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Coherent population trapping in open systems: A coupled/noncoupled-state analysis
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Coherent population trappin@PT) with losses towards off-resonant levels is analyzed on the basis of the
coupled/noncoupled states. We derive that at a long interaction time the noncoupled state is depopulated at a
rate that is decreasing for decreasing Raman detuning. This behavior produces a narrowing of the dark
resonance with the interaction time. The asymptotic evolution of the atomic system is completely characterized
by the effective widthI'yc of the noncoupled state. The analytic expression for this width evidences a
guadratic dependence on the Raman detuning. This dependence implies that the width of the dark resonance
decreases asymptotically with the inverse of the square root of the interaction time. This narrowing law,
independent of the interaction scheme, has a general validity for CPT in open systems. Our analysis points out
the differences between CPT with losses and CPT in closed sydi8t50-294{®9)08707-7

PACS numbegps): 32.80.Pj

I. INTRODUCTION cannot be excited due to selection rules.
The theoretical description of coherent population trap-

Coherent population trappingCPT) was discovered in ping in open systems is not a trivial extension of the early
the interaction of a sodium vapor with a multimode lasertheoretical works on CPT, because in an open system the
field [1]. In that experiment an inhomogeneous magneticsteady-state population of the excited state is zero indepen-
field was applied to modify the Zeeman splitting of the dently of the value of the Raman detuning. In this case the
atomic levels along the laser path within the vapor. Sharpransient regime is not negligible and a time-dependent
decreases of the sodium fluorescert@ark resonances)  analysis is therefore required to describe the properties of
were observed whenever the frequency difference betweedpT in open systems. Recently coherent population trapping
two modes of the laser field matched the splitting betweeRyth |osses towards levels out of resonance has been inves-
two Zeeman sublevels belonging to different ground-statgjgated, theoretically and experimentally, by analyzing the
hyperfine states. Dark_ resonances o_f the same nature WefT schemes established on the sodDipline in a Hanle
also observed in atomic-beam .experlme{lﬁl]s . effect configuratiof7,8]. It was shown that both the contrast

Dark resonances are associal@e4] with a trapping of and the width of the dark resonance are strongly influenced

the population in a (_:oherent superposition of ground state jy the population loss: the contrast is significantly reduced
because of destructive quantum interference between differ- : .
nd the width of the dark resonance decreases without a

ent excitation pathways this ground-state coherent superpo- limit f . ing int tion i A ical
sition (“dark state”) is decoupled from the laser light. In ower limit for an increasing interaction time. A numerica

these early theoretical works the interaction atom-laser fiel@2lysis showed that the width of the dark resonance asymp-
was described by using a three-level atomic system con{pt'cally. sca]es with the inverse of the square root qf the
posed of two ground states coupled to a common exciteftéraction timet for a!l the CPT Hanle schemes examlned.
state by two laser fieldsA( system. The system was as- This is at variance with the case of a closed sysfdinin
sumed to be closed, i.e., the total population of the levelgvhich the optical pumping process into the dark state leads
constituting theA system was conserved. By analyzing theto an almost complete atomic preparation in the nonabsorb-
steady-state solution of the relevant optical Bloch equation#g superposition. There the narrowing of the dark resonance
(OBES it was shown that the stationary population of theis limited by a power broadening term, and such a limit is
excited state exhibits a sharp decrease in the corresponden@gched with a 1/law.
of the two-photon resonance. In this work coherent population trapping with losses is
Later theoretical investigations clarified other aspects ofnalyzed on the basis of the coupled/noncoupled states. The
the CPT phenomenon in a closed three-leAesystem: the analysis is performed for =1—J,=0 transition interact-
time evolution towards the nonabsorbing state was numeriing with two resonantr*,o~ laser fields. A static magnetic
cally studied and the typical time scale determined as a fundield is applied to shift the ground levels. We show that the
tion of the interaction parametef§], the effect of a finite long-interaction-time evolution of the atomic system can be
interaction time examined by introducing in the OBE appro-completely characterized by the effective widtlyc of the
priate relaxation term§6]. However, in most CPT experi- noncoupled state due to the light irradiation and to the ap-
ments with alkali-metal atoms, including the first CPT obser-plied magnetic field. Such a width is perturbatively calcu-
vations[1,2], the A system based on the two ground stateslated. FromI" . the asymptotic law for the width of the dark
forming the nonabsorbing superposition is not closed: theesonance is derived. We clarify that this narrowing law has
population can be in fact lost in other ground-state sublevela general validity for CPT in open systems and is indepen-
that are either out of resonance with the laser light or thatlent of the interaction scheme. Finally, we discuss formally
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a) le) Hg describes the energy shifts due to the applied magnetic
field

