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Determination of 3K scattering lengths using photoassociation spectroscopy of the, Ostate
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Threshold scattering properties 81K atoms are extracted from a line-shape analysis of photoassociation
data. Specifically, we consider the rovibrational levals=0—6) populated in the photoassociation process
K(4S)+K(4S)+hw— K’;[Og(v',J’)]. The measured spectra exhibit several general trends, including large
J' =2 linewidths, large relativd’ =4 peak intensities, and odd rotational lines which are weak or missing. The
evenJ’ features signal the presence oflavave shape resonance in the ground-state collisions. The combi-
nation of spectral features allows us to place the following limits on the ground-state singlet and triplet
scattering lengthsas= 140f8 a.u. anda,= — 17—0.045(06—65) +25 a.u.,66=3800 a.u.
[S1050-2947@9)03512-X

PACS numbsefs): 32.70—n, 32.80.Pj, 33.15.Pw, 33.20.Vq

[. INTRODUCTION ground states colliding in the presence of a weak laser field
that excites them to a rovibrational bound level of the elec-
Since the first realization of Bose-Einstein condensatiortronically excited ¢ state whose dissociation limit is the
(BEC) in a dilute gas of Rb a_tomﬁl] t_hree years ago, re- 4S5+ 4Pz, threshold. The §) adiabatic potential curve is cre-
searchers have performed an impressive array of experimendged by a long range avoided crossing between a repulsive
probing the dynamics and physical characteristics of suclIl, state dissociating to theS4 4P, threshold and an
condensates. This experimental impetus has led to a larggtractive ®s ; state dissociating to theS# 4P, threshold
body of theoretical work devoted to the analysis of presenf1g 11). The inner wall of the g potential in K, lies at an
(and future experiments. Although the theoretical tech-jiernyclear separatioR~40 a.u. Such a large inner turning
niques employed to describe the underlying physics havgint implies that the electronic wave functions of the two
been quite diverse, they are connected by a common threag,ms do not overlap significantly and thus the excited state
That is, the effective interaction between particles in the CONpotential, as well as the molecular dipole matrix elements
densate is modeled using the two-bosiyave scattering  c4n he determined solely from atomic parameters which are
lengtha. Knowledge of this single collision parame®fand i quite accurately. In addition, the rovibrational wave
of course experimental trap paramejéras allowed theorists  ¢,ctions used in this analysis span a range of internuclear
to successfully describe a multitude of experimental Obseréeparations from 40-80 a.(see Fig. 1 An investigation of
vations such as excitation frequencies, 4i2¢ and rate of 1o gpectroscopic line shapes and relative intensities will
formation[3] of the condensates. therefore provide information on the ground-state wave func-
Unfortunately ab initio calculations of the two-body mo-  {jong gver this same range via the free-bound Franck-Condon
lecular interactions have proved unable to determine sensfaciors, Determination of the nodal pattern of the ground-
tive quantities su_ch as the scattering length to suﬁ|C|e_nt aCstates-wave function over this range & generally suffices
curacy. To date, it has only been through the collaboration of, predict the two-body scattering lengihaccurately.
experiment and theory thathas been established with rea- -~ preyioys estimates of K scattering lengths have appeared
sonable precision. PhotoassociatiPA) spectroscopy4] i the literature[12,13. However, in both cases the work
has proven to be an extremely useful tool in this regard. Foy,45 pbased on conventional molecular spectrosddgyl5)
example, the scattering lengths are known quite accuratelyhich provided information on the ground-state potentials
for Li [5], Na [6], Rb [7], and to a lesser extent 48] 4y over the rang®=5-30 a.u. In addition, the last mea-
primarily through the analysis of PA experiments. Notablyg req hound state was approximately 1.7 énbelow the
absent from th's |'$t IS potassium, an omission Wh'c_h IS ad'48+ 4S threshold, too low to extrapolate reliably to thresh-
ggessed now in this article. An independent analysis of the,y The analysis presented in this paper makes use of both
K hlu spectrum also aﬁdresses th'bs S'tlr"]‘f"[':h +ed mce conventional spectroscopic data as well as the new PA
Photoassociation is the process by which an excited Mog, herimental data and thus provides a more reliable predic-
lecular bound state is resonantly formed during the collisionig for the K scattering lengths.
of two free atoms through photoexcitation, e.g., with a CW
laser. In our case, we consider twoK atoms in their & | EXPERIMENTAL PROCEDURE
The experimental setup has been described in detail else-
*Present address: National Institute of Standards and Technologwhere[16,17]. However, we provide here a brief description
Gaithersburg, MD 20899-8423. for completeness. In particular, we focus on the experimental
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FIG. 1. Schematic of the ground- and excited-state potentials &
(dashed lingsand wave functiongsolid lines. The ground-state 2
thresholds are labeled by thefr,+f, quantum numbers. The ﬂé
ground-state wave functions were calculated at zero energy relative=
to the 1+1 threshold. The excited state wave functions correspond
to the lowest and highest vibrational levels’ €0 and 6, respec-
tively) used in the analysis. The graph is not to scale. 00 .
~0.0 500.0 1000.0
checks taken to ensure the quality of the data. Relative PA Laser Frequency (MHz)
A sample of 10 3K atoms, density>10' atoms/cm at _ -
a temperature of-400 uK are prepared in a “dark spot” FIG. 2. Representative examples of the @' =0 spectra ob-

