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Theoretical calculation of the cross sections of dielectronic recombination on He1
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The relativistic multichannel theory has been applied to calculations of cross sections of dielectronic recom-
bination on He1. A first-order approximation is adopted for the radiative process. A correction based on
isolated resonance approximation is used for the very narrow resonances among the 2lnl 8 states to include the
radiation width. Twelve partial cross sections are calculated for both the 2lnl 8 and 3lnl 8 resonance states with
n<5. The convolved cross sections for then<3 states are in good agreement with those of the observations.
A quantitative discrepancy for then54 andn55 states may be attributed to thel dependence of the field
ionization and the radiative decay during the time of flight.@S1050-2947~99!02611-6#

PACS number~s!: 34.80.Kw, 32.90.1a, 32.80.Hd
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I. INTRODUCTION

Dielectronic recombination~DR! @1# is an atomic process
of practical importance and of fundamental physics inter
@2–5#. In astrophysical and laboratory plasmas, DR can
fect the ionization balance of plasmas, since this proc
makes the ionization degree of target ions change. It is
an important mechanism of energy loss of plasmas due to
emission of photons in the process. In order to study
kinetics in high-temperature plasmas, DR rates must be
dicted accurately. In the fundamental research of ato
physics, DR provides us with a tool with which to stud
electron correlation, relativistic effects, and radiation dam
ing. A great deal of doubly excited intermediate states
involved in DR processes. These states, especially the w
of such states, are sensitive to electron correlation. It is w
known that relativistic effects are important in heavy atom
However, it was observed recently that the relativistic effe
play a significant role in DR of the light C31 ions @6#. The
‘‘nonautoionizing’’ terms 1s2 2p4d 3D and 1s2 2p4 f 1,3F,
which are not expected to contribute to DR due to negligi
overlap with the continuum, were quite surprising found
have the strongest DR resonance peaks. The effects of r
tion damping have been seen in the electron-ion collisi
@7#. However, it is prominent in the DR process@8#.

The present work is an extension of our previous calcu
tions on the doubly excited states of atomic helium@9#. In
that work, the positions and widths of the doubly excit
states 2spn6 and 2pnd in 1P1 symmetry were calculated
Comparisons with the accurate photoabsorption experime
values showed good agreement in both the positions and
widths. The present extension is inspired by the experime
observation@10# of the DR cross sections on He1, especially
by that of theDn52 transition that involves 3lnl 8 resonance
states. In this kind of transition, the isolated resonance
proximation gives very poor results@11#, since more Auger
channels are possible while electron correlation is import
In the present calculations, the continuum wave functions
helium are computed with the relativistic multichann
theory ~RMCT! @12,13# and the bound wave functions a
obtained using the configuration interaction method. The
PRA 601050-2947/99/60~6!/4510~9!/$15.00
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diative process is treated in the first-order approximation
glecting radiation width. For the 2lnl 8(n>3) resonance
states, it is necessary to take into account the radiation wi
A correction is made to the original calculated DR cro
section assuming that the isolated resonance approxima
is valid for such very narrow resonance states. The pre
results for both the 2lnl 8 and 3lnl 8 resonance states wit
n<3 are in good agreement with the experimental meas
ment. A discrepancy exists for the resonance states witn
54,5 in both energy regimes. This discrepancy may be
tributed to the field ionization that depends on both the
gular momentum and principal quantum number of the ou
electron. The radiative decay of the resonance states du
the time of flight may affect the experimental measureme
also. For the 3lnl 8 states, besides the3Fo term @10#, which
corresponds to total angular momentum and parityJp

522, 32, and 42 in the present calculations, the symm
tries with Jp512, 21, and 31 contribute significantly to
the total DR cross sections.

