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Approximate wave functions for two electrons in the continuum of a Coulomb charge
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The outgoing scattering state describing two electrons in the continuum of a Coulomb charge is investigated.
Boundary, simple, and double conditions are used to consatuchitio wave functions. Simple conditions
describe the limits when the Coulomb charges are switched off, and double conditions take into account the
cases when two out of three particles are close and have low relative velocity. A base to expand the double
continuum—nhere called th&e base—is introduced. All the components of the three-body wave function in this
base have the appropriate Coulomb conditions and are versatile enough to build up simple as well as double
conditions.[S1050-2947@9)05111-3

PACS numbd(s): 34.80.Dp, 32.80.Fb

I. INTRODUCTION been the degenerate hypergeometric functiortwad vari-
ables ®$?) [10-13. Here the superscript (2) denotes the
Several approximate double continuum wave functionsnumber of variables corresponding to the relative position of
have been used to compute the corresponding ionizatiothe electron with respect to the heavy target and proje@tie
cross sections. The most simple approximation consists afsual in this case, the internuclear interaction is dropped
neglecting the electron-electroe-€) repulsion leading to a when possible The first results, using the undistorted wave
state expressed in terms of a product of two Coulomb wavesynction in the entrance channel addzz) in the exit one,
the so-calledC2 approximation. It produces a reasonable,a e very encouraging. At high electron energies, the

aﬁree_me_nt ‘_Nithl mgasgr?d_l tOtaldcrOS_Sb se(l:tions for d?L‘blr?nethod provides very good results when compared with the
photoionization[1], but it fails to describe electron angular g0 iments; including a precise description of the asymme-

distributions because it does not consider the electronic cor- -
. g . CAr rameters of th ture t ntinuum pgBX. At low
relation. To some extent, this correlation can be taken into y parameters of Ine capiure to continuum p 0

account using momentum-dependent effective charges asellectron energies, the approximation overestimates the ex-

was introduced by Rudge and Seaf@. A more compre- periments, especially around the soft electron pda. At

hensive approximation is found by neglecting all mixed de_presgnt, calpql{ations are carried .OUt to inspect whether im-
fivatives of the three-body Hamiltonian written in general- Proving the initial channe{using distorted wave statesan
ized parabolic coordinate$3]. This wave function is deal successfully with low-energy electrofis].
expressed in terms of a product of three Coulomb waves, the FOr two electrons in the continuum state of a heavy
so-calledC3 approximation[3—5]. Unlike the C2, the C3 nucleus, the problem is much more complex; we can no
approximation tends to the exact solution of the problem fodonger disregard an interactidsuch as the internuclear po-
large interparticle distances. At threshold, however, it istential mentioned befoyeand the issue remains a truly three-
meaningless since it underestimates by orders of magnitudearticle problem. Unfortunately®$® of three variables
the experimental total cross sectidi6§ owing to an overes- [10,11] is not an entirely suitable choice because it solves a
timation of the electronic repulsion present in the normalizasymmetric system of equations while the system to solve is
tion of the wave function. To avoid this defect, it is neces-asymmetric due to the mass differences among the particles.
sary to find a scattering state where the variables of thén this context, we went forward and assayedoarelated
system are correlated so that, for certain configurations, thEaddeev approximatio® ¢ [11], which essentially separates
repulsion between the electrons becomes shielded by thée three-particle system in clusters of two, and solves each
presence of the nucleus. In recent years, new correlated wawvtuster usingfb(zz). This approximation corrects the expo-
functions have been developed. Generally, these attemptential fall of theC3 normalization factor at threshold. How-
have the same structure as {88 approximation, but with ever, since®r is written in alinear form, it may present
effective moment#7] or charge48] depending on the coor- interference of doubtful physical reality as the ones found by
dinates. A recent comprehensive work employing these sduncanet al. studying the uncorrelated-Faddeev approxima-
lutions to describe double photoionization of heliy®]  tion [16,17.
shows that the double continuum state is still far from being In this paper we continue this line by going further, trying
known. to include new properties. The scheme to follow in this paper
In this paper, we follow a line initiated a few years ago inis summarized next.
our groups, which intends to describe the continuum state of In Sec. Il, the total Hamiltonian for two electrons in the
the three Coulomb particle system with the use of the geneontinuum state is expressed in terms of generalized curvi-
eralized hypergeometric functions of several variables. linear coordinates and the solution is confined to the outgo-
To deal with heavy ion-atom ionizatioftwo heavy par- ing spaceloutgoing approximation
ticles and one electrona good candidate to examine has In Sec. Il A, we write theboundaryandsimpleconditions
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e, and j=1,2,3. For short, it will be convenient to usg
=—ik;§; and yj=—ikj»;. In these variables the total
Hamiltonian,H=H 3+ W3, reads
r2 r3
3
1+6 5
Hes= 2 2K —5(H +H"), a=2z/k, (4)
7 _ e1 c3 =T Xy j (R
FIG. 1. Set of coordinates. _ 9 d )
Hj —Xjﬁ'F(l—Xj)&—xj—(—laj), (5)
that the solution should satisfy. We add thdsible condi- .
tions which are expected properties representing limit cases pr:
when two out of three particles are close with low relative Hj+=y].—2+(1—yj)—, (6)
velocity. Y; 9Y;
In Sec. lll, we abridge the preliminary models of interest )
in this paper, including perturbative ansatrecently posed | 9 d\ d
by Dewangari18]. W03=|§1 (—D)kiksts - | 4 r?_x|+t'+r?_y| Y
In Sec. IV, the here-called bageis introduced, which we
think is a promising base to expand the solution in the out- 2 9 ER
going space. Advantages of using this base are remarked +> (—1)'k|k3t§-(t|(9—)(|+t|+a—yI TR (7)
= 3
upon.

