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Determination of the scattering lengths of 3K from 1, photoassociation line shapes
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We report threshold scattering properties f5K(f=1) atoms obtained from analysis of experimental
photoassociation spectra of the purely long-rarige, 1, state. The existence of hyperfine structure in the
excited K 1, state and a knowledge of the Hamiltonian structure for two colliding ground state alkali atoms
enables us to obtain information on the sign and magnitudes of certain scattering lengths for ground state
collisions. Analysis of the experimental photoassociation line shapes shows théKtheattering lengths are
between—3.2 and+0.8 nm (—60a, and +15a,, where lo=1 a.u=0.052917 7 nm) for tha 33} mo-
lecular state, betweef4.8 and+12 nm (+90a, and +230a,) for the XlEg+ state, and between 7.9 and
+1.1 nm (—1508, and +20a,) for collisions of twof=1,m=—1 atoms[S1050-294{®9)03612-4

PACS numbgs): 32.70—n, 32.80.Pj, 33.15.Pw, 33.20.Vq

[. INTRODUCTION state. Photoassociation is useful in obtaining scattering
lengths since the Franck-Condon factors which describe the
The development of laser cooling, high resolution photo-optical absorption process provide a sensitive measure of the
association spectroscopy, and more recently Bose-Einsteftodal properties and amplitude of the ground state con-
condensation has resulted in an increasing body of informatinuum wave functior{6,16,17. In the present study of°*K
tion on the alkali dimer molecular potentials and ground statéve analyze line shapes and intensity patterns resulting from
scattering lengths. The first attempts to determine the scatl€ excitation of rovibrational hyperfine levels of states with
tering lengths of K were based on the inversion of boundlu €lectronic symmetry whlqh _adlabatlcally c_orrelate to the
state spectroscopic data in order to obtain very accuratdPs2t4S separated atom limit. The lstate is a Hund's
X3  anda’3; potentials which could then be used for case(c) elld'atl)lat'c potgngal (r:]urve that E_as apgr?jly long range
calculating scattering lengths of KL,2]. Although this pro- potential well created by the spin-orbit avoided crossing of

cedure is fairly successful when applied to[Bj4] where the trt]zt;[elpgjls_:_\;]eisztr;ndlofljr::‘atgsstgt'ghvcgg f?rtst{aig\fgg 4b
mass is relatively small, it has not been successful in any o ' purely long-rang P y

. . g
the heavier alkali systems. Recent history shows that carefltl t:’gg?ﬁﬂ?;:&g%ﬁ)Zﬁg'[sﬂuggéggsjgnbtilegéir'\rfedKfnuEng]er
experimental measurements of elastic collision rates, megg companion papef21] provides a similar analysis of t-he
surements of the last bound states, and/or a join

) . . . urely long range @ state which results from a spin-orbit
experm_”nental-thec_)retlcal anal_y5|s of photoassoc_lanon Sped&/oided crossing between the repulsil, and attractive
are typically required to obtain accurate scattering lengths. 3% * state[18,19) g

The first ultracold high resolution photoassociation ex- 9 =
periments were done using Na in a magneto-optical [tEp
and Rb in a far off resonance trép)]. This was followed by
experiments in Li[7], K [8-10], and Cs[11,12. Careful The experimental setup has previously been described in
analysis of high resolution photoassociation spectral intensidetail [8]. Briefly, a high density “dark spot” vapor cell
ties and line shapes proved invaluable in refining the earlynagneto-optical trap confines a sample of 38&(f=1) at-
values of the scattering lengths of N3] and of the®™Rb  oms with density >10'! atoms/cd and a temperature
and 8'Rb isotoped14]. The measurements in Rb have also~ 350 xK. The trapping and repumping laser beams are pro-
benefited from accurate elastic collision measuremglis  vided by a single mode tunable ring Ti:sapphire laser at
and practically all the scattering length information on Cs766.5 nm and with a total powet300 mW. The photoas-
comes from various collision measurements with the excepsociation is induced by a Ti:sapphire laser with tunable fre-
tion of the recent analysis of thg;Qohotoassociation spectra quencyr; and a typical intensity of<50 mwW/cnt, suffi-
[11]. ciently low that power broadening and Stark shifts of the
Ultracold photoassociation results from the resonant ablines are negligible. The weakly bound, 1state, D,
sorption of light by two colliding ground state atoms, in our =16.2 GHz, is not easily observed with the trap loss detec-
case®K(f=1) atoms, to form an excited bound molecular tion technique commonly used in photoassociation experi-
ments. This is because the lowest vibrational levels of this
state have local kinetic energies that are relatively small and
*Permanent address: Department of Chemistry and Biochemistras a result, when these levels undergo bound-free radiative
University of Maryland, College Park, MD 20742. decay, the resulting atoms typically lack sufficient kinetic
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energy to escape from the trap. To counter this, a secon@ that results from the interaction of the electronic transition
laser is introduced in order to produce an ionization signal.dipole moment with the laser. The resulting line would pro-

In summary, the colliding ground-state atomic pairs areduce a standard Voigt profile if the matrix element in the
excited by the photoassociation photon at frequencyo a  numerator was independent Bf However, because of the
bound vibrational level of the jstate dissociating to the low collision energies the matrix element in the numerator
K(42P,) +K(4S) atomic asymptote. A secon@ellow) possesses an additional energy dependence due to the
photon at v, with \~583 nm and a typical intensity Wigner threshold law applicable foF£'},). In the above
~10 Wi/cnt excites the molecule to a highly excited mo- expression primed quantities are used to denote excited state
lecular resonance below the KD§+K(4S) limit. The labels, where the quantum numbers Bréor the total angu-
highly excited molecules either autoionize or are photoiondar momentum of the systerhfor the nuclear spinp for the

ized by another photon of frequeney or v,. A channeltron  parity, f for the total hyperfine angular momentufre f,

multlpherTE ulsed t% coIIectt !onsltgenetr%te_d ?y the .E[Vr\]'cf[hpm# f,, of the two atomsa andb [24] and/ for the mechanical
cesses. 'Ne laser beam:alis allernated in ime wi € rotation of the two atoms about their center of mass. Any

”app”.‘g bea’?‘ using two _acousto-optlc _modulators in OrOIeE)ther quantum label needed to define the ground and excited
to avoid the direct production of the atomic Kons from the state are designated hy and B, respectively, and, de-

atomic #P;, state populated by the trapping laser. HIgh-seribes the fraction of ground state diatoms in stateThe

reso!utu_an spectra of theu]ngeIsv_=0—7 are obse_rved by parametery, describes the rate of photoionization to all de-
monitoring the ion production while scanning with v, }ection channels

fixed at a broad double-resonance peak with a linewidth of ¢ oy nression for the line shape is essentially identical to

~1 tGHf[hatr;]d g;oK roga_tlor:a: StzrlZJCt_LFLe’ S'm'llar (th the teXpef”'that used in the®®Na, 0, analysis and in the companion
ment with the ™K, 05 state[22]. The resolved spectra o paper on*K, 04 [21], with the exception that the,ro-

the \_/lbratlonal Ie_vels cannot be interpreted with a .S'mplevibrational levels are not states of good angular momentum
rotational analysis. Instead, the features are described b ) S L
', but are instead labeled By andl’ whereF'=J"+1"is

strong rotation-hyperfine couplings even for the 0 level . . .

of the 1, state. The binding energies of the rotational-the total angular momentum including the nuclear sigin
hyperfine levels have been accurately measured with a 0.0dgiPOI€ Selection rules fof) insure that- ={F,F£1} and
GHz uncertainty relative to the barycentéhyperfine P=—P'- Finally Eq.(1) includes a sum over all ground state
degeneracy-weighted centenf the K(42Ps,)+ K(42S) parameters and all excited state levels that contribute inten-
atom limit and have been used to determine precisely th&ly {0 @ given experimental feature.

