
PHYSICAL REVIEW A DECEMBER 1999VOLUME 60, NUMBER 6
Strong-interaction limit of density-functional theory

Michael Seidl*
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118

~Received 25 March 1999!

Electrons can have a given smooth density distributionr(r ), even if their Coulomb interaction is scaled to
infinity. This strong-interaction limit of density-functional theory provides essential information on the corre-
lation energy of real electron systems. The simple concept of strictly correlated electrons~SCE! is analyzed
here as a model for that limit. SCE is solved exactly for any one-dimensional~1D! N-electron density and, in
particular, for any 3D spherical two-electron system, such as the helium atom. Both the SCE interaction energy
and the SCE external potential, which are obtained here as density functionals, obey all the relations known for
the corresponding quantities in the unknown true strong-interaction limit. At large but finite interaction, the
electrons are still strongly correlated, performing zero-point oscillations about the SCE limit.
@S1050-2947~99!01312-8#

PACS number~s!: 31.15.Ew
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I. INTRODUCTION

The Hamiltonian of an interacting electron system isĤ

5T̂1V̂ee1V̂ext, with the kinetic-energy operatorT̂, the two-
particle Coulomb interactionV̂ee5( i , j u r̂ i2 r̂ j u21, and the
operatorV̂ext of some external potentialvext(r ), which is
usually the attractive Coulomb potential of atomic nuclei.
density-functional theory~DFT! @1#, the ground-state energ
of this system is presented as a functional of the ground-s
electron densityr(r ),

E@r#5Ts@r#1E d3r vext~r !r~r !1U@r#1Exc@r#. ~1!

Ts@r# is the ground-state kinetic energy of noninteracti
electrons with densityr. The second term is the interactio
with the external potential. The remaining two terms d
scribe the electron-electron interaction. The classical C
lomb or Hartree term,

U@r#5 1
2 E d3r E d3r 8

r~r !r~r 8!

ur2r 8u
,

treats the electrons as a continuous charge distribution
density r(r ). All the complex aspects of the quantum
mechanical many-body problem which are ignored in t
continuum description are included in the explicitly u
known ‘‘exchange-correlation’’ functional Exc@r#. It cor-
rects for the self-interaction error inU@r# and accounts for
the reduction of interaction energy resulting from electro
correlations due to both Pauli exclusion and Coulomb rep
sion. In addition, sinceTs@r# is not the true kinetic energy
T@r# of interacting electrons,Exc@r# has also a kinetic-
energy contributionTc@r#[T@r#2Ts@r#.

Explicit knowledge of this important functional would re
duce the many-body problem to solving the Kohn-Sh
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single-particle equations@1# of DFT. An exact relation is the
coupling-constant integral@2#,

Exc@r#5E
0

1

da Wa@r#. ~2!

The integrand isWa@r#5Vee
a @r#2U@r#, with the expecta-

tion value

Vee
a @r#[^Ca@r#uV̂eeuCa@r#& ~3!

of the operatorV̂ee in the ground stateCa@r# of a hypothetic
system which has the same densityr as the real system bu
where the electronic repulsion force is scaled by a fac
~‘‘coupling constant’’! a>0. Precisely,Ca@r# is that wave
function which minimizes the expectation value^T̂1aV̂ee&
subject to the constraint that it yields a given densityr(r ).
This mathematically imposed constraint can be satisfied
many cases if a suitablea-dependent external potentia

vext
a (r ), represented by an operatorV̂ext

a , is introduced@1#.
Then, the wave functionCa@r# is the ground state of the
Hamiltonian

Ĥa5T̂1aV̂ee1V̂ext
a . ~4!

According to the Hohenberg-Kohn theorem@1#, the potential
vext

a (r ) is, if it exists, unambiguously determined by the de
sity r(r ) ~apart from an arbitrary constant!.

Representation~2! is particularly useful, because man
analytical properties of the integrandWa@r# are known. In
the weak-interaction limit, it has the expansion

Wa@r#5W0@r#1W08@r#a ~a→0!, ~5!

whereW0@r#[Ex@r# is the DFT exchange energy, explicitl
given by the Fock integral with the occupied Kohn-Sha
single-particle orbitals. We writeExc@r#5Ex@r#1Ec@r#,
where the ‘‘correlation energy’’Ec@r# arises, because th
integrandWa@r# in Eq. ~2!, starting ata50 with the value
W0@r#5Ex@r#, is not constant asa grows ~cf. Fig. 4!. The
linear expansion~5! yields in Eq. ~2! the approximation
s-
4387 ©1999 The American Physical Society
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Ec
GL2@r#5 1

2 W08@r# for the correlation energy. By virtue o
Görling-Levy perturbation theory@3#, the coefficientW08@r#
is, similarly toW0@r#, explicitly known in terms of the~oc-
cupied and unoccupied! Kohn-Sham orbitals@Eq. ~4! for
Ec

GL2@r# in Ref. @3#~a!#. Unfortunately, the information in the
quantitiesW0@r# and W08@r# is in most real systems no
sufficient for an accurate prediction ofEc@r#. Rare excep-
tions are high-density systems with weakly correlated e
trons.

Direct access to the realistic situation with finite intera
tion (a51) is traditionally difficult. Recently@4#, however,
the integral~2! was for different systems accurately interp
lated between the extreme limitsa→0 and a→`, respec-
tively, using no direct information on the complex situatio
at a51. In the present work, we focus on this stron
interaction limita→`, where@4#

Wa@r#5W`@r#1W8̀ @r#a21/2 ~a→`!. ~6!