In Sec. V, two proposal® , and®g are put forward. The s~ . o :
prop o B are p 1dt"=r;%k;. In the generalized curvilinear coordinates,

first one can be considered as a new degenerate hyperg Iati ) i th o ved deri
metric function, which to our knowledge has never beent e correlation arises In the terms containing mixed deriva-

posed before. To fill this vacancy, in Appendix B we calcu-1VeS: namely 9/9(X,)19(x.y)s,| =12, in Wes. In this
late all its properties such as integral representation, differS€NS€Hcs is anuncorrelateddifferential operator which is
ential equation, Kummer transformations, etc. For specifi@!SC fuIIy-symmgtnc_{S].z Note thatH is not symmetric since
parameters, it is found thakt, is thefractional form of @ the crossing derivative™/d(x,y)19(x,y), is missing inWcs.
as explained in Appendix C. The other functidry is a We will restrict @ to the outgoing spacegutgoing ap-
variation of thed$® functions of three variables. Properties Proximation where only the variables are considered. The
and failures are discussed in each case. total Hamiltonian reduces tbl ~H3;+Wg3, whereH; is

In Sec. VI, future developments are discussed. Atomid@iven by Eq.(4) with H"=0, andW_, takes into account
units are used. only derivatives orx. As we work with generalized curvilin-
ear coordinates, there is a key problem; it is nfptatti does
not have a suitable expression in terms of these coordinates
Il. THE THEORETICAL PROBLEM to attempt to find an approximate solution in closed form. In
Let us consider two electrons in the Coulomb field of athiS Paper, we will study some conditions that the exact wave
heavy nucleus. The coordinates are shown in Fig. 1. Thé!nction should satisfy and we will propose some functions
nonrelativistic Hamiltonian equation for the three-particle © SUit such requirements.
system is given by
Boundary, simple, and double conditions
o wp 22y 27, 2723 ., ., The function ® is expected to satisfy a series of
Vit Vot 2 +? + A ki—kz|¥=0, (1)  conditions—here limited to the outgoing space—that we list
next.
(@) When |xj|—,j=1,2,3® must satisfy the Redmond

whereZ,=2,=27 is the nuclear charge arity= —1/2 takes [19] asymptotic condition, namely

into account thee-e repulsion. Although we will concentrate

on the continuum of two electrons, the formalism presented 3

here holds if a particle, say “1,” is a positron; in this case, <I>—>(I>R=H exp(iajln|xj|).

Z,=—Z7Z and Zz=+1/2. Next, two transformations will be =1

made. First, the plane-wave function is removed by writing This condition led us to determine the normalization factor

N.
V=(2m) 3expliky-r{+iky-rp)®, (2 (b) The Kato cusp conditiori20] should be observed,
namely, if we write
wherek;(k,) is the momentum of the electron (2) with
respect to the heavy nucleus akg= (k,—Kk,)/2 is the rela- o= NE =)
tive e-e momentum. Second, the generalized curvilinear co- kim
ordinates are introducdd],

k ol m
X1 X3 X3
KImier T mi? (8

then

E=ritrikp,  p=ri—rpekg, €) Pium=—ia1Poim, Pkim=—182Pkom. 9
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Pyii=—iasPyo. (10) lll. SOME PRELIMINARY MODELS

. . A. The C3 approximation
The requirementga) and(b) can be considered d®undary

conditions (more precisely Dirichlet-Neuman mixed-  If the termWc; is neglected, the solution dfi ¢ is the
boundary conditionsif the differential equation is to be well known C3 approximation, i.e.Hg3®c3=0, where
solved numerically in a reduced domadihil]. [3-6]

(c) Whenaz—0 (or equivalentlyZ;—0), i.e., when the
e-e interaction is switched off, th€2 approximation must . . -
be recovered, which is the exact solution of the two nonin- ¢C3_NC3JH1 Fiv Nea=NiNaNj. (18
teracting electron systems,

3

It is quite simple to show tha® 5 satisfies the first four
o conditions(a), (b), (c), and(d) but none of the double con-
‘D—’q’czzjﬂl Ny Fy (1) ditions are observed.

