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Comparison of contracted Schralinger and coupled-cluster theories
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The theory of the contracted Schlinger equatiofCSE) [D. A. Mazziotti, Phys. Rev. A7, 4219(1998]
is connected with traditional methods of electronic structure including configuration-interd&@lprand
coupled-cluste(CC) theory. We derive a transition contracted Schinger equatioTCSE which depends on
the wave functiony as well as anothed-particle functiony through the two-, three-, and four-particle reduced
transition matricesRTMs). By reconstructing the 3 and 4 RTMs approximately from the 2-RTM, the inde-
terminacy of the equation may be removed. The choice of the reconstruction and the fundédarmines
whether one obtains the CI, CC, or CSE theory. Through cumulant theory and Grassmann algebra we derive
reconstruction formulas for the 3- and 4-RTMs which generalize both the reduced density (R&INK
cumulant expansions as well as the exponential ansatz for the CC wave function. This produces a fresh
approach to CC theory through RTMs. Two theoretical differences between the CC and the CSE theories are
established for energetically nondegenerate stéteshile the CSE has a single exact solution when the 3-
and 4-RDMs areN-representable, the CC equations wiNkrepresentable 3- and 4-RTMs have a family of
solutions. ThusN-representability conditions offer a medium for improving the CSE solution but not the CC
solution, andii) while the 2-RDM for an electronic Hamiltonian reconstructs to unijuepresentable 3- and
4-RDMs, the 2-RTM builds to a family o-representable 3- and 4-RTMs. Hence, renormalized reconstruc-
tions beyond the cumulant expansion may be developed for the 2-RDM but not for the 2-RTM without explicit
use of the Hamiltonian. In the applications we implement our recently developed reconstruction formula for the
3-RDM which extends beyond the cumulant approximation. Calculations compare the 3-RDM and 3-RTM
reconstructions for the molecules LiH, BeHBH;, and HO as well as for systems with more general
two-particle interactions. The TCSE offers a unified approach to electronic structure.
[S1050-294{@9)01812-0

PACS numbdps): 31.10+z, 31.15.Dv, 31.25:v

[. INTRODUCTION sium at Queens University in 198%9]. Without additional
conditions the CSE, however, cannot be solved for the
The quantum-mechanical wave function of ldrelectron  2-RDM because the CSE also depends on the 3- and
system contains much more information than is required t@l-RDMs. In 1993 Valdemoro and her collaborators removed
compute the expectation values for most observables. Behe indeterminacy of the CSE by building the 3- and
cause the interactions between electrons are pairwise withi-RDMs approximately from the 2-RDM through the
the Hamiltonian, the energy may be determined exactlyparticle-hole duality[13,14. These formulas were utilized
through a knowledge of the two-particle reduced density mawith the CSE by Colmenero and Valdemoro to compute the
trix (2-RDM) [1,2]. Unlike the unknown dependence of the ground-state energy for beryllium and its isoelectronic se-
energy on the one-particle density in density functionalquence[20]. In 1996 Nakatsuji and Yasuda improved Val-
theory (DFT) [3], the dependence of the energy on thedemoro’s reconstruction functionals for the 3- and 4-RDMs
2-RDM is linear. The 2-RDM, however, has not replaced thewith arguments from the theory of Green’s functions and
wave function as the fundamental parameter for many-bodgpplied these formulas with the CSE to atoms and molecules
calculations because not every two-particle density matrix isvith as many as fourteen electrofi,11]. In 1998 we fur-
derivable from arN-particle wave function. The need for a ther systematized the reconstruction functionals for RDMs
simple set of necessary and sufficient conditions for ensuringy generating the functionals through the theory of cumu-
that the 2-RDM may be represented by ldiparticle wave lants and Grassmann algeljé-8]. We also derived a new
function is known as thé&l-representability problerf¥,5]. strategy for improving the 3-RDM functional and applied
The contracted Schdinger equationNCSE [6—15 has this technique to solving the CSE for a quasispin model with
recently offered a new approach to constraining the 2-RDMas many as 50 fermions. Energies were as accurate as those
to be approximatel\N-representable. An integro-differential from single-double configuration interactié8DCI), and the
version of the CSE was originally derived by Cohen and2-RDMs were an order of magnitude more accurate than
Frishberg[16] and Nakatsuji{17] in 1976. Harriman pre- SDCI. The CSE converts thd¥-representability problem for
sented a matrix formulation in 197@8], and Valdemoro the 2-RDM into a problem involving the reconstruction of
gave a second-quantized CSE at the density matrix sympahe 3- and 4-RDMs from the 2-RDM.
In the present paper the theory of the CSE is connected
with standard techniques in electronic structuf2l],
*Present address: Department of Chemistry, Duke Universityconfiguration-interaction(Cl) and coupled-cluster(CC)
Durham, NC 27708-0346. theory [22—-24, through thetransition contracted Schro
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dinger equatiofTCSE. A generalization of theN-particle  order accuracy in MBPT. This improvement in the 3-RDM
density matrixg* is the transition matrixyy* involving  formula is important because it makes the accuracy of the
the two N-particle wave functionsy and . Contraction of ~3-RDM consistent with that of the 4-RDM from an uncon-
the transition matrix produces the reduced transition matriceBected reconstruction. In another pap@}this correction is
(RTMs) [1]. We derive the TCSE which by analogy with the Shown to be more accurate than the correction proposed by
CSE depends on the 2-, 3-, and 4-RTMs. The indeterminac?'akatsul' and Yasuda through the theory of Green’s func-
of the TCSE may be removed by building the 3- andtions [1Q,1]]. A similar improvement for the 3-RTM func-
4-RTMs as functionals of the 2-RTMs. Two special cases fotional With x =5 beyond the cumulant expansion does
y are consideredi) when y equals the exact wave function NOt exist. Unlike the scenario for the 2-RDM we may show
& and (i) when y equals a single Slater determinant wavethat the 2-RTM does not contain enough information to de-
function e SUCh as the Hartree-Fock wave function. In {€rmine the higher RTMs uniquely without detailed informa-
the first case the TCSE reduces to the familiar CSE with it4ion about the Hamiltonian. This represents a significant dif-
RDMs as parameters. The second scenario generates a TC§ence between the CSE and CC theories which may
whose RTMs may be related to the Cl excitation coefficients€ventually have profound computational consequences.
From this relationship purbl-representability conditions for Theoretically, the CSE may be solved for the exact 2-RDM

these RTMs may be determined. A RTM is piteepresent- with suitableN-representability or reconstruction constraints,
able when it may be defined by twe-particle wave func- but the CC method cannot determine the correct 2-RTM or

tions y and ¢ through integration of the kernefy* [1]. transition a_mplitudes Withqut employing higher RTMs or
Unlike the CSE the TCSE withy= ygue has many supplementing the calculation with perturbation theory. Cal-

N-representable solutions including both the SDCI and thé&ulations using Hamiltonians with randomly generated two-
exact solutions. particle interactions will be employed to illustrate and com-

Size-consistent reconstruction functionals for the 3- and®@re the present implementations of the CSE and CC

4-RTMs are derivable through the theory of cumulantsti€ories. By connecting the CI, CC, MBPT, and CSE, the

