenvectors in acients of the Poincargroup for the velocity basis. This is
Rigged Hilbert Spacd C HC ®* of the self-adjoint Hamil- done in Sec. Ill fors;=s,=0, which applies to the case of
tonianH with complex eigenvalueg [1]. Relativistic reso- 7" 7~ in the final state. This gives the velocity eigenvectors
nances and unstable particles are characterized by their spip,j5(s,j)) of the direct product space H
(total angular momentum in the center-of-mass frame of the- E?O:ofzomﬁmZ)ZdM(s)H(sij) from which we obtain the

: j
decay productsand the values=sgr=(Mgr—iI'/2)? of the : . ~ S .

invariant mass squarest (p;+ p,)?=(E2—p?) whereMg [qur—velocn%/ hsc_attenng styatesJ p’J3(S’]O)I ) 7“?;29 tlhe
is the resonance mass ahdl'y is its lifetime. We want to ippmann-Schwinger equation as, e.g., donih The rela-

find relativistic Gamow vectors which are generalized eigendivistic Gamow vectorsgp,js(sg,j) =) will be obtained in a
vectors of the total mass operatdv?=P,P*=(P,, subsequent paper from the scattering states by analytic con-
+P,,) (P4+ P%) with complex eigenvalusg and with spin tinuation. In the Append_lx, we derive the Clebsch-Gordan
j. These must be obtained from the direct product Spacgoefﬂments for the velocity basis @ for the general case.
Ha(my,s1) @ Ha(My,S5). )

Eigenspaces of? with (eal vaIue; of invariant mass Il. VELOCITY BASIS OF THE POINCARE GROUP
and total angular momentujrare obtained by the relativistic ) )
partial wave analysif2—4] using the Wigner basis, i.e., us- We denote the ten generators of the unitary representation
ing momentum eigenvectofp; s (M, ,s;)) in the spacess;  ¢“(a.A) of (a,A) e P, by
and eigenvectorfp,js(s,j)) of P,=P;,+P,, in the direct
product spacé-. P#,J*" u,v=0,1,2,3. (2.7

In contrast to the nonrelativistic case, in the relativistic
case Lorentz transformations intermingle energy and moThe standard choice of the invariant operators and of a com-
menta. If one wants to make an analytic continuatiorsof plete set of commuting observabl@ss.c.o) is
from the values ifi; + m,)°<s< to the complex valuesg
(of the_ pole posi_tion_in the second sheet of the relativistic M2=P P“ W
Smatrix S;(s)) this will also lead to complex momenta. To pe
restrict the unwieldy set of complex momentum representa-

[ “
WMW ,

Pi(i=12,3, S;=M"UL(p))wsld *(L(p)),
(2.2
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The Wigner rotation depends upon the ten parameters of
and upon the parametepé = p#/m. In an unitary irreducible

) ) N o representationiUIR) there are three independepit and:

M ~1is the inverse square root of the positive definite opera-

tor P#P,, andU(L(p)) is the representation of the boost [p,is)=U(L(p))|p=0,j3), (2.70
that depends upon the parameter¢u=0,1,2,3), which are . ] )

the eigenvalues of the operatols,. Only three of these Whgre we have omitted the fixed valuag as we shall ofte_n
parameters are independent in an irreducible representatiol® in an UIR. Every vectofof a dense subspace of physical

1
W,==€ P7JP7, (2.3

because of the relatiom?= p.P*. The standard boostro- stateg of H(m,j) can be written according to Dirac’s basis
tation free™) matrix L*(p) is given by vector decomposition as
oo ¢= f du(p) 2 [p.E)(p.él), (2.89
Y :
where one has many arbitrary choices for the measure. It is
P" Pn usually chosen to be given by
LE(p)= m mm |- (2.4)
pmm| o - du(p)=p (PGP, 2.8
m p
1+ m where one can choose afyeasurablefunction p, in par-

ticular a smooth function. The choice pfis connected to the

. “normalization” of the Dirac kets through:
Note thatp,=7,,p"” and we use the metric 9

1
1 0 (€.p[p&)=—=0(p=p) 0. (280
_q p(p)
Nuv= -1 : One conventiohfor p is the Lorentz invariant measure:
0 -1 1

P(P)=5Er, Where E(p)= Jym?+p?. (2.80
It has the property that (p)

The mathematically precise form of the Dirac decompo-
sition is the Nuclear Spectral Theorem for the complete sys-
tem of commuting(essentially self-adjointoperators. It is

2.9 the same a$2.8), however with well defined mathematical
guantities. The state vectogsin (2.89 must be elements of
a dense subspade of the representation spageof an UIR:

L~ X p)kp'=

o o o 3

One feature shown if2.4) which we want to make use of, is bedCHmM,|); 2.9
that the boost.“ (p) does not depend upgmbut only upon

the 4-velocityp/m=p. The complete basis system in the and the basis vectotp,£) € &~ are elements of the space of
irreducible representation spa@:ﬁ(mz,j) which consists of antilinear functionals o which fulfill the condition:

eigenvectors of the c.s.c.(2.2) is the Wigner basis usually
denoted as (Piglp.&)=pi(¥lp,&) forevery yeW. (2.109

Ipis(m,i)). (2.6) This cond_|t|0r_1 means thkp,g) are generalized eigenvectors
of P;, which is also written as
It has the transformation property under the translatem) ( «
and the Lorentz transformation (0): P[p.&)=pilp.£), (2.100

C O\ aipfay (. whereP;* is an extension oPiT(= P;); and the “component
Uablp.jz)=e"p.ja) (2.79 of ¢ along the basis vectdp, ¢),” the (p, €| ¢)=(a|p,&)*,
are antilinear continuous functiond§ ¢) = (p,£| ¢)* on the
UOA)[p,&)=2 [AP.E)Dp(R(A,p)), (27H  spaced.
¢ The spaceb is a dense nuclear subspacerf9]. [E.g.,
@ could be chosen to be the subspace of differentiable vec-
tors of H equipped with a nuclear topology defined by the

R(A,p)=L"L(Ap)AL(p). (2.7¢  countable number of normlip||,= V(¢,(A+1)P¢), where

A=3,P2+%,,3J%, is the Nelson operatof10]. But it

whereR is the Wigner rotation

1Some of the references we use here have different convention,
€.9. M= — Ny [7], andL " Y(p)—L(p) [3]. 2This is the convention dff8,2—4], but not of[7]
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could also be chosen as another dense nuclear subspaceaoibther. For instance a c.s.c.o. that contains physically dis-

'H.] The three spaces form a Gel'fand triplet, or Rigged Hil-

bert Space

dCHCD™ (2.11

and the bra-kef|) is an extension of the scalar prodyc}.
The (p,&|p)=(|p,&)* are the Wigner momentum wave-
functions.

The Wigner kets(2.6) are not the only basis system of
H(m,]j) that one can use to expand every vectar ®. For

every different choice of c.s.c.o. in the enveloping algebr

E(P) (the algebra generated B, , J,,,) one obtains a dif-
ferent system of basis vectors; in this way one can obtai

SO3.1),, [3,9]), or the spinor basiéwhose Fourier trans-
forms are the relativistic fieldg7]) etc. We want to choose

tinguished observable®.g., observables whose eigenstates
happen to appear predominantly in najusemore useful for
calculations in physics than the c.s.c.0. whose eigenvectors
are very different from physical eigenstates. Two different
c.s.c.0.’s lead to different basis systems, whose vectors can
be expanded with respect to each other. But this expansion is
usually very complicated and intractable, for which reason
the choice of the physically right c.s.c.o. is very important
for each particular physical problem. This is the reason for
which the Lorentz basis of the Poincayeoup is pretty use-

Qess for physics, because the Casimir operatorS ©f3,1)

are not important observables as compared to the momen-

Mum. However, the two c.s.c.62.2) and(2.13 are not even
e.g., Lorentz basigeigenvectors of the Casimir operators of ' @2 (2.13

different in an irreducible representation Bf since its op-
erators differ only by a factor of the operatdr, which is an
invariant. The basis systen®.6) and(2.14) are therefore the

still another basis system, which is similar to the Wignersame, i.e., their values differ by a normalization-phase factor
basis except that it is a basis of eigenvectors of the 4—ve|ocnw(p,j 3)

operatorlf’MEPMM*1 rather than the momentum operator

P,.
I
With the 4—ve|ocity operator, one defines the operators

w

(2.12

—_ DV 1po— -1
0= 5 P I T= WM,

and the spin tensor

8ot o
EM,,WP w.

3

ur=

The complete set of commuting observables is then given b%
e

. . IR |
Pm, S5, W=-w,wht=ZX, 34 M?2,
(2.13

and we denote its generalized eigenvectors by

|61j3;S:m21j>! (214>
wherep,=p,/m are the eigenvalues &1, .

The basis vector expansion for evapye ® with respect
to the basis systert?.14) is given by

d*p ..
b=2 f—Aolp,m)(Js,pId)% (2.153
3 2p
where we have chosen the invariant measure
du(p)= dp_ 1 (2.15h
M= 50 ™ me 2E(p) '

pO=V1+p?.

As a consequence ¢2.15h), the 5-function normalization of
these velocity-basis vectors is

(£,plp',€")=2p°8%(p—p') 8 = 2p°m?8%(p— P')t(sig'l-s

(2.1

The Poincardransformationg2.7) act on the basis vectors
(2.16 in the following way

1P,ja(m,j))y=|p.ja(m,i))N(p,js).