2

Fi=1Fi(—iaj;1x)), (12) B. Faddeev approximations

Itis illustrative here to recall the first-order Faddeev equa-
N, =exp(ma;/2)T(1+ia;), j=1,2,3. (13)  tions to deal with the three body ionization problem intro-
. duced by MaceK16]. A simple extension of Macek’s for-
(d) Also, whena, ,—0 (or equivalently wheiZz—0), i.e., Mulation to the present case leads us to the first-order
when the nucleus charge is switched off, the Coulomb  uncorrelatedraddeev expression,
continuum wave functions must be recovered, which is the NCE- A N-E- A N-E— 1
exact solution of two isolated electrons, Pu=Ny Fy +N; Fo +NgFg =1-1. (19

Following this line, in Ref.[11] a first-ordercorrelated
Faddeev approximation was found including, to some extent,
the crossing derivatives. It reads

®—N;F;. (14

The requirementéc) and(d) aresimple conditionsvhich are

evident properties of the starting Hamiltonian E#). D r=N; F; NosF o5t Ny Fo NpF 15— s, (20)
(e) If the electron labeled with “2” is considered to be

nearly motionless at the origin, i.e;~0 andk,~0, then  with

rs~rqi,k3~kq/2, and X3=2x,/2=x4, and we expect the

following limit to hold: N;j =exf(a;+a) m/2]I'(1+iaj+iay), (21)
d—-NF; (Fi(—ia;—ias;1;xq), (15 Fj_’k=(l>(22)(—iaj,—iak;l;xj,xk), (22

where —ia; —iaz= —i(Z,+2Z3)/ky= —i(Z—1)/k;. Thus, @ is here the degenerate hypergeometric functiotwaf
the electron “1” moves in a Coulomb central charge-1,  variables. This approximation satisfies poirigs, (c), and
which is expected to be the correct condition. (d). However, ® may produce interference of doubtful

(f) Equivalently, if the electron labeled with “1” is con- physical reality due to itinear form [17]. In Sec. V, we will
sidered to be nearly motionless at the origin, itg50 and  put forward two wave functions to tackle the problem; the
ki~0, then rg~—r,, kg~ —k,/2, and X;=2x,/2=x,. first one @, below) is, as we shall see, tHeactional form
Thus, the electron “2” should move in a central charge of ®f.
— :I_7

C. The perturbative ansatz

P—=NF; sFy(—1az1a5:15x0). (16) In a recent article, Dewangdi8] examined the applica-

bility of the C3 approximation for electron-hydrogen excita-

(g) If both electrons are very near each other and MOV&ion He found that replacingn our notation

along together, i.ef3~0 andk;~0, thenk,~k; and x;
~X». Thus, the two electrons should behave as a pseudopar- X3— 2Xs3, (23
ticle of charge—2, and so

the corresponding amplitude of transition reduces in the

d—NF5 1 F(—iaj—ias;1;xy), (17 high-energy limit to the second Born term calculated with
the closure approximation. Good agreement with the experi-
involving a Coulomb parameteria;—ia,—i(—2)Z/k;. ments was found when compared with the experimental dif-

The requirementse), (f), and(g), which we calldouble  ferential cross sections and alignment parameters, particu-
conditions represent limit cases when two out of three par-larly at large angle§18]. Very recently, this ansatz has been
ticles arenear and with low relative velocitie® each other. reexamined by Berakd@21], who studied the large distance
We should differentiate these conditions from the ones anabehavior when one of the electrons is bound. Within our
lyzed by Alt and Mukhamedzhandv]. These authors stud- scope, we shall prove that the use of the perturbative ansatz
ied the cases when;/r,—0, independent of the relative gives rise to the observation of the double conditiG#sand
moments. (f), sacrificing the simple conditio(d).
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IV. THE A BASE -1

N= ;“:n RiimQxim (30)

Our strategy will be to expand the double continuum

wave function as . )
It should be noted that if the indexé&s |, andm run up to

—ia; k c¢i|Xxg finite integers in Eq.24), the sameupper limits must be
: considered to determine the normalization constanfor

@—N% QuimA !32 lcofxe |, @) ihe natural baseR’=Nc3.

—lazg M GC3| X3 (iv) Any analytical function of variableg;,x,,x3 can be
expanded in terms ok,,,,. For example, we found the fol-
lowing expansion of the hypergeometric functidﬂf) in
terms of theA base as

where

_|a1 k Cl Xl
Al —iaz 1 CoXp | =(=x)*Fy(—iag+kicy;xy) : ; ;
OB (—iay,—iay, —iag;1;X1,X2,X3) = > SuimAuim,
—ia3 m C{% X3 2 ( 1 2 3 1,72 3) & kim klm(31)
X (=Xp)'1F1(—iay+1;C,;%,)
m £ . o and S, remains the same under exchange of subindexes.
X(=X3)"1F1(—iag+mC3iXa),  The first coefficientsS,,, are listed in Appendix A. To our
(250  knowledge, this is the first time that this expansion has been

found.
and Qym are constant, which will be found to be related to  As we shall see, the natural base will allow us to construct
a; as the double conditions. If one of the variables tends to zero,
_ _ _ ®) reduces tab$?), which can also be expressed in terms
Quim= Quim(—1a)k(—1az)i(—iag)m. of a two-dimensional natural base

In this paper, calligraphic letters denote rational numbers,
independent of the electron parameters. It will become evi- dP(—iay, —ias;1ixs,X5)= > SjA;, (32)
dent that it is convenient to work with theatural base J

A= (~ia)(—iaz)i(~iag)n A= (—iay)(—iaga| 22 1 AR oy
_ J 21 it —iag ] 1+2j|xg)"
—ia; k 1+2k|x;
XA| —iap | 1+20 (x|, (26) _(=Di2]; 34
—jag m 1+2m|xz Foeprepr

We will prove thatA is an appropriate base to describe thewhere[2];=1 if j=0 and 2 otherwise. We can now exploit
double continuum state. A series of properties are summdhe fact thatd(?) satisfies the following propert22]:
rized below.