HB:gﬂBB(|g!+1><g!+1|_|g!_1><91_1|)l (3)

whereg is the giromagnetic factor andg the Bohr magne-
ton. Finally, V,_ represents the coupling atom-laser field,
which in the dipole and rotating-wave approximation is

Va =hQ exp —iwt)(le)(g,—1|+]|e){g,+1|)+H.c.
(4)

A transparent description of the CPT phenomenon can be
reached in the so-called coupled/noncoupled-state békis

b) ) This basis is composed of the excited stajeand of the two
linear combinations of ground states

5 0= (9.~ 1)+|g.+ 1))/\2, (59

INC)=(lg,— 1)~ g, + 1))/ 2. (5b)

The noncoupled stafdC) is decoupled from the laser field
for any value of the applied magnetic fieii

VaINC)=0. (6)

INC> IC) louT) e .
On the other hand, the magnetic field induces a coupling

FIG. 1. Interaction scheme of the transitipiy=1)—[J.=0) between C) and|NC),
resonant with twar*,o~ laser fields. For the ground state, (&
the {|J5,M)} basis is used, inb) the basis of the coupled/ (C|Hg|NC)= —gugB. (7)
noncoupled states is used.
Finally, the laser fields coupleC) to the excited state
where the sharp difference in the narrowing law of closed

and open systems originates. VaLlC)= V240 exp—iwt)[e). ®

In summary the couplings due to the Hamiltonian
II. INTERACTION SCHEME
. . Hi=Hpg+VaL 9
As a simple system for the study of coherent population
trapping with losses, we consider a transitidg=1)—|J.  are, in the coupled/noncoupled state basis,
=0) interacting resonantly with two*,o~ laser field§Fig.

1(a)]. The CPT system composed of the two ground states (CIH|INC)=—gpusgB, (10
|[Jg=1,M=*1) and by the excited statg.=0) is open: _
the population can be lost in the ground leyaj=1,M (e|H||C)=2:0 exp(—iwt), (11

=0), in the following, indicated asout). We indicate the
partial decay ratel'|g)_jouy by I'oye @nd the decay rates
F|E>H|Jg=1,M=i1>, assumed to be equal, by,/2.

In our analysis the atom is at rest and recoil effects due to
the absorption and+ emission of photons are not taken into |ntroducing the Raman detuning=2gugB/% and the
account. The twar™,o” laser fields are derived from lin- o ; S a ~
early polarized laser light, i.e., they have equal intensity ananel\)N de;r;(srlgirzgtntﬁeeggwssnzge peeeXp(iol), prce
propagation direction. The laser frequensaycoincides with NCe ’

as shown in Fig. ().

Ill. OPTICAL BLOCH EQUATIONS

the atomic transition frequendyvhich therefore will be re- . T,
ferred to asw t00). A static magnetic field of strengtB is PNCNCT S Peet dIMpncc, (123
applied collinear to the laser field wave vector.
Under these assumptions, the Hamiltonian of the system T
. . in ~
IS Pcc= Pee” 0IMpncct 2V20 Impec,  (12b
H=H0+HB+VAL, (1)

be,e: _(:I-"—CV)]_‘inPe,e_z\/EQ ImZe,C7 (129
whereH, is the Hamiltonian of the atomic system in zero

magnetic field, ~ 1+a -~ e )
g Pe,NC™ Trinpe,NC_l EPe,c" \/EQPC,NC:

