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Strong-interaction limit of density-functional theory
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Electrons can have a given smooth density distributifr), even if their Coulomb interaction is scaled to
infinity. This strong-interaction limit of density-functional theory provides essential information on the corre-
lation energy of real electron systems. The simple concept of strictly correlated ele@@Bsis analyzed
here as a model for that limit. SCE is solved exactly for any one-dimensi@bgIN-electron density and, in
particular, for any 3D spherical two-electron system, such as the helium atom. Both the SCE interaction energy
and the SCE external potential, which are obtained here as density functionals, obey all the relations known for
the corresponding quantities in the unknown true strong-interaction limit. At large but finite interaction, the
electrons are still strongly correlated, performing zero-point oscillations about the SCE limit.
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PACS numbe(s): 31.15.Ew

[. INTRODUCTION single-particle equationd] of DFT. An exact relation is the
coupling-constant integrP],
The Hamiltonian of an interacting electron systen13|is 1
=T+ Vet Vey, With the kinetic-energy operatdr, the two- E.dp]= f da W,[p]. 2
particle Coulomb interactioﬁ/ee=2i<,-|ﬂ—Fj|*1, and the 0
operatorV,; of some external potentiale,{r), which is  The integrand iV, [p]=Vaed p]—U[p], with the expecta-
usually the attractive Coulomb potential of atomic nuclei. Intion value
density-functional theoryDFT) [1], the ground-state energy
of this system is presented as a functional of the ground-state Ve p1=(P p]|Ved ¥ p]) 3
electron density(r),
of the operatolf/ee in the ground stat& “[ p] of a hypothetic
system which has the same dengitas the real system but
where the electronic repulsion force is scaled by a factor
(“coupling constant’) a=0. Precisely¥“[p] is that wave
Tdlp] is the ground-state kinetic energy of noninteractingsynction which minimizes the expectation vali&+ aVeq)
electrons with density. The second term is the interaction subject to the constraint that it yields a given densify).

with the external potential. The remaining two terms de-hjs mathematically imposed constraint can be satisfied in
scribe the electron-electron interaction. The classical COUr‘nany cases if a suitable-dependent external potential

lomb or Hartree term,

Elp1=Tdp1+ | Ve o)+ Ulp1+ Exdpl. (@

ve(r), represented by an operatdf,,, is introduced[1].
p(Dp(r') Then, the wave functioW “[p] is the ground state of the
U[p]Z%f d3rf d3’ Hamiltonian

HY=T+ aVeet V. 4
treats the electrons as a continuous charge distribution with FVee™ Vext @
density p(r). All the complex aspects of the quantum- According to the Hohenberg-Kohn theorét, the potential
mechanical many-body problem which are ignored in th'Svgxt(r) is, if it exists, unambiguously determined by the den-
continuum description are included in the explicitly un- sity p(r) (apart from an arbitrary constant

known “exchange-correlatich functional E,Jp]. It cor- Representation(2) is particularly useful, because many

rects for the self-interaction error id[ p] and accounts for analytical properties of the integrattl,[ p] are known. In
the reduction of interaction energy resulting from electronicine weak-interaction limit. it has the expansion

correlations due to both Pauli exclusion and Coulomb repul-

sion. In addition, sincd { p] is not the true kinetic energy W, [p]=W[p]+Wy[pla (a—0), (5)
T[p] of interacting electronsk,Jp] has also a kinetic-
energy contribution [ p]=T[p]—T4p]. whereWy[ p]=E,[ p] is the DFT exchange energy, explicitly

Explicit knowledge of this important functional would re- given by the Fock integral with the occupied Kohn-Sham
duce the many-body problem to solving the Kohn-Shansingle-particle orbitals. We writee, [p]=E,[p]+E.p],
where the “correlation energy’E [ p] arises, because the
integrandW, [ p] in Eq. (2), starting ata=0 with the value
*Present address: Department of Physics, University of Regenddg[ p]=E,[ p], is not constant aa grows (cf. Fig. 4. The
burg, D-93040 Regensburg, Germany. linear expansion(5) yields in Eq. (2) the approximation
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EC p]=21W{[p] for the correlation energy. By virtue of IIl. STRICTLY CORRELATED ELECTRONS  (SCE)

Gorling-Levy perturbation theory3], the coefficientWy| p] A system ofN electrons with a given smooth density dis-
is, similarly toWo[ p], explicitly known in terms of théoc-  tripution p(r) is called “strictly correlated'{4] if, after mea-
Cueplzed and unoccupigdkohn-Sham orbitaldEq. (4) for  surement, theN discrete electronic positions always repre-
E¢-{p] in Ref.[3](a)]. Unfortunately, the information in the sent the continuous densiy(r) as well as possible. To
quantitiesWg[ p] and W[ p] is in most real systems not explain this in more detail, we focus at first on one-
sufficient for an accurate prediction &[p]. Rare excep- dimensional1D) systems. From Sec. Il on, we shall switch
tions are high-density systems with weakly correlated electo 3D.
trons. In any 1D quantum state, the positions of thelectrons
Direct access to the realistic situation with finite interac-on thex axis can be measured simultaneously, resulting in a
tion (a=1) is traditionally difficult. Recentljf4], however,  set{x,,...,xy} of N discrete numbers;<x,<...<xy. For
the integral(2) was for different systems accurately interpo- the SCE state with a given smooth density distribujgr),
lated between the extreme limits—0 and a—x, respec- we claim that the density between any two adjacent positions
tively, using no direct information on the complex situation x, andx,,,; always exactly integrates to unity,
at a=1. In the present work, we focus on this strong-

interaction limita— o, where[4] Xn41
f dxp(x)=1, n=1,... N—1. (7)