(i) For the natural base, the first term is precisely @& P¥(—iay, —iag;1;x,x)=1F(—ia;~iaz;1;), (35
approximation.

(i) If ® is obtained through a power series in terms ofin @ccordance with Eqs15)—(17) required by the double

Xlixlzxgn, as given by Eq(8), the corresponding expansion (écan((j:i;ti;))ns. We have found another property which extends

coefficientsQy,, can be unequivocally obtaindédee Appen-
dix A for details. B _in i s_rq.
(iil) When|x;|—,A tends to the Redmond conditions P2(~1ag, ~lag, —1ag X, x,x)
i =,F(—ia;—iaz—iaj;1;x). 36
—ia, K ¢l x4 1 l( 1 3 3 ) ( )

Al —iay | cyl% | 5Ryn®r, (27) This property can be useful to describetrgple condition
involving three electrons in the continuum. When two out of
three electrons are motionless and close to the nucleus, Eq.
(36) describes the outdthird) electron moving in a charge
,Lc)l(cx)I'(cs) , (289  (Z—1-1), which is the expected condition.

(d1)i(d2)i(d3)m (v) If the parameters; are positive integers, as in the case
of the natural base, one can prove that the matrix elements
involving the ground state, such as the double photoioniza-
tion, can be reduced to three-dimensional integrals of closed
forms in a similar fashion to th€3 approximatiori.e., the
with d;=c;—2k+iay, dy=c,— 2l +ia,, anddy;=c3—2m integrand does not contain hypergeometric functions of the
+ias. Equation(27) holds if, as in our case, Rg)=0 and  type ,F,). If the parameters; are not positive integer, we
Re(c)>0.The normalization constant can now be simplystill have the alternative to expand the hypergeometric func-
written as tions in power series and reconstruct the function in terms of

—iag m ¢zl X3

Rim=

,exd—m(a;+a,+as)]
~ T(dpT(dy)T'(ds)

(29
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the natural base, as developed in Appendix A. Thus, the A (mia(—iay)(—iagm (Cadksi
expansion coefficients will depend @ but the matrix ele- Pkim= ) AT (41)
ments can be reduced to three-dimensional integrals of kel AL
closed forms. _ _ and the normalization constant can be found in closed form
(vi) Expressions resulting from some operations\qp, , to give
such asd/ 9x;Ayjm andx}‘AHm, can be cast as a sum &f;,,
(see Appendix D for details In particular, we found the NiaN5 5
following useful identities: Ne=—— if cp=1+ias,
g NA= F N3 A 3 (42)
- k2 Nes=N7N;N; if ca=1.
Hy Aklm:X_lAkImv (37)

The degenerate hypergeometric functié® can be ob-
p oo tained from Eq(41) by simply replacing €)1 /(ca)k(Ca)
X A= AKA 1 38 by unity. From the mathematical point of view, this term
gx —Km KZ:O KT keKdm 38 decouples the correlation between the varialeandx, as
observed in Eq(B5) removing 9%/ dx,9x,. ®, can be ex-
pressed in terms of the natural basis

XnAmm:KZO B Aysk im- (39
Dp= NA% AiimAkim (43

V. TWO PROPOSALS . _ . . .
where the expansion coefficienty,,, are listed in Appendix

In this section we put forward two proposals to deal withA. Due to the symmetry of the seriesdym=Axm and
two electrons in the continuum, which can be written in 4, = Aq=S,, which guarantees the description &£
terms of theA base and can be considered as variations 0fs eitherx, or x, vanishes.

. 1t would be interesting to investigate beforehand the  Alternatively, we have found a simpler expansion over
behavior of preciselyb(23)(2x3). This generalized confluent only thetwo-index sum as follows:
hypergeometric function can be easily expanded in the natu-

ral baseA [see Eq(31)] and can be proven to satisfg) and —ia; k catk | X
the three double COﬂdItIOIE}gE), (f), and (g) but it fa|I§ to Dp=NY, AgA| —iay | catl | X2 ], (49
observe(c). We note thatb}”’ may be a good alternative to kI

study electron-positronium ionization, where the three par- —iag k+l 1+k+1lxg

ticles have equal masses and so the system becomes fully . e r

symmetric. The degenerate hypergeometric functidj?) Akl:( 12y —iaz)i( 'a3)k*'(_xs)—k—l, (45)
has a lot of physical information of interest. To some extent KU (k+1)!

it includes some previous approximation. For example, a% . -

mentioned before, the first term of the natural base iSCtBe ut the expansion coefﬁuem@m aré now no Ionger. con-
approximation. Further, if we consider the subsetiferO in stant, as one may wish, but they are proportional to

