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The relativistic multichannel theory has been applied to calculations of cross sections of dielectronic recom-
bination on Hé. A first-order approximation is adopted for the radiative process. A correction based on
isolated resonance approximation is used for the very narrow resonances amohy theates to include the
radiation width. Twelve partial cross sections are calculated for bothltié 2nd 3nl’ resonance states with
n<5. The convolved cross sections for the 3 states are in good agreement with those of the observations.
A quantitative discrepancy for the=4 andn=5 states may be attributed to thelependence of the field
ionization and the radiative decay during the time of flig1050-29479)02611-¢

PACS numbgs): 34.80.Kw, 32.90+a, 32.80.Hd

[. INTRODUCTION diative process is treated in the first-order approximation ne-
glecting radiation width. For the I@l'(n=3) resonance
Dielectronic recombinatiofDR) [1] is an atomic process states, it is necessary to take into account the radiation width.
of practical importance and of fundamental physics interesf correction is made to the original calculated DR cross
[2-5]. In astrophysical and laboratory plasmas, DR can afsection assuming that the isolated resonance approximation
fect the ionization balance of plasmas, since this procests valid for such very narrow resonance states. The present
makes the ionization degree of target ions change. It is alstesults for both the ' and 3nl’ resonance states with
an important mechanism of energy loss of plasmas due to the<3 are in good agreement with the experimental measure-
emission of photons in the process. In order to study thenent. A discrepancy exists for the resonance states mith
kinetics in high-temperature plasmas, DR rates must be pre=4,5 in both energy regimes. This discrepancy may be at-
dicted accurately. In the fundamental research of atomidributed to the field ionization that depends on both the an-
physics, DR provides us with a tool with which to study gular momentum and principal quantum number of the outer
electron correlation, relativistic effects, and radiation damp-electron. The radiative decay of the resonance states during
ing. A great deal of doubly excited intermediate states ar¢he time of flight may affect the experimental measurements
involved in DR processes. These states, especially the widthlso. For the B’ states, besides th&° term[10], which
of such states, are sensitive to electron correlation. It is weltorresponds to total angular momentum and padfy
known that relativistic effects are important in heavy atoms.=2~, 37, and 4 in the present calculations, the symme-
However, it was observed recently that the relativistic effectgries with J7=1", 2%, and 3" contribute significantly to
play a significant role in DR of the light € ions[6]. The  the total DR cross sections.
“nonautoionizing” terms &2 2p4d 3D and 1s? 2p4f 3,
which are not expected to contribute to DR due to negligible
overlap with the continuum, were quite surprising found to Il. THEORETICAL METHODS

have the strongest DR resonance peaks. The effects of radia- . o )
tion damping have been seen in the electron-ion collisions |he isolated resonance approximation is widely used in
[7]. However, it is prominent in the DR proceksy. calculations of DR cross sections for various atomic systems.

The present work is an extension of our previous calculaS€Veral general methods have also been proposed for non-

tions on the doubly excited states of atomic helif@h In  isolated resonance calculatiofisi—19. Here, we only out-
that work, the positions and widths of the doubly excitedline the theory of Davies, Bell, gnd Seatdmereafter referred
states 2pn® and 2ond in 1P, symmetry were calculated. to be as DB$[14,1€6 adopted in the present work, and our

Comparisons with the accurate photoabsorption experimentgFheme to calculate DR within the framework of the RMCT.
values showed good agreement in both the positions and the
widths. The present extension is inspired by the experimental
observatior]10] of the DR cross sections on Heespecially

by that of theAn=2 transition that involves|al’ resonance
states. In this kind of transition, the isolated resonance ap- The DBS theory starts from the continuum wave function
proximation gives very poor resulfd1], since more Auger Wz and bound wave functiod’; of an atomic system ex-
channels are possible while electron correlation is importanicluding the radiative field. Based on the atomic wave func-
In the present calculations, the continuum wave functions ofions, DR probability can be expressed as

helium are computed with the relativistic multichannel

theory (RMCT) [12,13 and the bound wave functions are PDRZE Rk 1)
obtained using the configuration interaction method. The ra- ! 7

