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Comparison of contracted Schrödinger and coupled-cluster theories

David A. Mazziotti*
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

~Received 25 May 1999!

The theory of the contracted Schro¨dinger equation~CSE! @D. A. Mazziotti, Phys. Rev. A57, 4219~1998!#
is connected with traditional methods of electronic structure including configuration-interaction~CI! and
coupled-cluster~CC! theory. We derive a transition contracted Schro¨dinger equation~TCSE! which depends on
the wave functionc as well as anotherN-particle functionx through the two-, three-, and four-particle reduced
transition matrices~RTMs!. By reconstructing the 3 and 4 RTMs approximately from the 2-RTM, the inde-
terminacy of the equation may be removed. The choice of the reconstruction and the functionx determines
whether one obtains the CI, CC, or CSE theory. Through cumulant theory and Grassmann algebra we derive
reconstruction formulas for the 3- and 4-RTMs which generalize both the reduced density matrix~RDM!
cumulant expansions as well as the exponential ansatz for the CC wave function. This produces a fresh
approach to CC theory through RTMs. Two theoretical differences between the CC and the CSE theories are
established for energetically nondegenerate states:~i! while the CSE has a single exact solution when the 3-
and 4-RDMs areN-representable, the CC equations withN-representable 3- and 4-RTMs have a family of
solutions. Thus,N-representability conditions offer a medium for improving the CSE solution but not the CC
solution, and~ii ! while the 2-RDM for an electronic Hamiltonian reconstructs to uniqueN-representable 3- and
4-RDMs, the 2-RTM builds to a family ofN-representable 3- and 4-RTMs. Hence, renormalized reconstruc-
tions beyond the cumulant expansion may be developed for the 2-RDM but not for the 2-RTM without explicit
use of the Hamiltonian. In the applications we implement our recently developed reconstruction formula for the
3-RDM which extends beyond the cumulant approximation. Calculations compare the 3-RDM and 3-RTM
reconstructions for the molecules LiH, BeH2 , BH3, and H2O as well as for systems with more general
two-particle interactions. The TCSE offers a unified approach to electronic structure.
@S1050-2947~99!01812-0#

PACS number~s!: 31.10.1z, 31.15.Dv, 31.25.2v
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I. INTRODUCTION

The quantum-mechanical wave function of anN-electron
system contains much more information than is required
compute the expectation values for most observables.
cause the interactions between electrons are pairwise w
the Hamiltonian, the energy may be determined exa
through a knowledge of the two-particle reduced density m
trix ~2-RDM! @1,2#. Unlike the unknown dependence of th
energy on the one-particle density in density functio
theory ~DFT! @3#, the dependence of the energy on t
2-RDM is linear. The 2-RDM, however, has not replaced
wave function as the fundamental parameter for many-b
calculations because not every two-particle density matri
derivable from anN-particle wave function. The need for
simple set of necessary and sufficient conditions for ensu
that the 2-RDM may be represented by anN-particle wave
function is known as theN-representability problem@4,5#.

The contracted Schro¨dinger equation~CSE! @6–15# has
recently offered a new approach to constraining the 2-RD
to be approximatelyN-representable. An integro-differentia
version of the CSE was originally derived by Cohen a
Frishberg@16# and Nakatsuji@17# in 1976. Harriman pre-
sented a matrix formulation in 1979@18#, and Valdemoro
gave a second-quantized CSE at the density matrix sym
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sium at Queens University in 1985@19#. Without additional
conditions the CSE, however, cannot be solved for
2-RDM because the CSE also depends on the 3-
4-RDMs. In 1993 Valdemoro and her collaborators remov
the indeterminacy of the CSE by building the 3- a
4-RDMs approximately from the 2-RDM through th
particle-hole duality@13,14#. These formulas were utilized
with the CSE by Colmenero and Valdemoro to compute
ground-state energy for beryllium and its isoelectronic
quence@20#. In 1996 Nakatsuji and Yasuda improved Va
demoro’s reconstruction functionals for the 3- and 4-RDM
with arguments from the theory of Green’s functions a
applied these formulas with the CSE to atoms and molec
with as many as fourteen electrons@10,11#. In 1998 we fur-
ther systematized the reconstruction functionals for RD
by generating the functionals through the theory of cum
lants and Grassmann algebra@6–8#. We also derived a new
strategy for improving the 3-RDM functional and applie
this technique to solving the CSE for a quasispin model w
as many as 50 fermions. Energies were as accurate as
from single-double configuration interaction~SDCI!, and the
2-RDMs were an order of magnitude more accurate th
SDCI. The CSE converts theN-representability problem for
the 2-RDM into a problem involving the reconstruction
the 3- and 4-RDMs from the 2-RDM.

In the present paper the theory of the CSE is connec
with standard techniques in electronic structure@21#,
configuration-interaction ~CI! and coupled-cluster~CC!
theory @22–24#, through the transition contracted Schro¨-

y,
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dinger equation~TCSE!. A generalization of theN-particle
density matrixcc* is the transition matrixxc* involving
the two N-particle wave functionsx and c. Contraction of
the transition matrix produces the reduced transition matr
~RTMs! @1#. We derive the TCSE which by analogy with th
CSE depends on the 2-, 3-, and 4-RTMs. The indetermin
of the TCSE may be removed by building the 3- a
4-RTMs as functionals of the 2-RTMs. Two special cases
x are considered:~i! whenx equals the exact wave functio
c and ~ii ! when x equals a single Slater determinant wa
function cSlater such as the Hartree-Fock wave function.
the first case the TCSE reduces to the familiar CSE with
RDMs as parameters. The second scenario generates a T
whose RTMs may be related to the CI excitation coefficien
From this relationship pureN-representability conditions fo
these RTMs may be determined. A RTM is pureN represent-
able when it may be defined by twoN-particle wave func-
tions x and c through integration of the kernelxc* @1#.
Unlike the CSE the TCSE withx5cSlater has many
N-representable solutions including both the SDCI and
exact solutions.

Size-consistent reconstruction functionals for the 3- a
4-RTMs are derivable through the theory of cumula
@7,8,25,26#. A p-RTM is divided into two parts: an uncon
nected part which may be expressed as antisymmetr
products of lower RTMs and a connected~or cumulant! part.
The cumulant portion of thep-RTM vanishes if any of thep
particles are statistically independent of the other partic
Using machinery from quantum field theory like generati
functionals and Schwinger probes@27# as well as Grassman
algebra@28#, we derive all of the unconnected terms for a
RTM. Because the connected term of thep-RTM vanishes
through the (p21)th order of many-body perturbatio
theory~MBPT!, the unconnected reconstruction formulas
the 3- and 4-RTMs are accurate through the first and sec
orders of MBPT, respectively. This derivation generaliz
the cumulant functionals for RDMs which were presen
recently@7,8,26#. By deriving higher transition amplitudes i
terms of lower transition amplitudes in coupled-clus
theory with Grassmann algebra, we show that the TCSE w
the unconnected reconstruction functionals for the 3,4-RT
when x5cSlater is equivalent to single-double CC~CCSD!
theory. More generally, we have that the reconstruction fu
tionals produce RTMs when x5cSlater that are
N-representable with wave functions equal to the exponen
ansatz forc in CCs @22,23#. Thus, TCSEs involving highe
RTMs may also be derived, and decoupling these RTMs
the appropriate lower RTMs generates TCSE methods
reproduce the various levels of approximation in CC the
from CCSD to full CI for the one-particle basis under co
sideration. We, therefore, have a new approach to expres
CC theory through RTMs.

