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Saturated transitions in exactly soluble models of two-state curve crossing
with time-dependent potentials
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Two exactly soluble two-state curve crossing models, with potential matrices formed by a linear combina-
tion of time-independent terms afid inversely proportionalt~1) or (I1) exponential time-dependent terms,
are considered here. It is shown that the two models are related to each other by a simple transformation of the
time variable. These models can be further transformed to a simpldilméreduced” mode), in which the
two crossing potentials are a consté@mbrizonta) one and an inversely proportional time-dependent one, and
the interaction coupling them is time-independent. Analysis of the exact solution of the reduced model dis-
closes that the nonadiabatic transition probabiiiaturatesat increasingly large coupling strengths without
vanishing(in contradiction of the linear Landau-Zener theory and various adiabatic the®ieslar satura-
tion can also occur in more general models, within certain ranges of the potential parameters involved.
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[. INTRODUCTION volving time-dependent potentials. In addition to the linear
t-dependent model solved exactly in RE8), a few exactly
Curve-crossing problems have recently received renewesboluble nonlinear models are known. Two models, involving
attention by their application to optical collisions of ultracold an exponential potential gap\V~ exp(—«t)] with (i) a t
atoms in general, and to the problem of optical shieldmg -independent interaction/(,= const) andii) an exponential
suppressionin particular (see paper$1,2], reviews[3,4], interaction[V,,~exp(—«t)], have been solved by Nikitin in
and references therginA dominant feature of the optical Refs.[15,16 (see also Refd.17,9,1§). Exact solutions are
shielding of ultracold atoms is a saturation effect that keepgalso known for the covalent-ionic model involvingV
the probability of transmission through the crossing zone~t~! up to an added constant, avj,~t"! (see Refs.
from vanishing as the radiative coupling is increased. Thi§19,20]), and for hypergeometric mode{see Ref[9]).
curve-crossing saturation effect is contrary to expectations In the two-state linear curve-crossing problem the poten-
based on the linear two-state Landau-Zefet) model(see tials diverge infinitely as the interatomic distance increases.
Refs. [5,6]). An adequate explanation of this effe@is-  This fact, combined with the use of a constant interaction,
cussed in Refd.1,2]) utilizes multistate curve crossings, in- allows us to introduceliabatic boundary conditions at both
cluding near-degenerate and “counterintuitive” transitionsasymptotes. In the nonlinear curve-crossing problems, in
(see also Refd.7,8]). contrast, the ratio of the interaction strength to the potential
The present paper aims to show that, under certain condgap does not vanish at one of the asymptotes, andatiias
tions that may be relevant to a wide variety of curve-crossingatic boundary conditions are required. The transition prob-
problems in physics, saturation can take place even in twoabilities in these models cannot be expressed by the LZ for-
state curve-crossing models, provided that they involve nonmula, which is an exact solution for the lineadependent
linear potentials. problem(as well as for the lineaR-dependent problem with
In atomic collision problems, curve crossings are cor-a horizontal potential
rectly described by a system of coupled second-order differ- The present paper is concerned, first of all, with a gener-
ential equations in the radiaR¢édependentchannel wave alization of the two-staté-dependent models, with a poten-
functions (see[9—-11]). Exact solutions are known only for tial matrix that is formed by a linear combination of constant
very few R-dependent two-state problems. These include thét-independentterms and(l) inversely proportional ofll)
crossing of a horizontal and a slanted linear poteriialved  exponential terms. The two exponential Nikitin models are
in Ref.[12]; see also Ref[7] for generalization to the mul- special cases of the generalized “exponential” model, and
tistate case including degeneracgnd an exponential prob- the covalent-ionic model is a special case of the generalized
lem constrained to a special combination of paramd®re  “inversei” model. Moreover, we show here that the two
Refs.[13,14). kinds of models are related. A simple transformation, intro-
Assigning a common trajectory to all participating chan-duced in Sec. Il, converts the exponential model to the
nels(see Refg[9,10]), R-dependent problems can be reducedinverset model. Still another transformation reduces the
to strictly t-dependent problems. Time-dependent problemsnverset model to a simpler model, that involves the cross-
can appear, however, more naturally in other applicationsing of an inversely proportional and a horizontal potential,
e.g., when time-varying external fields are applied. Sucltoupled by a constant interaction — henceforth called the
problems, with which we are concerned here, can be de‘reduced” model. This model is solved exactly in Sec. Ill.
scribed by a system of first-order differential equations in-The interaction induced by a near-resonant laser field usually
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varies withR only within a microscopic range. Therefore the in which #=argg, and
reduced model is quite appropriate for the description of op-