vapor cell magneto-optical tragMOT). The atoms are tained using autoionizing fina_l states l_)elow th&+5D and th(_a

. . . . = 4S+6D thresholds. The rotational assignmetof each peak is
traPpeg predominately in theif,=1 hyperfine state fG i, dicated in the graphs.
=S,+1i,,,=3/2). Separate single-mode tunable ring ) i
Ti:sapphire laser§Coherent CR 899-29provide the trap- hlghly .ex0|ted flnal states are structureless and bijd#]
ping beams and induce the PA transitions. The total outpufith widths ranging from~1 GHz for levels near the 3
power of the trapping laser is 300 mW at 766.5 nm while T 2D limit to ~2 GHz for levels near the @+ 6D asymp-
the PA laser intensity is typically 50 mW/@nThe analysis [ote. General trends in the PA spectra of the dlate, such
presented below concentrates on the=0—6 vibrational 25 vyeak_or missing Oddl, rOtatlon.aI Igvels,_a_momalouk
levels of the @ state. For these low lying states, trap Ioss:.2 Ime_vwdths, and largg’ =4 relatlvg |ntenS|t[es Were con-
spectra are not easily observed because the local kinetic eﬁ'—Stem ,m both cases. Th‘? only_ not|ceable_d|fferences oceur
ergy is not large enough to allow atoms to escape from th theJ — 4 re_latlve intensity which was typlcglly a factor of
trap when the excited vibrational state decays throug 52 b|gger'|n'the spect'ra observgd using final States below
bound-free spontaneous emission of a photon. Detection Pe 45+6D I'm't' This difference is at_trlbu_ted to slightly
the PA resonances is therefore obtained by recording io otter at(_)ms in the MOT(based on linewidthsand the
production after a double-resonance transition from the 0 roader final state. .
rovibrational state to an autoionizing, Istate below the F,)A s:p?ctra of the ) state were measured by fixing to
highly excited &+nD (n=5 or 6) asymptote19]. In & 0Oy (v'3"=2)—1,(v) transition near the 8+nD asymp-
particular, a tunable ring dye laséEoherent CR899-29, op- tote, then scanning the PA laser frequency. We found that
erated with R110 or R6G dyegrovides the second photon, changinge, by the differences between thE=2 and 0
at frequencyw, and typical intensity 12 W/chy for the Ie,vels and _bet\_/veen _thia{=2 and 4 levels affected 0r_1|y the
double-resonance process and a channeltron multipliet =4 relative intensity by roughly a factor of 1.5 while pre-
records the subsequent production of ions. More detail§€TVing all other trends in the datsee for example Fig.)3
about the high-resolution PA spectroscopy of the &tate Changing the power ai, only affected the total ion produc-
can be found in Ref17]. tion rate. In addition, we varied the PA laser intensity by a

Several measures have been taken to ascertain the ian[ﬁCtor of 2 and observed no noticeable power broadening.
ence of light atw, on the PA spectrum of the,Ostate. First,
spectra have been recorded using final autoionizing states
below both the &+ 5D and 45+ 6D asymptotes. Represen- A previous analysis of thé*Na 0y spectrum[6] has
tative examples of these spectra are shown in Fig. 2. Theshown that two color photoassociation line shapes can be

Ill. THEORY
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T takeny=12 MHz which is simply twice the atomic natural
4 linewidth [10,22. The numerator in Eq(l) contains a
squared dipole matrix element that determines the strength of
each resonant transition. The resonant rates include an aver-
age over all initial states, a thermal average over incident
energy and a sum over all unresolved final states. In addition,
we insert a factory to represent the efficiency with which
the probe laser abv, makes observable products. For the
present analysis, we assumas independent of the interme-
diate quantum numbens’, J'. As discussed in the experi-
mental section, this approximation is not strictly valid which
leads to an increase in our final fit uncertainties.