molecular constants and rotation-hyperfine couplings of the N order to model the photoassociation line shapes it is
1, state[10]. necessary to know the experimental temperaflirand to

calculate each of the transition dipole matrix elements

Il THEORY (651, B QIWES) ). For the latter, we need to calculate the
excited state eigenvalues and eigenfunctions, the ground
Photoassociation line shapes and intensities have previtate wave functions, and the molecular transition dipole op-
ously been used to obtain the scattering lengths of both Narator responsible for providing optical coupling between the
[13] and Rb[14]. The basic approach used here is similar toground and excited states. The theory and computational
the analysis used in obtaining the Na scattering lengths frorfyo|s needed for each of these elements are briefly described
the ZNa, 04 Pphotoassociation spectfd3]. The basis of in the remainder of Sec. IIl.
that analysis is the line shape expression for the free to The wave functions are expressed in a coupled-channels
bound transition for a laser of frequenayand temperature expansion withR-dependent coefficients. The basis set in-

T given by cludes all degrees of freedom associated with electronic or-
bital and spin angular momentum, the rotation of the inter-
S(w,T,v)= > n,(2F' +1) nuclear axis, and nuclear spin. We also make use of reduced
F'p'l BFp/fa basis sets that exclude some degrees of freedom for the pur-
(1) pose of classifying states and developing approximations.
F'v E(+) \|2 For example, it is convenient to make use of the various
- Yol{ o1 gl QW EL A, , i
f dE e E/keT P’ prfall Hund’s coupling cases for molecular angular momentum.
0 (E+haw— EE’I\I’B)2+(7V/2)2 However, it should be kept in mind that our final calculations

include all degrees of freedom.

This expression is a Lorentzian profile convolved with a
thermal distribution of ground state collision enerdgigf3].

The denominator is a standard resonance denominator de- _ ) 5
scribing a transition from an incident continuum wave func-  The long-range _|nteract|pnas between“8 ground state
tion of energyE to a bound state of ener@g,,",ﬁ with an atom and an identical excitedP atom in the absence of

ited stat wral idith Th f st nuclear rotation and hyperfine interactions is described by
excited state natural inewidtn % € numerator ConsIStS -,y and Pichlef18]. In this model it suffices to describe
of a Boltzmann factor describing the thermal collision en-

. the electronic component of the total molecular wave func-

semble and a matrix element that consists of three maJqrions, which of course describes nuclear as well as electronic

. _ L E(+) - , T .
pieces: the ground state wave functigiss; ), the excited  geqgrees of freedom. The model finds an adiabatic correlation
v

state wave functionls;ﬁg,l,5>, and the molecular Rabi matrix for the electronic degrees of freedom given by the interplay

A. Excited state
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between the long-range molecular multipole potential, that 4000

includes 1R® resonant-dipole, R® and higher-order polar- 3

ization interactions and retardation contributidi2$], and 30004 u

the atomic spin-orbit Hamiltonian of th&P atom. At inter-

nuclear separation®?, where the multipole interactions

dominate, the good quantum numbers are the projectiof 20004

the electronic orbital angular momentunt=1,+1}

=1, (I,=0) and the total electron spB=s,+s,. At large 5 10004 1

internuclear separations, where the atomic Hamiltonian € u 2P3/2+ZS

dominates, the good quantum numbersjarel ,+ s, for the = 0y

2p atom andj,=s, for the 2S atom. The notationl,

=1, 1,=0, s,=s,=1/2, where the subscriptsandb label -1000 ~ 20 2

the P and S atoms, respectively, is used throughout. Pyp*s
At short internuclear separations the multipole interaction 2000

dominates and gives rise faonrelativisti¢ adiabatic Born- 3n

Oppenheime(ABO) potentials labeled byS"*A , where 3000 ! .

A is the absolute value of the projectionlobn the internu- s 100 150
clear axis. The labeb=g,u denotes the symmetry of the
electronic wave function under inversion of the electrons
through the center of charg@6]. The multipole interaction FIG. 1. The adiabatic ] potentials of **K as a function of

is diagonal in the “molecular” basi$ASX), with 3 the  internuclear separation. The short-range correlation®¥6A,,
projection ofSon the internuclear axis. At large internuclear Born-Oppenheimer potentials and the long-range correlation to
separations the atomic spin-orbit interaction dominates anép;+2s atomic limits is given. The middle adiabatic potential cor-
this part of the Hamiltonian is diagonal in the body-fixed responds to the purely long-rangg fiotential.

R (units of ao)

atomiclike basig(j,jp)jQ),, wherej=L+S=[,+j,, and _ _ N _
Q=A+3. Within the Movre-Pichler model, which includes tions of dispersion coefficien{27]. We also include th€,
0n|y the |0ng range mu|tip0|e and atomic Spin_orbit interac-coefﬂc!ents of Ref[27], but their value is not crucial to our
tions, the electronic states with comméh (= when )  analysis. The quantity
=0) ando define independent subspaces. R\ 2 Rl R /R

At all internuclear separations adiabatic potentials can be fA(R)=|1— 5/\,11(—) cos{— +—sin(—), 4
obtained by diagonalizing a potential matrix labeled(by. X A xR
ﬁr;istmgll c?aré?a slacr:%fr,atcr}cgfii e?jdlk?)?iﬂg egtsirgéaﬂ:;gg?m:ﬁz theaccounts for retardation of th@; resonant dipole interaction
|(jain)iQ), basis sets. For the lsubspace an extended sze:f]}&/}’&zll('g\t:li ir;j ?ro,:higwésjiﬁgd dlsbthzerw_?k\]/ie-
Movre-Pichler Hamiltonian that includes retardation and dis- <9 O the ( ). 0 K( . ) transitio ed by ar. This
persion can be written in the molecular basis as wavelength is defined with respect to the barycenter of the

K(4S) to K(4P) transition.

33, 7 31 Diagonalization of the potential matrix in E@2) pro-
% [ Vas—AI3  —Al3 A/3 duces three adiabatic potentials @f,=1, symmetry. Be-
1 C® cause this diagonalization R dependent where the poten-
I —A/3 Vi —A/l3 A/3 tials V, are of a magnitude similar td, the adiabatic
1 A/3 A/3 Vap—A/3 electronic eigenstates areRadependent linear combination

of the|ASY),, or alternativelyi (j .jp)j Q). states. For the 1
In the asymptotic region, where exchange interactions arstates the thredr-dependent eigenstates in terms of the

negligible, the potentialy/,, in Eq. (2) can be written as |(jaib) i), basis are
2C, o 11,,i;R)=ai,(R)[(1/21/211) ,+b;,(R)[(3/21/211),,
Vay= ——f*(R)— —, (3a)
R RO +¢i,(R)[(3/21/221),, ®)

. where the label=1, 2, or 3 is an energy ordered index to

Voo %fn (R)— Ce (3p) the adiabatic potentialéalso called adiabatsand a’ +b?
T R3 RS’ +ci20= 1. Figure 1 shows the three long-range adiabatic po-
tentials for the®*K 1, symmetry, including smaR molecu-
C cll lar and large R atomic correlations. Notice that a}
V= — —f1(R)— —, (30 =0.0529177249 nm. The electronic eigenfunction of the
R® R° lowest adiabat of Fig. 1 reduces to1,,1;R)

=|(1/2 1/2)11 in the limit that the binding energy is small
where theC; coefficient is extracted from experimental pho- compared to the spin-orbit splitting. Similarly, the second
toassociation measurements of the B, state[9] and the  and third adiabats become orthogonal linear combinations of
Cé and C{ coefficients are taken from theoretical calcula- |(3/21/2)11), and|(3/21/2)21),. The second adiabat is the
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purely long-range 1 state on which we will focus for the diate internuclear separations these long range potentials are
remainder of this paper. The-dependent eigenstates in the smoothly fit onto the eight short-range ABO potentials. In
molecular basis can be found by applying the unitary transpractice aR=30a, well inside the inner turning point of the
formation that connects the\ SX ), basis to the atomiclike long-range }, potential curve, we replace all eight ABOs
basis|(jaip)j Q) - with a hard wall. The exact nature of the short-range poten-