tical collisions. In this model, as well as in the more general

models(within a certain range of the parametersaturation

q=Ai+4]gy/* @)

of the transition probabilities can occur at large interactionDefinition of a new pair of variablels,(t), b,(t), by substi-

strengths.

IIl. TRANSFORMATIONS LEADING TO THE REDUCED
MODEL

A two-statet-dependent curve-crossing problem can be
generally described by a system of two coupled equations of

the form(see Refs[9—11]), using atomic units,

_day(t) 1
5 :(Vo(t)_EAV(t) a;(t)+Vat)ay(t),
(1)
day(t) 1
i— g = Vihay(t) +| Vo(t) + S AV(D) |ag(1).

This problem can be easily reduced to the cdgé) =0 by

a gauge transformation, and therefore problems that differ b

V(t) are simply related to each other.
Consider now the following two models.
(I) The generalized inversemodel, in which

ViAt)=go+g:/t. (2

This model includes the covalent-ionic modéb,2( as a
special casedy=0). The two states are defined so thgt

AV(t)=Ag— A, /t,

tuting

2
a(t)= >, ajby ()92
=1

t i
Xex;{ —iJ Vo(t")dt'+ EVt—iékzargg , (8)
0

where
9= AOgl+g q+A,—(g—Ap)e?’?
q ° 2q ’
9
_ AoA;—4goReg,
q 1
Yeads to the equations
_dby(t) g
T ?bl(t)+|g|b2(t)
(10)

db,(t
id#f)=|g|bl<t)+Vb2<t>.

20’. .and the parametego can always _be made_ real_ and These equations constitute treelucedmodel, solved exactly
positive by a simple phase change. This model is limited 9 sec. 11l below

t=0.
(I The generalized exponential model, in which

AV(H)=AP - APexp — kt),

&)
Vi) =g& +giPexp — «t).

This model includes the two Nikitin modelg) and (ii) (see
Refs.[15,16) as special caseg{®=0 or g{®=0, respec-
tively). The exponential model described by E8) can be
transformed into the inverdemodel[Eq. (2)] by substituting
a new time variable,

t’ ! t
= Kexq kt).

(4)

The parameters of the inversenodel are related to those of
the exponential model, identified by the supersct®f as
follows:
Ag=AP, A=APk,
5

go=-09, g1=—9f/«.

The inverse- model[Eq. (2)] can be further reduced to a
simpler model with at-independent coupling. This is per-
formed by applying the unitary matrix

\/q+A1 _\q—Aleie
aj=(2q)""? i (6)

Ill. SOLUTION OF THE REDUCED MODEL

The system of two first-order differential Eq4.0) can be
transformed to a single second-order differential equation for
b,(t). Substitution of a new variable(t) using

bz(t)=c(t)exr<i¥t, Q=+V2+4|g?, (11

results in theconfluent hypergeometriequation(see Ref.

[21)),
d?c(t)

dt?

dc(t)

) ) Q+V
t +(Iq+|Qt)T_ch(t):0'

(12

The two independent solutions of this equation have the form
(see Ref[21)])

g

C(l)(t) =—j m

(Qt)r-9M(1-id_q,2—iq,—i0t),

c@(t)=M(id,q,iq,—iQt), (13

where M(X,y,z) is the confluent hypergeometric function,
and

g _Q=xVv
=20

(14)
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The pair of variabled;(t)(j=1,2) can thus have two inde- 1
pendent solutionsy((t) (i=1,2), whereb{)(t) is given by d.=3
Eq. (12), with c()(t) substituted forc(t), and

AgA,—4gy,Re
1+ 0A1—~ 4goR€EQy 22)