[7,8,25,26. A p-RTM is divided into two parts: an uncon- TCSE theory offers a fresh approach to unifying the ideas of
nected part which may be expressed as antisymmetrizegl€Ctronic structure.
products of lower RTMs and a connect@a cumulany part.
The cumulant portion of thp-RTM vanishes if any of the Il. TRANSITION CSE EQUATIONS
particles are statistically independent of the other particles.
Using machinery from quantum field theory like generating
functionals and Schwinger probga7] as well as Grassmann
algebra[ 28], we derive all of the unconnected terms for any
RTM. Because the connected term of {kTM vanishes
through the p—1)th order of many-body perturbation
theory(MBPT), the unconnected reconstruction formulas for
the 3- and 4-RTMs are accurate through the first and second
orders of MBPT, respectively. This derivation generalizes A. Derivation of the TCSE
the cumulant functionals for RDMs which were presented A quantum system dfl fermions may be described by the
recently[7,8,26. By deriving higher transition amplitudes in  schrginger equatio(SE)
terms of lower transition amplitudes in coupled-cluster
theory with Grassmann algebra, we show that the TCSE with H|¥)=E|¥), (1)
the unconnected reconstruction functionals for the 3,4-RTMs
when x = igater IS €quivalent to single-double CECCSD  where the wave functions depends on the coordinates for
theory. More generally, we have that the reconstruction functhe N particles. In second quantizatip80] the Hamiltonian
tionals produce RTMs when y=ugae that are operator may be written as
N-representable with wave functions equal to the exponential
ansatz foriy in CCs[22,23. Thus, TCSEs involving higher
RTMs may also be derived, and decoupling these RTMs into H=
the appropriate lower RTMs generates TCSE methods that
reproduce the various levels of approximation in CC theory. 21 R - ;
from CCSD to full Cl for the one-particle basis under con- In which . Kis t?ﬁizwo particle reduced Hamiltonian. Define
sideration. We, therefore, have a new approach to expressirﬁBe functlons(<bjl‘j2| to test the two-electron space,
CC theory through RTMs. o

Theoretical and practical aspects of moving beyond the (D12 :(X|aiT aiT ;.4 3)
accuracy of the unconnected cumulant reconstruction func- i e
tionals are discussed. Rosina’s theorem proves the existenc

of exact reconstruction of higher RDMs from a nondegeneryv%erex Is a wave function which may be different from the

ate ground-state 2-RDM when the underlying but possiblySyStem s wave f_unct|or¢. Fo_rmmg the inner product of the
o L test functions with the SE vyields

unknownHamiltonian has only one- and two-particle inter-

actiong[6,29]. This theorem guarantees that only the 2-RDM F ot ot 2iiis

is required. We present an explicit formula for building a <X|ailai2aizailH|¢>:E<X|ailaizajzaj1|¢>:2E Dl

3-RDM beyond its cumulant expansion to achieve second- (4)

Beginning with the Schidinger equation, we derive the
TCSE which is a generalization of the CSE. The relationship
of the TCSE with the configuration interaction is elucidated
through RTMs involving both Slater and exact wave func-
tions. In the final section we demonstrate that Nakatsuji's
theorem for the CSE is not generally valid for the TCSE.

2Kislagt a4 a.
Kj3'j4a,3a,4aj4aj3, 2

N| -

ERPHERP
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The symbol 2D;1'iJ.2 represents the elements of the two-3- and 4-RDMs in terms of the 2-RDM we can solve the
' CSE for an accurate 2-RDM,20]. The second choice, how-

particletransition matrix (2-RTM) between the stateg and ever, generates a TCSE in terms of 2-, 3-, and 4-RTMs be-

4 tween the Slater and the exagtwave functions. The exact
o 1 wave function may be defined as a sum of excitations from
2D;12'j22= §<X|aflaf2ajzajl|w). (5)  the Slater reference. LdD;,0,, ...} represent the set of
' occupied Slater orbitals anjg/4,v», ...} represent the set
The general definition for thp-RTM in second quantization ©f unoccupiedvirtual) Slater orbitals. The wave function
is may then be written as
S . 1 _ 1.Viat
igsp, iy t .t t —1+2 c 'a, a
PD]_;J_ZZ ..... jp_a<X|ai a ...aipajpajp_l...aj1|$>, |l/l> vah, 0,%v,%0,
© D 2.V1Va t ot
+ cl?a al a,a, +--- .
whose normalization is!/(p!(N—p)!){x|¢). 01<0pvi<v, 0102 V1 V2 0271 Vs
Let us replace the Hamiltonian operator in E4). with its (10)

definition in Eq.(2) to obtain
With this definition( .l ) equals unity which is known
21304 t .t t .t e 2ninio as the intermediate normalization.
K.3 ai a; a;_a; a; a; a; a =4E-“D ' 2. . . .
2, 13'J4<X| 129,281,203, 2| ) Iz Relations between the RTMs in E¢B) With = t/spater
(7) and the CI coefficients may be derived. If we substitute this

) o configuration-interaction expansion fgrinto the expression
We then rearrange the creation and annihilation operators oy the 1-RTM,

the left-hand side to generate RTMs. This gives us the 2,4-

i3.i4.03:04

CSE for transition matrice€,4-TCSH, 1D31:<l//slate|laglavl|'r/’>’ (12)
E 2kisiaRitizizia _ yp 2Di_1vi_z, (8) we obtain after rearranging the creation and annihilation op-
igiglgds (314 Jud2dels Jid2 erators that
101 _1.V
where Dvi_ coi. (12
i1hi2)g.a _ g 140i10d2.03000
J1:dosdzsia 0 Tliddoidaiia The other nonzero elements of the 1-RTM are
3ni1d2:03 da_ 3ni1.i2.i3 oig 0
T3P 0%, Py D=1, (13
+31(3D1 2 53 =D 2 5%) and they ensure that the 1-RTM contracts with the correct
N o normalizationN. In general the elements of tipeRTM cor-
+2!2Dj;”ji(5jiéj‘;— 51.251.‘1). (99 respond tgp-particle excitation coefficients according to the
relationship
While this TCSE becomes the CSE whgr ¢, the CSEs
. . 1
from previous paper§6,20] may not be converted into the PDOL:02: ++Op_ — paViVas e Vp (14)
TCSE by replacing the RDMs with RTMs because the rear- Viva,Vp o pl 701,02, -0y

rangement of the second-quantized operators in these papers o

use the Hermiticity of the RDMs. A 1,3-TCSE may also beAS in the case of the 1-RTM, the other nonvanishing ele-
derived by replacing the doubly excited test functions in EqMents in thep-RTM correspond ta-particle excitation co-
(3) with test functions formed by single excitations of the €fficients withg<p:

reference wave functiog. Similarly, a 3,5-TCSE and a 4,6- 1

TCSE may be created with test functions using triple and PDO1r -+ 0q:0q+1: - Op— — ggViVar---Vg (15)
quadruple excitations, respectively. In this paper we use the Vir Vg Ogias oo °% p! 0190

notation CSE and TCSE to denote the 2,4-CSE and 2,4- _ . . . -
TCSE. Defining the RTMs in terms of the CI expansion coefficients

automatically keeps them-representable.
Using relations(14) and (15), we can formulate the
N-representability conditions on th@RTM without refer-
Two choices fory will be especially important for bridg- ence to the Cl expansion coefficients. By substituting Eqg.
ing the Cl, CC, and CSE theoriefi) y equals the exact (14) into Eqg.(15), we obtain(i) the following equations re-
wave functiony, and (i) y equals any Slater determinant lating elements of thg-RTM to elements of thel-RTM
wave functionise SUCh as the Hartree-Fock wave func- whereq<p:
tion. The first choice produces the CSE in terms of the 2-, 3-,
and 4-RDMs. As shown in previous work the CSE alone is PDOL: -+ 0q:0q+1: -+ Op_ q! ap©1:2: 0. (16)
indeterminate, but through approximate reconstruction of the Vi VgiOg+1s oo 0 pl V1V Vg