Theoretical and practical aspects of moving beyond
accuracy of the unconnected cumulant reconstruction fu
tionals are discussed. Rosina’s theorem proves the exist
of exact reconstruction of higher RDMs from a nondegen
ate ground-state 2-RDM when the underlying but possi
unknownHamiltonian has only one- and two-particle inte
actions@6,29#. This theorem guarantees that only the 2-RD
is required. We present an explicit formula for building
3-RDM beyond its cumulant expansion to achieve seco
s

cy

r

s
SE
.

e

d
s

ed

s.

r
nd
s
d

r
th
s

-

al

to
at
y

ing

e
c-
ce

r-
y

-

order accuracy in MBPT. This improvement in the 3-RD
formula is important because it makes the accuracy of
3-RDM consistent with that of the 4-RDM from an unco
nected reconstruction. In another paper@9# this correction is
shown to be more accurate than the correction proposed
Nakatsuji and Yasuda through the theory of Green’s fu
tions @10,11#. A similar improvement for the 3-RTM func-
tional with x5cSlater beyond the cumulant expansion do
not exist. Unlike the scenario for the 2-RDM we may sho
that the 2-RTM does not contain enough information to d
termine the higher RTMs uniquely without detailed inform
tion about the Hamiltonian. This represents a significant d
ference between the CSE and CC theories which m
eventually have profound computational consequenc
Theoretically, the CSE may be solved for the exact 2-RD
with suitableN-representability or reconstruction constrain
but the CC method cannot determine the correct 2-RTM
transition amplitudes without employing higher RTMs
supplementing the calculation with perturbation theory. C
culations using Hamiltonians with randomly generated tw
particle interactions will be employed to illustrate and co
pare the present implementations of the CSE and
theories. By connecting the CI, CC, MBPT, and CSE, t
TCSE theory offers a fresh approach to unifying the ideas
electronic structure.

II. TRANSITION CSE EQUATIONS

Beginning with the Schro¨dinger equation, we derive th
TCSE which is a generalization of the CSE. The relations
of the TCSE with the configuration interaction is elucidat
through RTMs involving both Slater and exact wave fun
tions. In the final section we demonstrate that Nakatsu
theorem for the CSE is not generally valid for the TCSE.

A. Derivation of the TCSE

A quantum system ofN fermions may be described by th
Schrödinger equation~SE!

Huc&5Euc&, ~1!

where the wave functionc depends on the coordinates fo
the N particles. In second quantization@30# the Hamiltonian
operator may be written as

H5
1

2 (
i 3 ,i 4 ; j 3 , j 4

2K j 3 , j 4

i 3 ,i 4 ai 3
† ai 4

† aj 4
aj 3

, ~2!

in which 2K is the two-particle reduced Hamiltonian. Defin
the functionŝ F j 1 , j 2

i 1 ,i 2 u to test the two-electron space,

^F j 1 , j 2

i 1 ,i 2 u5^xuai 1
† ai 2

† aj 2
aj 1

, ~3!

wherex is a wave function which may be different from th
system’s wave functionc. Forming the inner product of the
test functions with the SE yields

^xuai 1
† ai 2

† aj 2
aj 1

Huc&5E^xuai 1
† ai 2

† aj 2
aj 1

uc&52E 2D j 1 , j 2

i 1 ,i 2 .

~4!
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The symbol 2D j 1 , j 2

i 1 ,i 2 represents the elements of the tw

particle transition matrix ~2-RTM! between the statesx and
c:

2D j 1 , j 2

i 1 ,i 2 5
1

2!
^xuai 1

† ai 2
† aj 2

aj 1
uc&. ~5!

The general definition for thep-RTM in second quantization
is

pD j 1 , j 2 , . . . ,j p

i 1 ,i 2 , . . . ,i p 5
1

p!
^xuai 1

† ai 2
†
•••ai p

† aj p
aj p21

•••aj 1
uc&,

~6!

whose normalization isN!/( p!(N2p)!) ^xuc&.
Let us replace the Hamiltonian operator in Eq.~4! with its

definition in Eq.~2! to obtain

(
i 3 ,i 4 , j 3 , j 4

2K j 3 , j 4

i 3 ,i 4 ^xuai 1
† ai 2

† aj 2
aj 1

ai 3
† ai 4

† ai 4
ai 3

uc&54E 2D j 1 , j 2

i 1 ,i 2 .

~7!

We then rearrange the creation and annihilation operator
the left-hand side to generate RTMs. This gives us the
CSE for transition matrices~2,4-TCSE!,

(
i 3 ,i 4 , j 3 , j 4

2K j 3 , j 4

i 3 ,i 4 Rj 1 , j 2 , j 3 , j 4

i 1 ,i 2 ,i 3 ,i 4 54E 2D j 1 , j 2

i 1 ,i 2 , ~8!

where

Rj 1 , j 2 , j 3 , j 4

i 1 ,i 2 ,i 3 ,i 4 54!4D j 1 , j 2 , j 3 , j 4

i 1 ,i 2 ,i 3 ,i 4

13!~3D j 2 , j 3 , j 4

i 1 ,i 2 ,i 3 d j 1

i 423D j 1 , j 3 , j 4

i 1 ,i 2 ,i 3 d j 2

i 4!

13!~3D j 1 , j 3 , j 4

i 1 ,i 2 ,i 4 d j 2

i 323D j 2 , j 3 , j 4

i 1 ,i 2 ,i 4 d j 1

i 3!

12!2D j 3 , j 4

i 1 ,i 2 ~d j 1

i 3d j 2

i 42d j 2

i 3d j 1

i 4!. ~9!

While this TCSE becomes the CSE whenx5c, the CSEs
from previous papers@6,20# may not be converted into th
TCSE by replacing the RDMs with RTMs because the re
rangement of the second-quantized operators in these pa
use the Hermiticity of the RDMs. A 1,3-TCSE may also
derived by replacing the doubly excited test functions in E
~3! with test functions formed by single excitations of th
reference wave functionx. Similarly, a 3,5-TCSE and a 4,6
TCSE may be created with test functions using triple a
quadruple excitations, respectively. In this paper we use
notation CSE and TCSE to denote the 2,4-CSE and
TCSE.

B. Relationship with the CI

Two choices forx will be especially important for bridg-
ing the CI, CC, and CSE theories:~i! x equals the exac
wave functionc, and ~ii ! x equals any Slater determina
wave functioncSlater such as the Hartree-Fock wave fun
tion. The first choice produces the CSE in terms of the 2-,
and 4-RDMs. As shown in previous work the CSE alone
indeterminate, but through approximate reconstruction of
on
4-

r-
ers

.

d
e

4-
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s
e

3- and 4-RDMs in terms of the 2-RDM we can solve t
CSE for an accurate 2-RDM@6,20#. The second choice, how
ever, generates a TCSE in terms of 2-, 3-, and 4-RTMs
tween the Slater and the exactc wave functions. The exac
wave function may be defined as a sum of excitations fr
the Slater reference. Let$o1 ,o2 , . . . % represent the set o
occupied Slater orbitals and$v1 ,v2 , . . . % represent the se
of unoccupied~virtual! Slater orbitals. The wave functionc
may then be written as

uc&5S 11 (
v1 ,o1

1co1

v1av1

† ao1

1 (
o1,o2 ,v1,v2

2co1 ,o2

v1 ,v2av1

† av2

† ao2
ao1

1••• D ucSlater&.

~10!

With this definition^cSlateruc& equals unity which is known
as the intermediate normalization.