Ho=7w|e)(e|. 2 (120
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- 1+a_ -~ e _ 1+2a Q2 o\t
Pec=~ 5 LinPeci5PencT] V2Q(pec—pee). N7=— 4m T + ) (16e
(12¢
NSRS P 1Y
: 0 . - 0 8= — a)lint =27 | )
pPne,c=1 EPC,C'H \/EQPNC,e_l ZPNCNC: (12f) (I+a)” Tin Tin (16f)
where we indicated byr the branching ratid",,/T";,. By _ lta 8 02 Q\4
introducing a vectorp formed by the real and imaginary ho== 2 Tin= (1+a)? F_in+o T; (169

parts of the density matrix

The zero eigenvalue corresponds to the eigenvector
def

-

p=(pNCNC:PC.CiPee REPenc, IMpe e, REPe . v,=(1,0,0,0,0,0,0,0,0 (17)

XM pe c,Repnc,c, IMpne,o) (13) e, it expresses the stability of the dark state: an atom ini-
tially prepared in the dark state does not evolve.

In the low-intensity limit all the eigenvalues are real and,
- . except for\ 1, negative. The smallest, in absolute value, non-
p=Mp. (14)  zero eigenvalue determines the time scale for the system to

) _ ) reach the steady state. In the present case the smallest eigen-
In this way the problem of solving the OBEs is reduced toyg)yes are

the problem of finding the eigenvalugs and the eigenvec-

the OBEs can be rewritten as

tors v; of the realBloch matrix M Consistently with the -4 .0° Q 4)
definition (13), in the following we will indicate the first Mo~ 1., TO\T,) ) (18
(second, third,. . .) componen(s) of the eigenvector by
vknene (VkcciVkee, - - - )- By inspecting the corresponding eigenvectogsandv g, we
found that the components; nc neiUs,c.ciUsee, @and analo-
IV. SOLUTION OF THE OBE AT RAMAN RESONANCE gously forJG, are zero. Therefore the eigenvalugg do not

determine the asymptotic evolution of the atomic populations

that reach the steady state with a time scale smaller than
/I\sd. Among the nonzero eigenvalues, whose eigenvec-
ors have nonzero NC,NE€,C,C—, ande,e-components) ;

f§ the one closest to zero. Therefore the populations approach

the steady-state values with the following time dependences:

In this section we examine, in the low-intensity limit, the
asymptotic evolution of the atomic system in the case of zer
Raman detuning. At the steady state a fraction of the initial
population of the CPT system is in the noncoupled state, th
rest having been optically pumped into tleut) state. The
steady-state populatigryc no(>°) of the noncoupled state is

independent of thénonzerg Rabi frequency and can be de- t—so0)— o)ocexy —t/ 7 (199
termined without solving the OBE. A straightforward calcu- PreNd )~ Prend() H )
lation gives po.dt—e)cexy —t/r), (19b)
1
prend ) =pnend0) +pcd 05— (19 Peelt—oe)exp—t/m), (199

with 7=1/\-|. In writing Egs. (19) we took into account

To study the evolution towards the steady state, we detethat at the steady-state the coupled and excited states are not
mine the eigenvalues of the Bloch matrix. At Raman resopopulated.

nance the calculation is straightforward, and the exact ex-
pressions for the eigenvalues are easily found. However, for

. . . . . Discussion
some eigenvalue this expression is very lengthy and will
therefore be reported only to second order(IAl’;,. The Let us now discuss some features of the time secale
eigenvalues of the Bloch matrix are characteristic of the asymptotic evolution of the populations.
The important point for our analysis is that does not
N1=0, (168  present any discontinuous behavior tor-0; i.e., at Raman
resonance the time scale of the asymptotic evolution for a
1+ a closed systemd=0) and a weakly open onex(smal) is
Ao=— Trin* (16D substantially the same. It will be shown that this is at vari-
ance with the situation encountered for nonzero Raman de-
1+ a 1+ a 2 tuning. _
Naa=— 7 Tin~ \/ Trin) -202%, (160 Consider now the dependence s 1/\;| on the loss

parametew. It may be surprising that, at smail, 7 is nearly

5 constant, increasinge. One would naively expect that an

H_“F_ ) ~202, (160 increase of the population loss would result in a decrease of
n ' the asymptotic time scale of the evolution of the populations;