B. Relationship with the CI
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The remaining conditiortii) simply stipulates that the _ele- the TCSE whery = is.erthe correspondence with the SE is
ments not defined by Eqé&l4) and(15) must be zero. Unlike  not limited by N-representability but rather by the accuracy

the  2-RDM  whose  necessary and  sufficientof the test functionfsae as an approximation to the corre-
N-representability conditions remain unknown, the condi-jated wave functiony.

tions on these special 2-RTMs Wit = ger @re very
simple and easily applied. _ , , Ill. RECONSTRUCTION OF RTMs WITH CUMULANTS

In a CI calculation the expansion af in Eq. (10) is
truncated after a certain number of excitations are included With the theory of cumulants and Grassmann algebra re-
by setting the higher expansion coefficients to zero. A Clconstruction functionals for the RTMs are derived. We show
method with single and double excitatioSDCIl) may be that the reconstructed 3- and 4-RTMs @ igjaer are N
produced through the TCSE if we set the elements of the 3representable with model wave functions which correspond
and 4-RTMs, corresponding to the three- and four-particléo the exponential wave functions in coupled-cluster theory
excitation coefficients in Eq(14) to zero and enforce the [22,23. In Sec. Ill C we discuss the theoretical differences in
N-representability conditions. Similarly, the Cl scheme withreconstructing from the 2-RDM and the 2-RTM wheye
p-particle excitations may be formed by deriving the TCSE= {g5ter through Rosina’s theorem, and in the final section
with thep-, (p+1)-, and p+2)-RTMs and setting the ele- an explicit formula is presented for improving the estimate
ments of the p+1)- and (+2)-RTMs, which correspond for the 3-RDM beyond its unconnected cumulant expansion.
to (p+1) and (+2) excitations, to zero. Hence, the TCSE
formalism includes the CI calculations from the SDCI to the A. Derivation of RTM functionals
full configuration interaction(FCI). The truncated Cl ap-
proximation, however, is natize consister|21,22 because . ) o .
higher excitations are assumed to vanish. Better strategies f ruction functionals for théransition matrices between the

reconstructing the 3- and 4-RTMs will be established in Sec .—part|cle quantum states e_mdlp. We first construct a func-
A, tional whose derivatives with respect to probe variables gen-

erate the RTMs in second quantization. Each derivative of
the functional should supply a creation or annihilation opera-
tor in the RTM. This constraint leads us to the following
If the RDMs in the CSE are purli-representable, then exponential form:
the CSE may be satisfied if and only if the wave functibn
associated with the representable RDMs satisfies the Schro G(J)=<X‘O
dinger equation. This theorem was first proved for the
integro-differential CSE by Nakatsuji in 19767], and we
recently demonstrated the proof for the second-quantizewhere thel, and its conjugatdy are Schwinger probe vari-
CSE[6]. The proof follows from showing that if the RDMs ables[7,27]. The Schwinger probes anticommute for fermi-
are pureN-representable, the CSE implies the dispersiorons,{Jy,J;}=0. The symbol is used to represent the whole
condition set of probe variable§],}. Differentiation ofG(J) with re-
spect to the probes causes creation and annihilation operators
(YIH? ) —(yH|$)?=0, (17)  to accumulate before the exponential. Since the creation and
o o ) ) o annihilation operators do not commute, a specific ordering
which is valid if and only if the SE is satisfied. For the CSE myst be chosen for which these operators appear before the
Nakatsuji's theorem guarantees that a solution for a nondesxponential upon differentiation. To form functionals for
generate energy in the set of puXerepresentable matrices RTMs, we define that the creation operators always appear to
must correspond to a solution of the SE. Hence, approximaige |eft of the annihilation operators regardless of the order in
reconstruction schemes that satisfy the CSE must yield onlyyhich we differentiate with respect to the probes. Repre-
approximatelyN-representable RDMs. sented by the ordering operatorin the definition ofG(J),
Because theN-representability conditions for the RTMs this ordering process is analogous to the time ordering of the

With x = jarer Were derived in Sec. I B, an extension of creation and annihilation operators in the theory of Green’s
Nakatsuji's theorem to the TCSE would allow us to solve forfynctions[27].

the exact 2-, 3-, and 4-RTMs. We can show that if the RTMs  piferentiation of G(J) with respect to the Schwinger
are pureN-representable, the TCSE implies the relation probes produces the RTMs as follows:

From the theory of cumulan{§,25] we can derive recon-

C. N-representable solutions of the TCSE

ex;{ ; Jat+ It a,

’ ¢> . (19

(xIH?¢)—E(x|H|¢)=0. (18) o 1 PG
PDI2 = fim
Unlike the dispersion condition in Eq17), however, this Jodzrdp 5o P! i £03;,03;, 937 - - ~(?J}*p_1(9J]*p
equation does not necessarily imply the SE. Thus, Nakat- (20

suji's theorem cannot be extended to all TCSEs. Since the
RTMs for the Cl and CC are pufd-representable, an exten- 1
. .. . :—< |aTaT...aTa. a: oha |¢>
sion of Nakatsuji's theorem to the RTMs would also imply p! X1 i, ip%pp-1 i1
incorrectly that SDCI is not a solution of the TCSE. Satis- (21)
faction of theN particle SE in the case of the CSE depends
on the strength of théN-representability conditions which The elements of the RTMs are the coefficients of the multi-
may be in the form of reconstruction functionals, but with variable Taylor series expansion &(J) about the point
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where the Schwinger probes vanish. Her@€]) is thegen- TABLE I. Reconstruction functionals for RTMs.
erating functionalfor RTMs. Mathematically, the RTMs of
the functional G(J) are known as themoments The 'D=1A
moment-generating function&(J) may be used to define D='DA'D+2A
another functionalW(J), known as the cumulant-generating D="D%+3%A/A'D+3A
functional, by the relation *D=43AND+D e ;A
where
G(J)= exgW(J)]. (22) D o= D%+ 6 2ANID?+32A/\2A

Just as the moments are formed fr@QJ) in Eq. (21), the

p
cumulantstA are produced fronw(J) by ces and then dividing by the number of products in the sum

o _ 1 SPW [6,28]. The wedge product produces an RTM that is antisym-
PAlTd2 i i = metric in its upper and lower indices in accordance with the
R I LA A P ++-03;,03; 937 - - - 93F a3 ’ Pauli principle. Right superscriptsindicate that a RDM or