It is worth connecting the electronic-spin basis states witHial does not alter the eigenvalues and eigenfunctions for the
the usual Hund’s coupling schemes for molecular angulapure long range ]state of interest, since the observed rovi-
momenta. It must be emphasized that Hund's classificatiobrational levels of the 1do not couple to states of oth€r,
also involves nuclear rotation. Nevertheless, within thesymmetry. However, the same comment is not necessarily
Movre-Pichler model we often make the connection withvalid for eigenfunctions and eigenvalues of other symme-
Hund’s classification. The molecular bagisSY), corre- tries. Note, also that the usual rotational/Coriolis Hamil-
sponds with Hund’s caséa), where A, S, 3, and o are tonian found in standard diatomic textbod29] is not valid
individually good quantum numbers. The atomiclike body-within the Movre-Pichler model since it asymptotically re-
fixed basis|(jajp)j ), and the Hund’'s caséc) adiabatic sults in spurious couplings between the basis sets
basis |, ,i;R) both correspond to body-fixed basis sets|(jajn)j ), asR—x.
where the projection§) and o are good quantum numbers.

Even within this extended Movre-Pichler model it is not B. Ground state
possible to fully describe the mechanical rotation and hyper-
fine interactions. This is because off-diagonal coriolis/
rotational forces cause mixing between states of identical
=u Hund’s case(c) symmetries but wheré€) differs by 0,
+1, while off-diagonal hyperfine interactions couple the
andu Hund'’s cas€c) symmetries. However, due to the ab-
sence of crossings and nearly degenerate parallel curves
other Hund'’s caséc) symmetries, the purely long rangg 1
state is isolated. Consequently in addition to the extende
Movre-Pichler Hamiltonian described by E@) it is an ex-
cellent approximation to include only hyperfine and
rotational/Coriolis interactions within the,Imanifold [10].
Although the addition of hyperfine and rotational interactions
to the extended Movre-Pichler model is sufficient to repro-
duce[10] the 1, rotational and hyperfine level positions, the
actual level positions used in this paper follow from diago-
nalization of the full Hamiltonian including the nuclear ki-
netic energy operator and all Hund’s cdspsymmetried) _ )
and hyperfine spin states that correlate to the R4 triplet potentials. . . .
+K(42S) asymptotic limit. Since deviations between Ref. . It should be notgd that addmg a half-harmonic osc]llator
[10] and the more exact calculations are very snati the is by no means unique. Any adjustmiant of tge +potent|al for
order of 1 MH2, we denote each rotation/hyperfine level of Nteruclear separations where ey anda 2, poten-
a 1, vibrational level by the conserved quantum numberdi@!s are widely separated and much deeper in energy than
given by the model of Ref[10]. These labels are the total the atomic hyperfine ;phttlngs is acceptaple. Then alternative
angular momentunf’ and total nuclear spift. Symmetry ~ aPProaches to changing the shapeadjusting the phasef
under interchange of the identical nuclei further ensures thdf'€ Potentials will only provide different “artificial” param-
even(odd) 1’1, levels have oddeven parity p’ and hence eter sets that give _|dent|cal accymulated phases for the inner
are formed from a linear superposition of evenld partial  Part of the approximate potentials. More importantly these
waves/. alternative changes will not significantly modify the energy

The excited bound-state wave functions and eigenvaluegependen(fe of accumulated phgses. . . L
for the rotating molecule with hyperfine structure are calcu- COMPining the above potentials with a spin-spin dipole
lated numerically for the set of states labeledFby parity, interaction, me_chanlcal rotation and the atomic hyperfmg in-
and evenodd / by using an iterative eigenvalue solver on teractions provides us with a complete set of coupled differ-

a shifted inverse Hamiltonian or Greens function. Theseemia_I equations. Miest al.[31]dis_cuss th_e underlying sym-
eigenfunctions are used below in forming the transition di-metries of two ground state alkali atoms in the absence of an

pole matrix elements in the numerator of E&j). The num- external magnetic field. In_such a caBethe total angular
ber of spatial grid points needed is reduced by an order ofnomentum of.the system is a good quantum number and a
magnitude by using a mapped Fourier grid representatioh'am'lton'an WIEh aafmlete number of spin channels can be set
that takes advantage of the |ong ra®é3 potentia| charac- Uup. Notice thaF=/+f, where/ is the mechanical rotation
teristic of these problems. For a full description of the tech-angular momentum anfi=f,+ f,, is the total hyperfine an-
nique see Tiesingat al.[28]. gular momentum of the two atoms. In the absence of the
For the long range part of the excited state potentials weveak spin-spin dipole interactiorfsand /~ are also good
use an experimentally determin€gd coefficient[9] and the  quantum numbers. Additionally, because of identical atom
Cg and Cg coefficients of Marinescet al. [27]. At interme-  symmetry two ground state atoms with=f,=1 can only

The ground state scattering wave functions needed to
evaluate the transition dipole matrix element in Et). are
calculated using standard close coupling methods including
hyperfine interaction30]. The short-rangX's ; anda®s.;
potentials are RKR potentials obtained from inversion of
ectroscopic data. However, unlike Ref4,2] we treat
these potentials as only approximate representations of the
Hue potentials. The singlet and triplet ground state potentials
are smoothly fit onto a long range potential which includes
both dispersion and exchange. For tW¢4S) ground state
atoms we nominally adopt the long range dispersion
coefficient  Cgq of 3812.5 Hartre@$ (1 Hartree
=4.359 748 % 10 '8 J) [27]. Finally a half-harmonic oscil-
lator is added smoothly from the bottom of the well onto the
inner wall of the potential. Altering the strength of the half-
harmonic oscillator allows for a smooth adjustment of the
phase due to the inner part of the approximate singlet and
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couple tof={0,2} for /={0,2,4...} and tof=1 for / nal and angular momentum degrees of freedom. Second, we
={13,...}. must evaluate the Rabi matrix elements between the ground

For two 3%K atoms colliding at a temperature of 4Q(K and excited state basis sets. Finally, the numerical bound-
we expect that only”’={0,1} can contribute significantly free.matrix element must be eyaluated by integrating over
to the collisions in the absence of shape resonances. THBE intemnuclear separatioR. This can be done either by
d-wave (“=2), which possesses a 150K barrier, would ~ USiNg @ direct numerical propagator for the matrix elements
be expected to have a negligible role. However, as describeffile the ground state wave function is being calculated, or
below, the existence of a-wave shape resonance can by standard numerical quadrature with prestored wave func-
modify this simplistic view. It can easily be verified that the fions. We have tested both methods, and find they give
f={1,2 Hamiltonians consist of threstrongly exchange €auivalent results. _ _
coupled channels with one channel converging to each of the "€ molecular Rabi matriX) between the basis sets for
three hyperfine thresholds labeled By+ f, . Alternatively the rotating molecule with hyperfine structure give the ma-
this can be viewed as twas3* channels and on&!S ™ trix elements of the matter-light interaction operatee-d,
channel coupled by the hyperfLilne interaction. The &b where ¢ is the electric vector of the laser field adds the

" u

channels are distinguished by a different total nuclear kpin molecular dipole operator. Thu_@ 1S p_roport|onal to the
_ S . square root of the laser intensity, which we assume to be
The f=0 Hamiltonian consists of only two coupled equa-

. . . . . sufficiently weak that there is no power broadening or light
tions which @s_somgte to channﬁﬁa,fb} g|\1/erl by {1.1} shifts. In order to evaluate the Rabi matrix, it is most conve-
and{2,2}. This implies the coupling of onX Eg and one