1+«
Nse=— 7 Lint
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/ absent and the population of the CPT system is quickly
le) pumped into theout) state. Therefore we limit our analysis
) to the interval of small detunings for which the rate of trans-
: fer INC)«|C) is much smaller than the transition rgte)
—|e); i.e., for Raman detuning much smaller than the Rabi
: frequencyQ. In the following, the interval of detuningsj|
L /2 L/2)iQ < will be called, for the above-mentioned properties, the
’ trapping region
As in the preceding section, to find the time scale of the

¥ B v asymptotic evolution of the atomic populations we determine
- the eigenvalues of the Bloch matrix. For nonzero Raman
INC) o) detuning they can be calculated using perturbation theory,

FIG. 2. Three-level\ system in which the excited state is inco- obtaining a series i@ for each eigenvalue. Let us begin with

herently depopulated. Couplings due to the laser and to the appliedi Which will be shown to determine the time scale of the
magnetic field are shown in the coupled/noncoupled state basis. @Symptotic evolution of the populations

2
a larger part of the popul_ation being pumped out of the sys- = a(lta) 5 T+ 0(6%) = —C82+0(8%,
tem, the internal dynamics of the CPT system should be 1+2a 40

faster. In the system analyzed so far such behavior does not (21)

apply because a change in the loss parametdirectly af-

fects also the evolution of the optical coherences. In fact, i

the OBE(12) « enters not only in Eq120) for pe ¢, but also

in Egs. (120 and (126 for pe nc and pe c. To clarify this _alta) T _

point, we show explicitly that in the case of a system in 1+2a 402

which the changes in the loss parameteraffect directly

only the evolution of the populations, the time scale for theFor the other eigenvalues, it is clear from the expressions of

asymptotic evolution effectively decreases for increasing Egs. (16), for N, ... \g at Raman resonance, that fér

An example of such a system is shown in Fig. 2. In that casémall enough(a) the real part of,, ... \g is negative and

the population is pumped out of the system not by spontaneb) the eigenvalues,, . .. \g have real parts more negative

ous emission but by means of an incoherent coupling thahan);. The real parts of all the eigenvalues being negative,

extracts atoms from the excited state. The only differencewe conclude that the solution of the OBE approaches zero

between the OBE for the system of Fig. 2 and the onegor t— +<: owing to the population loss all the coherences

previously examined, Eq$12), are in the evolution equa- and populations of th¢|g,+1),|g,—1),|e)} system decay

tions for the optical coherences, E¢§2d) and(129. In fact, to zero.

in the system of Fig. 2 the loss parameter does not enter in Because of the inequality Rg<Re\;<0(j=2,...,9),

the equation foip yc andpe ¢, and the equations for this the time scale of the asymptotic solution is givendoy To

system are obtained from Egd.2) simply by dropping in  determine the expressions for the asymptotic evolution of the

Egs.(12d) and(12e the terms ina. For the system of Fig. 2 populations, we calculated, at the lowest nonzero ordé; in

in the case of weak depopulation pumping from the excitedhe components; yc e V1.c.ciV1ee Of the eigenvector cor-

state @ smal) and in the low-intensity limit the time scale responding to A;. We found that v;nend6)=1

for the asymptotic evolution of the populations is found to be+ 0(48?) Wi1cd o) 5%+ 0(53)1013'9:( 5%+ 0(6%). Thus the
population of the noncoupled state evolves asymptotically as

r)(\/ith

(22)

1 Tin
™ iva) 02 (20) PRCNC=C XED), 2. @3

. ] ] . _ The above expression is valid for an interaction timsuch
which decreases for increasiag as expected in the case in thatth\;>1 (j=2,...,9);therefore we can replace the con-
which the loss mechanism affects only the total population.giantc with the steady-state populatigiye no(0) at Ra-

man resonance.
V. THE TRAPPING REGION To sum up, at long interaction times the population of the

) . . ) o noncoupled state shows an exponential decay
In this section we examine the long-interaction-time evo-

lution of the atomic system in the case of nonzero Raman prend 8,1 =prnend 02)exp( —Tyet), t—ow, (24)
detuning. As before, the low-intensity limit is considered.