Relations between the RTMs in Eq.~6! with x5cSlater
and the CI coefficients may be derived. If we substitute t
configuration-interaction expansion forc into the expression
for the 1-RTM,

1Dv1

o15^cSlateruao1

† av1
uc&, ~11!

we obtain after rearranging the creation and annihilation
erators that

1Dv1

o151co1

v1. ~12!

The other nonzero elements of the 1-RTM are

1Do1

o151, ~13!

and they ensure that the 1-RTM contracts with the corr
normalizationN. In general the elements of thep-RTM cor-
respond top-particle excitation coefficients according to th
relationship

pDv1 ,v2 , . . . vp

o1 ,o2 , . . .op5
1

p!
pco1 ,o2 , . . .op

v1 ,v2 , . . . vp. ~14!

As in the case of the 1-RTM, the other nonvanishing e
ments in thep-RTM correspond toq-particle excitation co-
efficients withq,p:

pDv1 , . . . ,vq ,oq11 , . . . ,op

o1 , . . . ,oq ,oq11 , . . . ,op5
1

p!
qco1 ,o2 , . . .oq

v1 ,v2 , . . . vq. ~15!

Defining the RTMs in terms of the CI expansion coefficien
automatically keeps themN-representable.

Using relations ~14! and ~15!, we can formulate the
N-representability conditions on thep-RTM without refer-
ence to the CI expansion coefficients. By substituting E
~14! into Eq. ~15!, we obtain~i! the following equations re-
lating elements of thep-RTM to elements of theq-RTM
whereq,p:

pDv1 , . . . ,vq ,oq11 , . . . ,op

o1 , . . . ,oq ,oq11 , . . . ,op5
q!

p!
qDv1 ,v2 , . . . vq

o1 ,o2 , . . .oq. ~16!
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The remaining condition~ii ! simply stipulates that the ele
ments not defined by Eqs.~14! and~15! must be zero. Unlike
the 2-RDM whose necessary and sufficie
N-representability conditions remain unknown, the con
tions on these special 2-RTMs withx5cSlater are very
simple and easily applied.

In a CI calculation the expansion ofc in Eq. ~10! is
truncated after a certain number of excitations are inclu
by setting the higher expansion coefficients to zero. A
method with single and double excitations~SDCI! may be
produced through the TCSE if we set the elements of the
and 4-RTMs, corresponding to the three- and four-part
excitation coefficients in Eq.~14! to zero and enforce the
N-representability conditions. Similarly, the CI scheme w
p-particle excitations may be formed by deriving the TCS
with the p-, (p11)-, and (p12)-RTMs and setting the ele
ments of the (p11)- and (p12)-RTMs, which correspond
to (p11) and (p12) excitations, to zero. Hence, the TCS
formalism includes the CI calculations from the SDCI to t
full configuration interaction~FCI!. The truncated CI ap-
proximation, however, is notsize consistent@21,22# because
higher excitations are assumed to vanish. Better strategie
reconstructing the 3- and 4-RTMs will be established in S
III A.

C. N-representable solutions of the TCSE

If the RDMs in the CSE are pureN-representable, then
the CSE may be satisfied if and only if the wave functionc
associated with the representable RDMs satisfies the Sc¨-
dinger equation. This theorem was first proved for t
integro-differential CSE by Nakatsuji in 1976@17#, and we
recently demonstrated the proof for the second-quant
CSE @6#. The proof follows from showing that if the RDM
are pureN-representable, the CSE implies the dispers
condition

^cuH2uc&2^cuHuc&250, ~17!

which is valid if and only if the SE is satisfied. For the CS
Nakatsuji’s theorem guarantees that a solution for a non
generate energy in the set of pureN-representable matrice
must correspond to a solution of the SE. Hence, approxim
reconstruction schemes that satisfy the CSE must yield o
approximatelyN-representable RDMs.

Because theN-representability conditions for the RTM
with x5cSlater were derived in Sec. II B, an extension
Nakatsuji’s theorem to the TCSE would allow us to solve
the exact 2-, 3-, and 4-RTMs. We can show that if the RT
are pureN-representable, the TCSE implies the relation

^xuH2uc&2E^xuHuc&50. ~18!

Unlike the dispersion condition in Eq.~17!, however, this
equation does not necessarily imply the SE. Thus, Na
suji’s theorem cannot be extended to all TCSEs. Since
RTMs for the CI and CC are pureN-representable, an exten
sion of Nakatsuji’s theorem to the RTMs would also imp
incorrectly that SDCI is not a solution of the TCSE. Sat
faction of theN particle SE in the case of the CSE depen
on the strength of theN-representability conditions which
may be in the form of reconstruction functionals, but w
t
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the TCSE whenx5cSlater the correspondence with the SE
not limited byN-representability but rather by the accura
of the test functioncSlater as an approximation to the corre
lated wave functionc.

III. RECONSTRUCTION OF RTMs WITH CUMULANTS

With the theory of cumulants and Grassmann algebra
construction functionals for the RTMs are derived. We sh
that the reconstructed 3- and 4-RTMs forx5cSlater are N
representable with model wave functions which correspo
to the exponential wave functions in coupled-cluster the
@22,23#. In Sec. III C we discuss the theoretical differences
reconstructing from the 2-RDM and the 2-RTM wherex
5cSlater through Rosina’s theorem, and in the final secti
an explicit formula is presented for improving the estima
for the 3-RDM beyond its unconnected cumulant expansi

A. Derivation of RTM functionals

From the theory of cumulants@7,25# we can derive recon-
struction functionals for thetransition matrices between the
N-particle quantum statesx andc. We first construct a func-
tional whose derivatives with respect to probe variables g
erate the RTMs in second quantization. Each derivative
the functional should supply a creation or annihilation ope
tor in the RTM. This constraint leads us to the followin
exponential form:

G~J!5K xUOFexpS (
k

Jkak
†1Jk* akD GUcL , ~19!

where theJk and its conjugateJk* are Schwinger probe vari
ables@7,27#. The Schwinger probes anticommute for ferm
ons,$Jk ,Jl%50. The symbolJ is used to represent the who
set of probe variables$Jk%. Differentiation ofG(J) with re-
spect to the probes causes creation and annihilation oper
to accumulate before the exponential. Since the creation
annihilation operators do not commute, a specific order
must be chosen for which these operators appear before
exponential upon differentiation. To form functionals fo
RTMs, we define that the creation operators always appea
the left of the annihilation operators regardless of the orde
which we differentiate with respect to the probes. Rep
sented by the ordering operatorO in the definition ofG(J),
this ordering process is analogous to the time ordering of
creation and annihilation operators in the theory of Gree
functions@27#.

Differentiation of G(J) with respect to the Schwinge
probes produces the RTMs as follows:

pD j 1 , j 2 , . . . ,j p

i 1 ,i 2 , . . . ,i p 5 lim
J→0

1

p!

]pG

]Ji p
•••]Ji 2

]Ji 1
]Jj 1

* •••]Jj p21
* ]Jj p

*

~20!

5
1

p!
^xuai 1

† ai 2
†
•••ai p

† aj p
aj p21

•••aj 1
uc&.

~21!

The elements of the RTMs are the coefficients of the mu
variable Taylor series expansion ofG(J) about the point
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where the Schwinger probes vanish. Hence,G(J) is thegen-
erating functionalfor RTMs. Mathematically, the RTMs o
the functional G(J) are known as themoments. The
moment-generating functionalG(J) may be used to define
another functionalW(J), known as the cumulant-generatin
functional, by the relation

G~J!5 exp@W~J!#. ~22!

Just as the moments are formed fromG(J) in Eq. ~21!, the
cumulantspD are produced fromW(J) by

pD j 1 , j 2 , . . . ,j p

i 1 ,i 2 , . . . ,i p 5 lim
J→0

1

p!

