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Approximate wave functions for two electrons in the continuum of a Coulomb charge
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The outgoing scattering state describing two electrons in the continuum of a Coulomb charge is investigated.
Boundary, simple, and double conditions are used to constructab initio wave functions. Simple conditions
describe the limits when the Coulomb charges are switched off, and double conditions take into account the
cases when two out of three particles are close and have low relative velocity. A base to expand the double
continuum—here called theL base—is introduced. All the components of the three-body wave function in this
base have the appropriate Coulomb conditions and are versatile enough to build up simple as well as double
conditions.@S1050-2947~99!05111-2#

PACS number~s!: 34.80.Dp, 32.80.Fb
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I. INTRODUCTION

Several approximate double continuum wave functio
have been used to compute the corresponding ioniza
cross sections. The most simple approximation consist
neglecting the electron-electron (e-e) repulsion leading to a
state expressed in terms of a product of two Coulomb wa
the so-calledC2 approximation. It produces a reasonab
agreement with measured total cross sections for do
photoionization@1#, but it fails to describe electron angula
distributions because it does not consider the electronic
relation. To some extent, this correlation can be taken
account using momentum-dependent effective charges
was introduced by Rudge and Seaton@2#. A more compre-
hensive approximation is found by neglecting all mixed d
rivatives of the three-body Hamiltonian written in gener
ized parabolic coordinates@3#. This wave function is
expressed in terms of a product of three Coulomb waves,
so-calledC3 approximation@3–5#. Unlike the C2, the C3
approximation tends to the exact solution of the problem
large interparticle distances. At threshold, however, it
meaningless since it underestimates by orders of magni
the experimental total cross sections@6# owing to an overes-
timation of the electronic repulsion present in the normali
tion of the wave function. To avoid this defect, it is nece
sary to find a scattering state where the variables of
system are correlated so that, for certain configurations,
repulsion between the electrons becomes shielded by
presence of the nucleus. In recent years, new correlated w
functions have been developed. Generally, these attem
have the same structure as theC3 approximation, but with
effective momenta@7# or charges@8# depending on the coor
dinates. A recent comprehensive work employing these
lutions to describe double photoionization of helium@9#
shows that the double continuum state is still far from be
known.

In this paper, we follow a line initiated a few years ago
our groups, which intends to describe the continuum stat
the three Coulomb particle system with the use of the g
eralized hypergeometric functions of several variables.

To deal with heavy ion-atom ionization~two heavy par-
ticles and one electron!, a good candidate to examine h
PRA 601050-2947/99/60~6!/4532~10!/$15.00
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been the degenerate hypergeometric function oftwo vari-
ables F2

(2) @10–13#. Here the superscript (2) denotes th
number of variables corresponding to the relative position
the electron with respect to the heavy target and projectile~as
usual in this case, the internuclear interaction is dropp
when possible!. The first results, using the undistorted wa
function in the entrance channel andF2

(2) in the exit one,
were very encouraging. At high electron energies,
method provides very good results when compared with
experiments, including a precise description of the asymm
try parameters of the capture to continuum peak@14#. At low
electron energies, the approximation overestimates the
periments, especially around the soft electron peak@13#. At
present, calculations are carried out to inspect whether
proving the initial channel~using distorted wave states! can
deal successfully with low-energy electrons@15#.

For two electrons in the continuum state of a hea
nucleus, the problem is much more complex; we can
longer disregard an interaction~such as the internuclear po
tential mentioned before! and the issue remains a truly thre
particle problem. Unfortunately,F2

(3) of three variables
@10,11# is not an entirely suitable choice because it solve
symmetric system of equations while the system to solve
asymmetric due to the mass differences among the partic
In this context, we went forward and assayed acorrelated-
Faddeev approximationFF @11#, which essentially separate
the three-particle system in clusters of two, and solves e
cluster usingF2

(2) . This approximation corrects the expo
nential fall of theC3 normalization factor at threshold. How
ever, sinceFF is written in a linear form, it may present
interference of doubtful physical reality as the ones found
Duncanet al. studying the uncorrelated-Faddeev approxim
tion @16,17#.

In this paper we continue this line by going further, tryin
to include new properties. The scheme to follow in this pa
is summarized next.

In Sec. II, the total Hamiltonian for two electrons in th
continuum state is expressed in terms of generalized cu
linear coordinates and the solution is confined to the out
ing space~outgoing approximation!.

In Sec. II A, we write theboundaryandsimpleconditions
4532 ©1999 The American Physical Society
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that the solution should satisfy. We add threedoublecondi-
tions which are expected properties representing limit ca
when two out of three particles are close with low relati
velocity.

In Sec. III, we abridge the preliminary models of intere
in this paper, including aperturbative ansatzrecently posed
by Dewangan@18#.

In Sec. IV, the here-called baseL is introduced, which we
think is a promising base to expand the solution in the o
going space. Advantages of using this base are rema
upon.

In Sec. V, two proposalsFA andFB are put forward. The
first one can be considered as a new degenerate hype
metric function, which to our knowledge has never be
posed before. To fill this vacancy, in Appendix B we calc
late all its properties such as integral representation, dif
ential equation, Kummer transformations, etc. For spec
parameters, it is found thatFA is the fractional form of FF
as explained in Appendix C. The other functionFB is a
variation of theF2

(3) functions of three variables. Propertie
and failures are discussed in each case.

In Sec. VI, future developments are discussed. Atom
units are used.

