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Saturated transitions in exactly soluble models of two-state curve crossing
with time-dependent potentials

V. A. Yurovsky and A. Ben-Reuven
School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

~Received 10 June 1999!

Two exactly soluble two-state curve crossing models, with potential matrices formed by a linear combina-
tion of time-independent terms and~I! inversely proportional (;t21) or ~II ! exponential time-dependent terms,
are considered here. It is shown that the two models are related to each other by a simple transformation of the
time variable. These models can be further transformed to a simpler one~the ‘‘reduced’’ model!, in which the
two crossing potentials are a constant~horizontal! one and an inversely proportional time-dependent one, and
the interaction coupling them is time-independent. Analysis of the exact solution of the reduced model dis-
closes that the nonadiabatic transition probabilitysaturatesat increasingly large coupling strengths without
vanishing~in contradiction of the linear Landau-Zener theory and various adiabatic theories!. Similar satura-
tion can also occur in more general models, within certain ranges of the potential parameters involved.
@S1050-2947~99!06011-4#

PACS number~s!: 34.50.Pi, 03.65.Nk, 34.50.Rk, 03.65.Sq
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I. INTRODUCTION

Curve-crossing problems have recently received rene
attention by their application to optical collisions of ultraco
atoms in general, and to the problem of optical shielding~or
suppression! in particular ~see papers@1,2#, reviews @3,4#,
and references therein!. A dominant feature of the optica
shielding of ultracold atoms is a saturation effect that ke
the probability of transmission through the crossing zo
from vanishing as the radiative coupling is increased. T
curve-crossing saturation effect is contrary to expectati
based on the linear two-state Landau-Zener~LZ! model~see
Refs. @5,6#!. An adequate explanation of this effect~dis-
cussed in Refs.@1,2#! utilizes multistate curve crossings, in
cluding near-degenerate and ‘‘counterintuitive’’ transitio
~see also Refs.@7,8#!.

The present paper aims to show that, under certain co
tions that may be relevant to a wide variety of curve-cross
problems in physics, saturation can take place even in t
state curve-crossing models, provided that they involve n
linear potentials.

In atomic collision problems, curve crossings are c
rectly described by a system of coupled second-order dif
ential equations in the radial (R-dependent! channel wave
functions ~see@9–11#!. Exact solutions are known only fo
very fewR-dependent two-state problems. These include
crossing of a horizontal and a slanted linear potential~solved
in Ref. @12#; see also Ref.@7# for generalization to the mul
tistate case including degeneracy!, and an exponential prob
lem constrained to a special combination of parameters~see
Refs.@13,14#!.

Assigning a common trajectory to all participating cha
nels~see Refs.@9,10#!, R-dependent problems can be reduc
to strictly t-dependent problems. Time-dependent proble
can appear, however, more naturally in other applicatio
e.g., when time-varying external fields are applied. Su
problems, with which we are concerned here, can be
scribed by a system of first-order differential equations
PRA 601050-2947/99/60~6!/4561~6!/$15.00
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volving time-dependent potentials. In addition to the line
t-dependent model solved exactly in Ref.@6#, a few exactly
soluble nonlinear models are known. Two models, involvi
an exponential potential gap@DV; exp(2kt)# with ~i! a t
-independent interaction (V125const) and~ii ! an exponential
interaction@V12;exp(2kt)#, have been solved by Nikitin in
Refs. @15,16# ~see also Refs.@17,9,18#!. Exact solutions are
also known for the covalent-ionic model involvingDV
;t21, up to an added constant, andV12;t21 ~see Refs.
@19,20#!, and for hypergeometric models~see Ref.@9#!.

In the two-state linear curve-crossing problem the pot
tials diverge infinitely as the interatomic distance increas
This fact, combined with the use of a constant interacti
allows us to introducediabatic boundary conditions at both
asymptotes. In the nonlinear curve-crossing problems
contrast, the ratio of the interaction strength to the poten
gap does not vanish at one of the asymptotes, and thusadia-
batic boundary conditions are required. The transition pro
abilities in these models cannot be expressed by the LZ
mula, which is an exact solution for the lineart-dependent
problem~as well as for the linearR-dependent problem with
a horizontal potential!.