]pW

]Ji p
•••]Ji 2

]Ji 1
]Jj 1

* •••]Jj p21
* ]Jj p

*
,

~23!

and the cumulants are defined as the coefficients of the m
tivariable Taylor series expansion ofW(J) about the point
where the Schwinger probes vanish. The presentation of
other generating functionalW(J) in Eq. ~22! may seem su-
perfluous. The set of cumulantspD with p between 1 andq
has the same information as the set of momentspD with the
same range forp, but the information is expressed diffe
ently. This different expression of information will allow u
to determine approximate functionals for reconstruct
higher RTMs from lower RTMs.

Cumulants have the special property that they vanis
and only if at least one of their particles is statistically ind
pendent of the rest@25#. Hence, in a mean-field approxima
tion ~Hartree-Fock! where each of theN particles is treated
independently all cumulants except1D vanish. The
p-particle cumulantpD represents the part of thep-RTM
which cannot be written as an antisymmetrized product
lower RTMs. This allows us to decompose ap-RTM into
two pieces:~i! theunconnectedpart pDuc that may be written
as antisymmetrized products of the lower RTMs, and~ii ! the
connected, or cumulant, partpD which may not be expresse
as a sum of products of lower RTMs. All the particles of t
cumulant areconnectedby the pairwise interactions betwee
the particles. Thep-RTM may be written in terms ofqD for
q between 1 andp if we differentiate Eq.~22! with respect to
the Schwinger probes as in Eq.~20! and take the limit as the
probes approach zero. The derivatives of the genera
functionalG(J) create thep-RTM, and the differentiation of
exp(W) on the right side creates products of elements fr
the connected RTMs according to Eq.~23!. Because the up
per and lower indices must permute antisymmetrically in
formula for the elements of thep-RTM, the products be-
tween elements of the connected RTMs may be repla
with Grassmann wedge products.

For the 1-RTM we obtain simply that the 1-RTM is equ
to 1D since there cannot be any unconnected terms. In
case of Hartree-Fock wave functionsx and c all of the
higher RTMs are determined by the 1-RTM since the hig
connected RTMs vanish. Reconstruction formulas for
p-RTMs, generated by differentiation of Eq.~22!, are sum-
marized forp<4 in Table I. Thep upper andp lower indices
of a p-RTM are suppressed for notational convenience. T
symbol` indicates the Grassmann wedge product which
determined by summing all of the products generated fr
the antisymmetric permutation of the upper and lower in
l-

n-
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if
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g
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d

e
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e
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ces and then dividing by the number of products in the s
@6,28#. The wedge product produces an RTM that is antisy
metric in its upper and lower indices in accordance with
Pauli principle. Right superscriptsn indicate that a RDM or
its connected part should be wedged with itselfn times. The
portion of the unconnected 4-RTM which may be written
terms of the 1- and 2-RTMs only is denoted by4D uc,p.
While these formulas are exact, the formulas do not show
how to approximate the connectedp-RTM pD from a knowl-
edge of the (p21)-RTM.

The reconstruction functionals are significantly renorm
ized many-body perturbation expansions. Since exact lo
RTMs ~or guesses to the exact lower RTMs when we
iterating with the TCSE! are used in the functionals, contr
butions fromall orders of perturbation theory are incorp
rated into the reconstructed RTMs. The reconstruction
counts exactly for configurations where at least one part
is statistically isolated from the others. All of the error aris
from our imprecise knowledge ofpD. For a Hamiltonian
with no more than two-particle interactions the connec
p-RTM will have its first nonvanishing term in the (p21)
order of many-body perturbation theory. This follows b
cause the minimum number of pairwise potentialsV required
to connectp particles completely is (p21). Thus, as the
number of particlesp in the reconstructed RTM increase
the accuracy of the functional approximation improves. T
unconnected reconstruction formula for the 2-RTM in Tab
I is equivalent to the Hartree-Fock approximations forx and
c since it assumes that the two particles are statistically
dependent. Correlation corrections first appear in the unc
nected 3-RTM functional which is correct through first ord
of MBPT, and the unconnected 4-RTM functional is corre
through second order of MBPT.

B. Relation with coupled-cluster wave functions

Within CC theory the fundamental variables are the tra
sition amplitudes, and yet in the TCSE the RTMs withx
5cSlater are the primary variables. By using Grassmann
gebra to express the transition amplitudes forp particles in
terms of transition amplitudes for fewer particles, we w
elucidate a simple relation between the transition amplitu
and the connected RTMs. It follows that reconstruction f
mulas for RTMs like those in Table I are equivalent to a
suming an exponential ansatz for the wave function as in
theory @24#.

The parametrization of the higher CI coefficients in term
of the lower CI coefficients~or their corresponding transition
amplitudes! is accomplished in CC theory by exponentiatio
of the excitation operators. Thus, the exact CC wave func
is written as

TABLE I. Reconstruction functionals for RTMs.

1D51D
2D51D`1D12D

3D51D313 2D`1D13D
4D54 3D`1D14Duc,p1

4D

where
4Duc,p5

1D416 2D`1D213 2D`2D
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ucCC&5 exp~T!ucSlater&, ~24!

where

T5T11T21T31•••, ~25!

Tp5
1

~p! !2 (
o1 , . . . ,op ,v1 , . . . ,vp

pto1 , . . . ,op

v1 , . . . ,vp

3av1

†
•••avp

† aop
•••ao1

, ~26!

and thepto1 , . . . ,op

v1 , . . . ,vp are transition amplitudes. With all excita

tions included the CC wave function is equivalent to the f
CI wave function. Expansion of the exponential yields

exp~T!511T11S T21
1

2
T1

2D1S T31T1T21
1

6
T1

3D1•••,

~27!

in which we have collected the terms that correspond to
usual CI excitation operators. We may concisely express
CI expansion coefficients in Eq.~10! in terms of the transi-
tion amplitudespto1 , . . . ,op

v1 , . . . ,vp in Eq. ~26! through the use of

Grassmann wedge products.
To derive the relationship between the CI coefficients a

transition amplitudes, we rewrite the terms in the expan
exponential~27! so that they may be matched with the C
coefficients in Eq.~10!. We illustrate this procedure by con
sidering the termT1

2:

T1
25 (

o1 ,o2,v1 ,v2

~1to1

v1 1to2

v2!av1

† ao1
av2

† ao2
. ~28!

The second-quantized operators are rearranged to corres
to the ordering in Eq.~10!. Replacing the simple product o
transition amplitudes in Eq.~28! with a Grassmann wedg
product does not alter the expression which must be antis
metric in its indices:

T1
25 (

o1 ,o2,v1 ,v2

~ 1to1

v1`1to2

v2!av1

† av2

† ao2
ao1

. ~29!

Each term in the above sum is related to three other term
antisymmetry of the upper and lower indices. Since we h
already antisymmetrized the expansion coefficients wit
Grassmann wedge, we can eliminate this redundancy in
summation by restricting the sum as in the CI expansion
multiplying by (2!)2 to obtain

T1
254 (

o1,o2,v1,v2

~1to1

v1`1to2

v2!av1

† av2

† ao2
ao1

. ~30!

Comparison of Eq.~30! in Eq. ~27! with Eq. ~10! readily
gives us the contribution of this term to the triply excited
coefficient as 21to1

v1`1to2

v2. In the same fashion we find theT2

contribution to obtain

2co1 ,o2

v1 ,v2521to1

v1`1to2

v212to1 ,o2

v1 ,v2 ~31!
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for the doubly excited CI coefficient in terms of the trans
tion amplitudes.