In more detail, the excited bound state wave functfois
-0.5 _— labeled by its vibrational quantum number, rotational
guantum numbed’, parityp’, andB’ to represent all other
quantum numbers needed to define the wave function

-
o

o
3

Relative Transition Amplitude

o
=

15 L 4 uniquely (including nuclear spin degrees of freedorihe
b) 4 experiment did not resolve any hyperfine structure in the

3 2 ] spectra and therefore the excited state nuclear spin degrees of
"—:1 1.0 | i freedom are simply summed over. The ground-state wave
< J=0 function of the two colliding atom4al is labeled byf, the
2 ] total spin angular momentum of the palirthe mechanical
é 05 - rotation (sometimes denoted as the partial wavbke parity
E, p, and o represents all other quantum numbers needed to
'§ uniguely define the quantum state. Hdrdenotes the vector
0

0.0 i sum of each atom’s total spin angular momentuﬁﬁfa

+ f, wherea andb label each atom. The collision energy is
05 ‘ defined asE. The ground and excited states are coupled by
0.0 500.0 1000.0 the electronic dipole operator representedil§y. The final

Relative PA Laser Frequency (MHz) quantity to be defined ia; which represents the population
of atoms in the collision entrance chaniieFor a randomly

FIG. 3. Representative examples of thg @'=3 rotational  polarized gas of identical particles, this weight is given by
spectra obtained for different values @f. The relative transition ni=(2f+1)/Ny 1, where Ny (,=(2f,+1)(2f+1
a''b a''b a

amplitude is dimensionles$a) w, fixed to a /(' =2)—1y(v) . o
transition near the 8+6D asymptote.(b) w, fixed to a ¢ (3’ T S,.1,)/(1+ 8¢ 1) is the total number of distinct symme-
=4)—1,(v) transition near the 8+ 6D asymptote. trized spin channels. It should be noted that averaging the
dipole matrix elements over initial states cancels both the
accurately modeled by explicitly considering the first PA2f+1 factor above and thel2 1 factor in Eq.(1). The
step alone provided the second transition is to a broad, struexact form of Eq.(1) is slightly different than that given in
tureless final state. For a cloud of atoms at temperafure Ref.[9]. This is simply the result of using a different angular
and an angular laser frequenay the expected free-bound momentum coupling scheme and, in fact, the two equations

transition signal is given b{6,20] are equivalent.
S(v'.J% e, T)=7 2 ni(2l+1) A. Excited state
B'p'flpa
el Y E o Radial wave functions for the ground and excited states
y fwdEe B |<¢p’ﬁ’|ﬁﬂlq’flpa>| are key quantities required for the evaluation of Eg. We
0 (E+hw—EY"Y)2+(y/2)2 begin with a discussion of the excited state. The excited-state

potential can be described to first order by the simple ana-
(1) Iytical model of Movre and Pichlef10,23. It has been

shown[24,25 that for the lowest few vibrational levels the
The structure of this expression is as follows: A resonancéound state energies can be calculated quite accurately by
denominator describes the transition from an incident consimply including higher order corrections to this model.
tinuum energyE to the bound state enerdsy’ ?" and incor-  Since we are considering only =0-6 in our analysis, this
porates the excited state’s radiative linewigthwe assume approximate description of the potential will suffice.
that the second laser at, and hyperfine structure contribute ~ We generate thé’K, 0, adiabatic potentials following
negligibly to the observed linewidth. These assumptionghe method outlined in Refl17]. The 2x2 Hamiltonian
should be reasonable considering the low laser power inwhich describes th€ =0 Hund’s case states is given in a
volved and small hyperfine splitting21]. We have therefore Hund'’s case a representatio?’ﬂg ,3Eg ) by
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TABLE I. The excited-state long-range dispersion coefficients B. Ground state
used in this workEg. (3)] are taken from Ref[17]. The coeffi-

. e - Construction of the ground-state potentials begins with
cients are given in atomic units.

singlet[15] and triplet[14] adiabatic Born-Oppenheimer po-

Coefficient n s tentials derived from spectroscopic data. The spectroscopic
potentials are matched smoothly onto a long range potential
Cs —8.436 16.872 which includes long range spin exchad€] and dispersion
Cs 6272 9365 [28] contributions. Our final singlet and triplet potentials
Cs 762 300 1975000 support 86 and 27 bound vibrational states, respectively, for
3%K,. We vary the zero energy phase shifts of these poten-
tials by adding a small correction to the inner wakg
R A \/E _ 2
VitVi—gz A Cgtan ! ﬂ) } R<R.,
H=l 5 : 2 AV(R)= AR )
_ ?A V2+V§ 0, R>R..