II. THE THEORETICAL PROBLEM

Let us consider two electrons in the Coulomb field o
heavy nucleus. The coordinates are shown in Fig. 1.
nonrelativistic Hamiltonian equation for the three-partic
system is given by

S ¹1
21¹2

21
2Z1

r 1
1

2Z2

r 2
1

2Z3

r 3
2k1

22k2
2DC50, ~1!

whereZ15Z25Z is the nuclear charge andZ3521/2 takes
into account thee-e repulsion. Although we will concentrat
on the continuum of two electrons, the formalism presen
here holds if a particle, say ‘‘1,’’ is a positron; in this cas
Z152Z and Z3511/2. Next, two transformations will be
made. First, the plane-wave function is removed by writi

C5~2p!23exp~ ik1•r11 ik2•r2!F, ~2!

where k1(k2) is the momentum of the electron 1~2! with
respect to the heavy nucleus andk35(k12k2)/2 is the rela-
tive e-e momentum. Second, the generalized curvilinear
ordinates are introduced@3#,

j5r j1r j• k̂ j , h j5r j2r j• k̂ j , ~3!

FIG. 1. Set of coordinates.
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and j 51,2,3. For short, it will be convenient to usexj
52 ik jj j and yj52 ik jh j . In these variables the tota
Hamiltonian,H5HC31WC3, reads

HC35(
j 51

3

2kj
2 11d j ,3

xj1yj
~H j

21H j
1!, aj5Zj /kj , ~4!

H j
25xj

]2

]xj
2

1~12xj !
]

]xj
2~2 ia j !, ~5!

H j
15yj

]2

]yj
2

1~12yj !
]

]yj
, ~6!

WC35(
l 51

2

~21! lklk3t3
2
•S t l

2
]

]xl
1t l

1
]

]yl
D ]

]x3

1(
l 51

2

~21! lklk3t3
1
•S t l

2
]

]xl
1t l

1
]

]yl
D ]

]y3
, ~7!

and t j
65 r̂ j7 k̂ j . In the generalized curvilinear coordinate

the correlation arises in the terms containing mixed deriv
tives; namely ]2/](x,y) l](x,y)3 ,l 51,2, in WC3. In this
senseHC3 is an uncorrelateddifferential operator which is
also fully symmetric@3#. Note thatH is not symmetric since
the crossing derivative]2/](x,y)1](x,y)2 is missing inWC3.

We will restrict F to the outgoing space,outgoing ap-
proximation, where only the variablesxi are considered. The
total Hamiltonian reduces toH;HC3

2 1WC3
2 , whereHC3

2 is
given by Eq.~4! with H j

150, andWC3
2 takes into account

only derivatives onx. As we work with generalized curvilin-
ear coordinates, there is a key problem; it is thatt j

6
•t3

6 does
not have a suitable expression in terms of these coordin
to attempt to find an approximate solution in closed form.
this paper, we will study some conditions that the exact wa
function should satisfy and we will propose some functio
to suit such requirements.

Boundary, simple, and double conditions

The function F is expected to satisfy a series o
conditions—here limited to the outgoing space—that we
next.

~a! When uxj u→`, j 51,2,3,F must satisfy the Redmond
@19# asymptotic condition, namely

F→FR5)
j 51

3

exp~ ia j lnuxj u!.

This condition led us to determine the normalization fac
N.

~b! The Kato cusp condition@20# should be observed
namely, if we write

F5N(
klm

Pklm

x1
k

k!

x2
l

l !

x3
m

m!
, ~8!

then

P1lm52 ia1P0lm , Pk1m52 ia2Pk0m , ~9!
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Pkl152 ia3Pkl0 . ~10!

The requirements~a! and~b! can be considered asboundary
conditions ~more precisely Dirichlet-Neuman mixed
boundary conditions! if the differential equation is to be
solved numerically in a reduced domain@11#.

~c! When a3→0 ~or equivalentlyZ3→0), i.e., when the
e-e interaction is switched off, theC2 approximation must
be recovered, which is the exact solution of the two non
teracting electron systems,

F→FC25)
j 51

2

Nj
2F j

2 , ~11!

F j
251F1~2 ia j ;1;xj !, ~12!

Nj
25exp~paj /2!G~11 ia j !, j 51,2,3. ~13!

~d! Also, whena1,2→0 ~or equivalently whenZ→0), i.e.,
when the nucleus charge is switched off, thee-e Coulomb
continuum wave functions must be recovered, which is
exact solution of two isolated electrons,

F→N3
2F3

2 . ~14!

The requirements~c! and~d! aresimple conditionswhich are
evident properties of the starting Hamiltonian Eq.~1!.

~e! If the electron labeled with ‘‘2’’ is considered to b
nearly motionless at the origin, i.e.,r 2;0 andk2;0, then
r3;r1 ,k3;k1/2, and 2x352x1/25x1, and we expect the
following limit to hold:

F→NF2
2

1F1~2 ia12 ia3 ;1;x1!, ~15!

where 2 ia12 ia352 i (Z112Z3)/k152 i (Z21)/k1. Thus,
the electron ‘‘1’’ moves in a Coulomb central chargeZ21,
which is expected to be the correct condition.

~f! Equivalently, if the electron labeled with ‘‘1’’ is con
sidered to be nearly motionless at the origin, i.e.,r 1;0 and
k1;0, then r3;2r2 , k3;2k2/2, and 2x352x2/25x2.
Thus, the electron ‘‘2’’ should move in a central chargeZ
21,

F→NF1
2

1F1~2 ia22 ia3 ;1;x2!. ~16!