P nient to express the ground and excited state wave functions
a’%, channel(see Ref[31]). ) _ in the same type of basis. We use here the separated atom
A Hamiltonian block labeled by f,/} appears in each pagis [(faf)f/F} for the ground state and

full Hamiltonian with total angular momenturfﬁ satisfying [(jLf.E0)F'/"F'} for the excited state, since for an asymp-
|/ —f|<F=/+f. However, because thetf '} blocks are totically allowed transition the Rabi matrix element is diag-
only weakly coupled to one another, they have essentially i [32]. However/ is normally not a good quantum
identical scattering properties within each Hamiltonian Ia'number for an excited eigenstate, and therefore the eigen-
B Y enouh e, il Sale the complle Set of states are & Inear combination of {811 1'/"F'] b

b q 9 9 sis states. We have verified that for these excited eigenstates

?rsgltllérr? ]!: ,/}Waavﬂ:lltc?r;isgﬁsbsloglles S%Z'if]em c:)er:gisn c::;I :Eg the molecular Rabi matrix reproduces the measured molecu-
Y lar line widths. Notice that these basis sets which include

re_:levanthlnforrtr;]attlofn. 'tfv’;gg”}é”f‘“ﬁnl of E{he@’t{]} Hamllt?- nuclear spin are analogous to a Hund’s césebasis for
nians shows that for (f,=1) atoms there are two atoms without nuclear spin.

separate scattering lengths—one with2 and one withf The natural selection rulés’ ={F,F+1} andp=—p’

=0. We will henceforth refer to the;e scgttgrmg lengths a%nentioned earlier, are inherent to the transition dipole mo-
3z and aps. One should note that in principle the three- o £ e 1 symmetry additional selection rules can be
channe| 3 Hamlltor_nan will have three separate scatteringe, ng hased on the observation that in the absence of the
lengths corresponding to being at threshold fpr each of th?1yperfine interaction the dipole matrix element only allows
thrge gsymptotes labeled lpy+1y,; however, this paper re- transitions fromg—u and vice versa and that the total
stricts itself to thef,=fp=1 asympto_te_and thus we denote nuclear spin and the nuclear mechanical angular momentum
A2sf,=1f,=1 MOre compactly ags. Similar comments hold in the transition are unchanged. It then follows fog€1)

for the two-channel § Hamiltonian. The precise value abs  +(f,=1) scattering that the ©scattering state exists for
andags depends on the shape of tKéX ; anda®3; poten- F=0 andp=+1 and can only be excited to te' =1, 1’

tials which are controlled by the strength of the half-=0 1, line. On the other hand thes&tate, which exists for
harmonic oscillators. Modifications of the two half-harmonic F=2 and p=+1, can be excited to th&'={1,2,3, I’
oscillators smoothly vary th¥'S. | scattering lengtfasand =2 lines. More generally it can be derived that for evén
thea®s ! scattering lengtha; . It should be noted that two the f=0 scattering states can only be excited tp I1=0
scattering lengths of importance to Bose-Einstein condensatates and thd =2 scattering states are excited tg 1’

tion a,, for the collision ,=2m,=2)+(f,=2m,=2) =2 states. For odd” the f=1 scattering states connect to
anda, _; for the collision f,=1m,=—1)+(f,=1m,= "=11, states.
—1), are given bya, ,=ar anda; _;=ay. Although the transition dipole moment is a matrix ele-
ment between multicomponent wave functions, it has prop-
C. Dipole matrix element erties that are very similar to those of the radial overlap

. . integral that gives the Franck-Condon factor between the
The f'm.il element of .t.he the_ory requwe_d to evaluateground scattering and excited vibrational wave functions in a
Eq., (1) is the wansition dipole matrix elements conventional two-state picture. Thus, we can use the insights
(ot s BQIWES!),) occurring in the numerator of the line offered by the reflection approximatidii6] to aid in our
shape expression in E(lL). Three steps are required in order interpretation of the line shapes. In this approximation the
to evaluate these matrix elements. First, we must obtain thdominant contribution to the photoassociation Franck-
numerical excited bound state and ground state scatterinQondon factor for a single ground and excited state is asso-
wave functions for each total angular momentum and parityciated with the amplitude of the ground state wave function
These are found as described above and are defined onaathe Condon point for the transition. Thus, if there is a zero
spatial numerical grid using basis sets that describe all intefin the scattering wave function near the Condon point, where
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FIG. 2. The long-range adiabatic, potential as a function of
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Condon factors from these inner turning points are typically
small.

The intensities of photoassociative lines are sensitive not
only to the range of the vibrational wave functions in the
excited state, but also to the location of the nodes in the
ground state scattering wave function. Franck-Condon fac-
tors can oscillate with vibrational quantum number, due to
the nodal structure in the ground state wave functions. This
oscillatory behavior was seen in the first theory paper on
ultracold photoassociation for Na7] and observed if’'Rb
[6] and “Li [33] photoassociation. As discussed above in
Sec. Il C, the reflection approximatigt6] accounts for this
sensitivity to ground state nodes: the existence of a ground
state node close to the outer classical turning point for ex-
cited state vibrational motion implies a small Franck-Condon
factor for the transition.

The horizontal line near the bottom of Fig. 2 schemati-
cally shows the position of the “last” nodg34] z, of the
3% zero-energy continuum wave function as a function of
its scattering length. The line is based on the theory given in
Ref.[13] (see also the Appendixwhich gives an exact de-
scription of the long-range shape of tkavave zero energy
wave function that is solely based on a pure long-ran&& 1/
potential and is equally valid fdr=0 andf=2 s-wave scat-

shown for comparison. The zero of energy is at the hyperfine baryfering FromCg=3812.5 Hartreea® for 3% [27] we find
. - . 0

center of the?P,+ 2S limit. The 1, vibrational wave functions for
v=0 andv=7 are shown. Their binding energy is indicated by the
intersection of the wave function with the potential energy axis.
Also shown is the behavior of the last nodgof the zero-energy
3% collision wave function as a function of its scattering length
For positivea’s the last node lies on the dotted line while for
negativea’'s the last node lies on the full line betweenagdand
64a,.

that the last node of the continuum wave function satisfies
Zo>54a,. Other nodes of the wave function can only occur
at shorter internuclear separati¢m potential withN bound
states will haveN—1 nodes prior to the last ong). This
also justifies the initial assumption of a pur&i/dispersion
interaction as exchange and higher-order corrections modify
the potentials at much shorter internuclear separations. In
addition it can be derived that a node in the dotted region
between 64, and infinity corresponds to a positive scatter-

the laser is resonant with the difference between ground anigg length while for 54 z,<64a, the scattering length is

excited molecular potentials near the turning point of a vi-
brational bound state, then that specific vibrational state wil

have a very small Franck-Condon factor. Although this ap-

proximation was developed for the case of a single Condo
point at the outer classical turning point for vibrational mo-
tion, it still provides a good qualitative guide even for the 1

negative. A zero scattering length corresponds to a node at
b4a, and an infinite scattering length with a node aag4

For 3% the connection between the nodal structure and
the dipole matrix elements implies that if the last node of the
s-wave wave function is in the range of &5to ~170g, it
should have a marked effect on thg dpectra. This range of

state, which has two Condon points, since the Franckhodal positions corresponds to a scattering length between
Condon factor predominately comes from the outer turningl3 and~170a,. In other words, as long as the scattering
point. Evenv=0 would have a small Franck-Condon factor length is positive and for a long-range van der Waals poten-

if there were a ground state node in the regiorvef0 mo-
tion.