A similar analysis yields the CI coefficients for triple an
quadruple excitations in terms of transition amplitude
These results are summarized in Table II. Indices are s
pressed, but if supplied, the upper and lower indices wo
represent virtual and occupied orbitals, respectively. As
fore a right superscriptn indicates that a transition amplitud
should be wedged with itselfn times. The functionalg(1t,2t)
represents those terms which may be expressed withou
three- and four-particle transition amplitudes.

Comparison of the functionals for RTMs and CI coef
cients in Tables I and II, respectively, reveals that the fu
tionals are identical except for different coefficients. Equ
tion ~14! from Sec. II B shows that the CI coefficientpc is
related to thep-RTM by a factor ofp!. Using this relation,
we can rewrite Table I to produce the CI coefficientspc as
functionals of the connected RTMs. However, in Table II t
pc are expressed as functionals of the transition amplitu
pt. Both results forpc are valid if and only if

pD5
1

p!
pt. ~32!

Hence, the functionals in Tables I and II are equivale
which demonstrates that a cumulant expansion for RT
with x5cSlater is the same as the exponential ansatz for
CI coefficients. Similarly, we could prove this result b
changing Table II to express thep-RTMs as functionals of
the transition amplitudes. Comparison of these function
with those in Table I would also require Eq.~32!.

All of the functionals in both Tables I and II contain con
nected and unconnected terms and are therebyexact. CC
approximations to a full CI only include certain connect
terms. Equation~32! shows that neglecting the connecte
portion of a cumulant expansion for a RTM is the same
deleting the corresponding transition amplitude in the ex
nential ansatz for the wave function; hence, the function
for RTMs and transition amplitudes remain the same w
the introduction of approximations. The equivalence of t
unconnected RTM reconstruction with an exponential ans
for the wave function implies that the unconnected RTMs
pure N-representable. Approximately reconstructing the
and 4-RTMs within the TCSE from anN-representable
2-RTM by neglecting3D and 4D is the same as building th
three- and four-particle CI coefficients in terms of the low
transition amplitudes (1t and 2t) in a single-double CC cal-
culation. Transition CSE methods that are equivalent to
CC at higher orders of approximation may be easily gen
ated by employing higher excitations for the test functions

TABLE II. Reconstruction functionals for the expansion coef
cients ofc.

1c51t
2c52 1t`1t12t

3c56 1t319 2t`1t13t
4c5163t`1t1g(1t,2t)14t

where
g(1t,2t)5241t41722t`1t21182t`2t
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TABLE III. Comparison of reconstruction formulas for 3-RDMs and 3-RTMs.

N r 3-RDM error 3-RTM error

Hartree-Fock Unconnected Corrected Hartree-Fock Unconne

4 6 5.6531023 6.3831025 8.4331028 4.0331023 0
4 12 2.8631022 1.4631023 4.8831024 2.1031022 3.5231024

5 12 1.4831022 6.2531024 1.7231024 1.0731022 1.2931024

6 12 8.7531023 3.2031024 1.0931024 7.0431023 9.8831025

8 12 2.3931023 4.6131025 2.3331025 1.9931023 2.2531025

10 14 1.3131023 2.2331025 1.1031025 1.0331023 8.5431026
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Eq. ~3! and deriving through Eq.~22! cumulant expansions
for higher RTMs. With the transition CSE we may formula
CI, CC, or CSE theories. The particular theory obtained a
its level of accuracy depends on the choice for the refere
wave functionx and the reconstruction strategy.

C. Pure N-representable preimages of the RTMs

The preimage of a pureN-representablep-RDM refers to
the N-particle wave functionc whose density matrix con
tracts to thep-RDM. Similarly, the preimage of a pur
N-representablep-RTM is characterized by the two wav
functionsx and c which define thep-RTM in Eq. ~6!. So-
lution of the TCSE introduces the reconstruction problem
building the 3- and 4-RTMs from the 2-RTM. An importan
question is whether the 2-RTM contains enough informat
to specify the higher RTMs uniquely. In a previous paper
discussed this question for the case wherex5c through a
theorem originally formulated by Rosina at the 1967 conf
ence on RDMs at Queens University@6,29#:

Theorem. If a p-RDM arises from a nondegenera
ground-state wave function from a Hamiltonian with on
p-particle interactions, thep-RDM alonecontains enough in-
formation to determine theN-particle preimage uniquely. By
alone we mean that thep-RDM information is not supple-
mented by any details concerning the nature of the Ham
nian’s p-particle interactions.

By this theorem a 2-RDM from the nondegenerate grou
state of any Hamiltonian in the form of Eq.~2! uniquely
determines theN-particle preimage as well as one pu
N-representablep-RDM for each p between two andN.
There is a one-to-one mapping between the 2-RDM and
N-particle wave function. Rosina’s theorem motivates
search in Eqs.~33! and~34! for improving the reconstruction
of higher RDMs from the 2-RDM beyond the cumulant e
pansion.

Rosina’s theorem is not true for the 2-RTM withx
5cSlater. Unlike the 2-RDM with a unique preimage th
2-RTM reconstructs to manyN-particle wave functionsc
including the coupled-cluster wave functions in Eq.~24! with
the correct transition amplitudes inT1 andT2 but any choice
for the transition amplitudes involving more than two pa
ticles. When the higher transition amplitudes are chosen
be zero, we have the single-double coupled-cluster preim
Without employing the Hamiltonian explicitly in the recon
struction the exact preimage for the 2-RTM cannot be dis
guished from many other possibilities.
d
ce

f

n
e

-

-

d

e
e

to
e.

-

D. Reconstruction of RDMs beyond cumulants

Rosina’s theorem motivates the search for reconstruc
functionals for RDMs beyond the unconnected cumulant
proximations. The iterative solution of the CSE requires
to build the 3- and 4-RDMs from the trial 2-RDM at eac
iteration until convergence. Building the 3-RDM from th
2-RDM with unconnected part of the cumulant expans
neglects 3D which vanishes though first order of MBPT
However, building the 4-RDM from the 3-RDM with uncon
nected terms neglects4D which vanishes through secon
order of MBPT. To make the reconstruction of the 3-RD
correct through second order, we must approximate the c
nected part through second order. Contraction of the unc
nected part of the 4-RDM formula4Duc in Table I generates
a system of equations for approximating3D,

3Dapp5
4

N23
L4

3@4Duc~
1D,2D,3Dapp!#23Duc, ~33!

whereL4
3 is the contraction operator from the four-partic

space to the three-particle space and3Duc denotes the uncon
nected part of the 3-RDM. This system would be exact if
could include the unknown connected 4-RDM. Since the4D
vanishes until third order of MBPT, this system of equatio
produces a3Dapp which is correct through second order
MBPT. While this contraction condition improves the u
connected approximation for the 3-RDM, the analogous c
traction condition for the 3-RTM is always satisfied by th

FIG. 1. The errors in 3-RDM and 3-RTM reconstructions a
shown as functions of the perturbation parameterl. The 3-RDM is
built with both the unconnected cumulant and the corrected
proximations while the 3-RTM is constructed with the unconnec
cumulant formula.
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TABLE IV. Comparison of 2-RDMs obtained by contracting reconstructed 3-RDMs.