~g! If both electrons are very near each other and m
along together, i.e.,r 3;0 and k3;0, thenk2;k1 and x1
;x2. Thus, the two electrons should behave as a pseudo
ticle of charge22, and so

F→NF3
2

1F1~2 ia12 ia2 ;1;x1!, ~17!

involving a Coulomb parameter2 ia12 ia2→ i (22)Z/k1.
The requirements~e!, ~f!, and ~g!, which we calldouble

conditions, represent limit cases when two out of three p
ticles arenear and with low relative velocitiesto each other.
We should differentiate these conditions from the ones a
lyzed by Alt and Mukhamedzhanov@7#. These authors stud
ied the cases whenr j /r k→0, independent of the relativ
moments.
-

e

e

ar-

-

a-

III. SOME PRELIMINARY MODELS

A. The C3 approximation

If the term WC3
2 is neglected, the solution ofHC3

2 is the
well known C3 approximation, i.e.,HC3

2 FC350, where
@3–6#

FC35NC3
2 )

j 51

3

F j
2 , NC3

2 5N1
2N2

2N3
2 . ~18!

It is quite simple to show thatFC3 satisfies the first four
conditions~a!, ~b!, ~c!, and ~d! but none of the double con
ditions are observed.

B. Faddeev approximations

It is illustrative here to recall the first-order Faddeev equ
tions to deal with the three body ionization problem intr
duced by Macek@16#. A simple extension of Macek’s for-
mulation to the present case leads us to the first-or
uncorrelated-Faddeev expression,

FM5N1
2F1

21N2
2F2

21N3
2F3

22121. ~19!

Following this line, in Ref.@11# a first-ordercorrelated-
Faddeev approximation was found including, to some ext
the crossing derivatives. It reads

FF5N1
2F1

2N23
2 F23

2 1N2
2F2

2N13
2 F13

2 2FC3 , ~20!

with

Nj ,k
2 5exp@~aj1ak!p/2#G~11 ia j1 iak!, ~21!

F j ,k
2 5F2

(2)~2 ia j ,2 iak ;1;xj ,xk!, ~22!

F2
(2) is here the degenerate hypergeometric function oftwo

variables. This approximation satisfies points~a!, ~c!, and
~d!. However, FF may produce interference of doubtfu
physical reality due to itslinear form @17#. In Sec. V, we will
put forward two wave functions to tackle the problem; t
first one (FA below! is, as we shall see, thefractional form
of FF .

C. The perturbative ansatz

In a recent article, Dewangan@18# examined the applica
bility of the C3 approximation for electron-hydrogen excit
tion. He found that replacing~in our notation!

x3→2x3 , ~23!

the corresponding amplitude of transition reduces in
high-energy limit to the second Born term calculated w
the closure approximation. Good agreement with the exp
ments was found when compared with the experimental
ferential cross sections and alignment parameters, par
larly at large angles@18#. Very recently, this ansatz has bee
reexamined by Berakdar@21#, who studied the large distanc
behavior when one of the electrons is bound. Within o
scope, we shall prove that the use of the perturbative an
gives rise to the observation of the double conditions~e! and
~f!, sacrificing the simple condition~d!.
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IV. THE L BASE

Our strategy will be to expand the double continuu
wave function as

F5N(
klm

QklmLS 2 ia1 k c1

2 ia2 l c2

2 ia3 m c3

Ux1

x2

x3

D , ~24!

where

LS 2 ia1 k c1

2 ia2 l c2

2 ia3 m c3

Ux1

x2

x3

D 5~2x1!k
1F1~2 ia11k;c1 ;x1!

3~2x2! l
1F1~2 ia21 l ;c2 ;x2!

3~2x3!m
1F1~2 ia31m;c3 ;x3!,

~25!

andQklm are constant, which will be found to be related
aj as

Qklm5Qklm~2 ia1!k~2 ia2! l~2 ia3!m .

In this paper, calligraphic letters denote rational numbe
independent of the electron parameters. It will become e
dent that it is convenient to work with thenatural base

Dklm5~2 ia1!k~2 ia2! l~2 ia3!m

3LS 2 ia1 k 112k

2 ia2 l 112l

2 ia3 m 112m
Ux1

x2

x3

D . ~26!

We will prove thatD is an appropriate base to describe t
double continuum state. A series of properties are sum
rized below.

~i! For the natural base, the first term is precisely theC3
approximation.

~ii ! If F is obtained through a power series in terms
x1

kx2
l x3

m , as given by Eq.~8!, the corresponding expansio
coefficientsQklm can be unequivocally obtained~see Appen-
dix A for details!.

~iii ! When uxj u→`,L tends to the Redmond conditions

LS 2 ia1 k c1

2 ia2 l c2

2 ia3 m c3

Ux1

x2

x3

D →RklmFR , ~27!

Rklm5R8
G~c1!G~c2!G~c3!

~d1!k~d2! l~d3!m
, ~28!

R85
exp@2p~a11a21a3!#

G~d1!G~d2!G~d3!
, ~29!

with d15c122k1 ia1 , d25c222l 1 ia2, and d35c322m
1 ia3. Equation~27! holds if, as in our case, Re(xi)50 and
Re(c).0.The normalization constant can now be simp
written as
s,
i-

a-

f

N5F(
klm

RklmQklmG21

. ~30!