P ! P (23 its connected part should be wedged with itsetimes. The
portion of the unconnected 4-RTM which may be written in
and the cumulants are defined as the coefficients of the muterms of the 1- and 2-RTMs only is denoted Bp uc,p-
tivariable Taylor series expansion @(J) about the point While these formulas are exact, the formulas do not show us
where the Schwinger probes vanish. The presentation of amow to approximate the connectpdRTM PA from a knowl-
other generating functionaV(J) in Eqg. (22) may seem su- edge of the p—1)-RTM.
perfluous. The set of cumulanta with p between 1 and The reconstruction functionals are significantly renormal-
has the same information as the set of momémtswith the  ized many-body perturbation expansions. Since exact lower
same range fop, but the information is expressed differ- RTMs (or guesses to the exact lower RTMs when we are
ently. This different expression of information will allow us iterating with the TCSEare used in the functionals, contri-
to determine approximate functionals for reconstructingbutions fromall orders of perturbation theory are incorpo-
higher RTMs from lower RTMs. rated into the reconstructed RTMs. The reconstruction ac-
Cumulants have the special property that they vanish ifounts exactly for configurations where at least one particle
and only if at least one of their particles is statistically inde-is statistically isolated from the others. All of the error arises
pendent of the reg25]. Hence, in a mean-field approxima- from our imprecise knowledge ofA. For a Hamiltonian
tion (Hartree-Fock where each of th&\ particles is treated with no more than two-particle interactions the connected
independently all cumulants exceptA vanish. The p-RTM will have its first nonvanishing term in thep¢ 1)
p-particle cumulantPA represents the part of thee RTM order of many-body perturbation theory. This follows be-
which cannot be written as an antisymmetrized product ofause the minimum number of pairwise potentMiequired
lower RTMs. This allows us to decomposepeRTM into  to connectp particles completely isg—1). Thus, as the
two piecesii) theunconnectegart "D . that may be written number of particlep in the reconstructed RTM increases,
as antisymmetrized products of the lower RTMs, &ndthe  the accuracy of the functional approximation improves. The
connectedor cumulant, parPA which may not be expressed unconnected reconstruction formula for the 2-RTM in Table
as a sum of products of lower RTMs. All the particles of thel is equivalent to the Hartree-Fock approximations foand
cumulant areeonnectecby the pairwise interactions between ¢ since it assumes that the two particles are statistically in-
the particles. Thg-RTM may be written in terms ofA for ~ dependent. Correlation corrections first appear in the uncon-
g between 1 ang if we differentiate Eq(22) with respectto  nected 3-RTM functional which is correct through first order
the Schwinger probes as in EQO) and take the limit as the of MBPT, and the unconnected 4-RTM functional is correct
probes approach zero. The derivatives of the generatinthrough second order of MBPT.
functional G(J) create thgp-RTM, and the differentiation of
exp(W) on the right side creates products of elements from
the connected RTMs according to E&3). Because the up-
per and lower indices must permute antisymmetrically in a Within CC theory the fundamental variables are the tran-
formula for the elements of thp-RTM, the products be- sition amplitudes, and yet in the TCSE the RTMs wijth
tween elements of the connected RTMs may be replaceé i, are the primary variables. By using Grassmann al-
with Grassmann wedge products. gebra to express the transition amplitudes gquarticles in
For the 1-RTM we obtain simply that the 1-RTM is equal terms of transition amplitudes for fewer particles, we will
to *A since there cannot be any unconnected terms. In thelucidate a simple relation between the transition amplitudes
case of Hartree-Fock wave functionys and ¢ all of the  and the connected RTMs. It follows that reconstruction for-
higher RTMs are determined by the 1-RTM since the highemulas for RTMs like those in Table | are equivalent to as-
connected RTMs vanish. Reconstruction formulas for thesuming an exponential ansatz for the wave function as in CC
p-RTMs, generated by differentiation of E(R2), are sum- theory[24].
marized forp<4 in Table I. Thep upper and lower indices The parametrization of the higher CI coefficients in terms
of a p-RTM are suppressed for notational convenience. Thef the lower ClI coefficientsor their corresponding transition
symbol/\ indicates the Grassmann wedge product which isamplitude$ is accomplished in CC theory by exponentiation
determined by summing all of the products generated fronof the excitation operators. Thus, the exact CC wave function
the antisymmetric permutation of the upper and lower indi-is written as

B. Relation with coupled-cluster wave functions
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| Wco) = exp(T)| ¥sjater» (24) TABLE Il. Reconstruction functionals for the expansion coeffi-
cients of .
where lo=1t
T=Ty+To+Tat+---, (25) 2c=21AN"t+2t
Sc=613+9 A\ MU+3t
1 4c=16%AN\t+g(*t,%t) +%
Tp= . > pt\él ----- Zp where
(P01 opvy, vy LT P g(it,2t) =244+ 722t A\ 12+ 182\ 2%
xaj - a\tpaop~ SEWS (26)

for the doubly excited CI coefficient in terms of the transi-

and thept‘éi """ °P are transition amplitudes. With all excita- tion amplitudes.
""" p . . . .. .
tions included the CC wave function is equivalent to the full A similar analysis yields the CI coefficients for triple and

Cl wave function. Expansion of the exponential yields quadruple excitations in terms of transition amplitudes.
These results are summarized in Table Il. Indices are sup-

pressed, but if supplied, the upper and lower indices would
+-- represent virtual and occupied orbitals, respectively. As be-
27) fore a right superscript indicates that a transition amplitude
should be wedged with itsefftimes. The functionad(*t,t)

in which we have collected the terms that correspond to théepresents those terms which may be expressed without the

usual Cl excitation operators. We may concisely express théree- and four-particle transition amplitudes. .

Cl expansion coefficients in EGL0) in terms of the transi- ~ Comparison of the functionals for RTMs and ClI coeffi-

tion amplitudesPt’ **~¥® in Eq. (26) through the use of qlents in Ta_bles _I and I, respectl_vely, reveals_that the func-
Ops - Op tionals are identical except for different coefficients. Equa-

Grassmann wedge products. o tion (14) from Sec. Il B shows that the CI coefficieRt is
To derive the relationship between the CI coefficients angg|ated to thep-RTM by a factor ofp!. Using this relation

transition amplitudes, we rewrite the terms in the expanded,e can rewrite Table | to produce the CI coefficiefitsas
exponential(27) so that they may be matched with the CI ¢,ctionals of the connected RTMs. However, in Table Il the
coefficients in Eq(10). We illustrate this procedure by con- p¢ are expressed as functionals of the transition amplitudes

i ; 2.
sidering the termr;: Pt. Both results forPc are valid if and only if

1
2

1

T2+ T3+T1T2+6T§

exp(T)=1+T1+(T2+

2_ 14V1 142y ot t 1
Ti= 2 ( t01 toi)a"laolavzaoz' (28) PA= — Pt. (32

07,02V1,Vp p!

The second-quantized operators are rearranged to correspo
to the ordering in Eq(10). Replacing the simple product of
transition amplitudes in Eq28) with a Grassmann wedge
product does not alter the expression which must be antisy
metric in its indices:

qunce, the functionals in Tables | and Il are equivalent
which demonstrates that a cumulant expansion for RTMs
with x = fger IS the same as the exponential ansatz for the
"E1 coefficients. Similarly, we could prove this result by
changing Table Il to express theRTMs as functionals of
the transition amplitudes. Comparison of these functionals
T2= > (f1A%Y2)a! al ag a, . (29)  with those in Table | would also require E(2).
op.02vi v, 01 %2 T2 All of the functionals in both Tables I and Il contain con-
) ] nected and unconnected terms and are theestact CC
Each term in the above sum is related to three other terms bé(pproximations to a full CI only include certain connected
antisymmetry of the upper and lower indices. Since we havggyms. Equation32) shows that neglecting the connected
already antisymmetrized the _expansion_ coefficients W_ith Portion of a cumulant expansion for a RTM is the same as
Grassmann wedge, we can eliminate this redundancy in thgeleting the corresponding transition amplitude in the expo-
summation by restricting the sum as in the CI expansion anflential ansatz for the wave function; hence, the functionals
multiplying by (2!)? to obtain for RTMs and transition amplitudes remain the same with
the introduction of approximations. The equivalence of the
2_ LVIA 14V2y ot AT unconnected RTM reconstruction with an exponential ansatz
Ti=4 E ( tol/\ toz)a"laVZaO?a"l' 30 for the wave function implies that the unconnected RTMs are
pure N-representable. Approximately reconstructing the 3-
Comparison of Eq(30) in Eq. (27) with Eq. (10) readily = and 4-RTMs within the TCSE from am-representable
gives us the contribution of this term to the triply excited Cl 2-RTM by neglecting®A and “A is the same as building the
coefficient as ét‘él/\lt‘(;z_ In the same fashion we find tig ~ three- and four-particle CI coefficients in terms of the lower
e transition amplitudes'f and t) in a single-double CC cal-
culation. Transition CSE methods that are equivalent to the
CC at higher orders of approximation may be easily gener-
ated by employing higher excitations for the test functions in

0,< 02,V1<V2

contribution to obtain

2-V1V2__ 91eVI A 14V2 4 24V1V2
c01’02—2 tol/\ t02+ t%02 (31
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TABLE Ill. Comparison of reconstruction formulas for 3-RDMs and 3-RTMs.