U, 1)[p.js)=emP"2|p,j3) (2173

UL(p)|p=0.j3)=Ip.is)- (2.179

The distinction between the basis vect{pst) and|p,£)
comes important if one does not have an unitary irreduc-
ible representation oP but a representation with many dif-
ferent values forif?,j), e.9., H=2p2;®H(m,j). Then one
has besides the observabl@sl), additional observableX,,
(generators of an intrinsic symmetry group or a spectrum
generating groupand an additional system of commuting
observables:

B:Bl,Bz,"',BN (218)
whose eigenvalue®=(b,b,,- - -,by), characterize the el-
ementary particles described By(m,j)="H"(m,j).2 In or-
der that(2.2) and(2.18 combine into a c.s.c.o., the operators
B have to commute witHVIZ,P# ,WandsS;. If also the other
observableX,, which change the particle species numiber
commute witth,Pﬂ,W and S;, then the combination of
(2.2 and(2.18 gives a useful c.s.c.0. However, if tig, do
not commute withM? (i.e., the particle species number
changing operatorX , transform also from one mass eigen-
state to another mass eigenstate changing also the myass
into my,) then theX, will also not commute withP,,,
[X«,P,]#0. In this case, it may still happd6] that a “ve-
locity superselection rule” holds:

[X,.P,]=0 (oratleasfX,,P,]~0). (2.19

Then combination 0f2.18 with (2.13, i.e., the

Mathematically, every c.s.c.o. is equally valid. But, for a 3The quantum numbets are called the particle species numbers
given physical problem one c.s.c.0. may be more useful thaim [7].
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P, Ws, W, M2 By,..By (2.20 |fwe consider in(2.22 only (continuous direct sums with
the same value foy=jg thenl(A) for any Lorentz trans-

will form a useful c.s.c.o., but the combination @2 with ~ formationA is, according td2.79, the same operator func-
(2.18 will not. The generalized eigenvectors ¢2.20, tion of the six parameters which are given by the thp&eor

|p,£,b,m,j), will then be a much more useful basis systemthe threev™
for every pe DCH=2aH"(m,j) than the corresponding

momentum eigenvectors. Using the eigenvector$2a20), v2| "2
we have the Dirac basis vector expansion: ( )

E)O
=> > fﬁl‘ b,m,i)(j,m.b,&,pl <bm): V2| 224
¢_m,b ~ ZE)O p!gv am1J><J!m’ ,f;p d)) (1——) Vm

for ever d. (2.2
yoe (223 and the three rotation anglés.g., Euler angles in the rest

frame). The analytic continuation is can therefore be ac-
| complished without affecting the Lorentz transformations.
The Lorentz transformations in the minimally-complex mass
representation are represented unitarily by the same opera-
tors U(A) as in Wigner's UIR (n,jg). At rest, on
|0,j5(s,jr)), Only the time translations oP will be repre-

will lead to form factors with universalindependent ob) sented non-unitarily fqr complex 'values' gf,And_ u3|r.19
dependence upon the four-velocity. This was the original2-17D only the labels in the velocity basigp,js(s,jr)) is
motivation for the introduction of the velocity-basis vectors COMPIex. The basis vector decompositith2l) using the
|f) £b,---)[6] velocity basis,

The subject of the present work is the description of rela-
tivistic decaying states by representations of the Poincare N . N
group, combining Wigner's idef8] of the description of ¢2123 fd'“(s)j du(PIp.js(s.)){(s.])is.P
stable relativistic particles by an UIR @, with Gamow’s
idea of describing decaying particles by eigenvectors with
complex energy. Therefore, we need in the rest frame basis for ¢edCH(s,)), (2.29
vectors with complex energy, i.e., the (and thes=m?) in

(2.6) or in (2.14 has to be continued to complex values €.9.,is therefore more suitable th®.8) that uses the momentum

_ _ . 2 . . . . . ~ R
to s=(Mg—iI'/2). This will result in a continuation of the basis, becausp is independent of while p=ysp is not. If

momentap,, to complex values as well and can lead to an def h fi ion ferf h | axi
enormous complication of the PoinCageoup representa- we deform the contour of integration ferirom the real axis
as in(2.22 into the complexs-plane then the integral over

tions (see e.g.[5]). We want to do this analytic continuation A, ,

in the invariant mass such that thep, are continued to du(p) in (2.29 remains unaffected.