N r L3
2~3-RDM! error L3

2~3-RTM! error

3-RDM reconstructions 3-RTM reconstructions

Hartree-Fock Unconnected Corrected Hartree-Fock Unconnec

4 6 2.6731023 3.0131025 3.9831028 1.9031023 0
4 12 1.3531022 6.4331024 3.3631025 9.8931023 0
5 12 8.5431023 2.7731024 1.3631025 6.1931023 0
6 12 5.8431023 1.3431024 6.6931026 4.6831023 0
8 12 1.9531023 1.4831025 5.5131027 1.6331023 0
10 14 1.2431023 7.7031026 2.7231027 9.7131024 0
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unconnected 3-RTM withx5cSlaterbecause its preimage in
cludes anN-particle coupled-cluster wave function with on
single- and double-transition amplitudes. Hence, this
proximation for the connected 3-RDM illustrates the prac
cal impact of Rosina’s theorem for improving RDM reco
struction.

We have recently succeeded in converting the system
equations in Eq.~33! into the following explicit formula for
approximating the elements of the connected 3-RDM@9#:

3Dapp5a@4L4
3~4Duc,p!19L3

2~3D!`1D2b3Duc#, ~34!

wherea51/(g23), b5N23, and

g5 (
i P$ i 1 ,i 2 ,i 3 , j 1 , j 2 , j 3%

1Di
i . ~35!

The detailed derivation of this formula is given in@9#. The
set of six indices in Eq.~35! contains the upper$ i 1 ,i 2 ,i 3%
and lower $ j 1 , j 2 , j 3% indices for the specific element o
3Dapp which we are calculating. All RDMs in this formula
must be in the natural orbital basis set which diagonalizes
1-RDM.

Formally we know that the exact error in this formula

error in3Dapp5
4

g23
L4

3~4D!. ~36!

FIG. 2. The errors in the 2-RDMs obtained by contracting
3-RDM reconstruction formulas are reported as functions of
perturbation parameterl. The error in the contraction of the uncon
nected 3-RTM approximation to the 2-RTM is not shown beca
the contraction is exact.
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Since we do not know4D, however, we cannot use thi
formula to obtain an exact answer. Because the conne
4-RDM vanishes until third order of MBPT, this formula fo
the elements of the connected 3-RDM will be corre
through second order of MBPT as long as the denominato
the error expressiong23 is not small. However,g may be
close to 3 when three of the six indices correspond to oc
pied orbitals in the noninteracting limit. Using the Hermitia
and antisymmetric properties of the 3-RDM, we may gro
the elements for whichg is close to 3 into two classes
3Dx,o,o

x,x,o and 3Do,o,o
x,x,x where thex’s ando’s denote occupied

and unoccupied orbitals, respectively. For both of the
classes we employ the unconnected 3-RDM approxima
without correction. All other elements, however, may be c
rected with the present formula through second order
MBPT.

IV. APPLICATIONS

Several reconstructions of the 3-RDM withx5c and the
3-RTM with x equal to the Hartree-Fock wave functioncHF
are compared through calculations involving random Ham
tonians with general two-particle interactions as well as m
lecular Hamiltonians for LiH, BeH2, BH3, and H2O. Com-
putations with the random Hamiltonians allow us to vary t
strength of the two-particle interactions.

A. Random Hamiltonians

To create a randomN-particle Hamiltonian with no more
than two-particle interactions, we first choose the eleme
for a one-particle reduced Hamiltonian1K and a two-particle
perturbation2V randomly. The two-particle reduced Hami
tonian 2K is then defined by

2K51K`1I 1l2V. ~37!

By wedging the2K with the (N22)-particle identity opera-
tor (2K`N22I ), we create theN-particle HamiltonianH
which we diagonalize withARPACK @31#. From the wave
function we form the exact 1- and 2-RDMs and the exact
and 2-RTMs. These matrices are employed to test the re
struction schemes. Calculations are performed in the nat
orbital basis.

Three reconstruction formulas for the 3-RDM are co
pared in Table III:~i! the Hartree-Fock functional1D3 with
theexact1-RDM, ~ii ! the unconnected portion of the 3-RDM

e

e
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TABLE V. Comparison of 4-RDMs and 4-RTMs obtained by reconstructing with different 3-RDM
3-RTM approximations.

N r 4-RDM error 4-RTM error

3-RDM reconstructions 3-RTM reconstructions

Hartree-Fock Unconnected Corrected Hartree-Fock Unconnect

4 6 1.6031022 4.4231024 6.5331027 1.1431022 0
4 12 8.1231022 9.6731023 1.9831023 5.9431022 1.4131023

5 12 2.9631022 2.4231023 4.9031024 2.1531022 3.6531024

6 12 1.4331022 9.1431024 2.5331024 1.1531022 2.2831024

8 12 3.0331023 9.0331025 4.1731025 2.5331023 4.0331025

10 14 1.4031023 3.6231025 1.6631025 1.1131023 1.2931025
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in Table I, and~iii ! the present approximation in Eq.~34! for
the connected part3D of the reconstruction functional. Two
reconstruction methods for the 3-RTM are also reported
Table III: ~i! the Hartree-Fock functional1D3 with theexact
1-RTM and ~ii ! the unconnected portion of the 3-RTM i
Table I. The error in each 3-RDM or 3-RTM approximatio
is measured by a least-squares norm, evaluated by sum
the squares of the errors in the elements and taking
square root of the result. Calculations are shown in Table
for various particle numbersN and one-particle ranksr with
the perturbation parameterl50.04.

From Table III the errors in the unconnected 3-RTMs a
half an order of magnitude smaller than the errors in
unconnected 3-RDMs. Hence, the same unconnected f
tional in Table I yields better 3-RTMs than 3-RDMs. Usin
the formula in Eq.~34! to move beyond the cumulant ap
proximation produces a corrected 3-RDM that is close to
accuracy of the 3-RTM. It is interesting that while the co
rected 3-RDM has many elements calculated through sec
order of a renormalized MBPT, the 3-RTM which is missin
second-order corrections often has a smaller least-square
ror. Whenr 5N12, there cannot be any three-particle ex
tations, and thus, the unconnected 3-RTM formula beco
exact. The present approximation for the 3-RDM also i
proves whenr 5N12 because with only two virtual orbital

FIG. 3. The errors in the 4-RDMs and 4-RTM obtained by
constructing with different 3-RDM and 3-RTM approximations a
given as functions of the perturbation parameterl. Both the
4-RDM and the 4-RTM are built with the unconnected cumula
approximation. The results highlight the sensitivity of the 4-RD
and 4-RTM errors to the 3-RDM/3-RTM reconstructions.
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the elements of the 3-RDM3Do,o,o
x,x,x , which are not easily

corrected through second order, do not occur. Figure 1
sents the 3-RDM and the 3-RTM reconstructions for the p
turbation parameterl in the range@0.02,0.32# andN54 and
r 58. For smalll, as reported in the tables, the 3-RT
approximation is more accurate than the unconnec
3-RDM, but the corrected 3-RDM is close to the accuracy
the 3-RTM. After l50.12 the 3-RDM is better than th
3-RTM; by l50.32 the error in the 3-RTM, greater than th
error in the unconnected 3-RDM, is more than half an or
of magnitude larger than the corrected 3-RDM’s error.