©aVAj+4gs )

dc(t) Q+V

(1) — ol -1

C(i)(t)

ex;{ i Mt) whereq is defined by Eq(7).
2 In real physical systems the interaction strength tends to
(15 zero att— . In the case of an optical collision, for example,
his may be caused by the exit from the illuminated region.
owever, the turning off of the interaction may be adiabati-
cally slow. In systems that can be simulated by the reduced
model, the interaction parametgrdefined in Eq.(9) is ac-
tually turned off, andas one can see from Eq&l4) and

Using properties of the confluent hypergeometric function a
a small value of its lastthird) argument, and substituting
Egs.(13) into Egs.(11) and(15), we obtain at—0

D1y~ —ia g () ;
by’ ()~ (Q) "1, by’ (1)— iz, (16) (18)] the “+” and “ —" dressed states correspond to the
. 0 bare states 2 and 1, respectively Vif>0, or vice versa if
l.e., |bk (O)| = 5“( .

Asymptotic expansion of the confluent hypergeometricV<O. In the generalized models that can be transformed to
function at large values of its last argumdeee Ref[21]) the reduced model by E¢6), only the parameteg, need be

. . - turned off, since the interaction correspondin@tovanishes
) ]
allows us to obtain the following asymptotes mﬁ‘ (t) att ast—oo. It follows from Eq. (6) that the “+” and * —"

- dressed states always correspond to the states 2 and 1, re-
b (1) Ja- spectively, of the model described by Ed). The apparent
1 A - (Qt)“qd*exp(—iE t) difference between the reduced and the more general models
bi(t) d, * regarding the effect of the sign dfis due to a difference in
notation. In the reduced model state 1 corresponds to a
—Jd. sloped potential andy=V may be negative, while in the
+A_; )(Qt)iqmexp(_iEt)_ generalized inverse-model the states were defined so that
Vd_ Ag=0.
17
The two column vectors on the right-hand side of EL7) IV. RESULTS AND DISCUSSION
form “dressed” states. These are eigenvectors of the energy
matrix in Eq.(10) att— o, obeying Equationg19)—(22) and(7) obtained in the previous sec-
tions allow us to evaluate transition amplitudes for the
( 0 g ( + @) ( + \/E) inverset r_nocjel[described py Eqs{_.’L) and(2)], of which the
ol Vv \/E . \/E , (18 covalent-ionic model considered in Ref49,2( is a special

case, withgy=0. Transition amplitudes for the exponential

. ) . s model[Egs.(1) and(3)] can be evaluated by transformation
in which the eigenvaluel... = (V= €)/2 are the correspond-  ; he corresponding inversemodel with the use of Egs.

ing dressed-state energies. These dressed states are the(@f‘_'The Nikitin exponential models, witfi) constant andii)
ymptotes of the adiabatic states that, at the other énd (oxponential interactiongsee Refs.[15-17), are special
:(.))-, coincide with “bare states corresponding to the Co- .oces of the exponential model, wigh=0 org,=0, respec-
efficientsb,(t). The “Coulombic” long-range nature of the yely. The results of the present paper are in agreement with
inverset potential is disclosed by the appearance of the faci,gse of the cases studies in Réf5—17,19,20up to phase

— d+ . . . . 3 i A ) ) L )
tors (1) %% in the asymptotic Eq(17). The coefficients  taciors associated with differences in the choice of phases for

A. in Eq. (17), given by the basis states.
. _ _ _ ) The transition amplitudes obtained here relate to dressed
A ,=—A* = P.exdiargl(iq)—iargl'(iqd, )], states, rather than the bare states of the diabatic representa-

(19 tion. In the reduced model E@L0) the dressed states coin-
cide with the bare ones only &+ 0.
A =A% =V1-P.exdiargl'(iq)—iargl'(iqd_)], The substitution of Eq(4) transforms the Nikitin model
(200 (i) with an exponential interaction to the reduced model
. ) ) while the time interval (8¢) is transformed to ¢, —®).
are transition amplitudes relating the bare states=a to  Therefore in the exponential model the dressed states coin-

the dressed states &t o0, in which cide with the bare ones &t-. In the covalent-ionic model
the transformation Eq8) converts the dressed states of the
_exp—27qd-) —exp(—2mq) (21  reduced model at—ce to the bare states that correspond to

a l-—exp —2m7Qq) the coefficientsa;. However, att=0 the same transforma-

tion converts the bare states of the reduced model to dressed
can be interpreted as the probability of transition between thstates. The Nikitin exponential modg) with constant inter-
adiabatic states. Finally, the parametérscan be expressed action is connected to the covalent-ionic model by the sub-
in terms of the potential coefficients for the invetsarodel  stitution of Eq.(4), and thus it has a bare asymptotic state at
Eq. (2) as t— —oo. In the more general casgd#0 andg,+#0), both
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TABLE I. Asymptotic behavior of the adiabatic transition probabilty for various coupling parameters.