Xn
— ’ -1/2 s
Walp]=Welp]+Walpla (a—). © Any accidental clustering of the electrons is strictly sup-
pressed. In this way, the set of tkgrepresents the continu-
ous distributionp(x) as well as this can be achieved by
discrete positions.
As a result, the position of any one electron determines

particle orbitals become completely meaningless, since thg.]e positions of _a_II the_ oth.ers. T.h's IS a_Imost pgrfectly oppo-

many-particle wave function is dominated by correlationsSite © the familiar situation with noninteracting electrons

between different electrons which are moving independently in single-particle orbitals
The strongly repulsive electrons in the staité[p] with ¢, - To highlight this formally, we can introdudd correla-

a>1 cannot escape from each other, since they must forrH?.n tlfunctlor;stf,a so that the pos't'lonS(Z"”I’)f{Nd”t]m atr;y
the given density distributiop(r). Minimizing the expecta- strictly correlated sefx, ,.... xy} are always related t, by

tion value(T+ aV,e), these electrons seek a distribution in
the densityp(r) with maximum separation possible from
each other. This implies strong correlation between their po- )
sitions. The kinetic energy grows unlimitedly as these corre NOt€ thatfo(x)=x. Due to Eq.(7), these correlation func-
lations are strengthened. In Sec. VI, we will find evidencetions are determined by the conditidri"(x)dx’p(x’)zn.

indicating that(¥ [ p]|T|¥*[p])a? as a—x» (see also Taking here the derivative with respect xp we obtain a
nonlinear first-order differential equation fég(x),

We will obtain a mode[4] for the coefficientW.,.[ p] from a
theory which is also simple, but in a different way than the
familiar weak-interaction limita—0. As a—x, single-

Xnr1=Fn(X1), n=0,... N—1 (8)

Appendix A). If this is true, minimizing(T+ aV, in this
limit is equivalent to minimizing(V..) alone, since(T)

- . , p(X)
grows more slowly thaaV,e). Correspondingly, we de- fo(x)= SE00)
scribe the limita— o by the concept of “strictly correlated p(fn(x
electrons” (SCE [4], which probably yields exactly the

minimum interaction energ{(\?ee) possible in a given den-
sity p. The asymptoticx ™Y term in Eq.(6) is expected to

result from zero-point oscillations of strongly correlated . ) y =
electrons at larger>1 about the SCE limi{see Sec. V| wherey is obtained from/gdx p(x)=n. Therefore, these

Section Il provides a definition of SCE. From Sec. il on correlation functions are determined unambiguously by the

we focus on spherically symmetric two-electron systems,\fens'typ(x)' From the same condition which led us to Eq.
3D case for which this concept is solved exacly. Section | 9), we conclude f,(fi(x))=fn.m(x), where f“+N(X?
presents the corresponding interaction-energy functional | n(X). Therefore, onlyf,(x) needs to be calculated. Since
VS p], along with a candidat®Vscd p] for the unknown To(X)=x, the inverse function ofy(x) is fy_n(x). In the
coefficientW..[ p] in Eq. (6). V35 p] and the SCE external caseN=2, f,(x) is its own inverse. Figure 1 shows a plot of
potentialw(r), constructed in Sec. V, exactly obey condi- these functions, obtained numerically for the five-electron

: o o 1D densityp(x) =37 Y?exp(—[x/2]?).
tions on the unknown trugr—co limits of Vedp] and An ansatz for the probability distribution of the sets

(La)vey(r), as we show in Appendix B. Atlarge but finite v, 5  of electronic positions possible in the SCE state
a>1, we find in Sec. VI that strongly correlated electrons;g

perform zero-point oscillations about the SCE limit. In Sec.

VII, the expansiong5) and(6) are examined numerically for N

the helium atom. Results and conclusions are summarized in _ p(X1) H

Sec. VI PsceX1,... . XN) = N 1L O(xn—fr-1(xq)). (10

(©)

This is the analog of Eq14) below for the correlation func-
tion f(r) in 3D spherical two-electron systems. The starting
condition for numerical integration of Eq9) is f,(0)=y,
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4 sities, as we shall see in the next section. In the general case
fulz) of any 3D N-electron density, we can say that the electronic
positionsr, in any simultaneously measured $et,...ry}
1D are in the strictly correlated limit as uniformly distributed
N over the density(r) as possible. No accidental clustering of
fs electrons can occur. This situation is accurately described by
f3 the simple point-charge-plus-continuuiRC) approximation
for SCE, which is presented in detail in RE5].
fa
-1
fi
-2
-3 fo plies that, if electron 1 is at a distance from the center,
fil f3 fa | fi then electron 2 is on the opposite side of the center at a
“ 3 2 A 1 2