II. THEORETICAL METHODS

The isolated resonance approximation is widely used
calculations of DR cross sections for various atomic syste
Several general methods have also been proposed for
isolated resonance calculations@14–19#. Here, we only out-
line the theory of Davies, Bell, and Seaton~hereafter referred
to be as DBS! @14,16# adopted in the present work, and o
scheme to calculate DR within the framework of the RMC

A. The nonisolated resonance theory
for dielectronic recombination

The DBS theory starts from the continuum wave functi
C jE and bound wave functionCb of an atomic system ex
cluding the radiative field. Based on the atomic wave fun
tions, DR probability can be expressed as

Pj
DR5(

mb
uSbm, j u2, ~1!
4510 ©1999 The American Physical Society
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with

Sbm, j522p i (
b8m8

~11L !bm,b8m8
21

•D j ,b8m8 , ~2!

where matrixL is

L ~E!5p2D†~E!D~E!2 ipPE dE8
D†~E8!D~E8!

~E82E!
, ~3!

and the P indicates the principal integral. The element of
radiative transition matrixD(E) is

D j ,bm~E!5^C jEuP(m)uCb&, ~4!

whereP(m) is the dipole operator of radiative transitions wi
photon polarizationm.

For the doubly excited states of neutral atoms with
lower principal quantum number, the radiative width is mu
less important than the autoionization width. The first ord
theory with

Sbm, j522p iD j ,bm ~5!

is valid for these cases. In the present calculations for
lium, we use the first order approximation to calculate
DR probabilities involving the doubly excited states 2lnl 8
and 3lnl 8 with n<5. With the simple approximation fo
radiative process, we can focus on the calculation of
continuum wave functionC jE in which electron correlation
is very important. The configuration interaction expansion
adopted for the final bound wave functionCb .

B. Continuum wave functions

Consider an atomic system with a Hamiltonian

H5H01V, ~6!

where

H05(
i

@cai•pi1b imc21VSCF~r i !# ~7!

is the atomic self-consistent-field~SCF! Hamiltonian and

V5(
i

F2
Ze2

r i
2VSCF~r i !G1(

i . j

e2

r i j
~8!

is the residual interaction. In the present calculations,
Dirac-Fock-Slater approach is adopted to obtain the ato
SCF potentialVSCF(r ). The eigenvectorswn for discrete
states andw j e for continuum states of atomic SCF Ham
tonianH0 form a basis set for atomic wave functions. The
basis vectors are determined by

H0wn5En
(0)wn , ~9a!

H0w j e5ew j e . ~9b!

The finite vectors belonging to discrete configurations (wn)
are included in the basis set explicitly and the infinite hi
e

e

r

e-
e

e

s

e
ic

e

Rydberg states as well as the continuum states (w j e) are
treated as channels@12,13#. The vectors satisfy the orthogo
nalization conditions

^wnuwn8&5dnn8 , ~10a!

^w j euw j 8e8&5d j j 8d~e2e8!, ~10b!

^wnuw j e&50. ~10c!

An eigenvectorC for the whole atomic system can b
expanded as

C5(
n

Anwn1(
i
E

ec

Bi ew i ede, ~11!

with the coefficientsAn andBj e decided by

HC5EC. ~12!

Projecting on both sides of Eq.~12! with ^wn8u and^w i 8E8u,
respectively, gives

En8
(0)An81(

n
AnVn8,n1(

i
E

ec

Bi eVn8,i ede5EAn8 ,

~13a!

E8Bi 8E81(
n

AnVi 8E8,n1(
i
E

ec

Bi eVi 8E8,i ede5EBi 8E8 ,

~13b!

whereVn8,n5^wn8uVuwn& is the matrix element for discrete
discrete configuration interactions,Vn8,iE5^wn8uVuw iE& that
for discrete-continuum interactions,Vi 8E8,iE5^w i 8E8uVuw iE&
that for continuum-continuum interactions. Since the resid
interaction V is a short range potential obtained with th
Dirac-Fock-Slater approach, the continuum-continuum int
actionVi 8E8,iE as well as the discrete-continuum interacti
Vn8,iE is convergent. In the derivation of Eqs.~13a! and
~13b!, the energy eigenequations~9a! and~9b! for the atomic
SCF HamiltonianH0, and the orthogonalization condition
Eqs.~10a!, ~10b!, and~10c! are used.