IV. RESULTS

tial there is a 75% probability for this to be trisee the
Appendi¥, the K, 1, state should provide an ideal state for
observing this last node. However, if the scattering length
should be negative the last node will be betweenysdnd
64a,, a range of internuclear separatioRswhich are not

Figure 2 shows the hyperfine and rotationless Movrewell probed by the 1 photoassociation spectra. For compari-

Pichler purely long-range K 1, potential and } vibrational
wave functions of the lowest;=0, and the highesy=7,

experimentally observed levels. The, KL, curve has a
minimum at 72.08, and a well depthD.) of 16.2 GHz.

The extent of the vibrational wave functions shows that our

son Fig. 2 also shows the purely long-range 8 state. It

has a depth of 194.7 GHz and a minimum at 53 23imi-

lar arguments on the effect of the nodal structure on the line
shapes of () features apply.

Based on the simple arguments presented in the above

experiment is sensitive to a finite range of internuclear sepgparagraphs the purely long-rangg dnd Q, states appear to

rations that is bounded by the inner turning point of the
=0 vibrational wave function at @6 and the outer turning
point of thev=7 vibrational level at approximately 1&g.
The inner turning points for>0 are at shorter internuclear
separations than that af=0. However, the reflection ap-
proximation [16] shows that contributions to the Franck-

be ideal for observing the last node in th@vave scattering
wave function and thereby determining the two observable
s-wave scattering lengths. The analysis of thiedpectrum is
given in the accompanying papgtl]. One of the hoped for
advantages of using the, bver the Q state is that its re-
solvable hyperfine structurglO] will provide for a better



PRA 60 DETERMINATION OF THE SCATTERING LENGTHS ®.. .. 4433

3000 greater than=170a, or less than 1&,.

The onlyp-wave feature that is experimentally resolved is
the small peak or hump in Fig. 3 at 0.03 GHz located be-
tween the first two large features. This peak corresponds with
aF’'=2 1’=11, line. For higher vibrational levels this fea-
ture slowly increases its relative line strength. Nevertheless
this p-wave feature remains weaker than the@ave features,
especially for the lower vibrational levels with turning points
that lie inside thep-wave centrifugal barrier at 30@K and
R=150a,.

The right or blue-most feature in Fig. 3 is again well
separated from other features. The line is more symmetric
than the red-most feature which suggests that it is not due to
s-wave scattering. Moreover, for the lines on the blue side of

2500+

2000+

1500

ion count (arb. units)

10004

500

0 the spectrum the rotational interaction starts to dominate the
2005 0.00 005 010 015 020 025 030 hyperfine interactions and the lines are approximately de-
®(GHz) scribed byJ=3 whereJ=/+S+L. A close look at the

dipole moment selection rules then shows that contributions
FIG. 3. A typlcal experimental ionization SpeCtrUm for the of s- and p-wave Scattering tgd=3 1u line intensities are
1, v=0 vibrational level as a function of laser frequency. The Zelonearly absent. Hence this feature primarily obtains intensity
of thg figure is .arbi.trarily chosen to coincide with the resonancey oy, ground staté=0 or 2,d-wave collisions. We eliminate
position of the first line. contributions fromf=2 d-wave collisions since the left or
red-most peak, which in principle also has contributions
disentanglement of the various ground state partial waves fom f=2 d-wave collisions has a lineshape suggestive of

and total hyperfine angular momentufmAs was shown in  rely s wave scattering. Thus we assign this blue-most fea-
Tiesingaet al.[13] the J=2 peak of the rotation dominated ture as due td =0 d-wave scattering.

04 spectra rece_iv_es its intensity predominantly from ground 1o gpserved line intensity, nevertheless, is anomalously
states-wave coII'|S|ons. Howeyer, bfecause.of thg Igck of Ob'high given a 40QuK thermal distribution of*% atoms and
servable hyperfine structure in thg Gtate it is difficult to
separately observe the nodes of both tleeand s wave
functions.

a d-wave barrier of 150QwK. This indicates the presence of
a d-wave shape resonance. The anomalously large
f=0 d-wave feature at the blue side of the=0 1, spec-
trum is confirmed by the analysis of the, KO, spectrum

A. Experimental data [21].

The remaining features of Fig. 3 are composed of multiple

Figure 3 presents a typical photoassociation spectrum fOl’iyperfine lines and have contributions from=0,1,2 scat-

v=0of tc?ei L st?te. Ehte ac;uatll ;lg_r]al |“shpr(iducetlzl bylus'ngtering. For example, the second strong feature at 0.060 GHz
a second faser tuned to photolonize€ Wg L, MOECUIES = ., iaing two hyperfine lines. One is tRé=1, |'=0 line

Bimple of two-color photoassociaive jonization where only O/ed flom G and @i scatering and the other is &
— . . =2, I’=2 line which is accessible from boths2and 2
the photoassociation laser is being scanned.Khel,, spec- scattering
tra shows 6 or 7 major features as compared to the five ( ‘
=0—4) rotational features observed in thg K, photoas-
sociation spectrum. It has been checked experimentally that
power broadening due to the photoassociation laser is negli- In order to show the constraints that the absence of an
gible. This is, for example, confirmed by the 15 MHz s-wave node and the existence otlavave shape resonance
FWHM width of the first features which is in quantitative places on the scattering lengths we show in Fig. 4 the scaled
agreement with a natural linewidth of 7.2 MHz plus a ther-scattering length fora,s as a function of the scattering
mal broadening okgT/h~7-8 MHz. lengths for the singlet and triplet potentials, which were var-
The left or red-most peak in Fig. 3 is well separated fromied as described in Sec. Il B. The figure plots the scalgd
other features; following Ref10] it contains a single hyper- scattering length versus the scaled and a; scattering
fine state labeled blf’=3,1'=2. From the dipole selection lengths. The scaled scattering lengths are defined by the
rules it then follows that ground stafe=2 s- andd-wave = mapping functionA,=(2/7)arctan@,/as.,9, where y is
collisions contribute to the intensity of this line. However, {S,T,2s} andag.,& 6339 is the mean scattering length for a
the asymmetry of the line is consistent with predominantlycollision between two**K atoms[35] (see the Appendjx
swave scattering23]. An examination of thes=1 through  Scaled scattering lengths are preferable for plotting since
v =7 spectra shows that all vibrational levels possess a verthey only vary betweer-1 and—1 while the actual scatter-
similar intensity pattern and in no case is there a significaning lengths vary between-o and +o. The figure also
drop in the relative intensity of the left red-most feature. Thisshows the contour lines for @& 2cattering length of 1, and
suggests that theskscattering wave function does not have al170a,. These contours define excluded regidbsunded to
node between 6§ and 17@, and hence,s must either be the left by the 18, contour and to the right by the 1&9

B. Consequences for ground-state collisions
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the diagonal does not disappear at the center but becomes
very narrow at a point wheras~ay, since exchange scat-
tering, which determines the width, is strongly suppressed
for the three-channg2s} Hamiltonian along the line where
ag~ar [36—38
Additionally, Fig. 4 shows contour lines for IQQ(S&,
the elastic scattering rate constant fog€ 1)+ (f,=1) col-
lisions for the {0d} Hamiltonian at an energyE/kg
=1500 «K (the top of thed-wave barriey. The four dotted
contours from left to right correspond with rate constants of
10 M emi/s, 5x10 M=10"13cmi/s, 5x10 M cems,
and 10 ! cm’/s, respectively. When a shape resonance oc-
curs,Kglj has a relatively sharp maximum at collision energy
E,es, Which defines the “position” of the shape resonance.
For (Ar,Ag) pairs between the %10 ! cm’/s contour
lines E,es is near 150QuK. For (A1,Ag) pairs near the two
lower contour lines in Fig. 4E,¢sis smaller than 150QK,
-1.0 -08 06 -04 -02 00 02 04 06 08 10 whereas for A1,Ag) pairs near the two upper contour lines,
Scaled Triplet Scattering Length E esis larger than 150tK. Consequently, the contours can
only be interpreted as locating a region in thg plane
where thed-wave shape resonance plays a role in the analy-
m:l sis of the photoassociation spectra.
Equivalent contour lines can be found fofr,& 1)+ (f,
L0060 0202 06 10 =1) collisions for the{2d} Hamiltonian. It turns out that
Scaled 2s Scattering Length these{2d} curves are nearly identical to tH®d} contour
lines for Ag<<0.6 but then turn over at larger singlet scatter-
FIG. 4. The scaledi,s scattering length as a function of the ing lengths, such that the contours cross the Age 1 near
scaledX'3; anda’s | scattering lengths. The full lines correspond A = —0.1. The strong experimentally observééavave fea-
t0 a,=13a, or 17(a,. The dotted lines define a region in thgs  yres are consistent with the existence of a shape resonance
topological map where &=0 d-wave shape resonance affects the , yne rod} Hamiltonian but inconsistent with a shape reso-
1, spectra. A precise definition of all lines is given in the text. nance in the{2d} Hamiltonian. Therefore we need to do a
careful search of parameter space in the region of ttie O
contouy that follow from the absence of a reduction in the shape resonance but outside the previously excluded region
intensity of the first feature in the spectra for all observed\,\,here‘—,l2S has values between 43 and 17@, and outside