=5
5 " distancer, which is some monotonically decreasing exact
x function ofr,

w

N

-

[=]

Ill. THE CORRELATION FUNCTION f(r) FOR
SPHERICAL TWO-ELECTRON SYSTEMS

Strict correlation in a spherical two-electron system im-

FIG. 1. The correlation functionk,(x), obtained from solving
the differ/ential equatiort9) for the five-electron 1D densitp(x)
=5 7 Y2exp(—[A\x]), with A\=0.5[x and f(x) are in the same . . : .
but otherwisep;rtgitr;r)y length units rEérWhiIe(fz(x)Ex, each one Since the electrons are |de_nltlcal par_tlclgs, we _Conclupe
of the remaining functiong(x) has two branches and a pole at — [ ('2) =f(f(ry)) or f(r)=f"*(r), which is confirmed by
Xy, Where Xyo=1.19, X,0=0.36, Xgo= — 0.36, andxo=—1.19. Eqg. (13) below. f(r) isits own inverse, S|_m|Iar to .the case
Note thatf; *=f, and f, '=f,. A vertical line, drawn at any po- Of 1D two-electron systems in the preceding section.
sition x, always has five intersection points with these curves, rep- It is easily demonstrated that the correlation functi¢r)
resenting the positions of the five strictly correlated electrons ads entirely determined by the given spherical dengify).
functions of the positiorx of the first one. Since f(r) is monotonically decreasing, the probability to

find electron linsidea sphere with radiusmust be the same
The integral of this expression, performed ovenglliexcept ~ as the probability that electron 2 @utsidethe sphere with
for x,, is always (1N)p(x,), the probability distribution for ~radiusf(r),
the position of one electron. This is evident in the clse
=1. Fork#1, it can be verified by using the differential
equation(9) in combination with the general rule féfunc-
tions, fdx f(x)8(g(x))="F(xe)/|g’'(Xo)|, where x, is the
zero ofg(x). An explicit antisymmetric wave functio¥, If, for a particular density, these integrals can be evaluated
which has in the limito— o0 the probability distributior{10) explicitly, we obtain a simple equation fdi(r). For the
is given in Appendix A. general case, we take the derivative of Ep) with respect

The counterpart of the SCE state is a state of noninteracto r to obtain a nonlinear first-order differential equation for
ing electrons which are moving independently in single-f(r),
particle orbitalse,,. The wave function is now a Slater de-
terminant(SD) with the probability distribution r2p(r)

) P = 2ot n)

. (1)

ro="F(ry). (12

41-rjordu uzp(u)=47-rJ':)du wp(u). (13

(14

Psp(Xq,... XN) = Z

O1reON

N
Anl:[l @n(Xn,00)

The starting condition for the integration of E@l4) is
f(rg)=rg, where, due to Eq(13), r, is obtained from

r . .
Here, A is the antisymmetrization operator for fermions and47/ o d" r2p(r)=N/2=1. Consequentlyt is determined by
the o, are spin variables. p- _ _ _

Both these situations are mathematically much simpler Figure 2 shows the correlation functiofigr), obtained
than the realistic situation with finite interaction. On a com-numerically for three different densities(r). Since f(r)
puter, expression&l0) or (11) can be stored as small sets of Ef*l(r),. the graphical representation 6{r) is always
simple functionsp(x), f,(x), or, respectively, the (X, ). symmetric with respect to thg diagor@ashed line. As an
If, e.g., 1000 mesh points are used %oonly a few thousand analytical example, we consider the two-electron density
numbers need to be stored. In contrast, the probability distri- 15

R R : p(r)=—5(R—1)?0(R-r), R>0. (15

function ¥ of a real system with finite interaction cannot be mR
expressed in terms of a few functions of one variable. Now, _ _
(1/N1)1000" numbers must be stored to achieve the samén this case,r,=R/2 and Eq.(14) has the solutionf(r)
level of accuracy. =(R—r)®(R—r), which fulfills f(R/Z): R/2. Therefore,

The generalization of the SCE concept to 3D systems iéhe distance + f(r) between these two electrons is always
straightforward for spherically symmetric two-electron den-and their interaction energy is exactly.o = 1/R.
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FIG. 2. The correlation function§(r), obtained from solving
the differential equation(14) for three different spherical two-
electron densities. For the helium at@tide”; ry,=0.81), the den-
sity from Ref.[7] was used. Hooke’s-law atori‘Hooke”; rg
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moving without any correlation in one single-particle orbital,

(Voo takes the even larger valug?; [ prel =1.025 [8].
VSSH p] is probably theminimuminteraction energy possible
for any two-electron wave function with given spherical den-
sity p.

Subtracting the Hartree enerdf p], we obtain a candi-
date,

Wscd p1=Vee 1p]1-Ulpl, (18)
for the coefficientW..[p] in Eq. (6). It is used in Ref[4] to
predict accurate correlation energies of real systemg at
=1 by considering only the simple limitg—0 and a—-o°.
Substituting the densityl16), we find the scaling behavior
Wscd pr]=AWscd p].