In the continuum energy regime and whenEÞEn
(0) , the

formal solutions of Eqs.~13a! and ~13b! @20# are

An~ iE !5
Kn,iENiE

E2En
(0)

, ~14a!

Bi 8e~ iE !5Fd i i 8d~E2e!1P
Ki 8e,iE

E2e GNiE , ~14b!

where P indicates the principal integral andNiE is a normal-
ization factor which will be derived in the Appendix. Th
first term on the right-hand side of Eq.~14b! represents the
incident wave from channeli with energyE. Substituting
Eqs.~14a! and ~14b! into Eqs.~13a! and~13b!, we obtained
the Lippmann-Schwinger type equations,
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Kn8, jE5Vn8, jE1(
n

Vn8,nKn, jE

E2En
(0)

1(
i

PE
ec

Vn8,i eKi e, jE

E2e
de,

~15a!

K j 8E8, jE5Vj 8E8, jE1(
n

Vj 8E8,nKn, jE

E2En
(0)

1(
i

PE
ec

Vj 8E8,i eKi e, jE

E2e
de. ~15b!

Substituting Eqs.~14a! and ~14b! into Eq. ~11!, the con-
tinuum wave function for a specific incident wavew iE is

C iE5(
n

Kn,iENiE

E2En
(0)

wn1(
i 8

PE
ec

Ki 8e,iENiE

E2e
w i 8ede

1w iENiE . ~16!

The first and second terms on the right-hand side of Eq.~16!
respectively represent the resonance component and the
tering waves for the specific incident wavew iE . It should be
noted that the eigenvectorsC iE ( i 51,2, . . . ) corresponding
to different incident channels are not mutually orthogon
The eigenvectors corresponding to the same incident cha
can be normalized as

^C iEuC iE8!&5d~E2E8!. ~17!

The normalization factorNiE is found in the Appendix to be

NiE5F11p2(
j

K ji
2 ~E!G21/2

, ~18!

whereK ji (E) is the on-the-energy-shell element ofK j 8E8, jE ,
namely,

K ji ~E!5K jE,iE . ~19!

The asymptotic behavior of the eigenvectorC iE at larger is

C iE →
r→`

AH Q i

1

r
A 2

pki
sinj i

1(
j

Q j

1

r
A 2

pkj
@2pK ji ~E!#cosj j J NiE ,

~20!

which is different from theS-matrix asymptotic behavio
used in Refs.@14,21,19#. The asymptotic behavior Eq.~20!
causes the total incident wave, which is a superposition
different Jp partial waves, to be a modified plane wave
large r.

To calculate the DR probability, the continuum comp
nent ofC iE is neglected and only the resonance compon
is left. Therefore, the dipole transition elements for DR c
be expressed as

D j ,bm~E!5^C jEuP(m)uCb&5(
n

Kn, jENjE

E2En
(0) ^wnuP(m)uCb&.

~21!
cat-
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C. One discrete state and one continuum state

Consider the situation of one discrete state (n51) and
one continuum (j 51) which have been previously diagona
ized, namely, V1,150 and V1E8,1E50. The Lippmann-
Schwinger type equations are reduced to

KE5VE1PE
ec

VeKe,E

E2e
de, ~22!

KE8,E5
VE8KE

E2Ew
, ~23!

where KE5K1,1E , VE5V1,1E5V1E,1 , KE8,E5K1E8,1E and
Ew5E1

(0) . Substituting Eq.~23! into Eq. ~22! leads to

KE5
VE

12
F~E!

E2Ew

, ~24!

with

F~E!5PE
ec

uVeu2

E2e
de. ~25!