We will obtain a model@4# for the coefficientW`@r# from a
theory which is also simple, but in a different way than t
familiar weak-interaction limita→0. As a→`, single-
particle orbitals become completely meaningless, since
many-particle wave function is dominated by correlatio
between different electrons.

The strongly repulsive electrons in the stateCa@r# with
a@1 cannot escape from each other, since they must f
the given density distributionr(r ). Minimizing the expecta-
tion value^T̂1aV̂ee&, these electrons seek a distribution
the densityr(r ) with maximum separation possible from
each other. This implies strong correlation between their
sitions. The kinetic energy grows unlimitedly as these cor
lations are strengthened. In Sec. VI, we will find eviden
indicating that^Ca@r#uT̂uCa@r#&}a1/2 as a→` ~see also
Appendix A!. If this is true, minimizing^T̂1aV̂ee& in this
limit is equivalent to minimizing^V̂ee& alone, since^T̂&
grows more slowly than̂aV̂ee&. Correspondingly, we de
scribe the limita→` by the concept of ‘‘strictly correlated
electrons’’ ~SCE! @4#, which probably yields exactly the
minimum interaction energŷV̂ee& possible in a given den
sity r. The asymptotica21/2 term in Eq.~6! is expected to
result from zero-point oscillations of strongly correlat
electrons at largea@1 about the SCE limit~see Sec. VI!.

Section II provides a definition of SCE. From Sec. III o
we focus on spherically symmetric two-electron systems
3D case for which this concept is solved exacly. Section
presents the corresponding interaction-energy functio
Vee

SCE@r#, along with a candidateWSCE@r# for the unknown
coefficientW`@r# in Eq. ~6!. Vee

SCE@r# and the SCE externa
potentialw(r ), constructed in Sec. V, exactly obey cond
tions on the unknown truea→` limits of Vee

a @r# and
(1/a)vext

a (r ), as we show in Appendix B. At large but finit
a@1, we find in Sec. VI that strongly correlated electro
perform zero-point oscillations about the SCE limit. In Se
VII, the expansions~5! and~6! are examined numerically fo
the helium atom. Results and conclusions are summarize
Sec. VIII.
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II. STRICTLY CORRELATED ELECTRONS „SCE…

A system ofN electrons with a given smooth density di
tribution r(r ) is called ‘‘strictly correlated’’@4# if, after mea-
surement, theN discrete electronic positions always repr
sent the continuous densityr(r ) as well as possible. To
explain this in more detail, we focus at first on on
dimensional~1D! systems. From Sec. III on, we shall switc
to 3D.

In any 1D quantum state, the positions of theN electrons
on thex axis can be measured simultaneously, resulting i
set $x1 ,...,xN% of N discrete numbersx1,x2,...,xN . For
the SCE state with a given smooth density distributionr(x),
we claim that the density between any two adjacent positi
xn andxn11 always exactly integrates to unity,

E
xn

xn11
dx r~x!51, n51, . . . ,N21. ~7!

Any accidental clustering of the electrons is strictly su
pressed. In this way, the set of thexn represents the continu
ous distributionr(x) as well as this can be achieved byN
discrete positions.

As a result, the position of any one electron determin
the positions of all the others. This is almost perfectly opp
site to the familiar situation with noninteracting electro
which are moving independently in single-particle orbita
wn . To highlight this formally, we can introduceN correla-
tion functions f n so that the positionsx2 ,...,xN in any
strictly correlated set$x1 ,...,xN% are always related tox1 by

xn115 f n~x1!, n50, . . . ,N21. ~8!

Note that f 0(x)[x. Due to Eq.~7!, these correlation func-
tions are determined by the condition*x

f n(x)dx8r(x8)5n.
Taking here the derivative with respect tox, we obtain a
nonlinear first-order differential equation forf n(x),

f n8~x!5
r~x!

r„f n~x!…
. ~9!

This is the analog of Eq.~14! below for the correlation func-
tion f (r ) in 3D spherical two-electron systems. The starti
condition for numerical integration of Eq.~9! is f n(0)5y,
where y is obtained from*0

ydx r(x)5n. Therefore, these
correlation functions are determined unambiguously by
densityr(x). From the same condition which led us to E
~9!, we conclude f n„f m(x)…5 f n1m(x), where f n1N(x)
[ f n(x). Therefore, onlyf 1(x) needs to be calculated. Sinc
f 0(x)[x, the inverse function off n(x) is f N2n(x). In the
caseN52, f 1(x) is its own inverse. Figure 1 shows a plot o
these functions, obtained numerically for the five-electr
1D densityr(x)5 5

2 p21/2exp(2@x/2#2).
An ansatz for the probability distribution of the se

$x1 ,...,xN% of electronic positions possible in the SCE sta
is

PSCE~x1 ,...,xN!5
r~x1!

N )
n52

N

d„xn2 f n21~x1!…. ~10!
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The integral of this expression, performed over allxn except
for xk , is always (1/N)r(xk), the probability distribution for
the position of one electron. This is evident in the casek
51. For kÞ1, it can be verified by using the differentia
equation~9! in combination with the general rule ford func-
tions, *dx f(x)d„g(x)…5 f (x0)/ug8(x0)u, where x0 is the
zero of g(x). An explicit antisymmetric wave functionCa
which has in the limita→` the probability distribution~10!
is given in Appendix A.

The counterpart of the SCE state is a state of noninter
ing electrons which are moving independently in sing
particle orbitalswn . The wave function is now a Slater de
terminant~SD! with the probability distribution

PSD~x1 ,...,xN!5 (
s1 ,...,sN

UÂ)
n51

N

wn~xn ,sn!U2

. ~11!