A. The nonisolated resonance theory
for dielectronic recombination
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with Rydberg states as well as the continuum stateg)(are
treated as channe]d2,13. The vectors satisfy the orthogo-

. - nalization conditions
SﬁM,Jz_ZWIE (1+L),3;:1I:,B’M'Dlvﬁ/#,’ (2)
B!lu/
o <99n|§0n’>:5nn’v (103
where matrixL is
iel Pire =8i:0(e—€' y 10b
- DT(E')D(E’) <§D] |‘PJ > i ( ) ( )
L(E):WZDT(E)D(E)—mPf dE'————, (3
(E'-E) (onl@jey=0. (109

and the P indicates the principal integral. The element of the 5, eigenvector¥ for the whole atomic system can be
radiative transition matribD(E) is expanded as

D; pu(B)= (Wil PW|W ), @)
whereP() s the dipole operator of radiative transitions with V= ; Anent EI feCBiE¢ied6’ @3
photon polarizationu.
For the doubly excited states of neutral atoms with theyith the coefficientsA, and B, decided by
lower principal quantum number, the radiative width is much
less important than the autoionization width. The first order HY=EW. (12)
theory with

Sy.i=—2miD, 5) Projecting on both sides of E¢L2) with (¢,| and(¢;e|,
" s respectively, gives

is valid for these cases. In the present calculations for he-
lium, we use the first order approximation to calculate the (0) _
DR probabilities involving the doubly excited statemnP Ep A”’+; A”V”"”Jrzi ECBifV”’v‘de_ EAnr,
and 3nl’ with n<5. With the simple approximation for (133
radiative process, we can focus on the calculation of the
continuum wave functionV';¢ in which electron correlation
is very important. The configuration interaction expansion is E'B;/g: + >, Anvi,E,,n+2 f BiVig jde=EBj/g:,
adopted for the final bound wave functidng. n o7& (13b)

B. Continuum wave functions . . .
whereV,, ,=(¢.|V|¢,) is the matrix element for discrete-

Consider an atomic system with a Hamiltonian discrete configuration interaction®,, ;z=(¢./|V|@ie) that
for discrete-continuum interaction®; g, e = (@i e/|V| pig)
H=Ho+V, 6) that for continuum-continuum interactions. Since the residual
interactionV is a short range potential obtained with the
Dirac-Fock-Slater approach, the continuum-continuum inter-
actionV;j.g: g as well as the discrete-continuum interaction
H0=2 [Ca;-p;+ BiMCE+Vscrri)] (7) Ve is convergent. In the derivation of Eqél3a and
: (13b), the energy eigenequatiofBa) and(9b) for the atomic
SCF HamiltonianH,, and the orthogonalization conditions,
Egs. (103, (10b), and(10¢ are used.

where

is the atomic self-consistent-fie[6CH Hamiltonian and

762 o2 In the continuum energy regime and wher:E(”, the
V=2 — r——VSCF(ri) +_2 = (8) formal solutions of Egs(13g and(13b) [20] are
i i i>j Tij

is the residual interaction. In the present calculations, the A(iE)= Kn,ieNie (143
Dirac-Fock-Slater approach is adopted to obtain the atomic n E— Ego) '
SCF potentialVgc(r). The eigenvectorsp, for discrete
states andp;. for continuum states of atomic SCF Hamil- K, .
tonianH, form a basis set for atomic wave functions. These B .(iE)=| 8/ S(E—e€)+ p'slE Nig, (14b)
basis vectors are determined by E—e

Hoon=EP¢p,, (9a)  where P indicates the principal integral aNg is a normal-

ization factor which will be derived in the Appendix. The
Hopjc=€@j.. (9b)  first term on the right-hand side of EGL4b) represents the

incident wave from channel with energyE. Substituting
The finite vectors belonging to discrete configurationg)(  Egs.(148 and(14b) into Egs.(13a and(13b), we obtained
are included in the basis set explicitly and the infinite highthe Lippmann-Schwinger type equations,
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Vn nKnJE f Vn’ieKiejE
, e+ —+ L L et
Kn JET Vn JE 2 E&O) EI P . E_e df,
(153
I ’ K i
z E’, n,jE
KJ!E! JE V !E! JE+ = E EE]O)