where A=57.706 cm® represents the atomic spin-orbit Here S=0 or 1 denotes the total electronic spR, is the
splitting. The electrostatic molecular interactigR. is accu-  minimum of the relevant potential, ardR is a width param-
rately represented for large by a multipole expansion with eter, which we took to be\R=2 Bohr. Combining these

the coefficients given in Table I: potentials, which are diagonal in a basis of total electronic
spin S, with the atomic hyperfine and mechanical rotation
cl’x clx = Hamiltonians produces a realistic set of coupled molecular
Vy=—flr— — — — — (3)  potentials.
R R R In the absence of bias magnetic fiel@s in this experi-

menY, total angular momentunf; =f+1, is conserved in
the collision of two ground-state atoms. Further, neglecting

the weak magnetic dipole interaction implies that bbtnd

Retardation effects are incorporated irftd>. These have
the form[18]

fll=cogR/\) + (R/N)SiN(R/N) — (R/N)? cog R/N), [ are separately conserved. We can therefore model the dy-
namics of a cloud T~400 uK) of f,=f,=1 atoms with
f2=cos(R/)\)+(R/)\)sin(R/)\). (4) five distinct Hamiltoniansf=0,2 with |=0,2 andf=1, |

=1. The Hamiltonians witli =1 and 2 contain a set of three
coupled channels with one channel converging to each of the
three hyperfine thresholdglenoted asf,+f,). The f=0
Hamiltonian is a two channel case with the second channel
converging to the uppermo&+2) hyperfine threshold. The
(1+1) entrance channel is the only channel operRasce.
However, the closed channel components of the multicom-

Here, A =\ 45 .4p/27 is the transition wavelength. We use an
approximate rotational Hamiltonian, including only the diag-
onal matrix eIementS/f, which are given by26]

ﬁZ
R_ ’ ’
V= [J'(J'+1)+2],

2uR? ponent ground-state wave function cannot be neglected as
they can still provide a substantial portion of the radial over-
5 lap integral(see Fig. 1
VR= h [3/(3'+1)+4] 5) At this point, one could generate the multicomponent
z 2uR? ' ground-state wave functions by directly integrating the radial

Schralinger equation. However as mentioned, the radial

The off-diagonal terms are negligible for the low-lying vi- ©Verlap integral contains a coherent sum over open and
brational levels. closed channel components. This is important because the

TheJ' dependent potentiaIsVJ/ are obtained by first first obvious trend in the spectra is the absence of &dd

diagonalizing Eq(2) and then adding nonadiabatic diagonal peaks for most of the vibrational levels. These nontrivial
9 ) 9td ] gV,J, ] 9 interferences of the radial wave functions make it difficult to
correctiond27]. Bound state energids’ ° and single chan- ;syalize a convenient placement of the nodes which would

nel wave functionsy¥ ' (R) are now easily obtained in the produce such a suppression in the spectra. In order to gain

potentiaIsVJ'. The radial part of the excited state wave func-complete confidence that our final fits to the measured data
tion ¢>V/J/(R) is then written as aR-dependent linear com- Were unigue, we undertook a qqmplete search of singlet/
bination of the two Hund’s case a basis functions triplet parameter space. The additional computational burden
of thermal averaging made direct integration extremely inef-
) ficient. We therefore generated the ground-state wave func-

"V (R)=2 by, (Rx'"'(R), (6)  tions using multichannel quantum defe@QDT) tech-

A’ nigues developed in Reff29] (see also Refd.30—-32).

The MQDT approach allows us to represent the indepen-

wherebJ/(R) is the eigenvector obtained from the diagonal-dent solutions of the radial Schitimger equatiorM (E,R)