complex values in such a way that tﬁg= pM/\/E remain

real. Thgn, we obtz_;\in a smallgr (_:Ias_s of complex mass rep- Il. RELATIVISTIC KINEMATICS

resentations oP which are as similar in property as possible  FOR (TWO-PARTICLE ) RESONANCE SCATTERING

to Wigner's UIR (m,]j). These are the minimally complex- ) ) . ]

mass representations which we shall denote ) ( Continuous d!rect sums I|ke2.22)'a'pp.ear m_the case of
For this minimal analytic continuation to be possible, it Scattering experiments of two relativistic particles like e.g.,

must be compatible with the boo&.7d and (2.17h. The the process

crucial observation is that the boodt¢p) are in fact, ac-

cording to (2.4) only functions of p,=p,/\s; L(p) ete —pl—ata, (3.13

=L(p). As a consequence, the operators representing the

boostA(L(p))=U(L(p)) are functions of the real parameters or the more theoretical process

p and not of complex parameteps This means they are the

same operator functions in all the subspaces of the direct

sumEmb,jeBH(mb,j) and of the continuous direct sum

The momentum eigenvectolps, £,b . . . ) may either not ex-
ist (if [B,P,]#0), or if they do exist, they are not usefu
because th&, change the value gf, which then becomes a
function ofb, p=py . As a consequence, quantities like form
factors depend upoh throughp. In contrast, using the ve-

locity eigenvectors$p,£,b, - - -) under the assumptiof2.19

b)

W+77—>p0—>77+777. (3.1b

m2 _ These processes predominantly happen injthel ™ partial
> J L ®H"(s,j)du(s) (222 amplitude if thep-meson mass region is selected for the
LMo invariant mass square

of the irreducible representations ,
. , s=(p1+p)?=E;+p,, E,=E;+E;, p,=pi+p,
H(s,j), s=p.p“=E—-p- (2.23 3.2
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wherep; andp, are the momenta of the two pioms™, 7~ .# if we label the basis byw so that we do not change the

The relativistic one particle states are given by an irreduciblé'normalization” of the kets. The resonance space will be
representation spack "i(m;,s;) of the Poincaregroup P.  related(but will not be identical to a subspace df3.3) with

The independentinteraction-freetwo-particle stategor n  a definite value of angular momentunge.g.,j=j5=1"in
particle states— like the =" 7~ system in(3.1b— are case of thep-resonance of3.1)). This is based on empirical
given by the direct product of the irreducible representatiorevidence; resonances appear in one particular partial ampli-
spaces H(my,s;) and  H(m,,sy): H"(my,Ss;) tude with a particular value of resonance spinjg (though
®H"2(m,,s,)="H. Empirical evidence suggests that theit may happen that there are more than one resonance in the
resonances in processes lil@1) appear in one partial am- same partial amplitude, but at different resonance energy
plitude with a given value of resonance sgip (e.g., jE SR, 'SRy " * ). We will therefore single out a particular sub-
=17). Therefore, the first problem is the reduction of thespace

direct productH(my,s;) ® H(m,,S,) into a direct sum of

H"(s,j); the second problem is how to go from the free | o o
two-particle system to the interacting two-particle system. H" S=f LAs®H™(s, ) (3.4
The first problem has been solved in gen¢gat4] (my +my)
H=H"(my,s;) ®H"2(M,,s,) with definite degeneracy or/and channel quantum numbers
n=ls, n.
* . The reduction3.3) is usually done using the Wigner mo-
— nsl
- f(mﬁmz)zd“(s)% 2}: ®H™(s.). B3 mentum kets2.6) in which the Clebsch-Gordan coefficients

are given by[2—4]:
The sums in(3.3) extend over _ _
) ) (P1S13P2S2d MyS1,MyS, 1| pjalwil, 1), (3.9
0 (N | S, +S,=integer
12 32 ... if s;+s,=halfinteger where  now denotesy=n,|,s.
For the reasons mentioned above we want to work with

and the degeneracy indices) for a givenj are summed  the 4-velocity eigenketfp,js[w,j],7) which are eigenvec-
over tors of the operators

j

S:Sl-l—Sz, Sl+52_1’ .. |Sl_52| I,:\)#:(PIE})—}—PEE))M_J', MZZ(PE})—}—PEE))(P(]')M—{— P(2)'u’)

I=j+s, j+s—1, j+s—2, ...j-s. (3.6
Herej represents the total angular momentum of the comWith eigenvalues
bined #* 7~ system; one of these values will be the reso-
nance sping. The degeneracy indices,() for each fixed E
value ofj are the total spin angular momentum and the total .
orbital angular momentum of the tws, respectively. The pH= b (3.7
quantum numben is summed over all channel numbers that p=—
can be obtained by combining the species numbeendn, w
of the two 7. o

Instead of the invariant mass squae pMpM:EZ_pZ and eigenvalues/’’=s. In here,Pg) are the 4-velocity op-
that we have used if8.3) one often usew/= s, the invari- ~ erators in the one particle spacks'(m;,s;) with eigenval-
ant mass or the energy in the center of mass system of thees p'ﬂ= p'M/mi . The Clebsch-Gordan coefficients are the

two particlesn,,n, [2—4]. The choice of the measure transition coefficients p;P,S13S,d MyS1,MyS, 1| PjalWil, 7)
between the direct product basis
du(s)=p(s)ds,