g Pa
a Jo—%®, @;=const P.~[exp(~mq—27Reg,)
—exp(=2mg)J/[1—-exp(—2m70)]
b go=const, |gq|— P,—0
c 9o—®, [gi]—o, lim(|g,|+Regy) = Pa—0
d go—®, [g1|—®, lim(|g;|+Reg;) <=
1 |91//g5—0 P.~ exf—2m(Reg;+|g,))]
2 |911/g5~const P~ exd —2m(Reg, +|g1|) — mAF| 911/ (495)]
3 |91l/g5—= P,—0
boundary conditions should be defined in terms of dressed
states. Pa~ exr{ —2m(Reg;+(g4|)
The reduced model is approximately linear in the vicinity
of the crossing point,=q/V if the second term in the 2
Taylor-series expansion of the potentigdt aroundt, is . Az@_zﬁjLﬂ (24)
small compared to the first term within the transition range 4170 gg Jdo lgal) |’

|g|t3/q. This approximation is valid i/V<1. An LZ ex-

ponent can be identified in terms of the model parameters aphis result depends on the behavior of the régid/g3 in the
\=q|g|?/V?. Thus, in order to avoid small values bf we  asymptotic limit[subcasesd1), (d2), and (d3) of Table .
have to chooseg> 1. In this case Eq21) tends to the well-  As can be seen from Table I, a saturation of the transition
known LZ formulaP,~ exp(—2n\) for the transition prob- probability takes place in caséas), (d1), and(d2).
ability between the adiabatic states. In the ligW¢ V, Eq.(6) The dependence of the transition probability on the LZ
yields aj =~ dj or aj~6j 3« for A;>0 or A;<0, respec- exponent, which for the generalized models can be expressed
tively. Then the LZ formula is valid for the invergdemodel.  as
Since the transition amplitudes for the exponential model are
the same as for the corresponding inversaedel, the LZ N=A4g0/Ag+0: /A% (25
formula remains valid for the exponential model as well, as
long asg is kept small enough anglis kept large enough. s plotted in Fig. 1 for case&@)—(c), and compared with the
At small values ofq=<1, Eq. (21) departs significantly LZ formula. In the nonlinear system, the probabil®y of
from the LZ formula. Moreover, transition between the adiabatic states is initially lower than
the expected from the LZ formula, but further on it declines
more slowly. Saturation can then take place only in dage
out of the three cases. However, in cdsg wheneverg;
<(, the probability can remain quite high even at high val-
ues of the exponerk (as can be seen from the long-dashed
contrary to the unity-valued limit of the LZ formula at  line).
— 0. This peculiar result, which actually means that the tran- Figure 2 displays the dependence of the transition prob-
sition probability between diabatic states in nonlinear prob-2bility P, on the coupling strengths for the thred) sub-
lems does not necessarily vanish in the limit of high relativecases. In these cases, wheneggrand g, have opposite
velocity of the colliding particles, was already noted by Ni-
kitin (see Ref[9]) with regard to his exponential models. o T '
In applications to optical collisions it is more interesting
to study the dependence of the transition probability on the
coupling strength, ag can be manipulated by changing the
laser power. In the limig—O0 the diabatic transition prob-
ability vanishes, in agreement with the LZ formula. In the o
limit of strong coupling, however, the transformation to the
reduced model Eq(8) mixes the states appreciably. The
asymptotic behavior of the transition probabilities then de-
pends on bothgy, and g;. The transition probabilities for

limP,=d, <1, (23
q—0

0.8

0.0

various choices of the coupling parameters are presented in %35 e ae o
Table I. Casda) includes the reduced model and the Nikitin A
model (i) with an exponential interaction. Ca#®) includes FIG. 1. Transition probabilities as functions of the LZ exponent