It should be noted that if the indexesk, l , andm run up to
finite integers in Eq.~24!, the sameupper limits must be
considered to determine the normalization constantN. For
the natural base,R85NC3

21.
~iv! Any analytical function of variablesx1 ,x2 ,x3 can be

expanded in terms ofDklm . For example, we found the fol
lowing expansion of the hypergeometric functionF2

(3) in
terms of theD base as

F2
(3)~2 ia1 ,2 ia2 ,2 ia3 ;1;x1 ,x2 ,x3!5(

klm
SklmDklm ,

~31!

and Sklm remains the same under exchange of subinde
The first coefficientsSklm are listed in Appendix A. To our
knowledge, this is the first time that this expansion has b
found.

As we shall see, the natural base will allow us to constr
the double conditions. If one of the variables tends to ze
F2

(3) reduces toF2
(2) , which can also be expressed in term

of a two-dimensional natural base

F2
(2)~2 ia2 ,2 ia3 ;1;x2 ,x3!5(

j
SjD j , ~32!

D j5~2 ia2! j~2 ia3! jLS 2 ia2 j 112 j

2 ia3 j 112 j
Ux2

x3
D , ~33!

Sj5
~21! j@2# j

~2 j !! ~2 j !!
, ~34!

where@2# j51 if j 50 and 2 otherwise. We can now explo
the fact thatF2

(2) satisfies the following property@22#:

F2
(2)~2 ia1 ,2 ia3 ;1;x,x!51F1~2 ia12 ia3 ;1;x!, ~35!

in accordance with Eqs.~15!–~17! required by the double
conditions. We have found another property which exten
Eq. ~35!,

F2
(3)~2 ia1 ,2 ia3 ,2 ia38 ;1;x,x,x!

51F1~2 ia12 ia32 ia38 ;1;x!. ~36!

This property can be useful to describe atriple condition
involving three electrons in the continuum. When two out
three electrons are motionless and close to the nucleus,
~36! describes the outer~third! electron moving in a charge
(Z2121), which is the expected condition.

~v! If the parameterscj are positive integers, as in the ca
of the natural base, one can prove that the matrix elem
involving the ground state, such as the double photoion
tion, can be reduced to three-dimensional integrals of clo
forms in a similar fashion to theC3 approximation~i.e., the
integrand does not contain hypergeometric functions of
type 2F1). If the parameterscj are not positive integer, we
still have the alternative to expand the hypergeometric fu
tions in power series and reconstruct the function in terms
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the natural base, as developed in Appendix A. Thus,
expansion coefficients will depend oncj but the matrix ele-
ments can be reduced to three-dimensional integrals
closed forms.

~vi! Expressions resulting from some operations onDklm ,
such as]/]xjDklm andxj

nDklm , can be cast as a sum ofDklm

~see Appendix D for details!. In particular, we found the
following useful identities:

H1
2Dklm5

k2

x1
Dklm , ~37!

x
]

]x
Dklm5 (

K50

`

AK
k Dk1K l m , ~38!

xnDklm5 (
K50

`

BK
n,kDk1K l m . ~39!

V. TWO PROPOSALS

In this section we put forward two proposals to deal w
two electrons in the continuum, which can be written
terms of theL base and can be considered as variations
F2

(3) . It would be interesting to investigate beforehand t
behavior of preciselyF2

(3)(2x3). This generalized confluen
hypergeometric function can be easily expanded in the n
ral baseD @see Eq.~31!# and can be proven to satisfy~a! and
the three double conditions~e!, ~f!, and ~g! but it fails to
observe~c!. We note thatF2

(3) may be a good alternative t
study electron-positronium ionization, where the three p
ticles have equal masses and so the system becomes
symmetric. The degenerate hypergeometric functionF2

(3)

has a lot of physical information of interest. To some ext
it includes some previous approximation. For example,
mentioned before, the first term of the natural base is theC3
approximation. Further, if we consider the subset fork50 in
the F2

(3) expansion, Eq.~31!, it results

F2
(3)uk505(

lm
S0lmD0lm5F1

2(
lm

Sld lmD0lm

5F1
2(

l
SlD l5F1

2(
l

F2,3
2 , ~40!

which is the first term ofFF given by Eq.~20!. The second
term corresponds to the subset withl 50.

The approximations introduced below are corrections
F2

(3) so that the condition~c! will be satisfied. It should be a
necessary requirement to observe, especially in the cas
having a large nuclear charge. The condition~c! turns out
results to be the independent electron model.

A. First proposal

Let us introduce the following power series:

FA5NA(
klm

Pklm
A

x1
k

k!

x2
l

l !

x3
m

m!
,

e

of

f
e

u-

r-
lly

t
s

o

of

Pklm
A 5

~2 ia1!k~2 ia2! l~2 ia3!m

~1!k1 l 1m

~cA!k1 l

~cA!k~cA! l
, ~41!

and the normalization constant can be found in closed fo
to give

NA5H NF5
N1,3

2 N2,3
2

N3
2

if cA511 ia3 ,

NC35N1
2N2

2N3
2 if cA51.

~42!