N r 3-RDM error 3-RTM error
Hartree-Fock Unconnected Corrected Hartree-Fock Unconnected

4 6 5.65<10 2 6.38x10°° 8.43x10°8 4.03x10°3 0

4 12 2.86<10°2 1.46x1073 4.88<10°4 2.10x107°2 3.52x10°4

5 12 1.48<10°2 6.25x10°4 1.72x10°* 1.07x 1072 1.29x10°*

6 12 8.75¢ 1073 3.20x10°4 1.09x10°* 7.04x10°8 9.88x 1075

8 12 2.3%10°° 4.61x10°° 2.33x10°° 1.99x10°3 2.25x10°5

10 14 1.3%x10°3 2.23x10°° 1.10x10°° 1.03x10°3 8.54x 1076

Eq. (3) and deriving through Eq.22) cumulant expansions D. Reconstruction of RDMs beyond cumulants

for higher RTMs. With the transition CSE we may formulate  Rqsina’s theorem motivates the search for reconstruction

Cl, CC, or CSE theories. The particular theory obtained anqynctionals for RDMs beyond the unconnected cumulant ap-

its level of accuracy depends on the choice for the referencgroximations. The iterative solution of the CSE requires us
wave functiony and the reconstruction strategy. to build the 3- and 4-RDMs from the trial 2-RDM at each
iteration until convergence. Building the 3-RDM from the

2-RDM with unconnected part of the cumulant expansion
C. Pure N-representable preimages of the RTMs neglects A which vanishes though first order of MBPT.

The preimage of a purl-representable-RDM refers to ~ However, building the 4-RDM from the 3-RDM with uncon-
the N-particle wave functiony whose density matrix con- nected terms neglect$A which vanlshes_ through second
tracts to thep-RDM. Similarly, the preimage of a pure order of MBPT. To make the reconstruction of the 3-RDM
N-representablg-RTM is characterized by the two wave correct through second order, we must approximate the con-
functions y and ¢ which define the>-RTM in Eq. (6). So- nected part through second order. antractlon of the uncon-
lution of the TCSE introduces the reconstruction problem oinected part of the .4'RDM formulépuc n Table | generates
building the 3- and 4-RTMs from the 2-RTM. An important a system of equations for approximatifig,
guestion is whether the 2-RTM contains enough information
to specify the higher RTMs uniquely. In a previous paper we SA
discussed this question for the case whgreys through a
theorem originally formulated by Rosina at the 1967 confer-
ence on RDMs at Queens Universfi,29]: where Li is the contraction operator from the four-particle

Theorem If a p-RDM arises from a nondegenerate space to the three-particle space &y, denotes the uncon-
ground-state wave function from a Hamiltonian with only nected part of the 3-RDM. This system would be exact if we
p-particle interactions, the-RDM alonecontains enough in-  could include the unknown connected 4-RDM. Since the
formation to determine thiN-particle preimage uniquely. By vanishes until third order of MBPT, this system of equations
alone we mean that thg-RDM information is not supple- produces asAapp which is correct through second order of
mented by any details concerning the nature of the HamiltoMBPT. While this contraction condition improves the un-
nian’s p-particle interactions. connected approximation for the 3-RDM, the analogous con-

By this theorem a 2-RDM from the nondegenerate groundraction condition for the 3-RTM is always satisfied by the
state of any Hamiltonian in the form of Eq@2) uniquely
determines theN-particle preimage as well as one pure -1
N-representablep-RDM for each p between two and\. =
There is a one-to-one mapping between the 2-RDM and the'g
N-particle wave function. Rosina’s theorem motivates theg -2
search in Eqs(33) and(34) for improving the reconstruction
of higher RDMs from the 2-RDM beyond the cumulant ex-
pansion.

Rosina’s theorem is not true for the 2-RTM with
= hgaterr Unlike the 2-RDM with a unique preimage the
2-RTM reconstructs to maniX-particle wave functionsy
including the coupled-cluster wave functions in E2¢) with a5 , , . . .
the correct transition amplitudes T andT, but any choice 0.02 0.07 0.12 0.7 0.22 0.27 0.32
for the transition amplitudes involving more than two par- Perturbation Parameter
ticles. When the higher transition amplitudes are chosen t0 F|G. 1. The errors in 3-RDM and 3-RTM reconstructions are
be zero, we have the single-double coupled-cluster preimagehown as functions of the perturbation paramatethe 3-RDM is
Without employing the Hamiltonian explicitly in the recon- built with both the unconnected cumulant and the corrected ap-
struction the exact preimage for the 2-RTM cannot be distinproximations while the 3-RTM is constructed with the unconnected
guished from many other possibilities. cumulant formula.

w13 Ll Dud'D. %A, %91 = Dy, (33

15

—&— Unconnected 3-RDM

35y —e— Present 3-RDM

Log10 Errors in 3-RDMs a

44 —— 3-RTM
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TABLE IV. Comparison of 2-RDMs obtained by contracting reconstructed 3-RDMs.

N r L3(3-RDM) error L3(3-RTM) error
3-RDM reconstructions 3-RTM reconstructions
Hartree-Fock Unconnected Corrected Hartree-Fock Unconnected
4 6 2.67x10°3 3.01x10°° 3.98x10°8 1.90x 103 0
4 12 1.35¢10°? 6.43<10°4 3.36x10°° 9.89x 102 0
5 12 8.54< 1073 2.77x10°4 1.36x10°° 6.19x 1073 0
6 12 5.84< 1073 1.34x10°* 6.69x 10 4.68<10°3 0
8 12 1.95¢ 1073 1.48<10°° 5.51x 107 1.63x10°2 0
10 14 1.241073 7.70<10°6 2.72x1077 9.71x 1074 0

unconnected 3-RTM witly = ¢/giebECaAUSE its preimage in- Since we do not know*A, however, we cannot use this
cludes arN-particle coupled-cluster wave function with only formula to obtain an exact answer. Because the connected
single- and double-transition amplitudes. Hence, this ap4-RDM vanishes until third order of MBPT, this formula for
proximation for the connected 3-RDM illustrates the practi-the elements of the connected 3-RDM will be correct
cal impact of Rosina’s theorem for improving RDM recon- through second order of MBPT as long as the denominator in
struction. the error expressiory— 3 is not small. Howevery may be
We have recently succeeded in converting the system oflose to 3 when three of the six indices correspond to occu-
equations in Eq(33) into the following explicit formula for ~ pied orbitals in the noninteracting limit. Using the Hermitian
approximating the elements of the connected 3-R[3Y and antisymmetric properties of the 3-RDM, we may group
the elements for whichy is close to 3 into two classes:
3 app= a[AL3(*Dyye ) TIL5CMAD - %D, (34 D% and *DY%% where thex's ando’s denote occupied
and unoccupied orbitals, respectively. For both of these
wherea=1/(y—3), B=N-3, and classes we employ the unconnected 3-RDM approximation
without correction. All other elements, however, may be cor-

1mi rected with the present formula through second order of
7= b D;. 35 mBPT.