(3.3a

(orif one usesw, of du(w)=p(w)dw) |P1513M1S1) ® | P2S25M,S,) = P1P2S1552d M1S1,M,S, 1)
(3.8
depends upon the normalization of the system of generalized )
basis vectors 0f3.3). We shall use and the angular momentum baggs[wj], 7).
To obtain the Clebsch-Gordan coefficients, one follows
p(s)=1, and then p(w)=2w (3.3D  the same procedure as given in the classic pajgerd] for

the Clebsch-Gordan coefficient8.5). This will be done in
the Appendix, where the general case will be discussed. Here

“Though our discussions apply with obvious modifications to the?€ shall restrict ourselves to the special case0,s,=0 to
general case of avoid the inessential complications due to ti$(3)
14243+ —R—-1'+2'+3 +... Clebsch-Gordan coefficients for the angular momentum cou-
these generalizations lead to enormously more complicated equRliNgSS1®S;—$, S®I—] and the occurrence of the Wigner
tions. For the sake of simplicity, we shall therefore consider a resorotationsR(L ~*(p),p;) of the inverse boost ~*(p) which
nance scattering process likg.1). will enter in (3.5). Also for the proces$3.1b this is suffi-
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cient, sinces,+=s_,-=0. There is no degeneracy of the an- After we have chosen the normalization as(8113, one
gular momentum basis vectors in this case frig[wj]) is  determines the weight functiop;(w,m;,m,) using (3.9).

given in terms of(3.8) by The result is:
A d3p; dp, . . 2m2maw?
|pJ3[WJ]>:f = 14|p1p2[m1m2]> | i (w,my,my)|?= , (319
VLT
~ ~ ~ . A’ 11 - L -
X{(p1poL Mmy]|pjsfwjl) (3.9 w w
for any(m,+m,)2<w?<e j=0,1,..  Where\ is defined by2]:

~ A A — a2 2 2_
The choice of the measutgp;/2E;(p,) = d®p; /m?2E; is the A(a,b,c)=a"+b"+c"—2(ab+bc+ac).

same ag2.153.

From the 4-translation invariancg€conservation of
4-momentun it follows that the Clebsch-Gordan is of the
form

Except for the normalization factqe, which follows from
our chosen normalizatio(8.13), the values of the Clebsch-
Gordan coefficient$3.12 is quite obvious. It expresses mo-
mentum conservation and the only factor that one may be
AaA . T . puzzled about is that it should be consistent with the
(PaP2lPialwi])= 3*(P=r){(PapalPIWiD). 4-velocity normalization expressed by th&(p'—p), p
wherer=p;+p,. (3.10 =p/w in (3.13. Therewith, we have obtained K$.9 with
(3.8 and(3.12 a system of basis vectors for the sp#8e3)
The reduced matrix element in the center-of-mass is in anakwith s;=s,=0) which is the representation space of scat-
ogy to the non-relativistic case given by1] tering processes lik€3.1h. As expected, the basis vectors
f o e - are outside the Hilbert spad@js[wj])e ®*DHD®. They
((P1"P2"0jalwil)) =Y (& pj(w,my,my), (3.1D  have definite values of angular momentjnand invariant
_ massw= /s;® we shall define the Gamow vectofgescrib-
whereu;(w,m;,m,) is a function ofw (or s) which depends ing p°) in terms of linear combinations of these c.m.-energy
upon our choice of “normalization” for the basis vectors eigenvectors with a definite value pf However, since the
If)j s[wjl) in (3.9). The equation$3.10 and(3.11) are com- resonances form and decay under the influence of an inter-
bined into action and thépjs[wj]) are interaction-free eigenvectors of
e A the “free-particle” Hamiltonian
(P1P2|Pja[wil)
o K=P9+P) (3.15
=2E(p)8*(p—r)d(w— G)ija(e)/uj(wymlva)
we have to go from the free-particle basis veci@9¥) to the
with e2=r2=(p,;+p,)%, (3.12 interaction-basis vectors. This can be done in analogy to the
non-relativistic case and may be justified in two ways:
where againuj(w,m;,m,) is a function that fixes the (1) One assumes that the time translation generator for the
s-function “normalization” of |pjs[wj]). The unit vectore  interaction system has two ternts7] Ch. 3, Ho and the
in (3.11) is chosen to be in the c.m. frame the direction ofinteractionV

pS™=—m,/m;p5™. In general it is obtained from the rela-
tive “4-momentum” q,, of Michel and Wightmari2] by e