3) : - (—xg) K.
the ®37 expansion, Eq(31), it results ®, satisfies three conditions introduced in the preceding

section, namelya), (c), and (d). Correlations(crossing de-
PP _0=> SomAoim=F1> SiSimAoim rivative are included to some extent. In general, if three
Im Im different ¢ parameters are used, the so-constructed wave

function ®,=® 4(cq,C,,C3) is a solution of H\,®,=0,

=F; > SA=F; > F,a, (400  whereH;=Hg;+ U, so that(see Appendix B for details
[ | :
2 2
, 3 a|a

which is the first term ofPg given by Eq.(20). The second UA:m (1—Cs)+|21 X |7
term corresponds to the subset withO. 373 - o7

The approximations introduced below are corrections to 2 2k? g g\ g

(3 iti i isfi + —c)—+| —ia+x—| —|.
@3 so that the conditiofic) will be satisfied. It should be a ;1 XY, (1 C')<9X| ia;+x ax|) %

necessary requirement to observe, especially in the case of
having a large nuclear charge. The conditi@n turns out (46)
results to be the independent electron model.

In our casec;=c,=C, andcz=1. The interactiorl , tries
to approximatéN 5 within its limitations.

A. First proposal ) . L .
prop The interesting point is thab 5 verifies a huge amount of

Let us introduce the following power series: properties, which makes it a “friendly” function to deal
K 1l -m with. @, belongs to the family of the degenerate hypergeo-

O,=N,S pA X1 %2 X5 metric functions of several variablg$0]. Since it has never
am o <MK mt? been proposed before, we abridge their properties in Appen-
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dix B. Also @, can be easily extended straightforwardly to B. Second proposal
describe three or even more electrons. Let us introduce the following subset 65>
If we considercy=1, three advantages are observed; the
first term is precisely th€3 approximation as noted in para-
graph (i) of the preceding section. Second, the matrix ele-
ments can be reduced significantly as notet/jn And third,

Kato conditions are not fully lost; the properties where the coefficient8y, satisfy Bo=Byok=Sk as given
by Eqg. (34). There is some freedom to choose these coeffi-

A . A A . A cients. A first election may be the expansion coefficients cor-
P110=(=1a1)Pg 0. Pi1o=(—182)Pioo. (47 1agnonding to thed$®) of three variables, i.e. B¢ x|
=81 k+ (see Appendix A The normalization constaig
andPy, ;= (—ias) P still stand. Although Eq(10) isnot  can be calculated with E¢30). This function again follows
fully satisfied(and it is a setback as compared with B8  the perturbative ansatz and it satisfies the two simple condi-
approximation, which fully satisfies the cusp conditipris  tions (a) and(c) and the two double condition®) and (f).
is still an improvement as compared with 6@ approxima- The Kato conditions observed are the approximated ones
tion, which also satisfies E¢47) but P§3 =0 instead. given by Eq.(47).
If otherwisecy=1+iaz in Eq. (44), the three previous
advantages are no longer observed, but in thynis found
to be the fractional form of the first-order correlated-Faddeev We have introduced an approach to tackle the problem of

(DB:NB% By 1A 1 ir1(2X3),

VI. DISCUSSIONS AND FUTURE DEVELOPMENTS

approximation®, as explained in Appendix C. two electrons in the continuum, by expanding the wave func-
tion in the here-called\ base. The properties of this base
Application of the perturbative ansatz make it very versatile. By construction it tends to the proper

) ] ] ] Coulomb conditions; simple and/or double conditions can be
If the double argument , i.exg— 2x3, is considered in the  pyilt up, and the generalization to three or more electrons is
definition of ®,, two properties(e) and (f) come out as rather tedious to deal with but is a possible task.
explained next. Following the iterfe) of Sec. Il A, if the The future applications of this expansion are quite encour-
electron labeled with “2” is considered to be close to the aging. For any numerical purpose, further groundwork is
nucleus and with low relative velocity,,~0 andk,~0, needed, this is the design of an efficient code to solve the
thenx,~0,2x3~X4, and onlyl =0 survives in Eq(41) (and  matrix elements involving the product of three hypergeomet-
consequentlyb , becomes independent @qp). Thus ric functions which, as observed iw), can be reduced to
three dimensional integrals.
(—iag)(—iag)y X< X7 The A base is an ideal outer function to match the inner
Dp~Np D —— 2 TIm AL 7L solution within the scheme of the-matrix theory. The ex-
™ (Dk+m ki m! pansion coefficients can be determined to fit the logarithmic
derivative at the boundary edge. The mathematical task re-
duces to simple linear algebra problem.
The A base can be also extended to describe also the
= Fi(—ia;—ias;1:xy), (49) initial channel in case of studying the ionization of hydrogen
by impact of electrons or positrons. In this case, it is conve-
_ ., ient to write the base in terms of the incoming variable. Its
where we have used E(B5). In this way the electron “2”  fjrst term is therefore the usual product of two incoming
moves in a Coulomb chargé—1 which should be the cor- continuum waves times the bound state. It is possible then to
rect condition. In a similar fashion, following iteff) of Sec.  construct asymmetricapproximation by using\ bases in
Il A, if the electron labeled with “1” is considered to be poth the initial and final channels.
close to the nucleus and with low relative velocity,~0 The scattering state expressed in terms ofAhkase has
andk;~0, it can be proven that the electron “1” is now the an appropriate structure to be used within the Kohn-type
one seeing a charge— 1. The perturbative ansatz then has avariational principle, since the asymptotic conditions are
solid and independent explanation; the wave function isvarranted. Making a variation on the expansion coefficients
modified to satisfy two double conditions. Recall that Dew-as trial parameters, the task reduces to a linear algebra prob-
angan just considered the first term of the seties equiva-  lem. _ o )
lent of theC3 approximatioh A price must be paid to sat- ~ We can even overrun the outgoing approximation which
isfy the double conditions, i.e., the propetty is no longer ~ reduces the problem to the variablgs neglectingy; . The
satisfied. Now, when the nucleus charge is switched offeneralization is obviously the use ofAabase of six vari-
(a1,—0), the propele-e continuum isnot recovered, but ~ ables summing on six subindexes, i.e.,