ie{ig.iz,iz.jro.ia}

The detailed derivation of this formula is given [ii]. The IV. APPLICATIONS
set of six indices in Eq(35) contains the uppefiy,i,,is} ) ,
and lower{j;,j-.js} indices for the specific element of Several reconstructions of the 3-RDM W'Ih:‘/’anq the
3A 4pp Which we are calculating. All RDMs in this formula 3-RTM with y equal to the Hartree-Fock wave functigi:
must be in the natural orbital basis set which diagonalizes th8'® compgred through calculgﬂon_s mvolymg random Harnil-
1-RDM. tonians with .gen'eral two—partlcle interactions as well as mo-
Formally we know that the exact error in this formula is Ieculf_:\r Harr_nltonlans for LiH, B_el2—|, BH3’ and HO. Com-
putations with the random Hamiltonians allow us to vary the
4 strength of the two-particle interactions.
034 3.4
error in Aapp—mu( A). (36)

A. Random Hamiltonians

To create a randomi-particle Hamiltonian with no more
than two-particle interactions, we first choose the elements
for a one-particle reduced Hamiltonidi and a two-particle

E - perturbation?V randomly. The two-particle reduced Hamil-
& tonian 2K is then defined by
2 2K =K A +N2V. (37)
me sk —a— Unconnected
3 sk o Prosent By wedging the®K with the (N—2)-particle identity opera-
o5k tor (°K/AN"2]), we create theN-particle HamiltonianH
. J ‘ , ‘ . which we diagonalize witraRPACK [31]. From the wave
0.02 0.07 0.12 0.17 0.22 027 0.32 function we form the exact 1- and 2-RDMs and the exact 1-

Perturbation Parameter and 2-RTMs. These matrices are employed to test the recon-

FIG. 2. The errors in the 2-RDMs obtained by contracting theStruction schemes. Calculations are performed in the natural
3-RDM reconstruction formulas are reported as functions of theorbital basis.
perturbation parameter. The error in the contraction of the uncon- ~ Three reconstruction formulas for the 3-RDM are com-
nected 3-RTM approximation to the 2-RTM is not shown becausegpared in Table I11:(i) the Hartree-Fock functionalD® with
the contraction is exact. theexactl-RDM, (ii) the unconnected portion of the 3-RDM
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TABLE V. Comparison of 4-RDMs and 4-RTMs obtained by reconstructing with different 3-RDM and
3-RTM approximations.

N r 4-RDM error 4-RTM error
3-RDM reconstructions 3-RTM reconstructions
Hartree-Fock Unconnected Corrected Hartree-Fock Unconnected
4 6 1.60x 1072 4.42<10°4 6.53x 1077 1.14x10°2 0
4 12 8.1 10°? 9.67x10° 3 1.98x10°3 5.94x 102 1.41x10°3
5 12 2.96<10°? 2.42x10°° 4.90<10°4 2.15x10°? 3.65<10°4
6 12 1.4310°? 9.14x 104 2.53x10°4 1.15x10°2 2.28x10°4
8 12 3.0%10°3 9.03x10°° 4.17x10°° 2.53x10°° 4.03x10°°
10 14 1.4 1073 3.62x10°° 1.66x10°° 1.11x 1073 1.29x10°°

in Table |, and(iii) the present approximation in E@4) for  the elements of the 3-RDMD}%%, which are not easily
the connected paftA of the reconstruction functional. Two corrected through second order, do not occur. Figure 1 pre-
reconstruction methods for the 3-RTM are also reported irsents the 3-RDM and the 3-RTM reconstructions for the per-
Table I1I: (i) the Hartree-Fock functionaD?® with theexact  turbation parametex in the rangd 0.02,0.32 andN=4 and
1-RTM and (ii) the unconnected portion of the 3-RTM in r=8. For small\, as reported in the tables, the 3-RTM
Table I. The error in each 3-RDM or 3-RTM approximation approximation is more accurate than the unconnected
is measured by a least-squares norm, evaluated by summi3gRDM, but the corrected 3-RDM is close to the accuracy of
the squares of the errors in the elements and taking thghe 3-RTM. After A\=0.12 the 3-RDM is better than the
square root of the result. Calculations are shown in Table 1IB-RTM; by A =0.32 the error in the 3-RTM, greater than the
for various particle numbend and one-particle rankswith  error in the unconnected 3-RDM, is more than half an order
the perturbation parametar=0.04. of magnitude larger than the corrected 3-RDM’s error.

From Table Il the errors in the unconnected 3-RTMs are By contracting the approximations for the 3-RDMs and
half an order of magnitude smaller than the errors in the3-RTMs, we obtain 2-RDMs and 2-RTMs whose errors are
unconnected 3-RDMs. Hence, the same unconnected fungeported in Table IV. For all cases the contraction of the
tional in Table | yields better 3-RTMs than 3-RDMs. Using present 3-RDM is at least an order of magnitude more accu-
the formula in Eq.(34) to move beyond the cumulant ap- rate than the contraction of the unconnected 3-RDM. While
proximation produces a corrected 3-RDM that is close to thehe unconnected and corrected estimates for the 3-RDM dif-
accuracy of the 3-RTM. It is interesting that while the cor-fer by about half of an order of magnitude for alin Fig. 1,
rected 3-RDM has many elements calculated through secontle contractions of these 3-RDM estimates differ by two or-
order of a renormalized MBPT, the 3-RTM which is missing ders of magnitude for smal and an order of magnitude for
second-order corrections often has a smaller least-squares &frge A as shown in Fig. 2. This dramatic improvement oc-
ror. Whenr =N+ 2, there cannot be any three-particle exci-curs because the elemer®X%% of the connected 3-RDM
tations, and thus, the unconnected 3-RTM formula becomeghich are not easily corrected by E@4) do not contribute
exact. The present approximation for the 3-RDM also im-tg the 2-RDM through contraction. The contraction of the
proves whem =N+2 because with only two virtual orbitals ynconnected 3-RTM is exact in Table IV since the uncon-

nected cumulant expansion produces ldfrepresentable
- 3-RTM. The Hartree-Fock functional for the 3-RTM which
is not necessarilil representable does not contract correctly.

Comparison of the 3-RDM and the 3-RTM reconstruc-
tions may also be performed by building the 4-RDMs and
the 4-RTMs with the unconnected part of the four-particle
functional in Table I. The exact 1- and 2-RDMsr RTMs)
are used in the functional fotD and 2D. Results are re-
ported in Table V for a variety o andr and\ =0.04. The
4-RTM from the unconnected 3-RTM is more accurate than
& 4RTM the 4-RDM from the unconnected 3-RDM, but the 4-RDM

s ‘ , , , ‘ from the corrected 3-RDM is close to the accuracy of the

0.02 0.07 0.12 0.17 0.22 027 0.32 4-RTM approximation. As with the 3-RTM, whar=N+ 2,
Perturbation Parameter the 4-RTM reconstruction becomes exact since three- and

FIG. 3. The errors in the 4-RDMs and 4-RTM obtained by re- four-particle excitations vanish. The errors in the 4-RTM and
constructing with different 3-RDM and 3-RTM approximations are the 4-RDM built with the corrected 3-RDM cross at
given as functions of the perturbation parameter Both the ~ =0.12 in Fig. 3 with the 4-RDM approximation becoming
4-RDM and the 4-RTM are built with the unconnected cumulantsignificantly better than the 4-RTM estimate for ladgeThis
approximation. The results highlight the sensitivity of the 4-RDM is similar to the crossover observed in Fig. 1 for the 3-RDM
and 4-RTM errors to the 3-RDM/3-RTM reconstructions. and the 3-RTM. Comparison of Figs. 1 and 3 also shows that

—— Unconnected 4-RDM

—e— Present 4-RDM

Log10 Errors in 4-RDMs and 4-RTM
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TABLE VI. Comparison of CSE and CC errors for different 3-RDM and 3-RTM reconstructions.