= Lfl(p);“qﬂ. The wj(w,my,my) and ﬁj(w,ml,mz) are insuch a way that to each eigenvectoiHyf with eigenvalue
some weight functions which are determined from the re—/1+p?

quired “normalization” of the 4-velocity ket$3.9). Since

for a fixed value of wj] these generalized eigenvectors are Di i = Elpi i

the basis of the ir:[edfj]cible regresentation s?jb{ccw,j) of HolPis[wil)=Elpia[wil). (312
the Poincaregroup, we want them to be normalized like there correspond eigenvectorstbfvith the same eigenvalue
(2.15b, which in (3.9 has been already assured by the

choice of the invariant measudép;/2E; . Therefore, in anal- H|pja[wj]= ™y =E|pjs[wj]=). (3.18
ogy to (2.159, we take for the normalization of the basis

vectors(3.9) to be

H=Hy+V (3.16

~ Can . ~A A A 5A formula like (3.12 is also given and explained in section 3.7
(p'js[w'j"1pjs[wijl)=2E(p) &(p'—p) 51'51'351' jo(s—s’), of [7] which fors=0, sl=32=Ogagrees witk(g.lz) except for the
ng\r/(/nalization factol3.14). Fors#0, s;#0, see Appendix.
L ~ 1 1 ritten in terms of Hilbert spaces,u(s) means Lebesgue inte-
where E(p)=\1+p’= WVW2+p EWE(p'W)- (313 grations. However, within the rigged Hilbert space mathematics,
one can choose fo(r¢>|f)j3[wj]> a smooth function and use Rie-
The §-function normalizations(s’ —s)=1/2nwé(w—w') in mann integration and assign to each vector a well defined walue
(3.13 is a consequence of the choi(®4) for the measure. (not just up to a set of measure zero
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Since vectors are not completely defined by the requiremergf s we shall continue from the physical values into the
that they be eigenvectors of an operator with a given eigencomplex plane of the relativisti&-matrix.

value [but may differ by a phase factgphase shifts or
unitary transformatiorfS-matrix in case of degeneragyve
have added the additional label int. This additional specifi-
cation of the eigenvectors can be chosen in a variety of ways We are grateful for some helpful correspondence with L.
that are connected with the spacbsthat one admits, i.e., Michel. Support from the Welch Foundation is gratefully
with initial and final boundary conditionas explained for acknowledged.

the non-relativistic case irl1]). Since(3.16 may be a ques-
tionable hypothesis in relativistic physics a second justifica-
tion does not make use of the existence of the Hamiltonian
splitting (3.16).

(2) One assumes the existence of @&woperator and of The discussion here follows the one in Rief] with the
Mdller operators Q" and Q~. Q% transforms non- difference that here the two particle irreducible representa-
interacting stateg'" which are prepared by an apparatus fartion spaces are labeled by the square of the total invariant
away from the interaction region into exact state vectbfs  masss instead ofw=\/s; and the velocity basis are used

instead of the momentum basis.
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APPENDIX: REDUCTION OF THE DIRECT PRODUCT
OF TWO ONE-PARTICLE UIR OF P

Q=9 ¢F()=eMe", (3.19 We discuss here the reduction of the direct product of two
_ ) _ ) B one-particle irreducible representation spaces of the Poincare
which evolve with the exact time-evolution operatér () group[m,,s;]®[m,,s,] into a continuous direct sum of ir-

transforms observables®")(4°"| registered by the detec- reqycible representatiofirrep) spaces[s,j] of invariant
tor placed far away from the interaction region into the vec- 555 squaresl and spinj. This has been done [2—4] using
tors ¢~ which evolve with the exact in the interaction  the wigner basis systems of momentum eigenvectors. Here
region: we shall do it using the 4-velocity basis vectors of the Poin-
~ out_ - s iHE 4 caregroup P and obtain the Clebsch-Gordan coefficients of
Q=g Y=y, (3.20 P for the velocity basis. For the one particle spaces, we
choose the c.s.c.d2.13 with the generalized eigenvectors
{ .14). Thus, the one particle spacggm,j) are labeled by
e masan and the spifj of the particle. In analogy to the
case of one-patrticle, a two-particle irrep space is labeled by
A, Sy . the square of the total invariant mass (p,+p,)? and the
[Pis[wj]™) =7 |pjslwil). (329 total angular momentum of the two particles. The two-

If (3.16 also holds then the symbd = at the center-of- particle irrep space is denoted 3y (s,]), where 7 is a

mass is given by the solution of the Lippmann-Schwingerdege”eracy label andlis a particle species label. Thus the
equation reduction problem is written as

wheret is the time in the c.m. frame. The basis vectors for
the free-particle space and the interaction-basis vectors a
then assumed to be related’by

|0js[wj]%)=

1 « .
- i i H(my,S1)@H(M,,S,) = ®H/(s,])ds.
1+W_Hii€V)|0j3[Wj]>. (3.22 (My,$1) ®H(M,,S,) % iy TR
(A1)