Here,Â is the antisymmetrization operator for fermions a
the sn are spin variables.

Both these situations are mathematically much simp
than the realistic situation with finite interaction. On a co
puter, expressions~10! or ~11! can be stored as small sets
simple functions,r(x), f 1(x), or, respectively, thewn(x,s).
If, e.g., 1000 mesh points are used forx, only a few thousand
numbers need to be stored. In contrast, the probability di
bution P(x1 ,...,xN)5(s1 ,...,sN

uC(1, . . . ,N)u2 in the wave
function C of a real system with finite interaction cannot b
expressed in terms of a few functions of one variable. No
(1/N!)1000N numbers must be stored to achieve the sa
level of accuracy.

The generalization of the SCE concept to 3D system
straightforward for spherically symmetric two-electron de

FIG. 1. The correlation functionsf n(x), obtained from solving
the differential equation~9! for the five-electron 1D densityr(x)
55lp21/2 exp(2@lx#2), with l50.5 @x and f (x) are in the same
but otherwise arbitrary length units here#. While f 0(x)[x, each one
of the remaining functionsf n(x) has two branches and a pole
xn0 , where x1051.19, x2050.36, x30520.36, andx40521.19.
Note thatf 1

21[ f 4 and f 2
21[ f 3 . A vertical line, drawn at any po-

sition x, always has five intersection points with these curves, r
resenting the positions of the five strictly correlated electrons
functions of the positionx of the first one.
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sities, as we shall see in the next section. In the general
of any 3DN-electron density, we can say that the electro
positionsrn in any simultaneously measured set$r1 ,...,rN%
are in the strictly correlated limit as uniformly distribute
over the densityr(r ) as possible. No accidental clustering
electrons can occur. This situation is accurately described
the simple point-charge-plus-continuum~PC! approximation
for SCE, which is presented in detail in Ref.@5#.

III. THE CORRELATION FUNCTION f „r … FOR
SPHERICAL TWO-ELECTRON SYSTEMS

Strict correlation in a spherical two-electron system i
plies that, if electron 1 is at a distancer 1 from the center,
then electron 2 is on the opposite side of the center a
distancer 2 which is some monotonically decreasing exa
function of r 1 ,

r 25 f ~r 1!. ~12!

Since the electrons are identical particles, we concluder 1
5 f (r 2)5 f „f (r 1)… or f (r )[ f 21(r ), which is confirmed by
Eq. ~13! below. f (r ) is its own inverse, similar to the cas
of 1D two-electron systems in the preceding section.

It is easily demonstrated that the correlation functionf (r )
is entirely determined by the given spherical densityr(r ).
Since f (r ) is monotonically decreasing, the probability
find electron 1insidea sphere with radiusr must be the same
as the probability that electron 2 isoutsidethe sphere with
radius f (r ),

4pE
0

r

du u2r~u!54pE
f ~r !

`

du u2r~u!. ~13!

If, for a particular densityr, these integrals can be evaluate
explicitly, we obtain a simple equation forf (r ). For the
general case, we take the derivative of Eq.~13! with respect
to r to obtain a nonlinear first-order differential equation f
f (r ),

f 8~r !5
r 2r~r !

f ~r !2r„f ~r !…
. ~14!

The starting condition for the integration of Eq.~14! is
f (r 0)5r 0 , where, due to Eq.~13!, r 0 is obtained from
4p*0

r 0dr r 2r(r )5N/251. Consequently,f is determined by
r.

Figure 2 shows the correlation functionsf (r ), obtained
numerically for three different densitiesr(r ). Since f (r )
[ f 21(r ), the graphical representation off (r ) is always
symmetric with respect to the diagonal~dashed! line. As an
analytical example, we consider the two-electron density

r~r !5
15

pR5 ~R2r !2Q~R2r !, R.0. ~15!

In this case,r 05R/2 and Eq.~14! has the solutionf (r )
5(R2r )Q(R2r ), which fulfills f (R/2)5R/2. Therefore,
the distancer 1 f (r ) between these two electrons is alwaysR

and their interaction energy is exactly^V̂ee&51/R.

-
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Once we know the correlation functionf (r ) for a particu-
lar two-electron densityr(r ), we can easily construct it fo
the entire class of scaled densities,

rl~r !5l3r~lr ! ~l.0!, ~16!

where the l-dependent starting radius isr 0@rl#
5(1/l)r 0@r#. The correlation function for anyl is f l(r )
5(1/l) f (lr ), because this is a solution to the different
equation~14! with r5rl and fulfills f l(r 0@rl#)5r 0@rl#.

IV. THE INTERACTION-ENERGY FUNCTIONAL Vee
SCE

†r‡

In these strictly correlated spherical systems, the dista
ur12r2u between the two electrons is alwaysr 1 f (r ), where
r 5ur1u. Therefore, averaging over the positionr1 of the first
electron with its probability distribution12 r(r1), we find for
the expectation value of the Coulomb interactionV̂ee,

Vee
SCE@r#52pE

0

`

dr
r 2r~r !

r 1 f ~r !
. ~17!