The degenerate hypergeometric functionF2
(3) can be ob-

tained from Eq.~41! by simply replacing (cA)k1 l /(cA)k(cA) l
by unity. From the mathematical point of view, this ter
decouples the correlation between the variablesx1 andx2 as
observed in Eq.~B5! removing]2/]x1]x2 . FA can be ex-
pressed in terms of the natural basis

FA5NA(
klm

AklmDklm , ~43!

where the expansion coefficientsAklm are listed in Appendix
A. Due to the symmetry of the series,Aklm5Alkm and
Ak0k5A0kk5Sk , which guarantees the description ofF2

(2)

as eitherx1 or x2 vanishes.
Alternatively, we have found a simpler expansion ov

only the two-index sum as follows:

FA5NA(
kl

AklLS 2 ia1 k cA1k

2 ia2 l cA1 l

2 ia3 k1 l 11k1 l
Ux1

x2

x3

D , ~44!

Akl5
~2 ia1!k~2 ia2! l~2 ia3!k1 l

k! l ! ~k1 l !!
~2x3!2k2 l , ~45!

but the expansion coefficientsAkl are now no longer con-
stant, as one may wish, but they are proportional
(2x3)2k2 l .

FA satisfies three conditions introduced in the preced
section, namely~a!, ~c!, and ~d!. Correlations~crossing de-
rivatives! are included to some extent. In general, if thr
different c parameters are used, the so-constructed w
function FA85FA(c1 ,c2 ,c3) is a solution of HA8FA850,
whereHA85HC3

2 1UA8 so that~see Appendix B for details!

UA85
4k3

2

x31y3
F ~12c3!1(

l 51

2

xl

]

]xl
G ]

]x3

1(
l 51

2 2kl
2

xl1yl
F ~12cl !

]

]xl
1S 2 ial1xl

]

]xl
D ]

]x3
G .
~46!

In our casec15c25cA andc351. The interactionUA8 tries
to approximateWC3

2 within its limitations.
The interesting point is thatFA verifies a huge amount o

properties, which makes it a ‘‘friendly’’ function to dea
with. FA belongs to the family of the degenerate hyperge
metric functions of several variables@10#. Since it has never
been proposed before, we abridge their properties in App
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dix B. Also FA can be easily extended straightforwardly
describe three or even more electrons.

If we considercA51, three advantages are observed;
first term is precisely theC3 approximation as noted in para
graph ~i! of the preceding section. Second, the matrix e
ments can be reduced significantly as noted in~v!. And third,
Kato conditions are not fully lost; the properties

P1,l ,0
A 5~2 ia1!P0,l ,0

A , Pk,1,0
A 5~2 ia2!Pk,0,0

A , ~47!

andP0,0,1
A 5(2 ia3)P0,0,0

A still stand. Although Eq.~10! is not
fully satisfied~and it is a setback as compared with theC3
approximation, which fully satisfies the cusp conditions!, it
is still an improvement as compared with theC2 approxima-
tion, which also satisfies Eq.~47! but P0,0,1

C2 50 instead.
If otherwise cA511 ia3 in Eq. ~44!, the three previous

advantages are no longer observed, but in turnFA is found
to be the fractional form of the first-order correlated-Fadde
approximationFF , as explained in Appendix C.

Application of the perturbative ansatz

If the double argument , i.e.,x3→2x3, is considered in the
definition of FA , two properties~e! and ~f! come out as
explained next. Following the item~e! of Sec. II A, if the
electron labeled with ‘‘2’’ is considered to be close to t
nucleus and with low relative velocity,r 2;0 and k2;0,
thenx2;0,2x3;x1, and onlyl 50 survives in Eq.~41! ~and
consequentlyFA becomes independent oncA). Thus

FA;NA(
km

~2 ia1!k~2 ia3!m

~1!k1m

x1
k

k!

x1
m

m!

5F2
(2)~2 ia1 ,2 ia3 ;1;x1 ,x1!

51F1~2 ia12 ia3 ;1;x1!, ~48!

where we have used Eq.~35!. In this way the electron ‘‘2’’
moves in a Coulomb chargeZ21 which should be the cor
rect condition. In a similar fashion, following item~f! of Sec.
II A, if the electron labeled with ‘‘1’’ is considered to be
close to the nucleus and with low relative velocity,r 1;0
andk1;0, it can be proven that the electron ‘‘1’’ is now th
one seeing a chargeZ21. The perturbative ansatz then has
solid and independent explanation; the wave function
modified to satisfy two double conditions. Recall that De
angan just considered the first term of the series~the equiva-
lent of theC3 approximation!. A price must be paid to sat
isfy the double conditions, i.e., the property~c! is no longer
satisfied. Now, when the nucleus charge is switched
(a1,2→0), the propere-e continuum isnot recovered, but

FA→22 ia3N3
2

1F1~2 ia3 ;1;2x3!,

instead ofN3
2F3

2 . Anyway, the Redmond conditions arestill
satisfied. The region which is altered corresponds toux3u
&1, where precisely thee-e repulsion reduces the probabi
ity. For this reason, that deficiency may not introduce a s
stantial failure at a level of integrated cross section.
e

-

v

s
-

ff

-

B. Second proposal

Let us introduce the following subset ofF2
(3) :

FB5NB(
kl

Bk l k1 lDk l k1 l~2x3!,

where the coefficientsBklm satisfyB0kk5Bk0k5Sk as given
by Eq. ~34!. There is some freedom to choose these coe
cients. A first election may be the expansion coefficients c
responding to theF2

(3) of three variables, i.e.,Bk l k1 l
5Sk l k1 l ~see Appendix A!. The normalization constantNB
can be calculated with Eq.~30!. This function again follows
the perturbative ansatz and it satisfies the two simple co
tions ~a! and ~c! and the two double conditions~e! and ~f!.
The Kato conditions observed are the approximated o
given by Eq.~47!.