N r 2Dcge error for the CSE 2Dcse error for the CC
| ECSE_ EFCI| | ECC_ EFCI| EFCI
3-RDM reconstructions 3-RTM reconstructions

Hartree-Fock  Unconnected Corrected Hartree-Fock  Unconnected

4 6 1.60<10°°%  4.18<10°° 4.85x10® 5.95x10°* 0
2.71x10°% 2.41x10°% 3.63x10°% 4.78<10°° 0 —171.2288331
4 12 1AX10? 4.97x10°% 257x10°° 7.16x10°°  7.99x10°°
1.27 3.4%107%2 3.96x10°% 2.07x10°! 7.33x10°° —362.1001722

6 12 53x10° 1.16x10% 6.70x10°® 3.90x10°° 2.59x10°©

5.85x10° 1 2.47x10°2 6.90x10°* 1.37x10! 578<10°% —242.4238873
8 12 1.84&10°% 1.66x10°° 837107 145<10°° 6.35x10°

1.11x10°'  8.31x10°% 353x10°° 3.03x10°2  7.13x107 —161.8839847
10 14 1.1&10° 9.94x10°°% 504x107 853x10*  3.01x10°7

8.79x1072  6.44x10°% 4.28x10°° 315102 1.36x10°° —143.8806157

the gap between the unconnected and corrected 3-RDM revhere 2D is determined with the TCSE in E¢B),
constructions is larger in the 4-RDM estimate than in the
3-RDM approximation. Therefore, the present correction for

2 _ 2 inhiamitsinsigii
the 3-RDM has beneficial effects on both the contraction to Drese= Kis i4213 s sz,jiRji,jzz,ji,jt' (39
the 2-RDM as well as the cumulant reconstruction to the s
4-RDM.

The constank is chosen to adjust the normalization of the

An additional criterion for assessing the accuracy O.f theresulting matrix toN(N—1)/2; this is equivalent to dividing
reconstructed 3,4-RDMs and the 3,4-RTMs is their satlsfacby the 4E in Eq. (8). The CC equations are exactly satisfied

tion of the CSE and CC equations, respectively. Reconstrucﬁy the unconnected reconstruction wheaN+ 2 for which

tion of the RDMs and RTMs is performed as in Tablesthe 3- and 4-RTM reconstructions are exact. In Table VI the

”I_.Vh' In_TabIe VI_rﬁslets are reported for a variety Nfafnd heErrors in the CC equations with the unconnected RTMs are
r with A =0.04. With the unconnected approximations for t €much smaller than the errors in the CSE with the uncon-

RTMs the TCSE is equivalent to the single-double CC equaracted RDMs. The corrected 3-RDM in the CSE, however,

tions. Errors in the TCSE _equ_ations are eyaluated by a Ieals;‘/'lelds errors which are close to those from the CC with the
squares norm of the matrix with the following elements

unconnected 3-RTM. Energies, computed by taking the trace
the 2-RTM 2Dcse With the reduced HamiltoniarfK, are
L 2 , , also reported in Table VI. Whjle the CC equations produce
eiiziiz m( Drcse= “Dexacd s (39 the_best gnergles,_thg_CSE with corrected 3-RDM gives en-
ergies which are significantly better than those from the CSE
with the unconnected 3-RDM reconstruction. Rorarger
than 0.20 in Fig. 4 the error in the CSE with the corrected
3-RDM becomes smaller than the error in the CC.

3 These results reflect the accuracy of the reconstructions,
3 but they do not necessarily indicate that iteratively solving
i either the TCSE equations from a Hartree-Fock 2-RTM ref-
< erence or the CSE with a Hartree-Fock 2-RDM reference
§ «f e CSE (Unconnected 5-RDM) (CCsSD will yield better results. Within arN-representable
“oa5 b e CSE (Prosont 3-RDM) set of RDMs the CSE always produces exact results unlike
g sE the CC equations which have a family of solutions. Once the
55 - ce N-representability conditions are partially relaxed for the
5 . . ! . . CSE, however, the relative accuracy of the CSE and CC
0.02 0.07 0.12 017 022 027 032 methods is unclear, and we cannot use the accuracy of the

Perturbation Paramet , : - :
eriubation Farameter reconstructions alone to predict which method will perform

FIG. 4. The errors in the CSE and CC equations are displayed detter. When the iterative methods for solving the CSE have
functions of the perturbation parameterfor different reconstruc- been better developed, realistic comparisons of the CSE with
tions of the 3-RDM/3-RTM. The CSE with the corrected 3-RDM CC in both accuracy and efficiency will be possible.
formula outperforms the CSE with the unconnected 3-RDM for-
mula by two orders of magnitude for low and an order of mag-
nitude for highem. While the CC error is smaller than the CSE for
low \, the CSE with the present 3-RDM has a smaller error for high  Reconstruction formulas for the 3-RDM and 3-RTM are
\. compared in Tables VII and VIII for the molecules LiH,

B. Molecular Hamiltonians
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TABLE VII. Comparison of reconstruction formulas for molecular 3-RDMs and 3-RTMs.

System 3-RDM error 3-RTM error
Hartree-Fock Unconnected Corrected Hartree-Fock Unconnected

LiH 6.92x10°1 1.02x10°2 1.72x10°3 5.36x 10 2 4.66x< 104

BeH, 3.09x10°* 2.17x10°8 1.24x10°8 1.69<10°2 8.60x 104

BH, 1.77x10°* 7.64<10°4 3.75x10°4 8.23x 102 2.60x10 4

H,O 9.24x10 2 2.87x10°4 9.02x10°° 3.81x10°3 4.91x10°°

BeH,, BH;, and HO. Calculations are performed within an for the 3- and 4-RTMs generatdl-representable RTMs
STO-6G basis with geometries from the experimental literawhoseN-particle wave functions) are equivalent to those
ture[32]. Errors are computed with the FCI as the referencefrom CCSD. Higher RTMs behave like coupled-cluster wave
Table VII presents the least-squares error in the elements d@inctions which include more connected excitations. When
the 3-RDM and the 3-RTM. As with the random Hamilto- we choosey to be the exact wave functiap, we obtain the
nians we perceive that the unconnected functional yieldE€SE which depends on the 2-, 3-, and 4-RDMs. Recent at-
3-RTMs which are consistently more accurate than th@empts to build the higher RDMs from the 2-RDM have
3-RDMs. The corrected 3-RDMs are Significantly better thanoffered a new approach to using the 2-RDM as the funda-
the unconnected formulas and close to the 3-RTMs in acCynental parameter for electron correlation.

racy. Contraction of the 3-RDM and 3-RTM approximations  Theoretical questions about a reconstruction strategy
produces 2-RDMs and 2-RTMs whose least-squares erofgnose accuracy extends beyond that of the cumulant expan-
are reported in Table VIIl. The 2-RDMs from the corrected 55 516 addressed. Rosina first demonstrated that a 2-RDM

3-RDMs are between half an order and an order of magniyom a nondegenerate, ground-state wave function contains

tude more accurate than the 2-RDMs from the unconnecteé : : . . ;
3-RDMs. The unconnected 3-RTM contracts exactly to the nough information by itself to determine Rparticle pre