Since the functionf (r ) is determined by the densityr(r ),
Eq. ~17! is the exact density functional for the interactio
energy of strictly correlated, spherical two-electron syste
It is a candidate for thea→` limit Vee

` @r# of the functional
~3! and has exactly the properties ofVee

` @r# in Appendix B.
For the densityrHe of the helium atom@7#, the functional

~17! takes the valueVee
SCE@rHe#50.549~hartrees!. As a result

of the strong correlation, this is considerably lower than
true interaction energyVee

a51@rHe#50.946@8# of the helium
atom. In the opposite limita50, where the two electrons ar

FIG. 2. The correlation functionsf (r ), obtained from solving
the differential equation~14! for three different spherical two
electron densities. For the helium atom~‘‘He’’; r 050.81), the den-
sity from Ref. @7# was used. Hooke’s-law atom~‘‘Hooke’’; r 0

51.69) is an interacting two-electron system in the oscillator-ty
external potentialvext(r )5r 2/8, whose ground state is known an
lytically @6#. ‘‘Fermi’’ ( r 053.20) refers to the Fermi-function den
sity r(r );@11e(r 2R)/a#21 with R54 and a50.2. The plots are
symmetric with respect to the diagonal~dashed! line which they
intersect with atr 5r 0 . @For He, r and f (r ) are in units of 1 bohr
50.529 Å.#
l

ce
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e

moving without any correlation in one single-particle orbita

^V̂ee& takes the even larger valueVee
a50@rHe#51.025 @8#.

Vee
SCE@r# is probably theminimuminteraction energy possible

for any two-electron wave function with given spherical de
sity r.

Subtracting the Hartree energyU@r#, we obtain a candi-
date,

WSCE@r#5Vee
SCE@r#2U@r#, ~18!

for the coefficientW`@r# in Eq. ~6!. It is used in Ref.@4# to
predict accurate correlation energies of real systems aa
51 by considering only the simple limitsa→0 anda→`.
Substituting the density~16!, we find the scaling behavio
WSCE@rl#5lWSCE@r#.

V. THE EXTERNAL POTENTIAL FOR STRICTLY
CORRELATED ELECTRONS

To bind the strongly repulsive electrons at largea@1, the
attractive external potential of the Hamiltonian~4! must be-
come proportional toa,

vext
a ~r !→aw`~r ! ~a→`!. ~19!

Since the kinetic energy is expected to grow only at the or
of O(a1/2), potential-energy effects should become dom
nant in this limit. Then, the electrons are moving with
constant potential energy and the local potentialw`(r ) must
exactlycompensate for the two-particle repulsionV̂ee. This
can indeed be achieved with a simple functionw`(r ) if the
electrons are in the SCE state.

If in a strictly correlated spherical two-electron syste
electron 1 is at a distancer from the center, the repulsive
force exerted by electron 2 from the distancer 1 f (r ) has the
magnitude@r 1 f (r )#22. An external potentialw(r ) which
shall exactlycompensate for this force must necessarily f
fill the differential equation

w8~r !5@r 1 f ~r !#22. ~20!

This condition is even sufficient, because it guarantees at
same time that the net force on electron 2, at distancef (r )
from the center, is also zero,

w8„f ~r !…5@ f ~r !1 f „f ~r !…#225@ f ~r !1r #22. ~21!

Here, we usedf „f (r )…[r . The solutionw(r ) of Eq. ~20! is a
candidate for the unknown functionw`(r ) in Eq. ~19!. It has
exactly the properties ofw`(r ) in Appendix B.

As these strictly correlated electrons are moving in
densityr(r ), their total potential energyVpot is indeed con-
stant,

d

dr H 1

r 1 f ~r !
1w~r !1w„f ~r !…J 50. ~22!

This is a simple consequence of Eqs.~20! and~21!. Applying
the boundary conditionw(r→`)50, the constant in curled
brackets can be evaluated, e.g., atr 50, resulting inVpot

5w(0). Correspondingly, sinceVpot5Vee
SCE@r#1Vext

SCE@r#,

e
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Vee
SCE@r#1E d3r r~r !w~r !5w~0!. ~23!

Alternatively, evaluating the constant in Eq.~22! at r 5r 0
yields Vpot5(1/2r 0)12w(r 0). Combining this with Vpot
5w(0), weobtain

w~r 0!52
1

2r 0
2@w~r 0!2w~0!#. ~24!

This is the starting condition for numerical integration of t
differential equation~20!. „The difference@w(r 0)2w(0)#
[*0

r 0dr@r 1 f (r )#22 can be evaluated unambiguously.… The
resulting functionsw(r ) for three different densities are plo
ted in Fig. 3. For the density~15!, with f (r )5(R2r )Q(R
2r), we find analyticallyw(r )5(r 22R)/R2 (r<R) and
w(r )52r 21 (r .R).

In Sec. VI, we will study systematically the effect of th
new external potentialw(r ) on the electronic wave function
Here, we can already draw some simple conclusions. If
potentialw(r ) is identical to the unknown limitw`(r ) in Eq.
~19!, the Schro¨dinger equation with the Hamiltonian~4!, di-
vided bya, approaches at largea the form

1

a
T̂Ca1H 1

ur12r2u
1w~r 1!1w~r 2!J Ca5

Ea@r#

a
Ca.

~25!

If the electrons become strictly correlated asa→`, the
potential-energy factor in curled brackets has the cons
value~23! wherever the wave function is different from zer
If the kinetic-energy term approaches zero asa→`, this

FIG. 3. The lower part of this figure displays the external p
tential w(r ) for strictly correlated electrons, obtained from solvin
the differential equation~20! for the three different two-electron
densities whose correlation functions are shown in Fig. 2. At la
r , w(r ) approaches in any spherical two-electron system the
drogen external potential21/r ~dashed curve!. The upper part of

the figure displays the radial probability distributions 4pr 2 1
2 r(r ) in

these densities. For He, the potential is in units of 1 hart
527.2 eV and distance is in units of 1 bohr50.526 Å.
e

nt

indicates that the SCE state become asymptotically a s
tion of Eq. ~25! with the eigenvalue lima→`(1/a)Ea@r#
5w(0).