The present paper is concerned, first of all, with a gen
alization of the two-statet-dependent models, with a poten
tial matrix that is formed by a linear combination of consta
(t-independent! terms and~I! inversely proportional or~II !
exponential terms. The two exponential Nikitin models a
special cases of the generalized ‘‘exponential’’ model, a
the covalent-ionic model is a special case of the general
‘‘inverse-t ’’ model. Moreover, we show here that the tw
kinds of models are related. A simple transformation, int
duced in Sec. II, converts the exponential model to
inverse-t model. Still another transformation reduces t
inverse-t model to a simpler model, that involves the cros
ing of an inversely proportional and a horizontal potenti
coupled by a constant interaction — henceforth called
‘‘reduced’’ model. This model is solved exactly in Sec. II
The interaction induced by a near-resonant laser field usu
4561 ©1999 The American Physical Society
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4562 PRA 60V. A. YUROVSKY AND A. BEN-REUVEN
varies withR only within a microscopic range. Therefore th
reduced model is quite appropriate for the description of
tical collisions. In this model, as well as in the more gene
models~within a certain range of the parameters!, saturation
of the transition probabilities can occur at large interact
strengths.

II. TRANSFORMATIONS LEADING TO THE REDUCED
MODEL

A two-state t-dependent curve-crossing problem can
generally described by a system of two coupled equation
the form ~see Refs.@9–11#!, using atomic units,

i
da1~ t !

dt
5S V0~ t !2

1

2
DV~ t ! Da1~ t !1V12~ t !a2~ t !,

~1!

i
da2~ t !

dt
5V12* ~ t !a1~ t !1S V0~ t !1

1

2
DV~ t ! Da2~ t !.

This problem can be easily reduced to the caseV0(t)50 by
a gauge transformation, and therefore problems that diffe
V0(t) are simply related to each other.

Consider now the following two models.
~I! The generalized inverse-t model, in which

DV~ t !5D02D1 /t, V12~ t !5g01g1 /t. ~2!

This model includes the covalent-ionic model@19,20# as a
special case (g050). The two states are defined so thatD0
>0, and the parameterg0 can always be made real an
positive by a simple phase change. This model is limited
t>0.

~II ! The generalized exponential model, in which

DV~ t !5D0
(e)2D1

(e)exp~2kt !,
~3!

V12~ t !5g0
(e)1g1

(e)exp~2kt !.

This model includes the two Nikitin models~i! and ~ii ! ~see
Refs. @15,16#! as special cases (g1

(e)50 or g0
(e)50, respec-

tively!. The exponential model described by Eq.~3! can be
transformed into the inverse-t model@Eq. ~2!# by substituting
a new time variable,

t85
1

k
exp~2kt !. ~4!

The parameters of the inverse-t model are related to those o
the exponential model, identified by the superscript~e!, as
follows:

D05D1
(e) , D15D0

(e)/k,
~5!

g052g1
(e) , g152g0

(e)/k.

The inverse-t model@Eq. ~2!# can be further reduced to
simpler model with at-independent coupling. This is pe
formed by applying the unitary matrix

a jk5~2q!21/2S Aq1D1 2Aq2D1eiu

Aq2D1e2 iu Aq1D1
D ~6!
-
l

n

e
of

y

o

in which u5argg1 and

q5AD1
214ug1u2. ~7!

Definition of a new pair of variablesb1(t), b2(t), by substi-
tuting

aj~ t !5 (
k51

2

a jkbk~ t !t iq/2

3expS 2 i E
0

t

V0~ t8!dt81
i

2
Vt2 idk2arggD , ~8!

where

g5
D0g1

q
1g0

q1D12~q2D1!e2iu

2q
,

~9!

V5
D0D124g0Reg1

q
,

leads to the equations

i
db1~ t !

dt
5

q

t
b1~ t !1ugub2~ t !

~10!

i
db2~ t !

dt
5ugub1~ t !1Vb2~ t !.

These equations constitute thereducedmodel, solved exactly
in Sec. III below.

III. SOLUTION OF THE REDUCED MODEL

The system of two first-order differential Eqs.~10! can be
transformed to a single second-order differential equation
b2(t). Substitution of a new variablec(t) using

b2~ t !5c~ t !expS i
V2V

2
t D , V5AV214ugu2, ~11!

results in theconfluent hypergeometricequation~see Ref.
@21#!,

t
d2c~ t !

dt2
1~ iq1 iVt !

dc~ t !

dt
2q

V1V

2
c~ t !50. ~12!

The two independent solutions of this equation have the fo
~see Ref.@21#!

c(1)~ t !52 i
ugu

V~12 iq !
~Vt !12 iqM ~12 id2q,22 iq,2 iVt !,

c(2)~ t !5M ~ id1q,iq,2 iVt !, ~13!

where M (x,y,z) is the confluent hypergeometric function
and

d65
V6V

2V
. ~14!
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The pair of variablesbj (t)( j 51,2) can thus have two inde
pendent solutions,bj

( i )(t) ( i 51,2), whereb2
( i )(t) is given by

Eq. ~11!, with c( i )(t) substituted forc(t), and

b1
( i )~ t !5ugu21F i

dc( i )~ t !

dt
2

V1V

2
c( i )~ t !GexpS i

V2V

2
t D .