ization of Eq.(2). for R=40 a.u. in the following manner:
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M(E,R)=f(e,R)—g’(e,R)K", (8)  atom hyperfine basis. As a test of our formulation we have
o - - - checked that all dipole selection rules are obeyed and that the
Here, f|0 and g? are diagonal matrices of energy-analytic lifetime of all 0y rotational levelsl’,M;, are equal to one
reference wave functions evaluated at energje®lative to  half the atomic lifetime[22,10. As a final test that all the
channeli’s threshold,e;=E—E;. The notation used here pieces of our theory have been integrated properly we have
assumes the entrance channel threshold defines zero energaproduced the Na spectra illustrated in Héf.
The single channel reference wave functidiisg? are de-
scribed in detail in Ref[29] but it suffices here to remark IV. RESULTS
that these wave functions are good solutions of the Schro
dinger equation in the presence of the long range potential. We begin the analysis by choosing scattering lenfjtes
The correct linear combination of these reference wave funcCs in Eg. (6)] for the singlet and triplet ground-state poten-
tions which satisfy standing wave boundary conditions istials. From this pair of potentials, a synthetic rotatiodal
controlled by the short range reactance matk To avery =0-4 progression is generated for vibrational levels
good approximatiorK®, which encapsulates all the multi- =0-6 via Eq.(1). A “match” to the measured data requires
channel physics, is energy independg®®]. For a given that the calculated relative intensities and linewidths of a
singlet and triplet phase shift, we therefore need only solveotational progression within a giverl agree within experi-
the coupled Schuinger equations at a single energy. Themental bounds simultaneously for each vibrational lewel
energy dependence of the wave functions_derives solely from.g_g. \We assume a constant cloud temperature, estimated
the single channel reference wave functions and these af§ pe 40a-100 K, for all vibrational levels. Absolute in-
independent of the singlet and triplet phase shifts. tensities are quite uncertain, requiring us to normalize each

However, at this pointM does not satisfy proper scatter- vibrational spectrum t&,e,(J’ =2)=1. In addition, we ad-

Ing _boundary COI’ldIt.IOI’]S. Thgse can be imposed with the fo'iust the absolute PA laser frequenay such that the blue
lowing transformations which incorporate the four long

edge of the synthetic and measur¥d=2 lines are aligned
range MQDT parameter@\(E,l), G(E,l), »(E,l), and ot : : )
B(E.I) described in Ref[29]. First, we apply amx n, for each vibrational spectrum. The absolute intensity and ab

) . o . solute frequency are the only two adjustable fit parameters
transformation matrix8(E) which imposes exponential de- . tqd . ty the th Y ) P
f the wave function in the asymptotically closed Chan_mcorpora ed Into e tmeory. L
cay o We used the data obtained from th8-46D autoionizing

ne:s(l.eh.., tr:lose W'thE<E!)' (Ij—lerednllsbtr:ednum]k‘)er of(;:r]:an- final state exclusively in the final determination of the
nels (whic ar:e symg1etr|?e an ha ee; by .b) elm Eor ground-state potentials. The uncertainties associated with the
our caseno, the number of open channels, is SMPYBIE) 41 autoionizing step were better characterized for this data

is given by and therefore more precise bounds on scattering lengths
1 could be obtained. The ground-state potentials were then sys-
B= o 1us | (9) tematically varied such that the singlet and triplet scattering
— \ = (tanB+Kgq) "Kop lengths ranged betweetrc. The search of singlet/triplet

) ] ) ] phase space combined information on all rotational peak ar-
where 1 represents amx n, identity matrix and taB is @ g55 and theld’=2 linewidth for vibrational levelsy’
diagonal matrix of negative energy phases. The labels on the g The uncertainties in these quantities obtained from
short-range reactance maltrix represent a partition into Opefeyeral scans of the experimental data determined the final

channel(those channelse P, for which ;>0) and closed  poynds placed on the scattering lengths. A comparison of
channel(those channelse Q, for which €;<0) subspaces. gpectra calculated with our “nominal” set of potentials is

An energy normalization constabt(E) provides the final  ghown in Fig. 4. The)'=4 relative intensity is the main
boundary condition in the open channel and is ,(’)bt?wsed byjiscrepancy between experiment and theory. This can be at-
equatingM B at largeR to the “physical solution”MP™% " i ted to optimizing the double resonance experiment using
The derivation oN(E) is given in the Appendix. An energy- the 3'=2 intermediate level which then underrepresents the
normalized real standing-wave radial wave function for theyr —4 intensitiegsee Fig. 3 These searches were conducted
ground-state is then given by for Cq ranging from 3600—4000 a.u. which is approximately
E _ +5% of the nominal valug¢3813 a.u. given in Ref.[28].
¥1i(E,R)=Mn(E.R)B(E) N (E). 19 The final results are given in Table Il. The table also trans-
lates these results into scattering lengths for other K isotopes.
C. Radiative coupling Atomic parameters for each K isotope are listed in Table IlI.