If this two-electron system is ionized at largea, the re-
maining single electron is localized aroundr50, at the mini-
mum of the strongly attractive external potentialaw(r ). As
a→`, the wave function of this electron becomesd-peaked
at r50 with a zero-point energy of the order ofO(a1/2) so
that the ground-state energyE1

a @r# of the ionized system
also fulfills lima→`(1/a)E1

a @r#5w(0). Therefore, the ion-
ization energyI a@r#[E1

a @r#2Ea@r# has the property

lim
a→`

I a@r#

a
50. ~26!

This result is consistent with the fact that, at fixed densityr,
the ionization energyI a@r# does not depend ona @9#.

VI. ZERO-POINT OSCILLATIONS OF STRONGLY
CORRELATED ELECTRONS

At large a@1, the electrons are expected to be stron
correlated, their relative positions performing zero-point o
cillations about the strictly correlated limita→`. To see this
explicitly, we introduce the Hamiltonian

Ĥ0
a5

ṙ1
21 ṙ2

2

2
1aV~r1 ,r2!,

~27!

V~r1 ,r2!5
1

ur12r2u
1w~r 1!1w~r 2! ~a@1!.

If the SCE potentialw(r ) is identical to the unknown func
tion w`(r ) in Eq. ~19!, Ĥ0

a converges at largea asymptoti-

cally toward the Hamiltonian~4!, which has, unlikeĤ0
a , for

all different a>0 the same ground-state densityr.
To study small deviations from the strictly correlated b

havior, we consider a pair$r1 ,r2% of electronic positions,

r15r101u1 , r25r201u2 , ~28!

close to some strictly correlated pair$r10,r20%
5$re,2 f (r )e%, where e is a unit vector. We express th
small displacement vectors in Cartesian coordinates,ui
5$xi ,yi ,zi%, with thez1 axis in directione and thez2 axis in
direction 2e. Then, ur12r2u25@x12x2#21@y12y2#21@r
1 f (r )1z11z2#2, r 1

25x1
21y1

21@r 1z1#2, and r 2
25x2

21y2
2

1@ f (r )1z2#2. Using w9(r )522@11 f 8(r )#@r 1 f (r )#23

from Eq. ~20! and f 8„f (r )…5 f 8(r )21 from f „f (r )…[r , we
can expand the potential-energy function in Eq.~27! about
$r10,r20%,

V~r1 ,r2!5w~0!

1
1

@r 1 f ~r !#3

r

f ~r !
$@ f °~r !x11x2#2

1@ f °~r !y11y2#2%

2
1

@r 1 f ~r !#3

2

f 8~r !
@ f 8~r !z12z2#2

1O~$xi ,yi ,zi%
3!. ~29!

-
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In short-hand notation,f °(r )[ f (r )/r . We have used the
identity @r 1 f (r )#211w(r )1w„f (r )…[w(0), due to Eqs.
~22! and ~23!.

Nothing new can be learned ifx252 f °(r )x1 , y25
2 f °(r )y1 , and z25 f 8(r )z1 , since in this case,$r1 ,r2% in
Eq. ~28! is still a strictly correlated pair like$r10,r20%. To
find an independent degree of freedom, we apply the or
normal transformation,

X5
2x11 f °~r !x2

A11 f °~r !2
, Y5

2y11 f °~r !y2

A11 f °~r !2
,

Z5
z11 f 8~r !z2

A11 f 8~r !2
, ~30!

x5
f °~r !x11x2

A11 f °~r !2
, y5

f °~r !y11y2

A11 f °~r !2
, z5

2 f 8~r !z11z2

A11 f 8~r !2
.

In terms of these new coordinatesS5$X,Y,Z% and s
5$x,y,z%, strictly correlated motion is characterized by t
condition s50. Therefore, we expect that the coordinates
describe the wanted deviations from strictly correlated m
tion, if S50.

For any givenr, the Hamiltonian~27! can be expressed i
terms of such coordinates,

Ĥ0
a~r !5 1

2 ~Ẋ21Ẏ21Ż2!1aw~0!1 1
2 ~ ẋ21 ẏ21 ż2!

1aFk1~r !

2
~x21y2!1

k3~r !

2
z2G1aO~$S,s%3!.

~31!

For smallusu,uSu, when the electronic positions~28! are close
to the strictly correlated pair$r10,r20%, this is a separated
Hamiltonian. The coordinatesS5$X,Y,Z% describe a free
particle with constant potential energyaw(0). This effective
free particle corresponds to strictly correlated motion of
two electrons. In contrast, the coordinatess5$x,y,z% de-
scribe an independent effective particle in an oscillator-ty
external potential. This degree of freedom corresponds
zero-point oscillations of strongly correlated electro
around the SCE limit. The spring constants are

k1~r !5
2

@r 1 f ~r !#3 S r

f ~r !
1

f ~r !

r D ,

~32!

k3~r !5
24

@r 1 f ~r !#3 S 1

f 8~r !
1 f 8~r ! D .