~15!

Using properties of the confluent hypergeometric function
a small value of its last~third! argument, and substitutin
Eqs.~13! into Eqs.~11! and ~15!, we obtain att→0

b1
( i )~ t !;~Vt !2 iqd i1 , b2

( i )~ t !→d i2 , ~16!

i.e., ubk
( i )(0)u5d ik .

Asymptotic expansion of the confluent hypergeome
function at large values of its last argument~see Ref.@21#!
allows us to obtain the following asymptotes forbk

( i )(t) at t
→`,

S b1
( i )~ t !

b2
( i )~ t !

D 5A1 iS Ad2

Ad1
D ~Vt !2 iqd2exp~2 iE1t !

1A2 iS 2Ad1

Ad2
D ~Vt !2 iqd1exp~2 iE2t !.

~17!

The two column vectors on the right-hand side of Eq.~17!
form ‘‘dressed’’ states. These are eigenvectors of the ene
matrix in Eq.~10! at t→`, obeying

S 0 ugu

ugu V D S 6Ad7

Ad6
D 5E6S 6Ad7

Ad6
D , ~18!

in which the eigenvaluesE65(V6V)/2 are the correspond
ing dressed-state energies. These dressed states are t
ymptotes of the adiabatic states that, at the other endt
50), coincide with ‘‘bare’’ states corresponding to the c
efficientsbk(t). The ‘‘Coulombic’’ long-range nature of the
inverse-t potential is disclosed by the appearance of the f
tors (Vt)2 iqd6 in the asymptotic Eq.~17!. The coefficients
A6k in Eq. ~17!, given by

A1252A21* 5APaexp@ i argG~ iq !2 i argG~ iqd1!#,
~19!

A225A11* 5A12Paexp@ i argG~ iq !2 i argG~ iqd2!#,
~20!

are transition amplitudes relating the bare states att50 to
the dressed states att→`, in which

Pa5
exp~22pqd2!2exp~22pq!

12exp~22pq!
~21!

can be interpreted as the probability of transition between
adiabatic states. Finally, the parametersd6 can be expresse
in terms of the potential coefficients for the inverse-t model
Eq. ~2! as
t

c

gy

as-
(

-

e

d65
1

2 S 16
D0D124g0Reg1

qAD0
214g0

2 D , ~22!

whereq is defined by Eq.~7!.
In real physical systems the interaction strength tends

zero att→`. In the case of an optical collision, for exampl
this may be caused by the exit from the illuminated regio
However, the turning off of the interaction may be adiaba
cally slow. In systems that can be simulated by the redu
model, the interaction parameterg defined in Eq.~9! is ac-
tually turned off, and@as one can see from Eqs.~14! and
~18!# the ‘‘1’’ and ‘‘ 2 ’’ dressed states correspond to th
bare states 2 and 1, respectively, ifV.0, or vice versa if
V,0. In the generalized models that can be transformed
the reduced model by Eq.~6!, only the parameterg0 need be
turned off, since the interaction corresponding tog1 vanishes
as t→`. It follows from Eq. ~6! that the ‘‘1’’ and ‘‘ 2 ’’
dressed states always correspond to the states 2 and 1
spectively, of the model described by Eq.~1!. The apparent
difference between the reduced and the more general mo
regarding the effect of the sign ofV is due to a difference in
notation. In the reduced model state 1 corresponds t
sloped potential andD05V may be negative, while in the
generalized inverse-t model the states were defined so th
D0>0.

IV. RESULTS AND DISCUSSION

Equations~19!–~22! and~7! obtained in the previous sec
tions allow us to evaluate transition amplitudes for t
inverse-t model@described by Eqs.~1! and~2!#, of which the
covalent-ionic model considered in Refs.@19,20# is a special
case, withg050. Transition amplitudes for the exponenti
model@Eqs.~1! and~3!# can be evaluated by transformatio
to the corresponding inverse-t model with the use of Eqs
~5!. The Nikitin exponential models, with~i! constant and~ii !
exponential interactions~see Refs.@15–17#!, are special
cases of the exponential model, withg150 or g050, respec-
tively. The results of the present paper are in agreement w
those of the cases studies in Refs.@15–17,19,20# up to phase
factors associated with differences in the choice of phases
the basis states.