V. THE EXTERNAL POTENTIAL FOR STRICTLY
CORRELATED ELECTRONS

To bind the strongly repulsive electrons at large 1, the
attractive external potential of the Hamiltonig#) must be-

=1.69) is an interacting two-electron system in the oscillator-typecOme proportional tay,

external potential.,(r)=r?/8, whose ground state is known ana-
lytically [6]. “Fermi” ( ro=3.20) refers to the Fermi-function den-
sity p(r)~[1+e(""R/a]~1 with R=4 anda=0.2. The plots are
symmetric with respect to the diagon@ashed line which they
intersect with atr =ry. [For He,r andf(r) are in units of 1 bohr
=0.529A]

Once we know the correlation functidifr) for a particu-
lar two-electron density(r), we can easily construct it for
the entire class of scaled densities,

pr(1)=N3p(AT)

where the \-dependent starting radius isrg[p,]
=(1/\)rglp]. The correlation function for any is f,(r)
=(1/\)f(\r), because this is a solution to the differential
equation(14) with p=p, and fulfills f,(ro[ px 1) =rolpr]-

(A>0), (16)

IV. THE INTERACTION-ENERGY FUNCTIONAL VeSgE[p]

In these strictly correlated spherical systems, the distan
|r,—r,| between the two electrons is always f(r), where
r=|r,4|. Therefore, averaging over the positionof the first
electron with its probability distributiog p(r,), we find for

the expectation value of the Coulomb interactiog,,

r2p(r)

VESE[p]ZZWf:drr—i-f(r)' a7

Since the functionf(r) is determined by the density(r),
Eqg. (17) is the exact density functional for the interaction

Ve —aW.(r)  (a—). (19

Since the kinetic energy is expected to grow only at the order
of O(«*?), potential-energy effects should become domi-
nant in this limit. Then, the electrons are moving with a

constant potential energy and the local potentig(r) must
exactlycompensate for the two-particle repulsiﬂge. This
can indeed be achieved with a simple functien(r) if the
electrons are in the SCE state.

If in a strictly correlated spherical two-electron system
electron 1 is at a distancefrom the center, the repulsive
force exerted by electron 2 from the distameef(r) has the
magnitude[r +f(r)] 2. An external potentialv(r) which
shall exactlycompensate for this force must necessarily ful-
fill the differential equation

w'(r)=[r+f(r)] 2 (20)

CEhis condition is even sufficient, because it guarantees at the

same time that the net force on electron 2, at distdifce
from the center, is also zero,

w (f(n)=[f(r)+fE D] >=[f(r+r172. (2D
Here, we used(f(r))=r. The solutionw(r) of Eq.(20) is a
candidate for the unknown functiam,,(r) in Eq.(19). It has
exactly the properties ok.(r) in Appendix B.

As these strictly correlated electrons are moving in the
densityp(r), their total potential energy , is indeed con-
stant,

energy of strictly correlated, spherical two-electron systems.

It is a candidate for thee— o limit V_J p] of the functional
(3) and has exactly the properties 6t p] in Appendix B.

For the densityy, of the helium aton}7], the functional
(17) takes the valud/SSH py.] = 0.549(hartrees As a result

d

1
a m'ﬁ‘W(r)‘f‘W(f(r)) =0. (22)

This is a simple consequence of E¢20) and(21). Applying

of the strong correlation, this is considerably lower than thethe boundary conditiom(r —=)=0, the constant in curled

true interaction energy'?; [ pe]=0.946[8] of the helium
atom. In the opposite limitz= 0, where the two electrons are

brackets can be evaluated, e.g.,rat0, resulting inVpy
=w(0). Correspondingly, sinc¥ o= Ves1pl+Veglel,
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) 1 indicates that the SCE state become asymptotically a solu-
ﬁg;hffj])o‘s He tion of Eq. (25) with the eigenvalue lim ...(1/a)E*[p]
0.6 Hooke Fermi :W(O)-' L
If this two-electron system is ionized at large the re-
04 maining single electron is localized around 0, at the mini-
0.2 mum of the strongly attractive external potentiak(r). As
o a—o, the wave function of this electron becom@&peaked
ot 2 3 4 5 atr=0 with a zero-point energy of the order 6f(«*?) so
w(r) 00 that the ground-state enerd/;[p] of the ionized system

also fulfills lim,_,..(1/a)E$[ p]=w(0). Therefore, the ion-
ization energy ‘[ p|=E%[p]—E“[ p] has the property

“Lp] _

.2
[hartree]
-0.4

-0.6
-0.8

-1 // —1/7‘
12 L

° 1 2 ° .00 This result is consistent with the fact that, at fixed dengity

o _ the ionization energy“[ p] does not depend om [9].
FIG. 3. The lower part of this figure displays the external po-

tentialw(r) for strictly correlated electrons, obtained from solving VI. ZERO-POINT OSCILLATIONS OF STRONGLY

the differential equatior(20) for the three different two-electron CORRELATED ELECTRONS

densities whose correlation functions are shown in Fig. 2. At large

r, w(r) approaches in any spherical two-electron system the hy- At large o> 1, the electrons are expected to be strongly
drogen external potentiat 1/r (dashed curve The upper part of correlated, their relative positions performing zero-point os-
the figure displays the radial probability distributionsi3 p(r) in cillations about the strictly correlated limit—~. To see this
these densities. For He, the potential is in units of 1 hartreeexplicitly, we introduce the Hamiltonian