Substituting Eqs.~23! and~24! into Eq. ~18!, the normaliza-
tion factor is written as

NE5
uE2Ew2F~E!u

$@E2Ew2F~E!#21p2VE
4%1/2

. ~26!

Thus, the coefficientA1 of the discrete statew1 is obtained,

A15
KENE

E2Ew
5

VE

$@E2Ew2F~E!#21p2VE
4%1/2

. ~27!

This equation is coincident with Eq.~13! of Ref. @20#.

D. Final bound wave functions

Based on the configuration interaction theory, the bou
wave functionCb of final states in DR processes can
expanded as

Cb5(
n

An~b!wn . ~28!

The coefficients An(b) are obtained by solving the
eigenequation

(
n8

@~E2En8
(0)

!dnn81Vnn8#An850. ~29!

III. CALCULATIONS AND DISCUSSIONS

The calculations start from the determination of the S
potentials of atomic helium. To make the low orbitals hydr
genic, we generate a SCF potential which is obtained by
self-consistent iteration procedure in a fictitious configu
tion of 2p3/2

0.53d5/2
0.58k15/2. This potential makes the

1s, 2s, 2p, 3s, 3p, and 3d orbitals very close to hydro-
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FIG. 1. Partial dielectronic re-
combination probabilities for He1

ion in the energy regime of the
2lnl 8 states. The results have in
cluded the radiation width by a
correction based on isolated res
nance approximation.
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genic orbitals@9#. All the required bound and continuum
orbitals are calculated in this potential.

The channels 1salj , 2salj , 2p1/2al j , 2p3/2al j , 3salj ,
3p1/2al j , 3p3/2al j , 3d3/2al j , and 3d5/2al j are taken into ac-
count in the calculations. For each symmetry of the to
angular momentum and parityJp, the quantum numberl j
runs over all possible values according to thej j coupling
scheme. For bound orbitals,a represents the principal quan
tum number and runs froml 11 to 6 in each channel. Fo
continuum orbitals,a represents orbital energy and takes
values from 0.02 to 20 a.u. in each channel. The low limitec
of the integral for each channel in Eq.~16! takes the value of
the middle energy between the states with the principal qu
tum numbers 5 and 6. The basis wave functionwn with the
principal quantum number 6 is normalized tod(e2En

(0)).
Therefore, all the Rydberg basis states with a principal qu
tum number greater than five are taken into account in
integral.

To resolve the resonance states in each symmetryJp, the
total energyE is scanned. The effective principal quantu
numbern of the first closed channel is used to control t
energy step. We takeDn50.01 as a basic step which is th
upper limit of the real step. The real step is autoadjustabl
insure that the difference between the DR cross section in
neighbor points is less than 7.5%. With this scheme, so
very narrow and strong resonance states are resolved in
energy regime of the 2lnl 8 states. This results in an overe
timate of the total DR probability, since the radiation wid
is neglected in the calculations@8#. A correction for the origi-
nal DR probabilityPDR(E) is adopted in the regime

P̄DR~E!5PDR~E!
~E2E0!21 1

4 A2

~E2E0!21 1
4 ~A1R!2

.

l

n-

n-
e

to
he
e

the

The Auger rateA, radiative rateR, and positionE0 for each
resonance state are obtained by fitting the DR probab
PDR(E) to

PDR~E!5
AR

~E2E0!21 1
4 A2

in the vicinity of the specific resonance state. In the ene
regime of the 3lnl 8 states, there are no narrow and stro
resonance states found. This is because of the existenc
the 2l e l 8 Auger channels. The rates of Auger decay of t
3lnl 8 states through these channels are very large. T
makes the radiation width negligible compared with Aug
width.