The transition amplitudes obtained here relate to dres
states, rather than the bare states of the diabatic repres
tion. In the reduced model Eq.~10! the dressed states coin
cide with the bare ones only att50.

The substitution of Eq.~4! transforms the Nikitin model
~ii ! with an exponential interaction to the reduced mod
while the time interval (0,̀ ) is transformed to (̀ ,2`).
Therefore in the exponential model the dressed states c
cide with the bare ones att→`. In the covalent-ionic mode
the transformation Eq.~8! converts the dressed states of t
reduced model att→` to the bare states that correspond
the coefficientsaj . However, att50 the same transforma
tion converts the bare states of the reduced model to dre
states. The Nikitin exponential model~i! with constant inter-
action is connected to the covalent-ionic model by the s
stitution of Eq.~4!, and thus it has a bare asymptotic state
t→2`. In the more general case (g0Þ0 andg1Þ0), both
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TABLE I. Asymptotic behavior of the adiabatic transition probabilityPa for various coupling parameters

g Pa

a g0→`, g15const Pa;@exp(2pq22p Reg1)
2exp(22pq)#/@12exp(22pq)#

b g05const, ug1u→` Pa→0
c g0→`, ug1u→`, lim( ug1u1Reg1)5` Pa→0
d g0→`, ug1u→`, lim( ug1u1Reg1),`

1 ug1u/g0
2→0 Pa; exp@22p(Reg11ug1u)#

2 ug1u/g0
2;const Pa; exp@22p(Reg11ug1u)2pD0

2ug1u/(4g0
2)#

3 ug1u/g0
2→` Pa→0
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boundary conditions should be defined in terms of dres
states.

The reduced model is approximately linear in the vicin
of the crossing pointtx5q/V if the second term in the
Taylor-series expansion of the potentialq/t around tx is
small compared to the first term within the transition ran
ugutx

2/q. This approximation is valid ifg/V!1. An LZ ex-
ponent can be identified in terms of the model parameter
l5qugu2/V2. Thus, in order to avoid small values ofl, we
have to chooseq@1. In this case Eq.~21! tends to the well-
known LZ formulaPa' exp(22pl) for the transition prob-
ability between the adiabatic states. In the limitg!V, Eq.~6!
yields a jk'd jk or a jk'd j ,32k for D1.0 or D1,0, respec-
tively. Then the LZ formula is valid for the inverse-t model.
Since the transition amplitudes for the exponential model
the same as for the corresponding inverse-t model, the LZ
formula remains valid for the exponential model as well,
long asg is kept small enough andq is kept large enough.

At small values ofq<1, Eq. ~21! departs significantly
from the LZ formula. Moreover,

lim
q→0

Pa5d1,1, ~23!

contrary to the unity-valued limit of the LZ formula atl
→0. This peculiar result, which actually means that the tr
sition probability between diabatic states in nonlinear pr
lems does not necessarily vanish in the limit of high relat
velocity of the colliding particles, was already noted by N
kitin ~see Ref.@9#! with regard to his exponential models.

In applications to optical collisions it is more interestin
to study the dependence of the transition probability on
coupling strength, asg can be manipulated by changing th
laser power. In the limitg→0 the diabatic transition prob
ability vanishes, in agreement with the LZ formula. In t
limit of strong coupling, however, the transformation to t
reduced model Eq.~8! mixes the states appreciably. Th
asymptotic behavior of the transition probabilities then d
pends on bothg0 and g1. The transition probabilities for
various choices of the coupling parameters are presente
Table I. Case~a! includes the reduced model and the Nikit
model~ii ! with an exponential interaction. Case~b! includes
the covalent-ionic model and the Nikitin model~i! with a
constant interaction. In cases~c! and~d!, where bothg0 and
g1 tend to infinity, an asymptotic expansion forPa , obtained
from Eqs.~21!, ~22!, and~7!, is
d

e

as

re

s

-
-

e

e

-

in

Pa; expF22p~Reg11ug1u!

2
p

4 S D0
2 ug1u

g0
2

22
D0D1

g0
1

D1
2

ug1u D G . ~24!

This result depends on the behavior of the ratioug1u/g0
2 in the

asymptotic limit @subcases~d1!, ~d2!, and ~d3! of Table I#.
As can be seen from Table I, a saturation of the transit
probability takes place in cases~a!, ~d1!, and~d2!.