@Necessarily,ki„f (r )…[ki(r ).# This potential has its mini-
mum at s50 @note thatki(r ).0, since f 8(r ),0#, driving
the electrons into the strictly correlated state asa→`. The
ground-state energy of the Hamiltonian~31! is the constant
potential energy of the free particle plus the zero-point
ergy of the harmonic oscillator,

E0
a~r !5aw~0!1a1/2@ 2

2 v1~r !1 1
2 v3~r !#, ~33!
o-

-

e

e
to

-

with r-dependent frequenciesv i(r )5ki(r )1/2 ~we use atomic
units where\51). Correspondingly, the ground-state ener
of the HamiltonianĤ0

a at largea@1 is the average ofE0
a(r )

in the probability distribution1
2 r(r ),

E0
a@r#5$Vee

SCE@r#1Vext
SCE@r#%a1C@r#a1/2 ~a→`!,

~34!

where we have used Eq.~23! for w(0). Thecoefficient in the
zero-point energy is

C@r#52pE
0

`

dr r 2r~r !@ 2
2 v1~r !1 1

2 v3~r !#. ~35!

Note thatE0
a@r# is the ground-state energy of a Hamiltonia

Ĥ0
a , which only in the limita→` has exactly the ground

state densityr.
Due to the virial theorem for harmonic oscillators, exac

half of the zero-point energyC@r#a1/2 is kinetic. This indi-
cates that the kinetic energy in the ground state ofĤ0

a has the
order of O(a1/2) as a→`, since the first term in Eq.~34!
has only potential-energy contributions. The same must
expected for the original HamiltonianĤa of Eq. ~4!, since,
presuming that the functionsw(r ) and w`(r ) are identical,
the only difference betweenĤa and Ĥ0

a are lower-order
terms O(aq) in the external potential,vext

a (r )5aw(r )

1O(aq) (q,1). These terms are required inĤa to keep the
densityr fixed. They should, however, not affect the phys
cal nature of the large-a kinetic energy as resulting from
zero-point oscillations.

The above analysis reveals how the SCE state arises
a wave function with finite interaction, asa→`. In particu-
lar, we find a strong indication that the kinetic energy in t
ground state of the HamiltonianĤa has the order ofO(a1/2)
in that limit. If Ĥ0

a was identical toĤa, which has for all
different a>0 exactly the same ground-state densityr(r ),
we could extract the coefficientW8̀ @r# of the asymptotic
expansion~6! from expression~34!. Precisely,W8̀ @r#a1/2

would be the contribution ofVee
a @r# to thea1/2 term of the

functional~34!. In Sec. VII, we will see that, for the helium
atom, the coefficient12 C@r# of the zero-point potential en
ergy in Eq.~34! is close to what is expected numerically fo
the value ofW8̀ @r#.

VII. NUMERICAL DISCUSSION

To examine the significance of the coefficientsW`@r#
and W8̀ @r# in expansion~6!, we consider the analytica
model, suggested in Ref.@4#, for the coupling-constant inte
grandWa@r#,

Wa
mod@r#5W`@r#1

W0@r#2W`@r#

A112X@r#a
. ~36!

It has the correct small-a expansion~5! if we set @4# X@r#
52W08@r#/(W02W`). It also has the correct large-a ex-
pansion~6!, predicting the value
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W8̀ mod@r#5
W0@r#2W`@r#

A2X@r#
~37!

for the coefficientW8̀ @r#. A key property of the unknown
exact integrandWa@r#, which is expected to be also
smooth function ofa @12,13,4#, is the scaling behavior@12#

Wa@r#5aW1@r1/a#, ~38!

whererl(r )[l3r(lr ) for any l.0. Equation~38! dictates
the scaling behavior of the coefficients in the expansions~5!
and ~6!: W0@rl#5lW0@r#, W08@rl#5W08@r#, W`@rl#
5lW`@r#, andW8̀ @rl#5l3/2W8̀ @r#. Therefore, the mode
integrand~36! also obeys condition~38! and the functional
~37! has the correct scaling behavior of the coefficie
W8̀ @r#. „Note that the functionalWSCE@r#, Eq. ~18!, which
is a candidate for the unknown exactW`@r#, has the correct
scaling behavior,WSCE@rl#5lWSCE@r#.…

Figure 4 displays the model integrand~36! for the density
rHe of the helium atom~solid curve!, using the probably
exact functionalWSCE@r# for the unknown limit W`@r#
~horizontal dashed line!. Also shown are the expansions~5!
and ~6! of this integrand, where the unknown coefficie
W8̀ @r# is replaced by the quantity~37!. Clearly, this figure
indicates that quantitative knowledge of the exactW8̀ @r#, in
addition toW`@r#, would provide substantial information o
the coupling-constant integrandWa@r#.

In Ref. @4#, this analytical model integrand yields an a
curate prediction for the ground-state correlation energy
helium, Ec

mod@rHe#[*0
1da Wa

mod@rHe#2W0@rHe#520.042
~shaded area in Fig. 4!, significantly improving the predic-
tion Ec

GL2@rHe#520.050 from Eq.~5!, where any informa-
tion aboutW`@r# is ignored.~The exact correlation energy i
Ec@rHe#520.042 @8#!. The functional~37! here takes the
value W8̀ mod@rHe#50.729, which is not far from the zero

FIG. 4. The model~36! for the coupling-constant integran
Wa@r# of the helium atom~solid curve! in hartree units (1 hartree
527.2 eV). It is evaluated with the exact exchange energy of
helium atom,W0@rHe#521.027 @8#, the accurate valueW08@rHe#
520.1006 @10#, and the present modelWSCE@rHe#521.500 for
the coefficientW`@r# ~horizontal dashed line!, obtained from Eq.
~18! for an accurate numerical densityrHe(r ) of the helium atom
@7#. The expansions~5! and ~6! of this integrand are indicated by
dashed curves. The size of the shaded area in the figure is an
rate prediction of the correlation energyEc@rHe#520.042 in the
helium ground state.
t

f

point potential energy12 C@rHe#50.878 as we mentioned a
the end of Sec. VI. Note that the functionalC@r# has the
same scaling behavior,C@rl#5l3/2C@r#, as the unknown
exact coefficientW8̀ @r#.