In order to compare with experimental measurements
rectly, the calculated DR cross sections are convolved w
the electron distribution of the pseudo-Maxwellian@22# with
the vertical temperaturesT' and the longitudinal temperatur
Ti . T' and Ti are determined from a fit to the observe
shape of the DR resonances. Corresponding to Ref.@10#, T'

andTi are equal to 0.15 eV and 0.831024 eV, respectively.
The DR cross sections for 12 partial waves with the to

angular momentum from 0 to 5 in both parities are calcula
in the energy regime where 2lnl 8 doubly excited states lie
The corrected partial DR probabilities are shown in Fig.
The resonance states vary periodically with the effect
principal quantum numbern except for some very narrow
states. The omission of narrow states due to the present
step of energy have negligible effect on the total DR pro
ability. In the highern part, more resonance states appear
more angular momenta are possible. The corresponding
volved partial cross sections are shown in Fig. 2. The m
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FIG. 2. Convolved partial di-
electronic recombination cros
sections corresponding to Fig. 1
A pseudo-Maxwellian distribution
with the vertical temperaturesT'

50.15 eV and the longitudina
temperatureTi50.831024 eV is
used.
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nitude of partial cross sections near 40 eV in decreasing
der are from 21, 32, 31, 42, 22, and 11 symmetries. The
other partial waves contribute less to the total cross sect
The total convolved cross sections are shown in Fig. 3 al
with the experimental results of DeWittet al. @10#. For the
2lnl 8(n<3) states, the calculated results are in excell
agreement with those of experiment. For the 2l4l 8 states, the
calculated position agrees with that of the observation,
cept that it is higher and wider. For the 2l5l 8 states, the
height and position of the calculated peak agree with
experimental ones, but are narrower.

FIG. 3. Comparison of the convolved dielectronic recombin
tion cross section with the experimental measurement for the 2lnl 8
states of He.
r-

n.
g

t

x-

e

Figure 4 shows the calculated partial DR probabilities
the energy regime of the 3lnl 8 states. The values are muc
smaller than those of the 2lnl 8 states since the 2l e l 8Auger
channels are possible for the 3lnl 8 states. Figure 5 shows th
convolved partial cross sections in this energy regime. O
six partial waves withJp512, 21, 22, 31, 32, and 42

contribute significantly to the DR cross sections. The sit
tion in this energy regime is more complicated than that
the 2lnl 8 states regime since more open channels exist.
3lnl 8 doubly excited states can decay radiatively to both
1snl bound states and 2lnl 8 lower-lying doubly excited
states. The atoms in such states decaying to the bound s
contribute to the DR cross section in the experiment. T
atoms decaying to the lower-lying doubly excited sta
2lnl 8 may undergo a further radiative decay to some bou
states and then be recorded by the detector. Another c
petitive decay path for the 2lnl 8 states is the Auger proces
The atoms undergoing an Auger decay could not contrib
to the DR cross sections in the experiment. Since the Au
decay is dominant for the doubly excited states of heliu
the 3lnl 8 doubly excited states that decay through 2lnl 8
states will rarely contribute to the DR cross sections. In
calculations we only include the bound states 1snl as the
final states and neglect the cascade effect through 2lnl 8
states. Figure 6 shows the convolved total cross section
this energy regime along with the experimental data. Si
larly to the 2lnl 8 states regime, for the 3l3l 8 states, the
calculated results are in good agreement with those of
periment. For the 2l4l 8 states, the calculated peak is wid
on the high-energy side than that of observation. For
3l5l 8 states, the calculated peak is a factor of two high
than that of the experimental one.