vibrational levels. _ the region where th¢2d} Hamiltonian has a shape reso-
The general structure of Fig. 4 can be understood from th@gnce.

structure of the{f,/}={2s} Hamiltonian which consists at  Figure 5 shows the dramatic changes in the calculated
short distances of twds, | states and onéig state. The 1 (v=0) photoassociation spectraasis adjusted to move
scattering length changes frofince to —c when the poten- across thé =0 d-wave resonance region in Fig. 4 at a fixed
tial is changed such as to cause the removal of one bounghjue ofa;= —14a, (A;=—0.14). Between the four simu-
state. In essence the behavior of the scattering length hasjg&ed spectra the singlet scattering length changes by 20%
singularity when a bound state is removed. At the lowesbut the difference between the spectra is marked. It is clear
hyperfine asymptote,f{=1)+(f,=1), removing a bound that the curve foras=122a, (As=0.697) is unable to ex-
state from the®S | state, i.e., causingy to jump from+  plain the experimental data but that the other three spectra
to — or in the scaled coordinates connecting the value 1 tgahow a reasonable agreement. For the spectrum with
—1, will on average cause the removal of two bound states= 104a, (Ag=0.653) the right most-wave feature near
from the {2s} Hamiltonian since it consists of twd3 —14.41 GHz is weakest. In fact, in spectra Xﬂ'Eg poten-
states. Thus, in moving from left to right in the figure g tials with a smallerag, this feature disappears completely.
scattering length must have two singularities. One of thes&his is consistent with our earlier statements that when the
occurs on the edges of the figure and the other appears aglavave shape resonance is absent the theory can not explain
Feshbach resonance running from the upper left to the lowethe observed right-most feature. Thus, the strong sensitivity
right hand corner. A similar change & causes the removal to thed-wave resonance allows us to put constraints on the
of only one bound state from tH@s} Hamiltonian. In mov-  range of scattering lengths.

ing from the bottom to the top of the figure there is only a  So far, our comparison of the,K, v=0 calculated and
single singularity occurring along the diagonal. The value ofobserved photoassociation spectra has led to the above quali-
the a,¢ scattering length at the very top of the figure is es-tative constraints on the permitted range of variation in the
sentially identical with the value vertically below it and at parametersag and a;. Another important consequence of
the very bottom of the figure. It is interesting to note that theFig. 5 is that it is essential to construct potentials with a
resonance on the left and right edge of the figure is essermwave shape resonance either below the threshold for two
tially independent ofi5. Also the Feshbach resonance along3*K(f,=1) atoms or above thd-wave barrier. An actual

Scaled Singlet Scattering Length
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Scaled Triplet Scattering Length
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FIG. 6. A blowup of the scaled, scattering length as a func-

tion of the scaledX'S; anda®3 [ scattering lengths. The scaled

a’s [ scattering Iength lies between0.7 and+0.2 and the scaled

12* scattering length lies between 0.6 and 0.9. The gray scale for
the scaledalzS scattering length is identical to that used in Fig. 4.
The dotted contour lines define the region in the figure where the
f=0 d-wave shape resonance modifies thespectra and the full
contour lines define the region offa=2 g-wave shape resonance.
The points correspond to ground state potentials that lead to simu-
lated line shapes that agree with the experimental spectrum. The
crosses correspond to potentials shown in Fig. 7. The boxAgar
=0.73 gives the range of allowedls and At that follow from the
%’ line shape analysig21].

0.0 T
-14.7 -14.6 -14.5 -14.4
o (GHz)

FIG. 5. Theoretical 1 v=0 spectra aT =400 wK showing the
dramatic effects of the presence offa’} ={0d} shape resonance.
The frequency scale is relative to the hyperfine barycenter of th
2p,,+2S limit and all spectra are normalized on the left-most
peak. The four spectra are calculated for slightly differé®# %S o ) ] ) )
potentials. The short-range shape of X! potential is varied ~ Strong sensitivity to small changes in potentials in this re-

while the a3} potential stays the same. The triplet scatteringgion. In Fig. 7 the three presented spectra are shown as
length isar=—14a, (A;=—0.14) for all four spectra while for ~Ccrosses. Finally in Fig. 8 we show a theoretical spectrum
line 1 (full) ag=122a,, line 2 (dotted as=116a,, line 3(full) ag  corresponding to one of the poirfishite dotg shown in Fig.
=110a,, and line 4(dotted ag=104a,. This corresponds with an 6. Any point along a line connecting the points below the
Ag between 0.653 and 0.697. lowest Gd contour or a line connecting those above the 0

shape resonance in Fig. 6 will provide similar fits. Notice
resonancebetweenE/kg=0 uK and E/kg=1500 1K l€ads  yh4t the middle cross of the three shown in Fig. 6 leads to
to d-wave features in the photoassociation spectrum that are

much stronger than thewave features. This would be in
disagreement with the experimentally observed spectrum. In
fact it is only possible to find a very narrow band in the
andar parameter space below and above tdesbape reso- 1.0
nance where qualitative agreement is possible.

In Fig. 6 we show a blowup of the relevant region of the
a,s topological map presented in Fig. 4. The dottele,cb(gglj
contour lines which were presented in Fig. 4 are also shown.
In addition this figure shows a contour lif&ll line) for
IoglOKzg, the elastic scattering rate constant fd,€1)
+(f,=1) collisions for the{2g} Hamiltonian at an energy
E/kg=3000 K (near theg-wave barrier maximum The
contour corresponds with a rate constant of £ocm®/s and
should only be interpreted as locating a region in #e 0.2 4
plane where g@-wave resonance can be expected. Figure 6 v
also shows a number of pointhite dotg corresponding to
values ofa; and ag where there is reasonable agreement 0.0 T T
with the v=0 experimental spectrum. The points in the fig- -14.7 -14.6 -14.5 -l4.4 -14.3
ure lying below the @-shape resonandsmallerag) corre- ® (GHz)
spond to an”’=2 bound state just below threshold, whereas 5 7 Theoretical 1v=0 spectra aff =400 uK with 2S
the points lying above thed3shape resonance and to larger , 2g péteﬁtials that show botpf /}={0d} and{2g} shape reso-
as correspond to @-wave resonance just above tavave  npances. The frequency scale is relative to the hyperfine barycenter
barrier. The region in the figure corresponding togashape  of the 2p,,+2S limit and all spectra are normalized on the left-
resonance must be avoided since it introduces new pealost peak. The singlet scattering length #s=185a, (Ag
further to the bludi.e., to larger total angular momentlin ~ =0.791) for all three curves. The dotted line corresponds with
the theoretical spectra and simultaneously causes some of the-7.3a, (A= —0.073), the full line corresponds witla;=
observed features to become too large. In Fig. 7 three sample21a, (A;=—0.20), and the dashed line corresponds veith=
spectra lying near thedand 2y shape resonance show the —3%, (A;=—0.35). The three cases appear as crosses in Fig. 6.
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~1 GHz broad peak below the K[®) +K(45S) limit. In the
absence of theoretical modeling of this aspect of the experi-
ment we have to accept simulated spectra where the relative
intensities do not match too exactly.