For the study of the asymptotic evolution of the system, onlywith T\ the effective width of the noncoupled state due to
the case of small Raman detunings is relevant. In fact, fothe light irradiation and to the applied magnetic field,

small Raman detunings the nonabsorbing superposition is

effectively a trap, and a significant fraction of the atomic I'ye=Cé%. (25
population survives in the CPT system at a long interaction

time. On the other hand, for larger Raman detuning the effedtiere we have implicitly assumed that terms of or@gm*)

of the trapping of the population in the noncoupled state isare neglected, as is also the case in the following.
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0.7

increases; on the other hand, the decrease to zep©ic

0.6 @ limits the possibility of populating the excited state. It is
0.5 ' therefore clear that for CPT in open systems the extension of
0.4 the dark resonance is not limited by the disappearance of the
o 03 ground-state coherence effect, as for CPT in_closed systems,
& 02 but by the decrease to zero of the population of the non-
X 0'1 coupled state.

The knowledge of the effective loss ralgy:, allows us
to derive an analytic expression for the width of the dark
resonance as a function of the interaction time. From Eq.

0

06 I (b) (26) we derive straightforwardly the full width at half maxi-
05 mum
g o4r e [1
2031 AB= " Ver (28)
0.2 b He
01 F with [10] é=0.48. In Ref.[8] the 1A't narrowing law was
0 L L L found through a numerical calculation of the excited-state
-1072 0 1072 population for arbitrary Raman detuning and of the width for
/T the dark resonance. The presented analysis provides an ex-

planation for the general validity of the law It/ for the

asymptotic narrowing of the dark resonance in an open sys-
fem. Because for CPT in an open system the evolution at
cal solution of the OBEs. The constagit for Eq. (26) has been long interaction times is characterized by the effective width

adjusted so that the maxima of the analytic expressiop.gfand | nc Of the noncoupled state, the asymptotic law'tlis de-

the maxima of the numerical solution coincide. The parameters oférmined by the quadratic dependencd'gt on the Raman

the calculation aré=2000l;,,a=2, andQ=0.1;,. The initial  detuning.

condition is pnenc(0)=pc.o(0)=1/2, with all the other density- We can also clarify the origin of the sharp difference,

matrix elements equal to zero. found in Ref.[8], in the narrowing law for the closed system
(a=0) and open systemo# 0). In effect, becaus& ;—0

In the same way, the asymptotic evolution of the populafor «a—0, in the limit«— 0 the expression of E¢28) loses

tions of the excited and coupled states is described by meaning. Fora=0 the eigenvalue\, is zero because the

system is closed: OBEs of Eq4.2) are not linearly indepen-

FIG. 3. Populations of théa) excited andb) noncoupled states
as a function of the Raman detuning. Continuous lines refer to th
analytic expressions, Eq®4) and(26), dashed ones to the numeri-

Pe,el St)y=c’ 8% exp(—yct), t—oe, (26) dent and therefore the characteristic polynomial of the asso-
ciated Bloch matrix is zero independently of the Raman de-
ped S,t)=c"8%exp(—yet), t—oe, (270 tuning. In this case the populations of the CPT system do not
asymptotically approach zero and the expressith is no
where the factors® derives fromv,e. andvy cc, andc’ longer valid. Moreover,\; being equal to zero, the
and c” are constants. The expressioZ), (26), and (27) asymptotic evolution of the system is determined by one of
demonstrate that for CPT in open systems, the asymptotithe eigenvalues.,, ... Ag, and precisely by the one with
evolution of the atomic populations is completely characterthe real part closest to zero. Such an eigenvalue will be, for
ized by the effective widtH yc. nonzero Raman detuning, of the foaf)2+ b &2, with a and

In Fig. 3 the populations of the excited and noncoupledb nonzero constants. In conclusion, the two properties lead-
states, as seen from Eq&6) and(24), are plotted as a func- ing to the law ABx1/\t for an open system, i.e., the
tion of the Raman detuning. For comparison, resultspfor ~ asymptotic exponential decay of the population of the non-
and pyc ne Obtained by numerically solving the OBE are coupled state and a decay rate proportional to the square of
also reported. The very good agreement between the resulise Raman detuning, are not valid in the case of a closed
of the two different approaches confirms the validity of oursystem. In consequence a completely different narrowing
derivation of the expression®@4), (26), and (27) for the law follows.
atomic populations.