2-RTM since the reconstruction functionals build the 3-RTM |||_|”nag_<|e as lOT]g as the unde;lymg but pqs|3|bl_y unkn.own
which corresponds to a coupled-cluster wave function witt‘t aml tonhlf':m_ a.‘]f noh more th :;m .two-partlc € mteractpns
nonvanishing single- and double-transition amplitudes. 29,6]. This justifies the search for improved recpnstrucUon,
and we present an explicit formula for calculating second-
order corrections for the 3-RDM cumulant functiori&].
Unlike the 2-RDM the 2-RTM withy = /)5 d0€S NOt con-
Within the framework of the transition CSE and cumulanttain enough information to reconstruct to a unique preimage.
theory a unified treatment of the Cl, CC, and CSE methods igny Cl wave function with the appropriate single and double
presented. We derive a relationship between the CI exciteexcitations is a candidate for the preimage. Some of these
tion coefficients and the elements of the RTMs whgres  may be eliminated by requiring size consistency. However,
chosen to be any Slater wave functighy,.,. From these there is a significant limitation on building higher RTMs
relations a set of necessary and sufficient conditions, inddrom lower RTMs without additional information about the
pendent of the CI coefficients, is generated for constrainingdamiltonian. This restricts the degree to which the many-
the RTMs to be purdN-representable. When the elements ofbody perturbation expansion may be renormalized within CC
the RTMs which correspond to three- and four-particle excitheory while a similar theoretical restriction does not exist
tations are neglected, the solution of the TCSE yields RTMdor the CSE theory whose primary variable is the 2-RDM.
that are equivalent to the SDCI. Through the theory of cu- The multiple preimages for the 2-RTM suggest a connec-
mulants and methods from quantum field theory we detertion with the one-density of DFT. In DFT the energy is de-
mine reconstruction functionals for the RTMs which im- termined from the one-density and the number of electrons
prove the accuracy of the Cl approximation and reestablisbby means of a functional which must contain information
size consistency. These RTM formulas represent a renormadbout the kinetic energy and two-particle interaction terms in
ized MBPT. We show that these reconstruction functionalghe electronic Hamiltonian. By itself the one-density has nu-

V. CONCLUSION

TABLE VIII. Comparison of molecular 2-RDMs obtained by contracting reconstructed 3-RDMs.

System L2(3-RDM) error L3(3-RTM) error
3-RDM reconstructions 3-RTM reconstructions
Hartree-Fock Unconnected Corrected Hartree-Fock Unconnected
LiH 5.69x10°* 4.95x10°° 7.97x10°4 2.53x10 2 0
BeH, 3.46x10°1! 8.42x10°4 1.39x10°4 1.13x10°2 0
BH, 2.32x10° ! 2.99x 104 3.12x10°° 6.71x10°3 0
H,O 1.27x10°1 1.28x10°* 1.50x 10 3.59x10°3 0
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merousN-particle preimages including a Slater determinanthave different characteristics such as correspondence of the
wave function[33,34. Recently, DFTs for both the one- CSE with the Schrdinger equation under the conditions of
density and the 1-RDM have been cast through the adiabatiakatsuji's theorem. The present paper establishes the foun-
connection as renormalized MBPT85-39. Because the dation for future work to explore the relationship between
one-density and the 1-RDM by themselves do not contaithe CC and CSE in greater computational detail. Before a
enough information to reconstruct the higher RDMs for cor-fair comparison in accuracy and efficiency can be estab-
related systems, in the renormalization they like the 2.RTMished, however, better iterative methods for solving the CSE
must be explicitly supplemented with more precise informa-"€€d to be developed. _
tion regarding the two-particle interactions in the Hamil- _1he similarity of the CSE and TCSE suggests the possi-

tonian. While a simple and exact reconstruction strategy foplility for .hybri_d schemes. If the 2-, 3-, and 4-RDMs are
the 2-RDM remains unknown, Rosina’s existence theore arametrized in terms of the 2-RTM, we would ensure that

offers hope for discovering a highly renormalized approac hg{ﬂar_eN-rehpreCseEtableidSlFl]bstitution of these paframetri_zed
which by usingN-representability restrictions may be sys- s into the CSE would then create a system of equations

tematic without relying directly on traditional perturbation for the 2-RTM. _By Nakat;u_u; thgorem this system would
theory. not have a solution, but minimization of a norm for the errors

The CC and CSE theories may also be distinguished frorf the CSE would offer a method for'optimizing the 2-RTM
an analysis of the relationship of the CSE and the Tcspparameters. The solution would be similar to CCSD, and yet
(X=thsme) With the SE. As first shown by Nakatsuji, the the energy would be an upper bound to the true energy. This

CSE may be satisfied with pus-representable RDMs if CSE-RTM hybrid scheme has connections with the varia-

and only if the SE holds with the wave function associateoIional formulations for the .C¢39]' The CSE might also bg
with the RDMs [17]. Thus, if the conditions for pure useful as a test for measuring the accuracy of RTMs obtained

o through a CC calculatiof40].
N-representability were known, we could solve the CSE for . . .
P 1Y W wn, W N v In conclusion the TCSE provides a theoretical framework

the ground- and excited-state energies and their 2-RDMs. A e
we demonstrated, however, the TCSE has multiple solutioné)r unifying the CI_’ CC, an_d_CSE methods. We have con-
nected the expansion coefficients of the Cl and the transition

for N- table RTM hich f SDCI and i :
Of o representabie S Which range from an amplitudes of the CC with the RTMs and connected RTMs,

CCSD to the exact solution. The relative simplicity of the velv. Th links off frosh h q
N-representability conditions for the RTMs is complemented €SPECtiVely. These links offer a fresh approach to under-

by a TCSE that is significantly weaker than the CSE. Withins_tandlng cC theory_ within the context of RTM reconstruc-

CSE theory improvingN-representability offers a mecha- tion. _The_ exponential ansatz f(_)r the coupled clustgr wave
nism for approaching the exact solution for the 2-RDM, butfunlCtlon IS shovyn t(f) beRe_ll_,\s/lpec#arI]_case of al_gegerallzed_cu—
in CC theory the limitation on accuracy does not depend ofnuiant expansion for s. his generalized expansion
the N representability of the RTMs but on their correspon-also includes the RDM reconstruction formulas employed

dence to a model wave function. In this respect the failure oY‘”th'n the context of the CSE. We implemented a recently

the RDMs to beN-representable may be perceived as a bendeveloped formula for constructing the 3-RDM with an ac-
efit since the representability provides a means for improveguracy bey(_)_nd that of Its C“m“'af‘t expansion. The theorems
ment. of Nakatsuji and Rosina, applying only to the CSE and

Calculations with random and molecular Hamiltonians in-RDMS’ respectively, highlight the significant theoretical and

dicate that the RTMs reconstruct better than the RDMs witH:’OtenﬁaI computational differences between the CC and CSE

the unconnected functionals; the corrected 3-RDM formulalheo_ries' Through the ynifying influence of the TCSE, we
obtain a novel perspective on Cl and CC calculations as well

is close to the accuracy of the unconnected 3-RTM. In com- derstand £ th tential role for the CSE
paring these reconstructions two issues should be considered® @ NEW understanding of the potential role for the

(i) Rosina’s theorem indicates that it should be possible té(\”th'n electronic structure.
develop better reconstruction strategies for the 3-RDM while
the 3-RTM cannot be improved without the Hamiltonian,
and (ii) these reconstruction differences do not necessarily The author wishes to express his appreciation to Professor
reflect the accuracy of solving the CSE and CC equation®udley Herschbach, Professor John Coleman, and Dr. Alex-
from an initial 2-RDM-2-RTM guess since the CSE and CCander Mazziotti for their encouragement and support.
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