=27.2 eV and distance is in units of 1 beh®.526 A.

lim

a—®

0. (26)

2, :2
. P

HO 2 +01V(I’1,I‘2),
V§§E[p]+f d®r p(r)w(r)=w(0). (23 (27)
V(ry,ry)=

m+W(rl)+W(r2) (a>1).
Alternatively, evaluating the constant in E@2) at r=r, roe
yields Vo= (1/2rg) +2w(rp). Combining this with Vi, If the SCE potentialv(r) is identical to the unknown func-
=w(0), weobtain tion w..(r) in Eq. (19), F§ converges at larger asymptoti-
cally toward the Hamiltonia®4), which has, unlikd:lg, for
W(rg)=— i—[W(I’O)—W(O)]. (24) all different =0 the same ground-state _denaiiy
2rg To study small deviations from the strictly correlated be-
havior, we consider a pafr,r,} of electronic positions,
This is the starting condition for numerical integration of the
differential equation(20). (The difference[w(rg) —w(0)]
Efgod r[r+f(r)] 2 can be evaluated unambiguouylfhe close to some strictly correlated pair{ro,ryq
resulting functionsv(r) for three different densities are plot- ={re,—f(r)e}, wheree is a unit vector. We express the
ted in Fig. 3. For the densityl5), with f(r)=(R—r)®(R  small displacement vectors in Cartesian coordinatgs,
—r), we find analyticallyw(r)=(r—2R)/R? (r<R) and  ={X;,y;,z}, with thez, axis in directione and thez, axis in
w(r)=—r"1 (r>R). direction —e. Then, |r;—r,|?=[x;—X,12+[y1— Yo 1?+[r
In Sec. VI, we will study systematically the effect of the +f(r)+z,+2,1%, r2=x2+ys+[r+z]? and r3=x5+ys;
new external potentiak(r) on the electronic wave function. +[f(r)+2z,]%. Using W"(r)=—2[1+f'(r)][r+f(r)] 3
Here, we can already draw some simple conclusions. If thérom Eq. (20) and f'(f(r))=f'(r) " from f(f(r))=r, we
potentialw(r) is identical to the unknown limitv.(r) in Eq.  can expand the potential-energy function in E2j7) about
(19), the Schrdinger equation with the Hamiltonia@), di-  {ryg,r o},
vided by «, approaches at large the form V(Fy.r5)=W(0)

ri1=rqgtus, ry=ryo+Uy, (28

+w(rq)+w(r,) \If“=Ea[p] pe,

1.
iy L -
ed [ri—ro @

r

MTFEIOK f(—r){[f°(f)><1+xz]2
(25) o 2

+[fe(r)y1+y.]%

If the electrons become strictly correlated as-o, the

potential-energy factor in curled brackets has the constant - mf,(—r)[f'(f)zl—zz]z
value(23) wherever the wave function is different from zero.

If the kinetic-energy term approaches zero @as>«, this +0({xi,i.z}3). (29
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In short-hand notationf°(r)=f(r)/r. We have used the with r-dependent frequencies (r)=k;(r)? (we use atomic
identity [r+f(r)]”*+w(r)+w(f(r))=w(0), due toEgs. units wheregi=1). Correspondingly, the ground-state energy

(22) and(23). . of the HamiltoniarH ¢ at largea>1 is the average dE(r)
Nothing new can be learned K,=—f°(r)X;, Y=  in the probability distributior: p(r),

—f°(r)y,, andz,=f'(r)z,, since in this casejry,r,} in

Eq. (28) is still a strictly correlated pair likgrqg,rot. To Er o1={VSCE ;74 \/SC e 1/2 o

find an independent degree of freedom, we apply the ortho- slp1={VeeTol+ VexTplia+ Clpla™ (a )£34)

normal transformation,
where we have used E(3) for w(0). Thecoefficient in the

_ XX, v —yi+fo(r)y; zero-point energy is
Clpl=27 [ “drZp({Zou(n) + b1, (39
z,+1'(r)z, 0
(r) Note thatEg[ p] is the ground-state energy of a Hamiltonian,
H&, which only in the limita—c has exactly the ground-
Plxte FPOyty, | —P0ztz o g ymes

state density.