The vectorgpjs[wj]*) are obtained from the basis vectors ) ) e
at rest|0js[wj]*) by the boos{rotation-free Lorentz trans- AS in (2.14), the two-particle basis vectors &f (s,]) have
formation (L (p)) whose parameters are th& and whose as the only continuous variables the total four velocity of the

generators are the interaction-incorporating observables two part|_cles and the square of the total invariant mass of the
two particles. These basis vectors are denoted by:

Po=H, P™ J,, (3.23 .
, palsiln.n) (A2)

i.e., the exact generators of the Poincgreup ( [7] section

3.3). These vector£3.22), which for a fixed value ofwj] with the normalization:

span an irreducible representation space of the Poincare

group with the “exact generators,” will be used for the defi- (5’ 5'Ts’i’ 15’ n’ Dol si =27 LSS 8., 83D

nition of the relativistic Gamow vectors. The valuesj @nd (P [ 1", [Pol8i17.1) =2P0dny 3 O 01 (P

s=w? arej=integer (for s;=s,=0 otherwise also half in- —p)8(s—s'), (A3)

tege) and (m;+m,)?’<s<x. The value ofj will be fixed

and represents the resonance spin; the same we do with pafherec is the three-component of the total angular momen-

ity and the degeneracy quantum numbers (7). The values  tum j. We denote the basis vectors of{(m;,s;)

®H(mM,,S,) by:

“In nonrelativistic scattering off a fixed target one assumes that |11 [My$11)® | pooa[ Msys,])
the|p™) related by(3.21) to the|p) are not eigenvectors & since R ~
[V.Pi]#0. =[p1o1[My81], 202l M2S2 1), (A4)
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where 01,0, are the three-components of the spsiss,

respectively. In order to obtain the Clebsch-Gordan coeffi-

cients,

(P1o[Mys;],paoal Ms; | pafsiln,n),  (A5)

of the reductior(Al), we start by relabeling the basis vectors

in (A4) by usings, p and the unit vecton= (p,—p,)/|p;

—p,| as continuous parametefsve note that both sets,

<I5101[m151]'5202[m252],”|I3RU[51'], 7,n")

:ZNn(S) 5nn’ 0(5_(m1+ m2)2) 53(pl+ p2)
X 8(s=(p1+P2)?)

X 2, Co,(s,0102) a7, al5) Vi (1),
38

(A10)

{p1, P} and{p, N, s} consist of six independent param- whereN,(s) is a normalization factor. Having obtained the

eters. Thus, we can write:

| blgl[mlsl] ) E’zo'z[ m,S, 1) =] f)ﬁs, o1[MySy]oy[ Mys;]).
(A6)

In the rest frame of both particles, i.e., for

FA):E)R:

o O O -

we can expand the unit vectarin terms of orbital angular
momentum basis vectors:

Clebsch-Gordan coefficients in the rest frad0), we can
use the boost operat¢2.17h to obtain the Clebsch-Gordan
coefficients in a general franfe:
<F3101[m131]aFaszz[mzsz]an“aff[sj]777n'>

= (P11 [My$1], P20l M8, ].N[UL(P))|ProfSi]17.n")

=2poNy(S) 8y O(S— (My+my)?) 83(p—py— p,)

X8(s=(p1+py)") 2 D\ [R(L~X(P).py)]
2

’
0'10'

*

XD [R(L™X(P).py)]

X 2, Coy,(S1,0109)Coi(jorula) Yy (), (AlD)

Py
Iny=2> [la)1lglny=">, |I13)YE (n). (A7)
) IE; A I3 ) s whereR(\,p) is the Wigner rotation given i2.7¢ and
We can further use the angular momentum Clebsch- _— =

Gordan coefficients to combine the two spieg,ands,, to

give a total spirs with three componeng, which in turn is
added to the orbital angular momentuiwith three compo-
nentl; to form a total angular momentujrwith three com-

L~ Y(p)(p1—p2)

R

IL™Y(p)(p1—p2)|

e=

ponento. This gives the basis vector for the two-particle The normalization factoN,(s) depends upon our normal-

irrep space
Ipalsjlls; mys;,m,s,). (A8)

Thus, the degeneracy label in (A2) designates the total
spins and the total orbital angular momenturof both par-
ticles; and the masseas®,;, m, and spinss;, S, of both
particles are included in the particle species labeThus,
(A1) can be rewritten in more details as:

H(mMy,s) BH(M,,So) = 2, f S HIS(s,j)ds,
jils J(my+my)?
(A9)

where s=|s;—s,

S1—Sy|+1,-,51+S,

’

j=[l=sl,|l=s[+1, - ,I+s.