-
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FIG. 4. Similar to Fig. 1, but
for the 3lnl 8 states and without
the correction.
th
th
lt

za-
The discrepancy for 2lnl 8, 3lnl 8 (n54,5) states may be
attributed to the existence of the static external field. In
experiment@10#, a static magnetic field was used to select
ions with different charges. The moving atoms or ions fe
e
e
a

static electric field. The states that can survive field ioni
tion were supposed to be those withn<nmax'5. As Badnell
analyzed@23#, the initial field-ionized state is not onlyn
dependent, but alsol dependent. The tightly bound lower-l
FIG. 5. Similar to Fig. 2, but
for the 3lnl 8 states.
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states withn54 cannot be field ionized but the loose
bound high-l states can be. Therefore, the DR cross secti
for the 2l4l 8 and 3l4l 8 states are overestimated in th
present calculations as all the possiblel 8 are taken into ac-
count. On the other hand, recombination into the states w
n greater thannmax can survive field ionization if the oute
electron radiates to a final state belownmax during the time-
of-flight from the cooler to the analyzer. For the 2l5l 8 states,
although the DR cross sections are overestimated in the
culations the field-ionizing survival states withn.nmax
compensate the field ionized part of the 2l5l 8 states in the
experiment. The 3l5l 8 states seem being bound more loos
than the 2l5l 8 states. More 3l5l 8 states are field ionized an
the states withn.nmax can not compensate the lost. Th
wider side in experimental results at the high-energy p
near both the 2l5l 8 and 3l5l 8 states may be due to the stat
with n.nmax also.

IV. CONCLUSIONS

We have calculated the dielectronic recombination cr
sections of He1 for the 2lnl 8 and 3lnl 8 resonance state
with n<5. The results for resonance states withn<3 in both
energy regimes are in good agreement with those of the
servations. The discrepancy for then54 and 5 resonance
states may attributed to thel dependence of the field ioniza
tion and the radiative decay of then.nmax resonance state
to the states withn,nmax during the time of flight. It is
demonstrated that the accurate atomic wave functions in
continuum energy regime can be obtained by the relativi
multichannel theory. Although the resolution of very narro
resonances without radiation damping overestimates the
cross sections, a correction based on the isolated reson
approximation is possible as the resonances do not inte
with others. The physical parameters~eigenchannel quantum
defect ma , transformation matrixU j a) of multichannel
quantum defect theory can be obtained in the same calc
tions. The present results also confirmed the reliability of
calculated parameters (ma , U j a !, which can be applied to
the study of DR for the high-n Rydberg resonance state
based on the theory of Bell and Seaton@16#.

FIG. 6. Similar to Fig. 3, but for the 3lnl 8 states.
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APPENDIX

Substituting Eq.~11! into Eq.~17! gives the normalization
condition as

(
n

An~E,i !An~E8,i !1(
j
E Bj e~E,i !Bj e~E8,i !de

5d~E2E8!. ~A1!

Using the formal solutions of Eqs.~14a! and ~14b! for
An(E,i ),Bj e(E,i ) leads to

N~E,i !N~E8,i !H (
n

Kn,iEKn,iE8

~E2En
0!~E82En

0!
1

KiE8,iE

E2E8
2

KiE,iE8

E2E8

1d~E82E!1(
j

PE K j e,iE

~E2e!

K j e,iE8

~E82e!
deJ

5d~E2E8!. ~A2!

The factor 1/@(E2e)(E82e)# can be resolved into a partia
fraction plus a singular term@20# according to

1

~E2e!~E82e!
5

1

~E2E8!
S 1

E82e
2

1

E2e D
1p2d~E2E8!dFe2

1

2
~E1E8!G .

~A3!

Substituting Eq.~A3! into Eq. ~A2!, we obtain

N~E,i !N~E8,i !H Y1F11p2(
j

K ji
2 ~E!Gd~E2E8!J

5d~E2E8!, ~A4!

where

Y5(
n

Kn,iEKn,iE8

~E2En
0!~E82En

0!

1(
j

PE K j e,iEK j e,iE8

E2E8
S 1

E82e
2

1

E2e D de

1
KiE8,iE

E2E8
2

KiE,iE8

E2E8
. ~A5!