The dependence of the transition probability on the
exponent, which for the generalized models can be expre
as

l5D1ug0 /D01g1 /D1u2, ~25!

is plotted in Fig. 1 for cases~a!–~c!, and compared with the
LZ formula. In the nonlinear system, the probabilityPa of
transition between the adiabatic states is initially lower th
the expected from the LZ formula, but further on it declin
more slowly. Saturation can then take place only in case~a!,
out of the three cases. However, in case~c!, wheneverg1
!g0 the probability can remain quite high even at high v
ues of the exponentl ~as can be seen from the long-dash
line!.

Figure 2 displays the dependence of the transition pr
ability Pa on the coupling strengths for the three~d! sub-
cases. In these cases, wheneverg0 and g1 have opposite

FIG. 1. Transition probabilities as functions of the LZ expone
for the coupling parametersg150 ~solid line!, g15g0/9 ~long-
dashed line!, g159g0 ~short-dashed line!, and g150 ~dot-dashed
line!. Results are compared with the prediction of the LZ formu
~dotted line!. Other potential parameters used areD05D150.2.
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signs, the dependence ofl on the coupling strengths is non
monotonic, and this leads to a nonmonotonicity of the tr
sition probability calculated even by using the LZ formu
Saturation takes place in cases~d1! and~d2! ~solid and long-
dashed lines, respectively!.

In order to have a better appreciation of the mechan
that leads to the saturation effect, let us analyze the redu
model in terms of an adiabatic theory. According to Eq.~10!,
the adiabatic potentialsV6 cross at two points in the com
plex plane,

t65
2V62ig

V214ugu2
q. ~26!

The nonadiabatic transition probability may be estimated
~see Ref.@11#!

Pa;expS 2 i E
t2

t1

@V1~ t !2V2~ t !#dtD 5exp~22pqd2!.

~27!

This expression corresponds to the limit of Eq.~21! as q
→`, keeping fixed values ofg andV. As ugu→`, the cross-
ing points t6 tend to zero, while the exponent in Eq.~27!
tends to a finite limitpq. The adiabatic theory is applicabl
only when this exponent is large, but a sufficient saturat

FIG. 2. Transition probabilities as functions of the coupling co
stantg0, giveng1520.5g0 ~solid line!, g1520.5g0

2 ~long-dashed
line!, and g1520.5g0

3 ~short-dashed line!. Results are compare
with the predictions of the LZ formula for the same three relatio
of g1 to g0 ~dot-dashed, dot-dot-dashed, and dotted lines, res
tively!. Other potential parameters used areD05D152.
ev
-
.

m
ed

s

n

takes place if this exponent is small; i.e., when the adiab
theory is inapplicable. The difference in form between t
limiting expression@case~a! in Table I# and Eq.~27! reflects
the inapplicability of the adiabatic theory.

The t-dependent present results were obtained by us
the common trajectory approach. However, analysis
known solutions of nonlinearR-dependent models may als
reveal a saturation effect. The model considered in Ref.@13#
involves two horizontal parallel potentials with exponent
coupling. The associated time-dependent Demkov mo
~Ref. @22#, see also Ref.@11#! can be transformed to th
inverse-t model with D05g150. In this case the presen
approach gives a transition probability independent of
coupling strength, in agreement with the results of Ref.@13#.
Another exactly soluble nonlinearR-dependent model wa
considered in Ref.@14#. It involves an exponential coupling
of two potentials with exponential terms that are proportio
to the coupling strength. Substitution of Eq.~4! transforms
the associatedt-dependent model into the reduced mod
with D0 proportional tog0. The transition amplitudes ob
tained in Ref.@14# are independent of the coupling strengt
in accordance with Eqs.~19!–~22!.

V. CONCLUSIONS

Exact solutions are presented here for two classes of t
state time-dependent curve-crossing problems with poten
matrices having the form of a linear combination of tim
independent terms and~I! inversely proportional or~II ! ex-
ponential time-dependent terms. The generalized expone
model representing the second class@Eqs. ~1! and ~3!# is
related to the generalized inverse-t model representing the
first class by Eqs.~4! and~5!. The inverset model@Eqs.~1!
and ~2!# can be further transformed into a reduced one~10!,
involving a t-independent potential and an inversely prop
tional one, coupled by at-independent interaction, by usin
the transformation Eq.~6!.

It follows from the exact solution of the reduced mod
@see Eqs.~19!–~21!# that the transition probabilities do no
tend to the limit predicted by LZ theory as the couplin
strength increases, but saturate at intermediate values
lead to a nonvanishing transmission through the zone of
tential crossing. A similar saturation effect can also occur
the more general models~see Table I!, at certain ranges o
the potential parameters. Saturation effects of the kind
cussed here may quite likely occur in other models involv
potentials with different types of nonlinear time~or coordi-
nate! dependence.
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