_|al nl 1+2n1 Xl

=0P(—iay,—iaz;1;x;,X;)

Dp—27 N5 F,(—ias;1;2xs), —ia, n, 1+2n,|x,

_ia3 n3 1+ 2n3 X3

instead ofN; F5 . Anyway, the Redmond conditions astl| A
satisfied. The region which is altered correspondgxig 0 np 1+2nj|y,
=<1, where precisely the-e repulsion reduces the probabil- 0 ny, 1+2n}|y,

ity. For this reason, that deficiency may not introduce a sub- )
stantial failure at a level of integrated cross section. 0 nz 1+2n3]Ys
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The function on the incoming variablgs does not interfere, S134=1/203212800, S;1,=1/144,
for r;—o(|x]]—« and |y;|—0) it survives onlyn;=n,

=n4=0 contributing with unity. The solution is constructed 85.24=1/135475200, S;11=2/3,
with a superposition of solutions da‘f+—n /x] (x; outgoing

spacg times those oH;" — n’2/yJ (yI incoming space The 83,337 17/2449440000, Sp 1= —1/2,
collision state divides |n an inner zone, where the variables

x; andy; compete, and an outer zone where only the Sa,35= ~ 13024000, Sp00=1,

variables survive to give the correct Coulomb conditions.
This is an alternative approach to the description posed by

Berakdar[23] wherex; with r; are mixed, while here the p, o 4, symmetry of the function$y,, remains the same
description remains in parabolic coordinates. Problems ar'sﬁnder exchange of subindexes, manﬁk S =S
10— ©kOI — <0kl

to manage so large an amount of unknown parameters, espe-g 5. The series seem to be strongly convergent.
cially those connecting variablas with y; . However it may In a similar fashion, the expansion coefficients corre-

be an advantage; with the help of the variabtesthe Kato : :
cusp conditions may be reinstalled. sponding tob, can be found to givgsee Eq.(43)]

80‘313= - 1/259200

Ag 33=1/612360000, A, 5 3= —1/24192000,
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APPENDIX A: THE A EXPANSION FROM THE POWER Ay, = 1125920, A, , 5= 1/302400,
SERIES - o
The mathematical problem is to find the coefficie@Qis,, Az32= —1/453600, A; 5= —1/28800,
so that

Aj3,=1/43200, A;3,=—1/86400,
_|al K Cl Xl
Pkim 1X2X3 QumA| —iaz L cax

kim KLM .
—lag M C3| X3 AO,2,2: 1/288, Al,l,2: 1/72,
(A1)

A2,2,1: 1/1080, ./41'22: - 1/540,

A= —1/144, A;41,=1/3,
After simple algebra one can find that the following relation L2l Lt

holds: Ao11=—112, App=-1/2,
kim
Pan= > Ua(Kk=K)Up(L,I-L) Aooo=1,
and Ay j o= Ao 3= Aoz o= A113= A131= Ao1,3= Aoz
X U3(M M= M)QKLM ’ (AZ) :AO,0,3: ./40'1’2: -AO,Z,l: onoyzz onovl=0 for (S 1.Inthe
case that,=c# 1, other coefficients are obtained,
where
=(+1-4c+4c?)/[1296Qc+c?)],
by it - Az )/[12960c-+c?)]
m (C)j—a(i=I!" Ag 2= —(—1+2¢)/(54C),
This system of algebraic equations can be solved sequen- Ay 01=—(2—5c+2c?)/[540c+c?)],
tially exploiting the property thatJ,(J,0)=1. Using this o
simple technique we have obtained the expansio&? Ay o= —(—2+3c—c?)/[288c+c?)],

[see Eq.(31)], unknown to us so far, to give

Ay 1= —(—1—c)/(144),
S4.4.4=1/88720676352000, S; 5 5= 1/252000, (A4) 112= )(14%)