The final piece of theory needed is the electronic molecu- 1he analysis of the D spectra is simplified somewhat by
lar dipole matrix element. As discussed, the atomic electhe following selection rules. The parity of g Orotational
tronic wave functions do not overlap significantly at the in-wave function is ¢ 1)°" ** [6]. The ground-state wave func-
ternuclear separations at which transitions occur. The dipoléion parity is simply (- 1)". Therefore, dipole selection rules
operator is therefore given as a sum of individual atomicrestrict transitions from ground-state collisions in even par-
dipole operatorsfa-f—Fb_ Representing the molecular elec- tial wavesl| to even rotational leveld’ and likewise odd
tronic orbital as a linear combination of atomic orbitd8]  partial waves to odd’’s. More specifically,s-wave colli-
ensures that only one atom absorbs a photon. We first evalgions contribute ta’ =0,2, d-wave collisions contribute to
ate the matrix elements in the Hund's case a basis thed'=0,2,4 andp-wave collisions contribute only té’=1,3.
project the ground-state basis functions onto a separatdd addition the @ electronic state for like atoms has a
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FIG. 4. Comparison of experiment@ashed lingand theoreticalsolid line) relative transition amplitudeglimensionless The synthetic
spectra was calculated using our nominal set of potentigis 140 a.u.a,= —17 a.u., andCg=3800 a.u., assuming a cloud temperature of
400 uK. Rotational assignments are indicated in each graph. It is believed that the red wing o8tke0 experimental peaks correspond
to additional flux obtained fronfi=1+f=2 collisions. These collisions were not theoretically modeled since they contribute little to the

spectrum.

nuclear permutation symmetry which requires)’ *'" to

brational scans except =0 and 2. Second, the relative in-

be odd, wherd’ denotes the quantum number associatedensity of theJ’ =4 (pured wave) peak is found to be quite
with the total nuclear spifi=i,+1i,.

The measured spectra show several distinct trends. Fir
the p-wave features are almost entirely missing from all vi-;

TABLE Il. Singlet and triplet scattering lengttes(in a.u) and
quantum defects (dimensionlessfor collisions among different
pairs of potassium isotopes assuming a consfgrt 3800 a.u. The
scattering length is related to the quantum defect through the folc
lowing formula [29,38: a=—C2?tan(ru)/[1+G(0)tan(mu)]
where C?=0.9579(2nGCq)**, m is the reduced mass of the atom-
pair andg(0)= —1.0039. The singlet quantum defect uncertainties

+0.019

are " yg1; for each collision pair, independent of tig value. Fi-
nally, the uncertainties associated with each triplet quantum defe

and its variation withCg is given by: ,th:,47t+8.O(1(T5)(C6

large in all the scans. This is somewhat surprising since the
Jpeight of thed-wave centrifugal barrier is roughly 1.5 mK
and at cloud temperatures around 40K one would expect,
in the absence of resonances, theave features to be sup-
pressed by the Wigner threshold law. Finally, fHe=2 line-
widths are quite large-35 MHz compared to the other ro-
tational lines~25 MHz. The analysis of the measured data
will focus on these particular features. In the following dis-
ussion we generalize somewhat the contributions of each
feature to the limits placed on scattering lengths. However,
we want the reader to keep in mind that it is only through the
combination of these spectral features that a unique param-
C-:-t\ter region is found on which limits are ultimately placed.
The larged’ =2 linewidths are a particularly interesting
feature. We find that these linewidths are a result of a broad

—Ce) 1 506-

_ _ TABLE Ill. Mass in >C amu, nuclear spii, and ground-state

Isotopes as “ a, “ . ) o ; .
s t atomic hyperfine splittings of the K isotopes. A negative valua of

39+ 139 140f8 0.460 —17+25 0.039 indicates an “inverted” hyperfine structure.
40+40 1053 —-0.445  194"114 0.388 :
41+41 85:3  —0.366 65 ~0.268 Isotope Mass ' A (MHz)
39+40 -13 0.002  —460'3°  0.212 39 38.963 707 312 461.72
39+41 1135  -0.474  205"33° 0.379 40 39.963 999 4 —1285.79
40+41 —50" 3, 0.089 10439 —0.441 41 40.961 825 32 254.01




PRA 60 4423

DETERMINATION OF 3%K SCATTERING LENGTHS . ..