VIII. SUMMARY AND CONCLUSIONS

As a model for the strong-interaction limit of DFT, w
have analyzed here quantum-mechanical states with str
correlated electrons~SCE! in a given density distribution
r(r ). Remarkably, there exists for any spherical tw
electron densityr(r ) always a suitable local external pote
tial w(r ), constructed in a way so that strictly correlate
electrons are moving at a constant potential energy. T
result strongly supports the SCE model, since in the stro
interaction limit the total energy to leading order is expec
to have no kinetic contribution.

In spherical two-electron systems, the SCE state is ch
acterized by a simple correlation functionf (r ) which is un-
ambiguously determined by the given spherical density p
file r(r ). The SCE interaction energy is obtained as
density functionalVee

SCE@r#, explicitly in terms of the func-
tions r(r ) and f (r ). It probably yields the minimum inter-
action energy possible in a given density distributionr. The
functional WSCE@r#[Vee

SCE@r#2U@r# is a candidate for the
unknown limit W`@r# of the coupling-constant integran
Wa@r#.

By a transformation of coordinates, the strongly cor
lated motion of the two electrons in the external poten
aw(r ) at large butfinite a@1 can be separated into pur
strictly correlated motion at constant potential energy and
independent collective degree of freedom where the e
tronic coordinates perform zero-point oscillations about th
SCE values. An oscillator-type effective external potent
drives the electrons into the pure SCE state, asa→`. This
result reveals how the strictly correlated state arises from
strongly correlated wave function in the limita→`.

The SCE concept for the strong-interaction limita→`
can be interpreted as the counterpart of the concept of sin
particle orbitals for the opposite limita→0 of weak interac-
tion. Unlike the complex wave function of a realistic syste
with finite interaction (a51), both these concepts are mat
ematically simple, but in different ways. Since several a
lytical properties of the coupling-constant integrandWa@r#
are known, the correlation energy of real systems can
obtained accurately from an interpolation between th
simple limits. While the small-a corrections inWa@r# to the
exchange energyW0@r# (a→0) are given in Go¨rling-Levy
perturbation theory, the large-a asymptotics ofWa@r# to-
ward the SCE limitWSCE@r# (a→`) can probably be ex-
tracted from the zero-point energyO(a1/2) of almost strictly
correlated electrons.

APPENDIX A: EXAMPLE FOR A STRONGLY
CORRELATED WAVE FUNCTION

The probability distribution Ss1 ,...,sN
uCa(1, . . . ,N)u2

~with the short-hand notation ‘‘n’’ for the coordinate-spin
variables ‘‘xn ,sn’’ ! in the ground stateCa of the Hamil-
tonian~4! is expected to approach the strictly correlated lim
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~10! asa→`. To obtain an explicit expression for a strong
correlated antisymmetric wave functionCa , we consider a
uniform 1D system of two electrons, confined to an inter
with lengthL52 on thex axis, 0<x1 ,x2,2. To achieve a
uniform densityr(x)[1, we impose periodic boundary con
ditions at the endpoints of this interval. Then, the electro
are treated as if they were moving on a closed ring w
circumferenceL and the electronic interaction can be d
scribed in terms of two repulsive ‘‘Coulomb-force springs
attached along the two curved segments of the ring betw
the electrons. Since these springs are compressed to
lengths ux12x2u and 22ux12x2u, respectively, the corre
sponding interaction energy is

Vee~x1 ,x2!5
1

2 S 1

ux12x2u
1

1

22ux12x2u D511e21O~e4!,

~A1!

wheree5ux12x2u21. The SCE state of this uniform syste
is characterized bye50 or ux22x1u51, keeping the two
electrons always at opposite positions on the ring. Then,
energy~A1! has the constant valueVee

SCE51, which is also its

minimum value. Therefore,̂V̂ee&.Vee
SCE for any state other

than the strictly correlated one. Clearly, SCE yields in t
example minimum repulsion energy.

The constant external potential of this uniform syste
may be chosen to be zero. Then, the Hamiltonian~4! be-
comes

Ĥa52
1

2 S ]2

]x1
2 1

]2

]x2
2D 1aVee~x1 ,x2!. ~A2!

If the termO(e4) is neglected in the potential~A1!, we can
give an exact solution to the Schro¨dinger equationĤaCa
5EaCa ,

Ca~1,2!5
1

&
S a

p2D 1/8

3expS 2
Aa

2
~ ux12x2u21!2D xas~s1 ,s2!,

~A3!

wherexas is the antisymmetric two-electron spin singlet. T
probability distribution Pa(x1 ,x2)5Ss1 ,s2

uCa(1,2)u2 of
this strongly correlated wave function is plotted in Fig. 5 f
a51000. The corresponding eigenvalue is

Ea5a1Aa. ~A4!