VI. DISCUSSIONS AND FUTURE DEVELOPMENTS

We have introduced an approach to tackle the problem
two electrons in the continuum, by expanding the wave fu
tion in the here-calledL base. The properties of this bas
make it very versatile. By construction it tends to the prop
Coulomb conditions; simple and/or double conditions can
built up, and the generalization to three or more electron
rather tedious to deal with but is a possible task.

The future applications of this expansion are quite enco
aging. For any numerical purpose, further groundwork
needed, this is the design of an efficient code to solve
matrix elements involving the product of three hypergeom
ric functions which, as observed in~v!, can be reduced to
three dimensional integrals.

The L base is an ideal outer function to match the inn
solution within the scheme of theR-matrix theory. The ex-
pansion coefficients can be determined to fit the logarithm
derivative at the boundary edge. The mathematical task
duces to simple linear algebra problem.

The L base can be also extended to describe also
initial channel in case of studying the ionization of hydrog
by impact of electrons or positrons. In this case, it is con
nient to write the base in terms of the incoming variable.
first term is therefore the usual product of two incomi
continuum waves times the bound state. It is possible the
construct asymmetricapproximation by usingL bases in
both the initial and final channels.

The scattering state expressed in terms of theL base has
an appropriate structure to be used within the Kohn-ty
variational principle, since the asymptotic conditions a
warranted. Making a variation on the expansion coefficie
as trial parameters, the task reduces to a linear algebra p
lem.

We can even overrun the outgoing approximation wh
reduces the problem to the variablesxi , neglectingyi . The
generalization is obviously the use of aD base of six vari-
ables summing on six subindexes, i.e.,

DS 2 ia1 n1 112n1

2 ia2 n2 112n2

2 ia3 n3 112n3

0 n18 112n18

0 n28 112n28

0 n38 112n38

Ux1

x2

x3

y1

y2

y3

D .
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The function on the incoming variablesyi does not interfere,
for r i→`(uxi u→` and uyi u→0) it survives only n185n28
5n3850 contributing with unity. The solution is constructe
with a superposition of solutions ofH j

12nj
2/xj (xi outgoing

space! times those ofH j
12nj8

2/yj (yi incoming space!. The
collision state divides in an inner zone, where the variab
xi and yi compete, and an outer zone where only thexi
variables survive to give the correct Coulomb conditio
This is an alternative approach to the description posed
Berakdar@23# where xi with r i are mixed, while here the
description remains in parabolic coordinates. Problems a
to manage so large an amount of unknown parameters, e
cially those connecting variablesxi with yj . However it may
be an advantage; with the help of the variablesyi , the Kato
cusp conditions may be reinstalled.
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APPENDIX A: THE L EXPANSION FROM THE POWER
SERIES

The mathematical problem is to find the coefficientsQklm
so that

(
klm

Pklm x1
kx2

l x3
m5 (

KLM
QKLMLS 2 ia1 K c1

2 ia2 L c2

2 ia3 M c3

Ux1

x2

x3

D .

~A1!

After simple algebra one can find that the following relati
holds:

Pklm5 (
KLM50

klm

U1~K,k2K !U2~L,l 2L !

3U3~M ,m2M !QKLM , ~A2!

where

Un~J, j 2J!5
~2 ian1J! j 2J

~cn! j 2J~ j 2J!!
. ~A3!

This system of algebraic equations can be solved seq
tially exploiting the property thatUn(J,0)51. Using this
simple technique we have obtained the expansion ofF2

(3)

@see Eq.~31!#, unknown to us so far, to give

S4,4,451/88720676352000, S1,3,351/252000, ~A4!

S3,4,4521/352066176000, S2,2,351/226800,

S1,4,4521/800150400, S1,2,3521/86400,

S0,4,451/812851200, S2,2,251/3240,

S3,3,451/7620480000, S1,2,2521/270,

S2,3,4521/571536000, S0,2,251/288,
s

.
y

se
pe-

n-

S1,3,451/203212800, S1,1,251/144,

S2,2,451/135475200, S1,1,152/3,

S3,3,3517/2449440000, S0,1,1521/2,

S2,3,3521/3024000, S0,0,051,

S0,3,3521/259200.

Due to symmetry of the function,Sklm remains the same
under exchange of subindexes, andSkl05Sk0l5S0kl
5Skdkl . The series seem to be strongly convergent.

In a similar fashion, the expansion coefficients cor
sponding toFA can be found to give@see Eq.~43!#

A3,3,351/612360000, A2,3,3521/24192000,

A3,3,251/36288000, A1,3,351/504000,

A3,3,151/1512000, A0,3,3521/259200,

A2,2,251/25920, A2,2,351/302400,

A2,3,2521/453600, A1,2,3521/28800,

A1,3,251/43200, A2,3,1521/86400,

A2,2,151/1080, A1,2,2521/540,

A0,2,251/288, A1,1,251/72,

A1,2,1521/144, A1,1,151/3,

A0,1,1521/2, A1,0,1521/2,

A0,0,051,

and Ak, j ,05A0,2,35A0,3,25A1,1,35A1,3,15A0,1,35A0,3,1
5A0,0,35A0,1,25A0,2,15 A0,0,25A0,0,150 for cA51. In the
case thatcA5cÞ1, other coefficients are obtained,