ization choicg(/A3). Before discussing how to obtain it, let us
first introduce the following notations:

[(5101,5,02,51)= 2, Dil,al[R(L_l(p),pl)]
' 1

”i"z
sk _
%D% (R (p).p)]
2
X Cslsz(s,u,, T10%), (Al2a

Yigs(em) =2 Coljopla)Yu(e).  (AL2D)
3

With the above notationgA11) is written as

8Formula (3.7.5) in7], which corresponds t6A11) but for dif-
ferent choices of basis and normalizations, is missing the rotation

With (A6) and (A7), we deduce that in the rest frame, the matrices factors that appear in the Clebsch-Gordan coefficients

Clebsch-Gordan coefficients ¢A9) are given by:

away from the rest frame, as exhibited(inl11).
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(P11l MyS11,P202l MyS,1,n[palsj17,n" )= 2PgNy(S) S 83(p—Pr— Pa) S(S— (P1+ P2)?)
X 2, T(5101,502,51) Y pis(E,10). (A13)
M

In order to obtain the normalization factoN,(s), we insert a complete set of basis vectofd4) in
(p'a'[s"j"1%',n'|polsj]n,n) and use/Al3). Upon doing so, we obtain:

dp; dpy

(p'o’[s'j']n' . |polsiln.n)= > F2—50<|6'a'[s'j']n',n'lbm[mlsl],ﬁzoz[mzsz],n">
1 2

"
n 010

X <l510'1[m151] \P202[MyS,1,0"|palsj17, n)

=(2P0)2IN(8)|28pn 8*(p—p') (s —s")

d*p, d*p, ,
x 2 2 | =5 =5 %(p—p1—p2) 8(s—(p1+P2)?)
192 pp! 2p; 2p;
XT*(8101,5,02,8 )T (8101,8,02,5) Y], (&1 )Yjop(€p).  (Ald)
|
Using the unitarity of the rotation matrices: dsf)l d3f)2
= [ SR -
*i N
; D(r’(rDa'”(r_ 5"'/"'// X 5(3_ (p1+ pZ)Z)Yrqé(e)Ylla(e)
1 dp; dp,
and the identity = f 8*(p—p1—p2)
mim3J 2p} 2p}
X8(s= (Pt PV (Vi (8),  (ALD)

2 Cslsz(sﬂvo'la'z)cslsz(S,#’ ,01072) = Osy 5,“#’ )

7102

we find that

E I*(8101,5,07,8 1" )T (S101,5,0%,81) = 8558, -
0'1(]'2
(A15)

With the identity(A15), (A14) can be written as:

(p'a’'[s'j"1n',n'|palsjln,n)
= (2P0)2INn(8)|28nn 8% (p—p') 8(S—S') Sss
X 2, Cen(j'o" ml3)Cejo,uls)
ulalg

d3p, d3p
Xf Apl Apz
2p) 2p3

S (p—p1—p2)

X &(s—(py+ pz)z)Y,*,.é(e)Yn 5(€). (A16)

In order to solve the integration ifA16), namely

we perform the change of variabléss in equation (4.9) in

[2]):

_(s+ m3z—m3) r +)\1’2(s,m§,m§)
P1 25 2\/5 q

~(s—mi+m)) r _Al’z(s,mi,mg)
p2_ 2s 2\/5

(A18)

where
A(a,b,c)=a%+b%+c?—2(ab+ac+bc).
With these new variables, we find that

8(pi—m3)8(p3—m3) 8%(p—py—p2) 8(s— (P1+P2)?)

433/2 1
= 2
- mz—po&q +1)8(r-q)8*r—p)

(A193)

\2(s,mZ,m3)

d*p,d*p,= o d*rd%q (A19b)

and
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1, S ;
e=L"*(p)g. (A19¢) EI: Cai(j 0" ul3)Cq(jo,ul3)=6jj: 656,
M3

Using (A19), the integration(A17) becomes:

1 1 AYAsm?,
T mimZ 2P0 4ys

2
mZ)f d4q5(g2+1)8(p-)

XY (L R) Q)Y (L H(P)a)- (A20)

Performing the change of variabde=L ~1(p)q in (A20), we
obtain:

o 1 1 \Yqs,mi,md) 40, (&Y, (@
= oY, (e e
m2mZ 2Po 8s ] NN

1 1 AYs,m2md)

m1m2 2po 8s

Using (A21) and the identity

(A16) finally becomes:

(p'o’'[s'j"1n’ ' |polsjln.n)
AY4(s,m2,m3)

m3 8s®

=(2po)INn(8)[* =
my

X Snnr 8jj1 St 8y 83(p— P ) S(s—S"). (A22)

Comparing(A22) with (A3), we find that:

8mimas®

INn(s)|2=—)\l,2(s’ml,m2) : (A23)
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