e A 10 g '»..“I. \\\ T 7
—— Ep=1.1mK : SO
g 1.00 F —— E,=09mK A OF- N
2 ---- noresonance | F
g E
g —10 E_ ]
c E k4
S = : A
= 3 E -
g S -20F "o
= 050 1 o~ E
2 2 N
B -30F ke
5 [ =
o E E
—40F 3
0.00 = ! ) I r—— g o s ‘n{ g
325.0 375.0 425.0 475.0 _sof e - L0 LS
Relative PA Laser Frequency (MHz) 130 135 140 145

a a.u.
FIG. 5. Comparison of thd’ =2 linewidths versus the position (00
Er of the f=0 d-wave shape resonance. The no resonance case FIG. 6. The dashed lines indicate the energy posiEigrgiven
indicates thes-wave contribution to the linewidth. The position of in mK of the d-wave shape resonance in thga, plane. The solid
the resonance controls the relatid@vave contribution to the peak rectangle represents our allowed individual singlet and triplet pa-
and the amount it is redshifted relative to thevave contribution.  rameter ranges@s=3800 a.u). including the +100 uK uncer-
The relative transition amplitude is dimensionless. tainty in cloud temperature. The hatched region indicates the pa-
rameter space excluded by the absence offth@ g-wave shape
f=0 d-wave shape resonance, at an enefgy=1.15 resonance.
+0.35 mK with a widthA=0.5-0.2 mK. The spectral
width provides a fairly sensitive probe of the position of theJ' =2 shifts to the red of the-wave contribution thereby
shape resonance. Figure 5 shows the effect onJthe2 increasing the overall width a3’ =2. However, ifEg be-
linewidth as the position of the shape resonance is varied. Asomes too large relative to the cloud temperature the thermal

Er is moved to larger energies, tlilewave contribution to averaging suppresses tth@vave intensity contribution effec-
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FIG. 7. Comparison of experiment@losed circlesand theoretica(solid line) J' =2 linewidths. The synthetic spectra was calculated

0.0
300.0

350.0

400.0

450.0

Relative PA Laser Frequency (MHz)
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transition amplitudes are dimensionless.
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tively reducing the linewidth. Similarly, iEg is moved to  (or unique where the open channel node needs to be placed
smaller energies not only is the red shift reduced but thén order to reproduce the observed suppression optivave
d-wave contribution with its extra (2 1) phase space fac- features for all levels except’' =0 and 2. However, having
tor [see Eq.(1)] overwhelms thes-wave contribution and already limited the available parameter space by considering
again the linewidth is reduced. The lardé=4 peaks are thed-wave shape resonance, we find unambiguously that the
also a by-product of this shape resonance and their heightgave function nodes are bounded as follos:1, p-wave

are quite sensitive to the position of the resonance. Theseode is 682 a.u. and thé =2, swave node is 62‘31 a.u. The
constraints forcég, to lie in the range 1.150.35 mK cre-  positions of these nodes in our allowed-a; parameter
ating an “allowed” strip in Fig. 6. In particular, the position space are controlled almost exclusively by the triplet scatter-
of the resonance depends sensitively on the singlet scatterinigg length. Unfortunately the suppression of fhevave fea-
length and thus imposes tight bounds on this quantity. Howtures is fairly robust in this region which is largely respon-
ever, because the resonance is near the top of the centrifugsible for the bigger uncertainty in the triplet scattering
barrier and therefore quite broad the spectral linewidths argength. Variations inCgq require a corresponding change in
relatively insensitive to theCgy value. In fact, we find the the triplet scattering length to preserve the nodal positions.
bounds on the singlet scattering length are unchanged whene found changing the value of th@, coefficient simply

C; is allowed to vary between 3600—4000 a.u. Allowing ashifted our allowed parameter region along the triplet axis of
quarter linewidth uncertainty on eacdti=2 peak, we find theas-a, plane while preserving the area. We have therefore
the following value for the singlet scatterimg=140"5 a.u.,  parametrized this dependence in the following manner
which is in good agreement with RdfL3]. (The bounds on g = —17-0.045C¢— Cg) =25 a.u., Cg=3800. The two

as are somewhat more conservative than reported previousiynost important scattering lengths for BEC are the triplet
in Ref.[34].) Comparison of thd’ =2 measured linewidths = scattering lengtta, andf=2 s-wave scattering length,s.

with our “best” fit pOtentiaIS are shown in Flg 7. Fina”y, it From our final potentia|sy we fin@_zs: — 20— 0055(CG
shoqld be_ note_d that thi$=0 d-wave_ shape resonance —56)5%2 a.u., in agreement with the results from thg 1
manifests itself in other features seen in thespectra9]. analysis[9].