B. Depopulation of the trapping region

A. Linewidth narrowing As discussed above and in R8], the depopulation of

The population of the noncoupled state exhibits a narrowthe noncoupled state, with a rate that is decreasing for de-
peak around=0, as seen from Eq24) and Fig. 3b). This  creasing Raman detuning, produces the narrowing of the
narrow peak is the result of the depopulation of the nondark resonance with the interaction time. The theoretical
coupled state with a rate that is decreasing for decreasingmit of the width of the dark resonance for infinite interac-
Raman detuning9]. Correspondingly, the population of the tion time is zero, and this corresponds to a complete depopu-
excited state, Eq26) and Fig. 3a), shows a dark resonance lation of the trapping regiorithe point5=0 has null mea-
around5=0. For increasing Raman detuning there are twosure; therefore it does not contribute to the population of the
competing effects: on the one hand, the coup)N@)« |C) trapping region To complete our analysis, we show that the
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population of the trapping region decays to zero and we deer because of selection rules. The simple case dfal
termine the relevant asymptotic law. Within the trapping re-—J,=0 transition interacting with twar*,o~ laser fields
gion the populations of the coupled and excited states arkas been studied. The analysis has been carried out in the
much smaller than that of the noncoupled state. Therefore weoupled/noncoupled state basis. A detailed description of the

can limit our analysis to the study of the fraction asymptotic evolution of the atomic system has been given.
At Raman resonance the long-interaction-time evolution
frag= f+5OPNC \cds (29 of closed and open systems i§ similar: the dynamics i; domi-
P ) s, ’ ' nated by the optical pumping process that empties the

coupled state, with an asymptotic time scale proportional to
whered, is an arbitrary Raman detuning within the trappingT";,/Q? in both cases. For a nonzero Raman detuning the
region. For large interaction time the population of the non-eyolution of an open system is completely different from that
coupled state is given by E(4); therefore, of a closed system. In fact, for a closed system the steady-
. p state populationshoff thg noncfoufﬁJledR, coupl(tjad arl;d egcited
et s ~ | states are smooth functions of the Raman deturdingn
ftrapocf 0 exp(—CtoT)do \/;erf( VCtsy), (30 also the time scale for the asymptotic evolution varies
smoothly with 5. On the other hand, in an open system the

where for the widthl"yc of the noncoupled state, ERS)  steady-state population of the noncoupled state is not a con-
has been used. In the limit of large interaction time, we uUs&inuous function ofs. At =0 the final fraction of the

the expansion for the error function atomic populatiorpyc nc prepared in the noncoupled state is
) in general significantly different from zero. For any small

erf(x)=1— exp(—x*) (37 honzero Raman detuning the noncoupled state can be com-

Jx pletely depopulated and the corresponding steady-state popu-

lation pnc no( 6) is zero. Correspondingly, the time scale for
that is valid for largex. Thus we find thaff,, follows the  the asymptotic evolution is not a continuous functionsof
law The long-time evolution of an open system can be char-
acterized by the effective widthyc of the noncoupled state

[ exp(— Ct83) induced by the laser and the applied magnetic fields. An
Firap™ Ct 1- JmCt 5 : (32 analytic expression fol ¢ was derived. From this expres-

sion, the asymptotic law of the narrowing of the dark reso-
Retaining only the leading term for largewe get nance was determined. We have shown that the quadratic
dependence of'\c in the Raman detuning leads to an
1 asymptotic law for the width of the dark resonance that is
ftrapocﬁ- (33 inversely proportional to the square root of the interaction
time. This also explains why the it/ narrowing law has a
The asymptotic law33) may also be determined by a nu- 9eneral validity for CPT in open systems, independently of
merical analysis of the CPT/Hanle effef1]. As for the the details of the interaction scheme. Finally, we have clari-
linewidth narrowing, the asymptotic law  for fyap has @ fied the origin of the sharp difference in the narrowing law
general validity because it derives entirely from the quadratidor closed and open systems.
dependence of the width of the noncoupled state on the Ra-
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