Ai21=—(2—c)/(144c),
Sy.4.4= — 1/352066176000, S, » 5= 1/226800, 2

Ay1,1=—(1-2¢)/(3c),
81‘414: - 1/800150400, 81’2’3: - 1/86400,

Ay10=—(=1+c)/(20),
80’4’4: 1/812851200, 82‘2’2: 1/3240,
AO,Z,ZZ 1/288,/40'0‘0: 1,./40’1'1: 1/2,
83’3’4: 1/7620480000, 51’2'2: - 1/270,
and Agq=Ap21=A120= Aoo2=A020=A001= Ao10
82’3‘4: - 1/571536000, 80’2’2: 1/288, =0.
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APPENDIX B: MATHEMATICAL PROPERTIES OF THE K15(Ug,u;) Kog(Ug, Us)
&, HYPERGEOMETRIC FUNCTION Ko(Uq,Uy,Uz)= Ka(Us) , (B8)
The mathematical properties of the hypergeometric func-
tion ®, are summarized here. We had to develop all the Kia(uy,ug)=[1—uj—ug]n~tre, (B9)
formulas here presented sinde, never had been studied
before nor, to our knowledge, even proposed. Such proofs Kj(uj)=[1—uj]’/i*“1*1, (B10)
required some degree of tedious algebra here avoided.
We have tried to be as general as possible, following 1 , , (y)
the items of a mathematical table [24,25. FJ:F(aJ)Fi o I “T(y-ap) (B11)

Do(ay,@z,@3;v1,72,Y3:21,22,23) (shortly denoted byb)
is a generalization ofb,. In particular, ®4=®o(y1=7v2  with |=1,2 and=1,2,3. The lower limits of integration 6%
= y3— a3). In this appendix the following notation is used: gre u,;=0,u,=0, andu;=0, and the upper one are-lu,

6=v-;,j=123. _ —Uu3=0, 1-u,—u3=0, and I-uz=1. As a rule, the base
(i) Differential equationsintroducing the degenerate hy- of the kernelgthe terms in squared brackets in E(&9) and
pergeometric operator (B10)] must always be positive. Note that

K1 AUy, ug)[Koo(Us,uz)] is a @) kernel which “con-
(B1) structs” the Coulomb interactions represented by the Cou-
lomb parametera, anda; (a, andas). On the other hand,
Ks(uj) is g F4 kernel which “deconstructs’a; interaction
so thatH(«,v,2)1F1(«; v;2) =0, we proved thatb, satis- since it is accounted twice.

9 ]
H(a,y,2)= z—+ (y— z)——a
9z°

fies the following system of differential equations: (iv) Asymptotic limits Using the limit, whenz;|—c,

d 'z iema

H(ay,v1,21) + a1+21_)_ 0=0, 1Fi(a;;y;32) - Tz "elam, (B12)
9z, 924

where Refy;)>0,e;=sgrfIlm(z;)], it can be found that the

d following limit holds:

H(az Y2, 22)+ 052+ 22 0,)2 ®0 0 (BZ)

72 72 Oy 5z, “z, 2z, “3exp< ijgl €Z] ﬂ'aj) ,

H(as,v3,23) ®,=0.

+ +
A 9z,025 " 292,025 (B13)
(i) Series expansiongrom Eq.(B2), one can obtain the as|z|—»,j=1,2,3 providing the Redmond asymptotic con-
power series expansion ditions.
(v) Differential relations.The derivatives ofb satisfy

k I _m
Zy Z; Z3
Do= >, Prmiq T mr (B3) P
Kim o ’ ZlECI)OZ—alCI)O-FalCDO(al-‘rl), (814)
where '
J
(al)k(aZ)l(a3)m( Y3~ a3)k+| Zz_q)oz - a2¢)0+ azq)o(a2+ 1), (B].S)
Pklm: ( (B4) 1'722
YOKY21(¥3)k+1+m
(iif) Integral representationsThe hypergeometric func- n _ _
tion ®, has the following integral representations: (7’3)ﬂ(9_zr§¢0_(a3)ﬂ¢0(a3+n'7’3+n)’
1
d=T f dusexp(Uszz) U3 K s(us) d a] @
0773 R s IS ——Dg=— Ly Do(art1iyi+ Ly, 1ys+1)
521 Y1 5
2
X F Y (l—Uug)z B5 a1
1L oFatearimi(1-ug)2) (B9 + eabontlytlystl), (819
3 ith
=f f f du,du,dug[ | Fjexr(ujzj)uj“i_l wit
R j=1
8, 3
X Ko(Ug,Uz,Us3) (B6) €237~ Yo 3 (B17)
3
111 1 i 1 1 -
:f J j dulduzdugﬂ F-expl(u-zj)uf’Vl titie(\sll') Kummer relationsOne can prove the following iden

X Kj(uj)exp(—uzU;z; —UsUyZy), (B7) Oo=e1Dy(51,a5-3;,Y1-3:—21,22,23—21), (B19
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0

(a’l)r(az)r(a’B)r(V)Zr
B19 D A(z3=0)= -1)'
(19 A(7370= 2 (=) (N y+r=1)(y—a3z)(1,)

X275 1Fq(a+r1;y+2r;2y)

— AZ . .
Do=e20y(ay,0;,a3;v1-3:21,— 22,23~ 23).