—_— , Z= . - . :

V1+£o(r)? Y V1+£o(r)? V1+£'(r)? Due to the virial theorem for harmonic oscillators, exactly
half of the zero-point energg[ p]a*? is kinetic. This indi-

In terms of these new coordinate3={X,Y,Z} and s cates that the kinetic energy in the ground statel@has the

={x,y,z}, strictly correlated motion is characterized by the order of O(a'?) as a—, since the first term in Eq34)

conditions=0. Therefore, we expect that the coordinases has only potential-energy contributions. The same must be
describe the wanted deviations from strictly correlated mo'expected for the original Hamiltoniaf @ of Eq. (4), since,

tior|1:,0i;‘ aSn: 0. iverr, the Hamiltonian(27) can be expressed in presuming that the functions(r) andw.,(r) are identical,
y giverr. P the only difference betweef® and HS are lower-order

terms of such coordinates, : ¢
terms O(a% in the external potentialvg,(r)=aw(r)
AE(r)=L(X2+Y2+22) + aw(0) + L (32+ Y2+ 22) +O(_aq) (q< 1). These terms are requiredft to keep the _
densityp fixed. They should, however, not affect the physi-
) 3 cal nature of the large- kinetic energy as resulting from
2|+ aO0({S;s}”). zero-point oscillations.
The above analysis reveals how the SCE state arises from
@31 a wave function with finite interaction, as—oc. In particu-
lar, we find a strong indication that the kinetic energy in the

ground state of the Hamiltonian“ has the order 0®(a'/?)

Kq(r)
2

(X*+y?) +

+a

Ks(r)
2

For small|g,|S|, when the electronic positior{&8) are close
to the strictly correlated paifrqg,roq}, this is a separated o o _ . ~ o :
Hamiltonian. The coordinateS={X,Y,Z} describe a free in that limit. If Hy was identical toH®, which has fpr all
particle with constant potential energ(0). This effective  different@=0 exactly the same ground-state dengity),
free particle corresponds to strictly correlated motion of theVe could extract the coefficiend/..[p] of the asymptotic
two electrons. In contrast, the coordinates{x,y,z} de- expansion(6) from expression(34). Precisely,W.[p]a"?
scribe an independent effective particle in an oscillator-typevould be the contribution o¥/gJ p] to the «*? term of the
external potential. This degree of freedom corresponds tfunctional(34). In Sec. VII, we will see that, for the helium
zero-point oscillations of strongly correlated electronsatom, the coefficient C[p] of the zero-point potential en-
around the SCE limit. The spring constants are ergy in Eq.(34) is close to what is expected numerically for
the value ofW.[p].

Ki(r)=

r f(r))
’ VII. NUMERICAL DISCUSSION

orl
[r+f(r)]? f(r)+ r

(32) To examine the significance of the coefficies,[ p]

Ks(r)= 4 3( ,1 +f'(r)]. and W.[p] in expansion(6), we consider the analytical
[r+f(n]= 1 f'(r) model, suggested in Rg#], for the coupling-constant inte-
grandW,[p],
[Necessarily k;(f(r))=k;(r).] This potential has its mini-
mum ats=0 [note thatk;(r)>0, sincef’(r)<0], driving Wo[ p]— W[ p]
the electrons into the strictly correlated stateaas <. The W™ p]=W.[p]+ Wolpl™ Wl Pl (36)
ground-state energy of the Hamiltoni&Bl) is the constant “ V1+2X[pla
potential energy of the free particle plus the zero-point en-
ergy of the harmonic oscillator, It has the correct smalkexpansion(5) if we set[4] X[p]

=—-W{[p]/(Wo—W..). It also has the correct large-ex-
ES(r)=aw(0)+ a¥ 3w,(r)+ 3 w5(r)], (33  pansion(6), predicting the value
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Jymod 08 point potential energy C[ pye]=0.878 as we mentioned at
[hartree] 0-° Wmod[p] the end of Sec. VI. Note that the function@[p] has the
-1 Wics + Wi med o= 1/2 (He atom) same scaling behavioG[ p,]=\*?C[p], as the unknown
. > exact coefficient.[p].

VIIl. SUMMARY AND CONCLUSIONS

14 As a model for the strong-interaction limit of DFT, we
s W have analyzed here quantum-mechanical states with strictly
’ correlated electron$SCE) in a given density distribution
185 1 2 3 4 5 6 7 p(r). Remarkably, there exists for any spherical two-
o electron density(r) always a suitable local external poten-

_ _ tial w(r), constructed in a way so that strictly correlated
FIG. 4. The model(36) for the coupling-constant integrand electrons are moving at a constant potential energy. This
W,[p] of the helium atonsolid curve in hartree units (1 hartree resy|t strongly supports the SCE model, since in the strong-
=27.2¢eV). Itis evaluated with the exact exchange energy of thgnteraction limit the total energy to leading order is expected
helium atom,Wy[ ppe]=—1.027[8], the accurate valudV{[ pye] to have no kinetic contribution.
=—0.1006[10], and the present mod&Vscd prel = —1.500 for In spherical two-electron systems, the SCE state is char-
the coefficientW,.[ p] (horizontal dashed line obtained from Eq. acterized by a simple correlation functiér) which is un-

(18) for an accurate numerical densipy,(r) of the helium atom . . . . . )
[7]. The expansion$5) and (6) of this integrand are indicated by ?mblguous%]detseérgln_e? by E.he given Spherlczglt Qenzlty pro
dashed curves. The size of the shaded area in the figure is an accé]-e ’?(r)' _e sc interac Io_n_ en_ergy IS obtained as a
rate prediction of the correlation ener@y[py.]=—0.042 in the J€NSity functionaV¢g Tel, explicitly in terms of the func-
helium ground state. tions p(r) andf(r). It probably yields the minimum inter-

action energy possible in a given density distributiprThe
Wl p]=Wo[p] functional Wscd p]1=V5sH p]—U[ p] is a candidate for the
Worcmod[p]zo—“’ (37) unknown limit W, [p] of the coupling-constant integrand
V2X[p] Welp].