Expression ~A3! is correctly normalized,
Ss1 ,s2

*0
2dx1*0

2dx2uCa(1,2)u251, if a is large enough so
that the Gaussian in Eq.~A3! is sufficiently close to zero for
e561. At these values, where the full potential~A1!, in-
cluding the higher-order termsO(e4), becomes singular, th
correct wave function must be exactly zero. For largea, the
function ~A3! is strongly peaked arounde50, so thatueu
!1 wherever the wave function is significantly differe
from zero. Therefore, the termO(e4) can be neglected a
large a. As a→`, the probability distribution
l

s
h

en
the

e

s

Ss1 ,s2
uCa(1,2)u2 approaches the strictly correlated lim

PSCE(x1 ,x2)5d(e)[d(ux12x2u21) from Eq.~10!.
The contributionAa in Eq. ~A4! is the zero-point energy

of the strongly correlated electrons whose separationux1
2x2u performs oscillations in the potential~A1! about its
equilibrium or SCE valueux12x2u51 or e50. Due to the
virial theorem, half of this energy is kinetic,^T̂&a5 1

2 Aa and

^V̂ee&a5a1 1
2 Aa, so the potential energy becomes dom

nant at largea. Therefore, strong and even strict correlati
is in the limit a→` energetically favorable, although thi
makes the kinetic energŷT̂& grow to infinity.

APPENDIX B: TESTS FOR THE FUNCTIONAL Vee
SCE

†r‡
AND THE POTENTIAL w„r …

The potentialw(r ) and the functionalVee
SCE@r#, respec-

tively, are candidates for the unknown exact functionw`(r )
in Eq. ~19! and the unknown exact limitVee

` @r# of the inter-
action functional~3!. We demonstrate here that the ‘‘cand
dates’’ identically fulfill two relations, valid for the unknown
exact quantities.

An exact relation forVee
` @r# andw`(r ) is @11#

Vee
` @r#1E d3r r~r !w`~r !5minw`~r !, ~B1!

wherew`(r )→0 asr→`. Equation~B1! holds for any two-
electron densityr(r ). Due to Eq. ~23!, our functional
Vee

SCE@r# and the corresponding potentialw(r ) fulfill this re-
lation exactly for any spherical two-electron densityr(r ).
Note thatw(0)5minw(r), sincew8(r )[@r 1 f (r )#22>0.

Another test is provided by the virial relation for the exa
correlation potential@12#. To formulate this relation, Eq

FIG. 5. The pair densityPa(x1 ,x2)5Ss1 ,s2
uCa(1,2)u2 in the

strongly correlated wave function~A3! with a51000. The bottom
part of the figure displays the corresponding interaction ene
Vee

(0)(x1 ,x2), obtained from Eq.~A1! if the O(e4) term is dropped
there. Ifx1,2 are in units of 1 bohr50.526 Å, thenPa has the unit of
1 bohr22 andVee

(0) has the unit of 1 hartree527.2 eV.
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~B3! below, we generalize the total-energy functional~1! to
electron systems with interactionaV̂ee for any a>0,

Ea@r#5Ts@r#1E d3r vext
a ~r !r~r !

1aU@r#1aEx@r#1Ec
a@r#. ~B2!

Here, aEx@r#1Ec
a@r# is the generalization Exc

a @r#
5*0

adb Wb@r# of the xc functional~2!. For anya>0, the
exact correlation potentialvc

a(r )[dEc
a@r#/dr(r ) fulfills the

virial relation @12#

Ec
a@r#1Tc

a@r#52E d3r r~r !r•“vc
a~r !, ~B3!

whereTc
a@r#5Ta@r#2Ts@r#, with the functionalTa@r# of

the total kinetic energy.
Due to the general variational principle of DFT

dEa@r#/dr(r )50 for the true ground-state densityr(r ).
Therefore, for two-electron systems whereEx@r#5
2 1

2 U@r#, Eq. ~B2! yields vc
a(r )52dTs@r#/dr(r )2vext

a (r )
2(a/2)f(r ), with the electrostatic potential f(r )
5dU@r#/dr(r ). In particular, with the functionw`(r ) from
Eq. ~19!,

lim
a→`

1

a
vc

a~r !52w`~r !2 1
2 f~r !. ~B4!

On the other hand, provided that lima→`(1/a)Tc
a@r#50 ~cf.

Sec. VI and Ref.@13#!, we obtain lima→`(1/a)(Ec
a@r#

1Tc
a@r#)5Vee

` @r#2 1
2 U@r#, since Ec

a@r#5aVee
a @r#

2aU@r#1Tc
a@r#2aEx@r#. Then, Eq. ~B3! yields for

spherical two-electron densitiesr(r ) in this limit the condi-
tion
s

y

Vee
` @r#2 1

2 U@r#54pE
0

`

dr r 3r~r !@w8̀ ~r !1 1
2 f8~r !#.

To demonstrate that this relation is exactly fulfilled by o
quantitiesVee

SCE@r# andw(r ) if used as candidates forVee
` @r#

and w`(r ), respectively, we first note the virial relatio
Ex@r#52*d3r r(r )r•“vx(r ) for the exchange potentia
vx(r )[dEx@r#/dr(r ) @12#. For two-electron systems, wher
Ex@r#52 1

2 U@r# and vx(r )52 1
2 f(r ), this virial relation

becomes2 1
2 U@r#54p*0

`dr r 3r(r ) 1
2 f8(r ). Therefore, we

are left with the proof that Vee
SCE@r#

54p*0
`dr r 3r(r )w8(r ), or, usingw8(r )5@r 1 f (r )#22 and

rearranging terms,

E
0

`

dr
r 2r~r !

@r 1 f ~r !#2 f ~r !5E
0

`

dr
r 3r~r !

@r 1 f ~r !#2 .

Replacing here on the left-hand sider 2r(r ) by
2 f 8(r ) f (r )2r„f (r )…, according to Eq.~14!, we may substi-
tute f 8(r )dr5d f . Sincef „f (r )…5r , we may interchange the
names of the variablesr and f so we just obtain the integra
on the right-hand side and the proof is complete.
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