For the third variable;, the Kummer rule is not so evident,
but for @, the relation is simple and it reads
X Fi(ag+r;v+2r;2,). (B29)
Dp=e8bp(ay 5,03~ @1;Y3, 20— 23,22, — Z3), (B20)
2 L APPENDIX C: CONNECTION WITH THE FIRST
Pa=eSDp(a1-p, 03~ @2, 73121,2,7 23, Z3). (B21) PERTURBATIVE ORDER OF THE
. . . . CORRELATED-FADDEEV APPROXIMATION
(vii) Hypergeometric expansions€Expanding the ;F;
functions in Eq.(B5), we can prove the following relations: We prove here tha®, with c,=1+ias can be consid-
ered as the fractional form of the correlated-Faddeev ap-
(aq)k () (@3)ki proximation®, as explained next. The integral representa-
T (vDk (Y21 (Y3t tlt_)r! of <_I>A contains a normalized kernek, in the
’ tridimensional spaca, ,u,,u; [see Eq(B6) of Appendix B|
(—z)K (=2 which can be rewritten as

Kl l—llFl(a3+k+|,'y3+k+|,Z3)

0=

K K
ICA(ul,UZ,us)=;CA:[ l’ff/]C[sz?]Cl] . ©D

X Fi(ap+ K y1+K;zp) 1Fi(ax+ 1 y+1525).

(B2 ke, =Ny (U Ug) (1= 1,2) andK =N K (u)) (] =1,2,3)

Other transformations can be obtained using @6) of Ref. &€ the kemels of thé, ; andF; " hypergeometric functions,
[22] respectively, multiplied by the normalization constant. The

kernel corresponding t® ¢ is simply

r
PPN YL VG TR ) Ke= Koot Ko —KifGos. (€D
r (y—az)(y—az)y 1!
Now it is evident that this expression contains the same

XPy(ar+r,ax+r,a3;y—azt2r;z1,23,23). terms as the fractional form given by EG1), but in a linear
(823  form. Conceptually, fractional forms become linear forms
transforming multiplication by sum and division by subtrac-
(viii ) Contiguous relationsThe following contiguous re- tion operations. In this way the kernels seem to behave in a
lations hold: similar pattern to the Green operators; a many-body operator
can be cast in lined26] as well as fractional formg27].
1 Further, when the pair interaction is discoupled, by setting
0=P¢g—Pp(a;—1)— —€2;Po(y1t1,y,+1,y3+1) K, 3— K, K3, in either Eq.(C1) or in Eq.(C2), we arrive at
" the same result,

1l «
- §2 €221 Po(a+1;y1+ 1,y,+1,y3+1), (B24) Ka Ke—K1KoK3=Kes,
1 02
which is the kernel of th&€3 approximation.
1
0=®o=Po(art D)+ e221Po(@rt Livi+ Ly, APPENDIX D: EXPANSIONS IN TERMS
OF THE NATURAL BASIS
1 ayp ~
+lys+1)+ " 5 @1 Po(art Lazt Lyt 1y, The first coefficientsAk = Ak/(a+k)g, corresponding to
1o Eqg. (38) are
+1,y3+1), (B25)
° Ak=kay, (D1)
and similar relations. )
(ix) Special casesWhen one of the coefficients is zero, Ak _ —|a+ka
then 1 1+2k K

(I)A(a’]_:O):CDA(Zl:O):CI)(Zz)(aZ,a'?,;7;22,23), k_ (_ia+ k)(—ia+ k+ 1) a
(B26) 27 2(1+k)(1+ 2k)(3+2k) 7K

@A(azzo):qu(zzzo):<p(22>(a,a3;y;zl,zs), and forK=2 the coefficients may be defined recursively by
(B27)  the formula

ia—k—K+1
Dp(@1=0,a,=0)=DPp(2,=02,=0)= 1F(a3;7:23), Ak = ( ) Ak (D2

(B28) 2 Lk+K—-1)(2k+K+1)
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The first coefficientsf%ﬁ'kz B¥/(a+k)k, corresponding to
Eqg. (39) with n=1 are

B3 =0,
Bi*=—ay,

—2ia—1

1k_
B2 = 152K (31 2K) &

(D3)
3a?—3ia—(1+k)(2+k)

Bik= a
3 T 4(1+Kk)(2+k)(1+2k)(5+2k) K

W 2ia®+3a’—i(7+8k+2k?a—(1+k)(3+Kk)
4 T 2(11K) (BT K)(1+2K)(3+ 2K) (5+ 2K) (7 + 2K) 2k

The first coefficients corresponding to E§9) with n=2 are

K_p2k_
B3*=B%*=0,

APPROXIMATE WAVE FUNCTIONS FOR TWO . ..
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B3k=1a,,

4ia+2

2k_
By = T 2K (51 2k)

—5a%+5ia+(1+k)(3+k)
(1+K) (31 K)(1+2K)(7+2K) 2%

B%zz

The first coefficients corresponding to E§9) with n=3 are
By*=B}*=B3*=0,

B3 = —1a,

—6ia—3 G4

3k_
B = T2 (74 2k X

21a’—2lia—3(1+k)(4+k)
(1K) (A+K) (1+2K)(9+ 2k) X

B3k—
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