! ! EK E-
+2 Pf %de. (150

Substituting Eqgs(14a and (14b into Eq. (11), the con-
tinuum wave function for a specific incident wayg: is

nIE
\IIIE E (0)

N
2 f i"eiE 'E<p,6de

+ ¢ieNig - (16)

The first and second terms on the right-hand side of(Eg).
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C. One discrete state and one continuum state

Consider the situation of one discrete state=(l) and
one continuum (= 1) which have been previously diagonal-
ized, namely,V,,=0 and Vg, ;¢=0. The Lippmann-
Schwinger type equations are reduced to

Ke=V +PJ Ve g, (22)
ET VE y
e E—e
Ve Ke
KE',E——E_E$1 (23

E,=EQ. Substltutmg Eq(23) into Eq. (22) leads to

respectively represent the resonance component and the scefth

tering waves for the specific incident wayg: . It should be
noted that the eigenvecto¥s;z (i=1,2, .. .)corresponding

to different incident channels are not mutually orthogonal.

KE_Wa (24)
1= E-E,
\Vj 2

F(E):PJ Lj' d (25)

The eigenvectors corresponding to the same incident channel

can be normalized as

(Vig|Wig))=6(E—E"). (17)

The normalization factoN;g is found in the Appendix to be

-1/2

NiE: ’ (18)

1+ a2, KA(E)
J

whereK;; (E) is the on-the-energy-shell elementtof g e,
namely,
Kii(E)=Kjg i - (19

The asymptotic behavior of the eigenvecy: at larger is

1 [2
®iF 7T—kism§i
1 /2
+; ®JF 7T_kj[_7TK“(E)]COS§j)NiE'

which is different from theS-matrix asymptotic behavior
used in Refs[14,21,19. The asymptotic behavior E¢20)

r—oo

\I’iE—>A

(20

causes the total incident wave, which is a superposition of
different J™ partial waves, to be a modified plane wave at

larger.

To calculate the DR probability, the continuum compo-
nent of ;¢ is neglected and only the resonance component
is left. Therefore, the dipole transition elements for DR can

be expressed as

n,jENJE

Dj pu(E)=(Wje|PW|W 5)= E—(m< o PWIW ).

(21)

Substituting Eqs(23) and(24) into Eq. (18), the normaliza-
tion factor is written as

|E_ Ega_ F(E)|
{[E-E,—F(E)]?+ m?Vg}H?

Thus, the coefficienf; of the discrete state, is obtained,

KeNg
- E,

Ve
{[E—E,—F(E) )+ m2VE¥>

(27)

This equation is coincident with Eg13) of Ref.[20].

D. Final bound wave functions

Based on the configuration interaction theory, the bound
wave functionW, of final states in DR processes can be
expanded as

qfﬁ=§ Av(B)¢n - (28)

The coefficients A,(B8) are obtained by solving the
eigenequation

> [(E=EQ)8pn + Vo JA, =0. (29

Ill. CALCULATIONS AND DISCUSSIONS

The calculations start from the determination of the SCF
potentials of atomic helium. To make the low orbitals hydro-
genic, we generate a SCF potential which is obtained by the
self-consistent iteration procedure in a fictitious configura-
tion of 2p333de8kys,. This potential makes the
1s, 2s, 2p, 3s, 3p, and 3 orbitals very close to hydro-
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genic orbitals[9]. All the required bound and continuum The Auger rateA, radiative rateR, and positionE, for each

orbitals are calculated in this potential. resonance state are obtained by fitting the DR probability
The channels dal;, 2sal;, 2pyal;, 2pgzal;, 3sal;, PPR(E) to

3pyAalj, 3pseal;, 3dgzal;, and Isal; are taken into ac-

count in the calculations. For each symmetry of the total AR

angular momentum and parity”, the quantum numbel; PPRE)=

runs over all possible values according to tjecoupling (E—Ep)?+ ; A?