By a transformation of coordinates, the strongly corre-
for the coefficientW.[p]. A key property of the unknown lated motion of the two electrons in the external potential
exact integrandW,[p], which is expected to be also a aw(r) at large butfinite «>1 can be separated into pure
smooth function ofa [12,13,4, is the scaling behavidri2] strictly correlated motion at constant potential energy and an

independent collective degree of freedom where the elec-
W,lp]=aWi[pal, (38 tronic coordinates perform zero-point oscillations about their
SCE values. An oscillator-type effective external potential
wherep, (r)=\3p(xr) for any\>0. Equation(38) dictates  drives the electrons into the pure SCE stateqase. This
the scaling behavior of the coefficients in the expansi@hs result reveals how the strictly correlated state arises from a
and (6): Wolp\]=AWq[p], Wglpr]=Welpl, W.[p\]  strongly correlated wave function in the limit—o.
=AW.[p], andW.[p,]=N¥W_.[p]. Therefore, the model The SCE concept for the strong-interaction limit-oc
integrand(36) also obeys conditiori38) and the functional can be interpreted as the counterpart of the concept of single-
(37) has the correct scaling behavior of the coefficientparticle orbitals for the opposite limit— 0 of weak interac-
W_[p]. (Note that the functionaWscd p], Eg. (18), which  tion. Unlike the complex wave function of a realistic system
is a candidate for the unknown examt,[ p], has the correct with finite interaction ¢=1), both these concepts are math-
scaling behaviorWscd py]=A\Wscd p].) ematically simple, but in different ways. Since several ana-
Figure 4 displays the model integraf®6) for the density lytical properties of the coupling-constant integraiti[ p]
pue Of the helium atom(solid curve, using the probably are known, the correlation energy of real systems can be
exact functionalWgcd p] for the unknown limitW,[p]  obtained accurately from an interpolation between these
(horizontal dashed line Also shown are the expansioff§  simple limits. While the smalk corrections inwW,[ p] to the
and (6) of this integrand, where the unknown coefficient exchange energWy[p] («—0) are given in Gding-Levy
W.[p] is replaced by the quantit§87). Clearly, this figure perturbation theory, the large-asymptotics ofW,[p] to-
indicates that quantitative knowledge of the ex&tf p], in ~ ward the SCE limitWgcd p] (a—) can probably be ex-
addition toW..[ p], would provide substantial information on tracted from the zero-point ener@y(a"?) of almost strictly
the coupling-constant integral, [ p]. correlated electrons.

In Ref. [4], this analytical model integrand yields an ac-
curate prediction for the ground-state correlation energy of .
helium, ~ EC*{ ppie]= [ odar W] ppie] —Wol prie] = —0.042 A CORRELATED WAVE FUNCTION
(shaded area in Fig.)4significantly improving the predic-
tion ES"Y piye]= —0.050 from Eq.(5), where any informa- The probability distributions,, ., [W.(1,... N)[?
tion aboutW..[ p] is ignored.(The exact correlation energy is (with the short-hand notationn” for the coordinate-spin
Eclpnel=—0.042[8]). The functional(37) here takes the variables ‘x,,o,”) in the ground statel, of the Hamil-
value W., mOd[pHe]ZO.729, which is not far from the zero- tonian(4) is expected to approach the strictly correlated limit
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(10) asa— . To obtain an explicit expression for a strongly
correlated antisymmetric wave functiok,, we consider a
uniform 1D system of two electrons, confined to an interval
with lengthL=2 on thex axis, 0<Xx;,X,<2. To achieve a
uniform densityp(x)=1, we impose periodic boundary con-
ditions at the endpoints of this interval. Then, the electrons
are treated as if they were moving on a closed ring with
circumferenceL and the electronic interaction can be de-
scribed in terms of two repulsive “Coulomb-force springs,”
attached along the two curved segments of the ring between
the electrons. Since these springs are compressed to the
lengths |x;—X,| and 2—|x;—X,|, respectively, the corre-
sponding interaction energy is

A
AR
A

Piooolz1, 22)

1 1 1

= + =1+€>+0(eY), T2
2\ [x1=%a| 2= [x1— X (€]

(A1)

VedX1,X2) =

wheree=|x;—X,| — 1. The SCE state of this uniform system
is characterized by=0 or |x,—x;|=1, keeping the two

electrons always at opposite positions on the ring. Then, the FiG. 5. The pair densitP,(x;,%,) =3, .|V ,(1,2)2 in the

energy(A1) has the constant valo&ls™ 1, which is also its strongly correlated wave functio3) with @=1000. The bottom

minimum value. Thereforq,Vee>>V§gE for any state other part of the figure displays the corresponding interaction energy

than the strictly correlated one. Clearly, SCE yields in thisV{2 (X1 .x,), obtained from Eq(A1) if the O(e*) term is dropped

example minimum repulsion energy. there. Ifx, ,are in units of 1 boh 0.526 A, therP, has the unit of
The constant external potential of this uniform systeml bohr?andV{Y has the unit of 1 hartree27.2 V.