the covalent-ionic model and the Nikitin mod@) with a  for the coupling parameterg;=0 (solid line), g;=go/9 (long-
constant interaction. In casés and(d), where bothgy and  dashed ling g,=9g, (short-dashed line andg,=0 (dot-dashed
g, tend to infinity, an asymptotic expansion f@g, obtained line). Results are compared with the prediction of the LZ formula
from Egs.(21), (22), and(7), is (dotted ling. Other potential parameters used Arg=A;=0.2.
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takes place if this exponent is small; i.e., when the adiabatic
theory is inapplicable. The difference in form between the
limiting expressiorfcase(a) in Table [ and Eq.(27) reflects

the inapplicability of the adiabatic theory.

The t-dependent present results were obtained by using
the common trajectory approach. However, analysis of
known solutions of nonlineaR-dependent models may also
reveal a saturation effect. The model considered in R&j
involves two horizontal parallel potentials with exponential

e coupling. The associated time-dependent Demkov model
0.0 . e R e (Ref. [22], see also Ref[11]) can be transformed to the
107 '@ 1o inverset model with Ag=g;=0. In this case the present
approach gives a transition probability independent of the
coupling strength, in agreement with the results of RE3).
: 3 > Another exactly soluble nonlined®-dependent model was
line), and g,= 0.5, (short-dashed line Results are compared considered in Refl14]. It involves an exponential coupling

with the predictions of the LZ formula for the same three relationsOf two potentials with exnonential terms that are proportional
of g, to gy (dot-dashed, dot-dot-dashed, and dotted lines, respec- P P prop

. : _ to the coupling strength. Substitution of Eg) transforms
tively). Other potential parameters used ag=A,=2. h .
) P P &2 the associated-dependent model into the reduced model

with Ay proportional tog,. The transition amplitudes ob-

signs, the dependence ®fon the coupling strengths is non- ' : X :
monotonic, and this leads to a nonmonotonicity of the trant@ined in Ref[14] are independent of the coupling strength,

sition probability calculated even by using the LZ formula. N @ccordance with Eqg19)—(22).
Saturation takes place in cadeld) and(d2) (solid and long-
dashed lines, respectively
In order to have a better appreciation of the mechanism Exact solutions are presented here for two classes of two-
that leads to the saturation effect, let us analyze the reducesate time-dependent curve-crossing problems with potential
model in terms of an adiabatic theory. According to Eif),  matrices having the form of a linear combination of time-
the adiabatic potential¥. cross at two points in the com- independent terms and)) inversely proportional ofll) ex-
plex plane, ponential time-dependent terms. The generalized exponential
model representing the second cld&ss. (1) and (3)] is
related to the generalized inversenodel representing the
first class by Eqs(4) and(5). The inverse model[Egs. (1)
and(2)] can be further transformed into a reduced ¢h@),
involving at-independent potential and an inversely propor-
tional one, coupled by &independent interaction, by using
The nonadiabatic transition probability may be estimated aghe transformation Eq(6).
(see Ref[11]) It follows from the exact solution of the reduced model
[see Egs(19)—(21)] that the transition probabilities do not
[t tend to the limit predicted by LZ theory as the coupling
Pa~exp( _'J’t [V =V_(y]dt] =exp(—2mqd.). strength increases, but saturate at intermediate values that
B (27 lead to a nonvanishing transmission through the zone of po-
tential crossing. A similar saturation effect can also occur in
This expression corresponds to the limit of E§1) asq  the more general modelsee Table )l at certain ranges of
— o, keeping fixed values af andV. As |g|— <, the cross-  the potential parameters. Saturation effects of the kind dis-
ing pointst. tend to zero, while the exponent in EQR7)  cussed here may quite likely occur in other models involving
tends to a finite limitrq. The adiabatic theory is applicable potentials with different types of nonlinear tinfer coordi-
only when this exponent is large, but a sufficient saturatiomate dependence.

FIG. 2. Transition probabilities as functions of the coupling con-
stantg,, giveng,=—0.5g, (solid line), g;= —0.533 (long-dashed

V. CONCLUSIONS

~ —V=*2ig

t.=———q. 26
- V2+4|g|2q (26)
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