scheme. For bound orbitala,represents the principal quan-

tum number and runs frort+1 to 6 in each channel. For in the vicinity of the specific resonance state. In the energy
continuum orbitalsa represents orbital energy and takes 15regime of the 8nl’ states, there are no narrow and strong
values from 0.02 to 20 a.u. in each channel. The low liegit  resonance states found. This is because of the existence of
of the integral for each channel in E4.6) takes the value of e 9 ¢’ Auger channels. The rates of Auger decay of the
the middle energy between the states with the principal quang| " states through these channels are very large. This

t“.m ’?“mbers > and 6. The ba.sis wave T““C“@{‘W“h(g?e makes the radiation width negligible compared with Auger
principal quantum number 6 is normalized &e—E,”).  \\iqth

Therefore, all the Rydberg pasis states wif[h a principal quan- |, order to compare with experimental measurements di-
tum number greater than five are taken into account in theachy the calculated DR cross sections are convolved with
integral. _ the electron distribution of the pseudo-Maxwellig@®] with

To resolve the resonance states in each symni€tryhe  yhe yertical temperaturél, and the longitudinal temperature
total energyE is scanned. The effective principal quantum T|. T, and T, are determined from a fit to the observed
numberwv of the first closed channel is used to control theshape of the DR resonances. Corresponding to [R6f, T,
energy step. We tak&dv=0.01 as a basic step which is the andT are equal to 0.15 eV and 0|0 4 eV, respectively.
upper limit of the real step. The real step is autoadjustable t0 1he DR cross sections for 12 partial waves with the total
insure that the difference between the DR cross section in th&ngular momentum from O to 5 in both parities are calculated
neighbor points is less than 7.5%. With this scheme, somg, o energy regime wherel2l’ doubly excited states lie.
very narrow and strong resonance states are resolved in tg\e corrected partial DR probabilities are shown in Fig. 1.
energy regime of thel|” states. This results in an overes- t,5 regonance states vary periodically with the effective
timate of the total DR probability, since the radiation width principal quantum number except for some very narrow
is neglected in the chculat_io@S]. A correction for the origi-  giates The omission of narrow states due to the present scan
nal DR probabilityP™(E) is adopted in the regime step of energy have negligible effect on the total DR prob-
(E—Eg)2+ 1 A2 ability. In the higherv part, more resonance states appear as

0 4 ) more angular momenta are possible. The corresponding con-

(E—Ep)%+ 2 (A+R)? volved partial cross sections are shown in Fig. 2. The mag-

PPR(E)=PPR(E)
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FIG. 2. Convolved partial di-
electronic recombination cross
sections corresponding to Fig. 1.
A pseudo-Maxwellian distribution
with the vertical temperature,
=0.15 eV and the longitudinal
temperaturel|=0.8<10"* eV is
used.
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nitude of partial cross sections near 40 eV in decreasing or- Figure 4 shows the calculated partial DR probabilities in
der are from 2, 37, 3%, 47, 27, and 1" symmetries. The the energy regime of thelBl’ states. The values are much
other partial waves contribute less to the total cross sectiorsmaller than those of thel2l’ states since thel2l’ Auger
The total convolved cross sections are shown in Fig. 3 alonghannels are possible for thénd’ states. Figure 5 shows the
with the experimental results of DeWiet al. [10]. For the  convolved partial cross sections in this energy regime. Only
2Inl’'(n=3) states, the calculated results are in excellent;y partial waves with1”=1", 2+, 27, 3*, 37, and 4
agreement with those of experiment. For thé|2 states, the  contribute significantly to the DR cross sections. The situa-
calculated_ p93|tlpn agrees Wlth that of the observation, €Xsion in this energy regime is more complicated than that in
Eepththat ('jt is_higher ]:’:mr(]j W|d|er.|Fo:j thdfilt states, Fr;]e N the 2nl’ states regime since more open channels exist. The
i'g rtin?nnt pl)osn|t|onbo ¢ t re r?ar(r;uvst? peak agree with they, . doubly excited states can decay radiatively to both the
experimental ones, but are harrower. 1snl bound states andlgl’ lower-lying doubly excited