However, we do not agree on the exact position of the reso-

nance and therefore have different constraints on the singlet

scattering length. We believe this discrepancy indicates a V. SUMMARY

limitation of the “naive” PA theory which disregards the . , ,
effect of the ionizing laser. This point is discussed in more N conclusion, we have presented a theoretical analysis of
detail in Ref.[9]. the O, rovibrational spectrum. Comparing the synthetic

There is, in fact, another bound &. We find that rais- SPectra with the measured relative line intensities and line-
ing Er above ~1.3 mK introduces an additional Widths allowed us to place fairly restrictive bounds on the

f=2 g-wave shape resonand®5]. The existence of a Singletand triples-wave scattering lengths. We have shown

g-wave resonance should manifest itself in the €pectrum that the spectral linewidths indicate the presence offan

as an additional’ =6 peak(as well as contributing tg’ ~ ~0 d-wave shape resonance. However, this resonance did
=2 and 4. However, there is no experimental evidence fornOt Provide conclusive information on ti; coefficient. In

an additional rotational peak. Also, the presence gfveave addition, the analysis has incorporated the MQDT ideas pre-

resonance would be inconsistent with thesbectrd9]. The sented in Ref[29], which has dramatically improved the

exclusion of theg-wave resonance thus reduces slightly Oureffmlen_cy of the theore_ncal calculathns. .
allowed parameter spacdsee Fig. 6. Particularly notable in our results is the first accurate de-

. . 39 . . .
Placing bounds o, is somewhat more complex. One termination ofa, for **K which can be translated into triplet

aspect of this problem is to reproduce the suppression of thi,cattr(]anngdlengéhs for Othﬁr |softop|c corlnblnaul(l)ns gy rets)czll-
p-wave features as was also the case in8laHowever, in Ing the reduced mass. T e unfortunately small and probably
negative scattering length i’K poses considerable disad-

Na the Franck-Condon overlap was controlled essentially b& e ; the
the wave function in the open channel and therefore a carefjf2ntages for attaining BEC. The good news is that

placement of a node in this produced the proper cancellatiorifiP/et scattering length is almost assuredly large and positive

In our case, the Franck-Condon overlap consists of a cohefNd thus this isotope should be a good candidate for BEC.

ent sum over the open chanreeid closed channel contribu- AISO, K should have a large positive triplet scattering
tions as emphasized in Fig. 1. The outer turning points of thé€Ngth making the proposition of a mixed-spin state degen-
closed channel potentials occur at roughly the same internig'at€ Fermi gas tangible. We have reported these consider-
clear separation as the inner turning point of the excited stat@t'og'gs in detail in a separate stufA]. Our results for both
potential. This of course means that the closed channel&!® ~K & andays scattering lengths are consistent with the
which are on their last half cycle at the Condon point, car@nalysis of thfoggpectrig], and we find our triplet scatter-
have a large effect on the radial overlap integral. Moreoverind length for K is consistent with the value extracted from
the shapes of the closed channel wave functions near tHerecent elastic scattering measurenj&.

Condon point are essentially “fixed” iR, as they must

begin t_heir exponential decay. Varying the s_inglet an_d triplgt ACKNOWLEDGMENTS

scattering lengths thus only affects the relative amplitudes in
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Foundation. mann functionsu the reduced mass of the atomic pair and
k=\2uE. The wave functio™M’=M B at largeR can now
APPENDIX be written as

tané°cosy

The following transformations and quantities are de- 2
scribed in Ref[29]. We begin with the asymptotic form of M’ —kR~ /—k
o

)[(1—tan55tann)j|(kR)

the wave function which in our particular case has only a AYK
single nonzero component —(tané*+tanm)n, (kR)], (A5)
M(E R)BR::Oro(E R)—gP(E R)K (A1) where we have introduced a new phase definedsas
- - =tan [AK/(1+GK)]. We can now determine the normal-
whereK is given by the following transformation: ization constant by simply equating the QDT wave function
NM’ to the “physical” wave functionMP™s given asR
K=Kgp—Kio(KZottans) 'Kgp. (A2) — by
Next we introduce an energy normalized base pair of refer- hvs 2u _
ence wave function$,g MPPE= KR/ []1(kR)coss”—n (kR)siné°], (A6)
0 —-1/2
F(R) _ A 0 f(R)) (A3) whereéP® is the “physical ” phase shift and is given in terms
°(R)) \—A"Y2G AY2/{g(R) of the MQDT parameters by°= 5%+ . Finally with a little

. . ) . ~more manipulation, we can write the normalization constant
which are phase-shifted relative to spherical Bessel solutiongplely in terms of the three long range MQDT parameters

e A(E,l), G(E,I), B(E,l), and the short range reactance ma-
H sr
f|(E,R)—kRy2u/7k[ j(kR)cosp—n(kR)sin 7], trix K’
j i sin&®
9/(E,R)—kRy2u/7k[j;(kR)sin »+ n,(kR)cosn].(A4) N(E) = s, A
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