A similar analysis based on th&K, 04 photoassocia-
tion spectra provides results that are in agreement with those
3 i presented here with the exception that thjeehalysis finds a
different restricted value odig that lies within the range of
values we quote but corresponds to having the peak of the
0d shape resonance betwedfilkg=800uK and E/kg
=1500 K. This requirement is based on obtaining the nec-
essary width for thd=2 0, feature which would be domi-
nated bys-wave in the absence of the resonaf2é]. The
results of Ref.[21] are shown as a box ne#s=0.73 in
Fig. 6.

Although the analysis of both the,land Q; spectra is
basically consistent in requiring adOshape resonance to
explain the observed spectral features, the specific conclu-

FIG. 8. Comparision between experimental and a typical theoSION regarding the resonance position appear to be mutually
retical 1, v=0 spectra. The frequency scale is relative to the hy-exclusive over much of the permitted rangeagf, although
perfine barycenter of théP5,+2S limit and all spectra are normal- this difference does not actually lead to any significant dif-
ized on the left-most peak. The signs correspond with the ferences in the constraints placed on #ieanda,s scatter-
experimental data points and the line with a simulated spectrum d@nhg lengths which are crucial to BEC studies. The near over-
T=400uK. The xlz; scattering length isas=110ay (As  lap shown in Fig. 6 of the permitted ranges from theahd
=0.669) and thea®s scattering length isar=—14ay (Ar= 04 analyses near the extreme lower left hand side of fhe 0
—0.14). box is suggestive that; may lie much closer te- 60a, than

+16a,. However, we should note that there may be limita-
spectra with an acceptable fit to the experimental spectrumions inherent in the methodology of analyzing photoassocia-
There is a general trend that the smallvave feature that tion spectra based on interpreting relative intensities as being
occurs in the experimental spectra between the first two larggue to absorption of the photoassociating light at frequency
peaks tends to increase as becomes more negative. v,. An important subject of future research, both experimen-

Table I gives the results of our analysis. Note that allowedta| and theoretical, would be to understand better the effect
values ofag are discontinuous over the quoted range becausegf the ionizing photon at frequenay, on the spectral inten-
of the intrusion of the @ shape resonance. However, this sities. Although relatively broad and structureless features
does not effect thea,s, ags, and ar scattering lengths, are involved in the photoionization step, it is not yet clear
which are clearly well constrained. If strong credence ishow absorption of the,, photon affects the relative shapes
given to the intensity of th@-wave feature then the scatter- and strengths of the experimental spectra.
ing lengths will lie to the more negative end of the values in
the table. Changes @ within its 5% uncertainty have only V. CONCLUSIONS
a minor effect on the observable results and does not change
the range of scattering lengths. It does cause minor changes We have presented a quantitative analysis of the spectra
in the specific values ofig but does not change the overall of vibrational levels of the long-range, turve of the®K,
range of ag values. We extract a temperature of 400 dimer. ngh precision photoassociative Spectroscopy from
+50 uK for the atoms in the MOT. ForT=300 and Ultracold K atoms allowed us to resolve the rotational-
500 uK we find that the left-most feature is noticeably too hyperfine structure of these vibrational levels. Theoretical
narrow and too broad respectively. modeling had previously enabled some of[@§] to assign

In our analysis one of the uncertainties lies in the detecthe observed hyperfine structure. In this paper we were able
tion scheme. A second photon that creates a more highl{ model the lineshape and extract properties of the ground
excited K dimer can significantly modify the relative line State collision betweefS **K atoms held at ultra-cold tem-
intensities of the photoassociation proc¢$8,10. Experi-  Pperatures in a magneto-optical trap.

mentally, this sensitivity is minimized by excitihng to a  The analysis of the intensity spectra showed that no node
in swave scattering wave function can exist between66

TABLE I. 3K scattering lengthe,, in units of a, and corre- ~ and 17@,. This nodal structure immediately excludel
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sponding scaled scattering lengths. scattering lengths betweenl3a, and 17@,. We also found
that shape resonances play a crucial role in the formation of
+90<ag<+230 0.61<A5<0.83 the excited molecule. The experimental spectra show clear
—60<ar<+15 —0.48<A;<0.15 signs of the presence of dwave shape resonance. In the
—150<ay<+20 —0.75<A,s<0.20 absence of such a resonangevave collisions should not
+5<ays< +100 0.05< A< 0.64 have contributed measurably to the spectrum because the

400 uK temperature of the gas is considerably lower than
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the 1500uK centrifugal barrier. In addition simulated and Wherex=R/x, anda is expressed in units of,. This wave
measured spectra only agree by narrowly avoidimgweave  function is exact as long asRY is a good representation for
resonance in an accessible entrance channel. The interplaythle real potential. EquatiofAl) immediately describes a
all the shape resonances and exclusion of a range of scatteelation between the node positioms and the scattering
ing lengths allowed us to give bounds for the experimentallylength. For example it follows that, for infinite scattering
observable scattering lengths. _ length zo=0.848, from J;,,(2/z3)=0 and for zero scatter-

_ The inclusion of constranjt% resultlng. from the o_bserva—ing lengthz,=0.99%, from 371/4(2/23):0_ It turns out that
tion of a p-wave resonance if’K scattering[39] provides typical values ofz, for alkali-metal dimers always lies at a
further restrictions on the allowed values at. A joint g6 R of the internuclear coordinate where chemical or
analy5|s of this d"?“a along with t_h?Kz 0y analysis[21] exchange contributions to the interaction potential are negli-
will be presented in a future publication. gible. As a practical point deviations occur when the electron
clouds of the two atoms overlap, which for alkali-metal
dimers is somewhere betweenag0and 3@, [40]. As a

We thank J.P. Burke, C.H. Green and J.L. Bohn for comJesult the value ok, for the Li dimer is close to where the
municating their theoretical analysis prior to publication.contributions due to exchange are becoming relevant.
E.T. would like to acknowledge support by the Army Re- A second length scale is due to Gribakin and Flambaum
search Office and the work at the University of Connecticuf35]. This scale describes the mean scattering length for a
is partially supported by the National Science Foundation. 1/R® potential. Unlike the derivation of, versusa the av-
erage scattering length is found by integrating from short
APPENDIX: LENGTH SCALES range to infinity with the restriction that the interatomic po-
The low energy properties of scattering wave functionst.ential is described byL_CG/R6 over_this_ range. The integra-
and collisional cross sections are to a large extent determinetlcP nis startgd from a given log-derivative of the ZEro-energy
by the long-range shape of the interaction potential. Thidvave function. The precise value of the log-derivative .de—
ends on the exact shape of the short-range part of the inter-

appendix discusses several length scales relevant for an . . .
tractive C4/R® potential. A connection with length scales in atomic potential. An analytic one-to-one correspondence be-
tween this log derivative and the scattering length can then

existing literature is made. . ? 2
The simplest length scale is obtained by restating thd€ derived. Since all values of the log-derivative are equally

Schralinger equation for a pur€s/R® potential in dimen- likely, the average scattering Iengthi_s given by averaging
sionless units. It follows that it is convenient to introduce aover all log derivatives and is equal #=0.956¢,. It also
scalexo=4/2uCg/%2/2. The factor of one half is arbitrary. follows that for a— C¢/R® potential there is a 25% chance of
However, it turns out that, using this base definitiopis  a negative scattering length.

nearly identical to length scales that are derived from specific A third length scale is proposed by Julienne and Mies
physical requirements and which are discussed below. [41]. The length scale highlights the breakdown of the semi-

The first of such physical lengths describes the connectioglassical Wigner-Kramers-BrillouifWKB) approximation.
between the last node of the zero-energy wave function antthe WKB approximation for collisional phase shifts or cross
the corresponding scattering lengfi3]. The discussion sections is valid when for all internuclear separations the
around Fig. 2 has already touched on some of these issuashange of the amplitude of the wave function is negligible
The connection is most relevant for photoassociation spemver a local de Broglie wavelength. For sufficiently small
troscopy with ultra-cold atoms. The line intensities of thecollision energies, however, the WKB approximation breaks
spectroscopic features are an image of the zero-energy wag®wn. The change of the wave function amplitude is still
function at the Condon point of the transitiof$6] and  small for short and large internuclear separations but peaks
hence Condon points close to nodes of a wave function leaigh between in such a way that the peak value increases with
to disappearing spectral features. decreasing collision energy.