10 ¢ states. The atoms in such states decaying to the bound states
9 contribute to the DR cross section in the experiment. The
B : atoms decaying to the lower-lying doubly excited states
8 8 . 2Inl” may undergo a further radiative decay to some bound
2 T states and then be recorded by the detector. Another com-
g 6Ff petitive decay path for thel@l’ states is the Auger process.
§ 5 i The atoms undergoing an Auger decay could not contribute
z B to the DR cross sections in the experiment. Since the Auger
] 4 : decay is dominant for the doubly excited states of helium,
g 3¢ the 3nl’ doubly excited states that decay througml2
2 Lt states will rarely contribute to the DR cross sections. In the
e B calculations we only include the bound statesnl as the
é 1 : final states and neglect the cascade effect throulgh'2

0= states. Figure 6 shows the convolved total cross sections in

1 SRR R this energy regime along with the experimental data. Simi-

32 34 36 38 40 4 larly to the 2nl’ states regime, for thel3l’ states, the

calculated results are in good agreement with those of ex-
periment. For the R4’ states, the calculated peak is wider

FIG. 3. Comparison of the convolved dielectronic recombina-ONn the high-energy side than that of observation. For the
tion cross section with the experimental measurement forthe2 3151’ states, the calculated peak is a factor of two higher
states of He. than that of the experimental one.

Electron Energy (eV)
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FIG. 4. Similar to Fig. 1, but
for the 3nl’ states and without
the correction.

The discrepancy forlal’, 3Inl’ (n=4,5) states may be static electric field. The states that can survive field ioniza-
attributed to the existence of the static external field. In theion were supposed to be those witksn,,,,,~5. As Badnell
experimenf10], a static magnetic field was used to select theanalyzed[23], the initial field-ionized state is not onin
ions with different charges. The moving atoms or ions felt adependent, but aldadependent. The tightly bound lowér-
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for the 3Anl’ states.
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APPENDIX
Substituting Eq(11) into Eq.(17) gives the normalization
condition as
b . L . L.
44 45 46 47 48 49 En: An(E,i)ALE ,l)+§j: JBje(EJ)Bje(E Ji)de
Electron Energy (eV)
=S5(E-E). (A1)

FIG. 6. Similar to Fig. 3, but for thel81’ states. ) )
Using the formal solutions of Eq9.14a and (14b) for
states withn=4 cannot be field ionized but the loosely An(E:i),Bj(E,i) leads to
bound hight states can be. Therefore, the DR cross sections
[E Kn,ieKn,ie’ N Kierie  Kigier

for the 241’ and 34|’ states are overestimated in the N(E,i)N(E’,i)
n (E-E9(E'-E% E-E' E-E’

present calculations as all the possibleare taken into ac-

count. On the other hand, recombination into the states with

n greater tham,,,, can survive field ionization if the outer - Kieie  Kjeier
electron radiates to a final state beloyy,, during the time- +o(E EH; & (E—€) (E'—¢) de
of-flight from the cooler to the analyzer. For thEs2' states,

although the DR cross sections are overestimated in the cal- =38(E—E’). (A2)
culations the field-ionizing survival states with>n,,y ) .
compensate the field ionized part of the5P states in the 1he factor /(E—e€)(E’—¢)] can be resolved into a partial
experiment. The 15! states seem being bound more looselyfraction plus a singular terf20] according to

than the 251" states. More Bl states are field ionized and

the states witm>n,,,, can not compensate the lost. The : — 1 ( i 1 )
wider side in experimental results at the high-energy part (E—¢€)(E'—€¢) (E—E')

near both the 51" and 351’ states may be due to the states

with n>n, .4 also. +725(E—E") S

E—¢ E-¢

! E+E’
IV. CONCLUSIONS (A3)