Using the Lippmann-Schwinger equations~15a! and ~15b!,
we will prove thatY50 for EÞE8. Finally, the normaliza-
tion factor is written as
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N~E,i !5F11p2(
j

K ji
2 ~E!G21/2

, ~A6!

with K ji (E)5K jE,iE .
Next we will prove that Y50 using the Lippmann-

Schwinger equations. Multiplying both sides of Eq.~15a!
with Kn,i 8E8 /(E82En

0) and summing overn lead to

(
n

Kn,i 8E8Kn,iE

E82En
0

5(
n

Kn,i 8E8Vn,iE

E82En
0

1(
nn8

Kn,i 8E8

E82En
0

3
Vn,n8Kn8,iE

E2En8
0

1(
j 8

PE S (
n

Vj 8e8,nKn,i 8E8

E82En
0 D

3
K j 8e8,iE

E2e8
de8. ~A7!

Here Vj 8e8,n5Vn, j 8e8 is used in the third term of the right
hand side. Substituting Eq.~15b! into the third term of the
right-hand side of the above equation, one obtains

(
n

Kn,i 8E8Kn,iE

E82En
0

5(
n

Kn,i 8E8Vn,iE

E82En
0

1(
nn8

Kn,i 8E8

E82En
0

3
Vn,n8Kn8,iE

E2En8
0

1(
j 8

E K j 8e8,i 8E8K j 8e8,iE

E2e8
de8

2(
j 8

E Vj 8e8,i 8E8K j 8e8,iE

E2e8
de8

2(
j j 8

EEVj 8e8, j eK j e,i 8E8

E82e
de

K j 8e8,iE

E2e8
de8.

~A8!

Commuting the subscriptsiE andi 8E8 in the above equation
yields

(
n

Kn,iEKn,i 8E8

E2En
0

5(
n

Kn,iEVn,i 8E8

E2En
0

1(
nn8

Kn,iE

E2En
0

3
Vn,n8Kn8,i 8E8

E82En8
0

1(
j 8

E K j 8e8,iEK j 8e8,i 8E8

E82e8
de8

2(
j 8

E Vj 8e8,iEK j 8e8,i 8E8

E82e8
de8
2(
j j 8

EEVj 8e8, j eK j e,iE

E2e
de

K j 8e8,i 8E8

E82e8
de8.

~A9!

Using Eq. ~A8! minus Eq. ~A9! and consideringVn,n8
5Vn8,n andVj e, j 8e85Vj 8e8, j e , one finds,

(
n

Kn,iEKn,i 8E8~E2E8!

~E2En
0!~E82En

0!

5(
n

Kn,i 8E8Vn,iE

E82En
0

2(
n

Kn,iEVn,i 8E8

E2En
0

1(
j 8

E K j 8e8,i 8E8K j 8e8,iE

E2e8
de8

2(
j 8

E K j 8e8,iEK j 8e8,i 8E8

E82e8
de8

2(
j 8

E Vj 8e8,i 8E8K j 8e8,iE

E2e8
de8

1(
j 8

E Vj 8e8,iEK j 8e8,i 8E8

E82e8
de8. ~A10!

Using the Lippmann-Schwinger equation again, the ab
equation is reduced to

(
n

Kn,iEKn,i 8E8~E2E8!

~E2En
0!~E82En

0!

5KiE,i 8E82ViE,i 8E82Ki 8E8,iE1Vi 8E8,iE

1(
j 8

E K j 8e8,i 8E8K j 8e8,iE

E2e8
de8

2(
j 8

E K j 8e8,iEK j 8e8,i 8E8

E82e8
de8. ~A11!

Finally, considering the symmetry property of theV matrix,
we get

(
n

Kn,iEKn,i 8E8~E2E8!

~E2En
0!~E82En

0!
5KiE,i 8E82Ki 8E8,iE

1(
j 8

E K j 8e8,i 8E8K j 8e8,iE

E2e8
de8

2(
j 8

E K j 8e8,iEK j 8e8,i 8E8

E82e8
de8,

~A12!

and thenY50 for E2E8Þ0.
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