By contracting the approximations for the 3-RDMs a
3-RTMs, we obtain 2-RDMs and 2-RTMs whose errors a
reported in Table IV. For all cases the contraction of t
present 3-RDM is at least an order of magnitude more ac
rate than the contraction of the unconnected 3-RDM. Wh
the unconnected and corrected estimates for the 3-RDM
fer by about half of an order of magnitude for alll in Fig. 1,
the contractions of these 3-RDM estimates differ by two
ders of magnitude for smalll and an order of magnitude fo
largel as shown in Fig. 2. This dramatic improvement o
curs because the elements3Do,o,o

x,x,x of the connected 3-RDM
which are not easily corrected by Eq.~34! do not contribute
to the 2-RDM through contraction. The contraction of t
unconnected 3-RTM is exact in Table IV since the unco
nected cumulant expansion produces anN-representable
3-RTM. The Hartree-Fock functional for the 3-RTM whic
is not necessarilyN representable does not contract correct

Comparison of the 3-RDM and the 3-RTM reconstru
tions may also be performed by building the 4-RDMs a
the 4-RTMs with the unconnected part of the four-partic
functional in Table I. The exact 1- and 2-RDMs~or RTMs!
are used in the functional for1D and 2D. Results are re-
ported in Table V for a variety ofN andr andl50.04. The
4-RTM from the unconnected 3-RTM is more accurate th
the 4-RDM from the unconnected 3-RDM, but the 4-RD
from the corrected 3-RDM is close to the accuracy of t
4-RTM approximation. As with the 3-RTM, whenr 5N12,
the 4-RTM reconstruction becomes exact since three-
four-particle excitations vanish. The errors in the 4-RTM a
the 4-RDM built with the corrected 3-RDM cross atl
50.12 in Fig. 3 with the 4-RDM approximation becomin
significantly better than the 4-RTM estimate for largel. This
is similar to the crossover observed in Fig. 1 for the 3-RD
and the 3-RTM. Comparison of Figs. 1 and 3 also shows

-

t
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TABLE VI. Comparison of CSE and CC errors for different 3-RDM and 3-RTM reconstructions.

N r 2DTCSE error for the CSE 2DTCSE error for the CC
uECSE2EFCIu uECC2EFCIu EFCI

3-RDM reconstructions 3-RTM reconstructions

Hartree-Fock Unconnected Corrected Hartree-Fock Unconnected

4 6 1.6031023 4.1831025 4.8531028 5.9531024 0
2.7131022 2.4131023 3.6331026 4.7831025 0 2171.2288331

4 12 1.1331022 4.9731024 2.5731025 7.1631023 7.9931026

1.27 3.4931022 3.9631023 2.0731021 7.3331025 2362.1001722
6 12 5.3131023 1.1631024 6.7031026 3.9031023 2.5931026

5.8531021 2.4731022 6.9031024 1.3731021 5.7831026 2242.4238873
8 12 1.8431023 1.6631025 8.3731027 1.4531023 6.3531027

1.1131021 8.3131023 3.5331025 3.0331022 7.1331027 2161.8839847
10 14 1.1631023 9.9431026 5.0431027 8.5331024 3.0131027

8.7931022 6.4431023 4.2831025 3.1531022 1.3631026 2143.8806157
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the gap between the unconnected and corrected 3-RDM
constructions is larger in the 4-RDM estimate than in
3-RDM approximation. Therefore, the present correction
the 3-RDM has beneficial effects on both the contraction
the 2-RDM as well as the cumulant reconstruction to
4-RDM.

An additional criterion for assessing the accuracy of
reconstructed 3,4-RDMs and the 3,4-RTMs is their satisf
tion of the CSE and CC equations, respectively. Reconst
tion of the RDMs and RTMs is performed as in Tabl
III–V. In Table VI results are reported for a variety ofN and
r with l50.04. With the unconnected approximations for t
RTMs the TCSE is equivalent to the single-double CC eq
tions. Errors in the TCSE equations are evaluated by a le
squares norm of the matrixe with the following elements

e i 2 , j 2

i 1 , j 15
2

N~N21!
~2DTCSE2

2Dexact!, ~38!

FIG. 4. The errors in the CSE and CC equations are displaye
functions of the perturbation parameterl for different reconstruc-
tions of the 3-RDM/3-RTM. The CSE with the corrected 3-RD
formula outperforms the CSE with the unconnected 3-RDM f
mula by two orders of magnitude for lowl and an order of mag-
nitude for higherl. While the CC error is smaller than the CSE f
low l, the CSE with the present 3-RDM has a smaller error for h
l.
e-
e
r
o
e

e
-
c-

-
st-

where 2DTCSE is determined with the TCSE in Eq.~8!,

2DTCSE5k (
i 3 ,i 4 , j 3 , j 4

2K j 3 , j 4

i 3 ,i 4 Rj 1 , j 2 , j 3 , j 4

i 1 ,i 2 ,i 3 ,i 4 . ~39!

The constantk is chosen to adjust the normalization of th
resulting matrix toN(N21)/2; this is equivalent to dividing
by the 4E in Eq. ~8!. The CC equations are exactly satisfie
by the unconnected reconstruction whenr 5N12 for which
the 3- and 4-RTM reconstructions are exact. In Table VI
errors in the CC equations with the unconnected RTMs
much smaller than the errors in the CSE with the unc
nected RDMs. The corrected 3-RDM in the CSE, howev
yields errors which are close to those from the CC with
unconnected 3-RTM. Energies, computed by taking the tr
the 2-RTM 2DTCSE with the reduced Hamiltonian2K, are
also reported in Table VI. While the CC equations produ
the best energies, the CSE with corrected 3-RDM gives
ergies which are significantly better than those from the C
with the unconnected 3-RDM reconstruction. Forl larger
than 0.20 in Fig. 4 the error in the CSE with the correct
3-RDM becomes smaller than the error in the CC.

These results reflect the accuracy of the reconstructio
but they do not necessarily indicate that iteratively solvi
either the TCSE equations from a Hartree-Fock 2-RTM r
erence or the CSE with a Hartree-Fock 2-RDM referen
~CCSD! will yield better results. Within anN-representable
set of RDMs the CSE always produces exact results un
the CC equations which have a family of solutions. Once
N-representability conditions are partially relaxed for t
CSE, however, the relative accuracy of the CSE and
methods is unclear, and we cannot use the accuracy of
reconstructions alone to predict which method will perfo
better. When the iterative methods for solving the CSE h
been better developed, realistic comparisons of the CSE
CC in both accuracy and efficiency will be possible.

B. Molecular Hamiltonians

Reconstruction formulas for the 3-RDM and 3-RTM a
compared in Tables VII and VIII for the molecules LiH

as

-

h
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TABLE VII. Comparison of reconstruction formulas for molecular 3-RDMs and 3-RTMs.

System 3-RDM error 3-RTM error

Hartree-Fock Unconnected Corrected Hartree-Fock Unconnec

LiH 6.9231021 1.0231022 1.7231023 5.3631022 4.6631024

BeH2 3.0931021 2.1731023 1.2431023 1.6931022 8.6031024

BH3 1.7731021 7.6431024 3.7531024 8.2331023 2.6031024

H2O 9.2431022 2.8731024 9.0231025 3.8131023 4.9131025
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BeH2, BH3, and H2O. Calculations are performed within a
STO-6G basis with geometries from the experimental lite
ture @32#. Errors are computed with the FCI as the referen
Table VII presents the least-squares error in the elemen
the 3-RDM and the 3-RTM. As with the random Hamilto
nians we perceive that the unconnected functional yie
3-RTMs which are consistently more accurate than
3-RDMs. The corrected 3-RDMs are significantly better th
the unconnected formulas and close to the 3-RTMs in ac
racy. Contraction of the 3-RDM and 3-RTM approximatio
produces 2-RDMs and 2-RTMs whose least-squares er
are reported in Table VIII. The 2-RDMs from the correct
3-RDMs are between half an order and an order of mag
tude more accurate than the 2-RDMs from the unconne
3-RDMs. The unconnected 3-RTM contracts exactly to
2-RTM since the reconstruction functionals build the 3-RT
which corresponds to a coupled-cluster wave function w
nonvanishing single- and double-transition amplitudes.