A2,2,25~1124c14c2!/@12960~c1c2!#,

A1,2,252~2112c!/~540c!,

A2,2,152~225c12c2!/@540~c1c2!#,

A2,2,052~2213c2c2!/@288~c1c2!#,

A1,1,252~212c!/~144c!,

A1,2,152~22c!/~144c!,

A1,1,152~122c!/~3c!,

A1,1,052~211c!/~2c!,

A0,2,251/288,A0,0,051,A0,1,151/2,

and A0,1,25A0,2,15A1,2,05 A0,0,25A0,2,05A0,0,15 A0,1,0
50.
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APPENDIX B: MATHEMATICAL PROPERTIES OF THE
FA HYPERGEOMETRIC FUNCTION

The mathematical properties of the hypergeometric fu
tion FA are summarized here. We had to develop all
formulas here presented sinceFA never had been studie
before nor, to our knowledge, even proposed. Such pro
required some degree of tedious algebra here avoi
We have tried to be as general as possible, follow
the items of a mathematical table @24,25#.
F0(a1 ,a2 ,a3 ;g1 ,g2 ,g3 ;z1 ,z2 ,z3) ~shortly denoted byF0)
is a generalization ofFA . In particular,FA5F0(g15g2
5g32a3). In this appendix the following notation is use
d j5g j2a j , j 51,2,3.

~i! Differential equations. Introducing the degenerate hy
pergeometric operator

H~a,g,z!5z
]2

]z2
1~g2z!

]

]z
2a, ~B1!

so thatH(a,g,z)1F1(a;g;z)50, we proved thatF0 satis-
fies the following system of differential equations:

FH~a1 ,g1 ,z1!1S a11z1

]

]z1
D ]

]z3
GF050,

FH~a2 ,g2 ,z2!1S a21z2

]

]z2
D ]

]z3
GF050, ~B2!

FH~a3 ,g3 ,z3!1z1

]2

]z1]z3
1z2

]2

]z2]z3
GF050.

~ii ! Series expansions. From Eq.~B2!, one can obtain the
power series expansion

F05(
klm

Pklm

z1
k

k!

z2
l

l !

z3
m

m!
, ~B3!

where

Pklm5
~a1!k~a2! l~a3!m~g32a3!k1 l

~g1!k~g2! l~g3!k1 l 1m
. ~B4!

~iii ! Integral representations. The hypergeometric func
tion F0 has the following integral representations:

F05G3E
0

1

du3exp~u3z3!u3
a321K3~u3!

3)
l 51

2

1F1„a l ;g l ;~12u3!zl… ~B5!

5E E E
R

du1du2du3)
j 51

3

G jexp~ujzj !uj
a j 21

3K0~u1 ,u2 ,u3! ~B6!

5E
0

1E
0

1E
0

1

du1du2du3)
j 51

3

G jexp~ujzj !uj
a j 21

3K j~uj !exp~2u3u1z12u3u2z2!, ~B7!
-
e

fs
d.
g

K0~u1 ,u2 ,u3!5
K13~u3 ,u1!K23~u3 ,u2!

K3~u3!
, ~B8!

Kl3~ul ,u3!5@12ul2u3#g l211a l, ~B9!

K j~uj !5@12uj #
g j 2a j 21, ~B10!

G j5
1

G~a j !
G j8 , G j85

G~g j !

G~g j2a j !
~B11!

with l 51,2 and51,2,3. The lower limits of integration ofR
are u1>0, u2>0, andu3>0, and the upper one are 12u1
2u3>0, 12u22u3>0, and 12u3>1. As a rule, the base
of the kernels@the terms in squared brackets in Eqs.~B9! and
~B10!# must always be positive. Note tha
K1,3(u1 ,u3)@K2,3(u2 ,u3)# is a F2

(2) kernel which ‘‘con-
structs’’ the Coulomb interactions represented by the C
lomb parametersa1 anda3 (a2 anda3). On the other hand
K3(u3) is a1 F1 kernel which ‘‘deconstructs’’a3 interaction
since it is accounted twice.

~iv! Asymptotic limits. Using the limit, whenuzj u→`,

1F1~a j ;g j ;zj !→G j8zj
2aei e jpa, ~B12!

where Re(g j ).0,e j5sgn@ Im(zj )#, it can be found that the
following limit holds:

F0→G18G28G38z1
2a1z2

2a2z3
2a3expS i (

j 51

3

e j zjpa j D ,

~B13!

asuzj u→`, j 51,2,3 providing the Redmond asymptotic co
ditions.

~v! Differential relations.The derivatives ofF0 satisfy

z1

]

]z1
F052a1F01a1F0~a111!, ~B14!

z2

]

]z2
F052a2F01a2F0~a211!, ~B15!

~g3!n

]n

]z3
n
F05~a3!nF0~a31n;g31n!,

]

]z1
F05

a1

g1

a2

d2
e2,3F0~a211;g111,g211,g311!

1
a1

g1
e2,3F0~g111,g211,g311!, ~B16!

with

e2,35
d2

g2

d3

g3
. ~B17!

~vi! Kummer relations.One can prove the following iden
tities:

F05ez1F0~d1 ,a223 ;g123 ;2z1 ,z2 ,z32z1!, ~B18!
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F05ez2F0~a1 ,d2 ,a3 ;g123 ;z1 ,2z2 ,z32z2!.
~B19!

For the third variablez3, the Kummer rule is not so eviden
but for FA the relation is simple and it reads

FA5ez3FA~a122 ,d32a1 ;g3 ;z12z3 ,z2 ,2z3!, ~B20!