We have calculated the dielectronic recombination cros§ubstituting Eq(A3) into Eq. (A2), we obtain
sections of Hé for the 2nl’ and 3nl’ resonance states
with n<5. The results for resonance states with 3 in both N(E,i)N(E’,i)[Y+
energy regimes are in good agreement with those of the ob-
servations. The discrepancy for tine=4 and 5 resonance
states may attributed to tHedependence of the field ioniza-
tion and the radiative decay of tle>n,,,4 resonance states
to the states witm<ng,, during the time of flight. It is
demonstrated that the accurate atomic wave functions in the KnieKp g
continuum energy regime can be obtained by the relativistic Y= 0=, o
multichannel theory. Although the resolution of very narrow n (E-E)(E'—Ep)
resonances without radiation damping overestimates the DR
cross sections, a correction based on the isolated resonance +> pJ’ KJ'SJEKJ'EJE’(
approximation is possible as the resonances do not interfere ] E—-E’ E
with others. The physical parametéeigenchannel quantum
defect u,, transformation matrixU;,) of multichannel N KiE’,iE_ Kig ie’
guantum defect theory can be obtained in the same calcula- E-E E-E'
tions. The present results also confirmed the reliability of the
calculated parametersu(,, U;, ), which can be applied to Using the Lippmann-Schwinger equatiofia and (15b),
the study of DR for the higim Rydberg resonance states we will prove thatY=0 for E#E’. Finally, the normaliza-
based on the theory of Bell and Seafd®)]. tion factor is written as

1+ 72, Kﬁ(E)}&(E—E')}
J
=S8(E—E'), (Ad)

where

r—¢ E—e€

(A5)
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N(E,i)= (AB)

—1/2
1+ 72, Kﬁ(E)} ,
]

with Kji(E):KjE,iE'

Next we will prove thatY=0 using the Lippmann-
Schwinger equations. Multiplying both sides of EHG5a
with Kn,iyE,/(E’—Eg) and summing oven lead to

E Kn,i’E’Kn,iEzz: Kn,i’E’VnJE_‘_}: Kn,i’E’
n E'-E) " E-EY v E-E]
Vn,n'Kn’,iE
E-E,
V'IEI nKnIIEI
+ pf e tnl B
? ; E'—EQ
K'/EI H
><E'—",Ede’. (A7)
— €
HereV; o n=V, /¢ is used in the third term of the right-

hand side. Substituting Eq15b) into the third term of the
right-hand side of the above equation, one obtains

2 Kn,i’E’Kn,iEZE Kn,i’E’Vn,iE_I_E Kn,i’E’
n E'-E} ‘" E-E) v E-E
Vn,n’Kn’,iE
E-E,

1 ! /K
+2 I#de'

_2 f [l IIE/K de'

_E fj j’€eje ]el'E’dc

Commuting the subscript& andi’E’ in the above equation
yields

Kj’f’,iE
E—¢€

!

(A8)

K i K iTE! V =42 K i
2 n,iE n,(l)E 2 nlE n(l)E +2 n,|E0
n  E-E? n E-E? v E-E?
>< Vn‘n/Kn!’i!E!
E'—E°

n’

+E J' j’e’, |EK] €' |’E’d€,

K/E///
_ij IEJ |Ed6,
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E € € K'/E"/ !
_EJ'IJ 3l J'E J ’IEdEI.
E'—¢€
(A9)

Using Eg. (A8) minus Eg. (A9) and consideringV, s
=Vp pandVj.j o=V i, one finds,

Kn,iEKn,i’E’(E_ E’)

m (E-Ep)(E'—Ep)

_E n|’E’Vn|E z Kn,iEVn,i’E’
'—ED n  E-E?
€ //K

+2 J#df,

_ZJ ]!E! IEKjlelllEldE’
!e! ’ !K

_Ef VirereKiee

(A10)

+2 f J’e’lEKJ 134 |’E’d6,.

Using the Lippmann-Schwinger equation again, the above

equation is reduced to

Kn,iEKn,i’E’(E_E,)
n (E-EJ)(E'—ED)

=Kig,irgr — KirgrietVirer e

+2 J ]’e’l’E’KJ 134 IEde'

Vieie —

(A11)

K/E///
_EJ i’ IEJ |Ed€,.

Finally, considering the symmetry property of tiematrix,
e get

Kn,iEKn,i’E’(E_ E’) N

iE.i’ !_K'r ’i

2 (E—Eﬂ)(E’—Eﬂ) iE,i'E i"E'iE
o3 [,
_2 J i€, |EKJ’e’|’E’dE,,

(A12)

and thenY=0 for E-E’+#0.
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