V. CONCLUSION

Within the framework of the transition CSE and cumula
theory a unified treatment of the CI, CC, and CSE method
presented. We derive a relationship between the CI exc
tion coefficients and the elements of the RTMs wherex is
chosen to be any Slater wave functioncSlater. From these
relations a set of necessary and sufficient conditions, in
pendent of the CI coefficients, is generated for constrain
the RTMs to be pureN-representable. When the elements
the RTMs which correspond to three- and four-particle ex
tations are neglected, the solution of the TCSE yields RT
that are equivalent to the SDCI. Through the theory of
mulants and methods from quantum field theory we de
mine reconstruction functionals for the RTMs which im
prove the accuracy of the CI approximation and reestab
size consistency. These RTM formulas represent a renor
ized MBPT. We show that these reconstruction function
-
.
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for the 3- and 4-RTMs generateN-representable RTMs
whoseN-particle wave functionsc are equivalent to those
from CCSD. Higher RTMs behave like coupled-cluster wa
functions which include more connected excitations. Wh
we choosex to be the exact wave functionc, we obtain the
CSE which depends on the 2-, 3-, and 4-RDMs. Recent
tempts to build the higher RDMs from the 2-RDM hav
offered a new approach to using the 2-RDM as the fun
mental parameter for electron correlation.

Theoretical questions about a reconstruction strat
whose accuracy extends beyond that of the cumulant ex
sion are addressed. Rosina first demonstrated that a 2-R
from a nondegenerate, ground-state wave function cont
enough information by itself to determine itsN-particle pre-
image as long as the underlying but possibly unkno
Hamiltonian has no more than two-particle interactio
@29,6#. This justifies the search for improved reconstructio
and we present an explicit formula for calculating secon
order corrections for the 3-RDM cumulant functional@9#.
Unlike the 2-RDM the 2-RTM withx5cSlaterdoes not con-
tain enough information to reconstruct to a unique preima
Any CI wave function with the appropriate single and doub
excitations is a candidate for the preimage. Some of th
may be eliminated by requiring size consistency. Howev
there is a significant limitation on building higher RTM
from lower RTMs without additional information about th
Hamiltonian. This restricts the degree to which the man
body perturbation expansion may be renormalized within
theory while a similar theoretical restriction does not ex
for the CSE theory whose primary variable is the 2-RDM

The multiple preimages for the 2-RTM suggest a conn
tion with the one-density of DFT. In DFT the energy is d
termined from the one-density and the number of electr
by means of a functional which must contain informati
about the kinetic energy and two-particle interaction terms
the electronic Hamiltonian. By itself the one-density has n
ed
TABLE VIII. Comparison of molecular 2-RDMs obtained by contracting reconstructed 3-RDMs.

System L3
2~3-RDM! error L3

2~3-RTM! error

3-RDM reconstructions 3-RTM reconstructions

Hartree-Fock Unconnected Corrected Hartree-Fock Unconnect

LiH 5.6931021 4.9531023 7.9731024 2.5331022 0
BeH2 3.4631021 8.4231024 1.3931024 1.1331022 0
BH3 2.3231021 2.9931024 3.1231025 6.7131023 0
H2O 1.2731021 1.2831024 1.5031025 3.5931023 0
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merousN-particle preimages including a Slater determina
wave function @33,34#. Recently, DFTs for both the one
density and the 1-RDM have been cast through the adiab
connection as renormalized MBPTs@35–38#. Because the
one-density and the 1-RDM by themselves do not con
enough information to reconstruct the higher RDMs for c
related systems, in the renormalization they like the 2-RT
must be explicitly supplemented with more precise inform
tion regarding the two-particle interactions in the Ham
tonian. While a simple and exact reconstruction strategy
the 2-RDM remains unknown, Rosina’s existence theor
offers hope for discovering a highly renormalized approa
which by usingN-representability restrictions may be sy
tematic without relying directly on traditional perturbatio
theory.

The CC and CSE theories may also be distinguished f
an analysis of the relationship of the CSE and the TC
(x5cSlater) with the SE. As first shown by Nakatsuji, th
CSE may be satisfied with pureN-representable RDMs i
and only if the SE holds with the wave function associa
with the RDMs @17#. Thus, if the conditions for pure
N-representability were known, we could solve the CSE
the ground- and excited-state energies and their 2-RDMs
we demonstrated, however, the TCSE has multiple solut
for N-representable RTMs which range from SDCI a
CCSD to the exact solution. The relative simplicity of th
N-representability conditions for the RTMs is complemen
by a TCSE that is significantly weaker than the CSE. With
CSE theory improvingN-representability offers a mecha
nism for approaching the exact solution for the 2-RDM, b
in CC theory the limitation on accuracy does not depend
the N representability of the RTMs but on their correspo
dence to a model wave function. In this respect the failure
the RDMs to beN-representable may be perceived as a b
efit since the representability provides a means for impro
ment.

Calculations with random and molecular Hamiltonians
dicate that the RTMs reconstruct better than the RDMs w
the unconnected functionals; the corrected 3-RDM form
is close to the accuracy of the unconnected 3-RTM. In co
paring these reconstructions two issues should be consid
~i! Rosina’s theorem indicates that it should be possible
develop better reconstruction strategies for the 3-RDM wh
the 3-RTM cannot be improved without the Hamiltonia
and ~ii ! these reconstruction differences do not necessa
reflect the accuracy of solving the CSE and CC equati
from an initial 2-RDM–2-RTM guess since the CSE and C
s
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have different characteristics such as correspondence o
CSE with the Schro¨dinger equation under the conditions
Nakatsuji’s theorem. The present paper establishes the f
dation for future work to explore the relationship betwe
the CC and CSE in greater computational detail. Befor
fair comparison in accuracy and efficiency can be est
lished, however, better iterative methods for solving the C
need to be developed.

The similarity of the CSE and TCSE suggests the po
bility for hybrid schemes. If the 2-, 3-, and 4-RDMs a
parametrized in terms of the 2-RTM, we would ensure t
they areN-representable. Substitution of these parametri
RDMs into the CSE would then create a system of equati
for the 2-RTM. By Nakatsuji’s theorem this system wou
not have a solution, but minimization of a norm for the erro
in the CSE would offer a method for optimizing the 2-RT
parameters. The solution would be similar to CCSD, and
the energy would be an upper bound to the true energy. T
CSE-RTM hybrid scheme has connections with the va
tional formulations for the CC@39#. The CSE might also be
useful as a test for measuring the accuracy of RTMs obtai
through a CC calculation@40#.

In conclusion the TCSE provides a theoretical framewo
for unifying the CI, CC, and CSE methods. We have co
nected the expansion coefficients of the CI and the transi
amplitudes of the CC with the RTMs and connected RTM
respectively. These links offer a fresh approach to und
standing CC theory within the context of RTM reconstru
tion. The exponential ansatz for the coupled cluster wa
function is shown to be a special case of a generalized
mulant expansion for RTMs. This generalized expans
also includes the RDM reconstruction formulas employ
within the context of the CSE. We implemented a recen
developed formula for constructing the 3-RDM with an a
curacy beyond that of its cumulant expansion. The theore
of Nakatsuji and Rosina, applying only to the CSE a
RDMs, respectively, highlight the significant theoretical a
potential computational differences between the CC and C
theories. Through the unifying influence of the TCSE, w
obtain a novel perspective on CI and CC calculations as w
as a new understanding of the potential role for the C
within electronic structure.
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