FA5ez3FA~a122 ,d32a2 ;g3 ;z1 ,z22z3 ,2z3!. ~B21!

~vii ! Hypergeometric expansions. Expanding the 1F1
functions in Eq.~B5!, we can prove the following relations

F05(
kl

~a1!k

~g1!k

~a2! l

~g2! l

~a3!k1 l

~g3!k1 l

3
~2z1!k

k!

~2z2! l

l ! 1F1~a31k1 l ;g31k1 l ;z3!

3 1F1~a11k;g11k;z1! 1F1~a21 l ;g21 l ;z2!.

~B22!

Other transformations can be obtained using Eq.~49! of Ref.
@22#,

FA5(
r

~a1!r~a2!r

~g2a3!r~g2a3!2r

~z1z2!r

r !

3F2~a11r ,a21r ,a3 ;g2a312r ;z1 ,z2 ,z3!.

~B23!

~viii ! Contiguous relations. The following contiguous re-
lations hold:

05F02F0~a121!2
1

g1
e2,3z1F0~g111,g211,g311!

2
1

g1

a2

d2
e2,3z1F0~a211;g111,g211,g311!, ~B24!

05F02F0~a111!1
1

g1
e2,3z1F0~a111;g111,g2

11,g311!1
1

g1

a2

d2
e2,3z1F0~a111,a211;g111,g2

11,g311!, ~B25!

and similar relations.
~ix! Special cases. When one of the coefficients is zer

then

FA~a150!5FA~z150!5F2
(2)~a2 ,a3 ;g;z2 ,z3!,

~B26!

FA~a250!5FA~z250!5F2
(2)~a,a3 ;g;z1 ,z3!,

~B27!

FA~a150,a250!5FA~z150,z250!5 1F1~a3 ;g;z3!,
~B28!
FA~z350!5(
r 50

`

~21!r
~a1!r~a2!r~a3!r~g!2r

~g!r
4~g1r 21!r~g2a3!r~1r !

3z1
r z2

r
1F1~a1r ;g12r ;z1!

3 1F1~a21r ;g12r ;z2!. ~B29!

APPENDIX C: CONNECTION WITH THE FIRST
PERTURBATIVE ORDER OF THE

CORRELATED-FADDEEV APPROXIMATION

We prove here thatFA with cA511 ia3 can be consid-
ered as the fractional form of the correlated-Faddeev
proximationFF , as explained next. The integral represen
tion of FA contains a normalized kernelKA in the
tridimensional spaceu1 ,u2 ,u3 @see Eq.~B6! of Appendix B#
which can be rewritten as

KA~u1 ,u2 ,u3!5KA5
@K1,3K2#@K2,3K1#

K1K2K3
. ~C1!

Kl ,35Nl ,3
2 Kl ,3(ul ,u3)( l 51,2) andKj5Nj

2Kj (uj )( j 51,2,3)
are the kernels of theF l ,3

2 andF j
2 hypergeometric functions

respectively, multiplied by the normalization constant. T
kernel corresponding toFF is simply

KF5K1,3K21K2,3K12K1K2K3 . ~C2!

Now it is evident that this expression contains the sa
terms as the fractional form given by Eq.~C1!, but in a linear
form. Conceptually, fractional forms become linear form
transforming multiplication by sum and division by subtra
tion operations. In this way the kernels seem to behave
similar pattern to the Green operators; a many-body oper
can be cast in linear@26# as well as fractional forms@27#.

Further, when the pair interaction is discoupled, by sett
Kl ,3→KlK3, in either Eq.~C1! or in Eq. ~C2!, we arrive at
the same result,

KA ,KF→K1K2K35KC3 ,

which is the kernel of theC3 approximation.

APPENDIX D: EXPANSIONS IN TERMS
OF THE NATURAL BASIS

The first coefficientsÃK
k 5AK

k /(a1k)K, corresponding to
Eq. ~38! are

A0
k5kak , ~D1!

A1
k52

2 ia1k

112k
ak ,

A2
k5

~2 ia1k!~2 ia1k11!

2~11k!~112k!~312k!
ak ,

and forK>2 the coefficients may be defined recursively
the formula

AK
k 5

~ ia2k2K11!

2K21~k1K21!~2k1K11!
AK21

k . ~D2!
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The first coefficientsB̃K
n,k5BK

n,k/(a1k)K, corresponding to
Eq. ~39! with n51 are

B0
1,k50,

B1
1,k52ak ,

B2
1,k5

22ia21

~112k!~312k!
ak , ~D3!

B3
1,k5

3a223ia2~11k!~21k!

4~11k!~21k!~112k!~512k!
ak ,

B4
1,k5

2ia313a22 i ~718k12k2!a2~11k!~31k!

2~11k!~31k!~112k!~312k!~512k!~712k!
ak .

The first coefficients corresponding to Eq.~39! with n52 are

B0
2,k5B1

2,k50,
,

a,

n

B2
2,k51ak ,

B3
2,k5

4ia12

~112k!~512k!
ak ,

B4
2,k5

25a215ia1~11k!~31k!

2~11k!~31k!~112k!~712k!
ak .

The first coefficients corresponding to Eq.~39! with n53 are

B0
3,k5B1

3,k5B2
3,k50,

B3
3,k521ak ,

~D4!

B4
3,k5

26ia23

~112k!~712k!
ak ,

B5
3,k5

21a2221ia23~11k!~41k!

4~11k!~41k!~112k!~912k!
ak .
a,

k,

l
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