The basic concept behind the connection is that for a Following a more rigorous discussion of the WKB break-
given scattering lengtla the long-range form of the radial down, Ref.[41] defines a collision energyg and a length
wave function for zero kinetic energy is obtained by integrat-scaleR, for the breakdown of the semi-classical approxima-
ing the Schrdinger equation frome to shorter internuclear tion by the requirement thad\ (eq,Rq)/dR has a maxi-
separationsR. In fact, this integration is known analytically mum at R, and equals 0.5. Here \(¢,R)

n H H —
for 1/R" potentials and yields fon=6 =2m/\2ulh?(e—Cg/R®) is the local de Broglie wave-
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T(5/8) 3. A 22 —T (31D A 2/x2)/a length and the interatomic potential is given by a long-range
\/;[ (5/8)1,4(257) ~T(318 -1, 21 8] —Cg/R® dispersion interaction. Some algebra then yields
—1-x/a for Xx—oo, (A1) Ro=0.986.

[1] H. M. J. M. Boesten, J. M. Vogels, J. G. C. Tempelaars, and B. [3] R. Cag, A. Dalgarno, and M. J. Jamieson, Phys. Rev5@
J. Verhaar, Phys. Rev. B4, R3726(1996. 399 (1994).

[2] R. Cde, A. Dalgarno, H. Wang, and W. C. Stwalley, Phys. [4] A. J. Moerdijk, W. C. Stwalley, R. G. Hulet, and B. J. Verhaar,
Rev. A57, R4118(1998. Phys. Rev. Lett72, 40 (1994).



4438 C. J. WILLIAMS et al. PRA 60

[5] P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratliff, S. L. [23] R. Napolitano, J. Weiner, C. J. Williams, and P. S. Julienne,

Rolston, and M. E. Wagshul, Phys. Rev. L&tt, 2200(1993. Phys. Rev. Lett73, 1352(1994.
[6] J. D. Miller, R. A. Cline, and D. J. Heinzen, Phys. Rev. Lett. [24] Henceforthf denotes the summed angular momentum for the
71, 2204(1993. two atoms, whereak, andf,, denotes the angular momenta of
[7] W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. the individual atoms.
Williams, H. T. C. Stoof, and R. G. Hulet, Phys. Rev.?A, [25] K. M. Jones, P. S. Julienne, P. D. Lett, W. D. Phillips, E.
R871(1995. Tiesinga, and C. J. Williams, Europhys. Le36, 85 (1996.
[8] H. Wang, P. L. Gould, and W. C. Stwalley, Phys. Rev53 [26] G. Herzberg,Spectra of Diatomic Moleculeg/an Nostrand,
R1216(1996. New York, 1950.
[9] H. Wang, J. Li, X. T. Wang, C. J. Williams, P. L. Gould, and [27] M. Marinescu and A. Dalgarno, Phys. Rev.58, 311(1995.
W. C. Stwalley, Phys. Rev. A5, R1569(1997). [28] E. Tiesinga, C. J. Williams, and P. S. Julienne, Phys. Rev. A
[10] X. Wang, H. Wang, P. L. Gould, W. C. Stwalley, E. Tiesinga, 57, 4257(1998.
and P. S. Julienne, Phys. Rev.5%, 4600(1998. [29] H. Lefebvre-Brion and R. W. Fiel®?erturbations in the Spec-
[11] A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou- tra of Diatomic MoleculegAcademic, New York, 1986
Seeuws, and P. Pillet, Phys. Rev. L&®, 4402(1998. [30] H. T. C. Stoof, J. M. V. A. Koelman, and B. J. Verhaar, Phys.
[12] A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Rev. B38, 4688(1989.

Masnou-Seeuws, and P. Pillet, Eur. Phys. 5,[389(1999. [31] F. H. Mies, C. J. Williams, P. S. Julienne, and M. Krauss, J.
[13] E. Tiesinga, C. J. Williams, P. S. Julienne, K. M. Jones, P. D. Res. Natl. Inst. Stand. Techndl01, 521 (1996.
Lett, and W. D. Phillips, J. Res. Natl. Inst. Stand. Technol.[32] P. S. Julienne and F. H. Mies, Phys. Rev38, 831(19849;

101, 505(1996. 34, 3792(1986.
[14] H. M. J. M. Boesten, C. C. Tsai, B. J. Verhaar, and D. J.[33] R. Cag, A. Dalgarno, Y. Sun, and R. G. Hulet, Phys. Rev.
Heinzen, Phys. Rev. Letf.7, 5194(1996; H. M. J. M. Boes- Lett. 74, 3581(1995.
ten, C. C. Tsai, J. R. Gardner, D. J. Heinzen, and B. J. Verhaaf34] The concept of a last node only applies in the limit of zero
Phys. Rev. A55, 636(1997). energy scattering; at low but finite collision energy, it is the
[15] N. Newbury, C. Myatt, and C. Wieman, Phys. Rev. %4, “last” node before the start of the nodes associated with os-
R2680(1995. cillations of the asymptotic sjk(R—a)] wave function.
[16] P. S. Julienne, J. Res. Natl. Inst. Stand. Techa6ll, 487 [35] G. F. Gribakin and V. V. Flambaum, Phys. Rev.48, 546
(1996. (1993.
[17] H. R. Thorsheim, J. Weiner, and P. S. Julienne, Phys. ReV36] P. S. Julienne, F. H. Mies, E. Tiesinga, and C. J. Williams,
Lett. 58, 2420(1987). Phys. Rev. Lett78, 1880(1997.
[18] M. Movre and G. Pichler, J. Phys. B0, 2631(1977). [37] J. P. Burke, J. L. Bohn, B. D. Esry, and C. H. Greene, Phys.
[19] W. C. Stwalley, Y.-H. Uang, and G. Pichler, Phys. Rev. Lett. Rev. A55, R2511(1997.
41, 1164(1978. [38] S. J. J. M. F. Kokkelmans, H. M. J. M. Boesten, and B. J.
[20] D. Comparat, C. Drag, A. Fioretti, O. Dulieu, A. Crubellier, F. Verhaar, Phys. Rev. A5, R1589(1997).
Masnou-Seeuws, and P. Pillet, Eur. Phys. J(t® be pub- [39] B. DeMarco, J. L. Bohn, J. P. Burke, Jr., M. Holland, and D. S.
lished. Jin, Phys. Rev. Leti82, 4208(1999.
[21] J. P. Burke, C. H. Green, J. L. Bohn, H. Wang, P. L. Gould,[40] W. C. Stwalley, Chem. Phys. Le#, 241(1970; R. J. LeRoy
and W. C. Stwalley, preceding paper, Phys. Rev. A. and R. B. Bernstein, J. Chem. Ph¥2, 3869(1970.

[22] H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, Phys. [41] P. S. Julienne and F. H. Mies, J. Opt. Soc. Am6B2256
Rev. Lett.78, 4173(1997. (1989.