may be chosen to be zero. Then, the Hamiltonién be-

comes E(,l,(,2|\lfa(1,2)|2 approaches the strictly correlated limit
T Psce(X1,X5) = 6(§)E 5(|.x1—x2| — 1) from Eq.(lO)'.
B=— | 5+ — | + aVed X1, X0). (A2) The contributiony« in Eq. (A4) is the zero-point energy
2\9x] 9% of the strongly correlated electrons whose separatign

" _ . —X,| performs oscillations in the potenti@hl) about its
If the termO(€”) is neglected in the potentighl), we can  equilibrium or SCE valudx;—X,|=1 or e=0. Due to the

give an exact solution to the Schiiager equatior, ¥,  virial theorem, half of this energy is kineti¢T),= % a and

=E. Vo, (Vea) o=+ 2\, so the potential energy becomes domi-

s nant at largex. Therefore, strong and even strict correlation

v, (1,2)= i ﬁz) is in the limit «— energetically favorable, although this
v2\m makes the kinetic energyT) grow to infinity.

Ja
><exp< =5 (X=X = 1)? | xad 71,02), APPENDIX B: TESTS FOR THE FUNCTIONAL VSS9 p]
AND THE POTENTIAL w(r)

A3
(A3 The potentialw(r) and the functionaV35q p], respec-

wherey,sis the antisymmetric two-electron spin singlet. Thetively, are candidates for the unknown exact functies(r)
probability distribution Pa(xl,xz)=201'02|\Ifa(1,2)|2 of in Eqg.(19) and the unknown exact limW.J p] of the inter-
this strongly correlated wave function is plotted in Fig. 5 for action functional(3). We demonstrate here that the “candi-

«=1000. The corresponding eigenvalue is dates” identically fulfill two relations, valid for the unknown
exact quantities.
E,=a+a. (A4) An exact relation fol.J p] andw..(r) is [11]
Expression (A3) is correctly normalized, " 3 )
201,(,2f§dx1f3dx2|‘Pa(l,2)|2=1, if « is large enough so Vee[P]Jrf d°r p(r)we.(r)=minw..(r), (B1)

that the Gaussian in EGA3) is sufficiently close to zero for

e=+1. At these values, where the full potenti#1), in-  wherew..(r)—0 asr—«. Equation(B1) holds for any two-
cluding the higher-order tern@(e*), becomes singular, the electron densityp(r). Due to Eq.(23), our functional
correct wave function must be exactly zero. For langehe  VSSH p] and the corresponding potentia(r) fulfill this re-
function (A3) is strongly peaked around=0, so that|e| lation exactly for any spherical two-electron densitfr).
<1 wherever the wave function is significantly different Note thatw(0)=minw(r), sincew’ (r)=[r+f(r)] 2=0.

from zero. Therefore, the ter®(e*) can be neglected at Another test is provided by the virial relation for the exact
large a. As a—, the probability distribution correlation potentia[12]. To formulate this relation, Eq.
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(B3) below, we generalize the total-energy functiofiBl to
electron systems with interactianV, for any a=0,

E*p]=Tdp]l+ f d3r vg((r)p(r)

+aU[pl+aE{p]+Edp]. (B2

Here, aE,[p]+EZ[p] is the generalization E;[p]
=[0dB W[ p] of the xc functional(2). For anya>0, the
exact correlation potentialZ(r)=SEZ[ p]/ op(r) fulfills the
virial relation[12]

E?[p]+Té“[p]=—f d*r p(Nr-Vvg(r), (B3
whereTZ[p]=T“p]—T4 p], with the functionalT[p] of
the total kinetic energy.

Due to the general variational
SE p]/6p(r)=0 for the true ground-state densip(r).
Therefore, for two-electron systems wherg,[p]=
—3U[p], Eq.(B2) yields vi(r)=— 6T pl/ op(r) —v&(r)
—(al2)¢(r), with the electrostatic potential ¢(r)
=6U[p]/6p(r). In particular, with the functionv.,(r) from
Eqg. (19,

1
I|mav (r)y=

a—x®

Woo(r) =3 (r). (B4)

On the other hand, provided that lim..(1/a)T¢[p]=0 (cf.
Sec. VI and Ref.[13]), we obtain lim,_..(1/a)(EZ[p]
+Telp])=Vedp]—2U[p]l,  since E¢[p]l=aVedp]
—aU[p]+ T p]l—aEp]. Then, Eqg. (B3) yields for
spherical two-electron densitiggr) in this limit the condi-
tion

STRONG-INTERACTION LIMIT OF DENSITY-. ..

principle of DFT,
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Valp)-3Ulpl=am | drepmmin + 16/ n)

To demonstrate that this relation is exactly fulfilled by our
quantitiesVSSH p] andw(r) if used as candidates fofs{ p]
and w,(r), respectively, we first note the virial relation
E[pl=—[d% p(r)r-Vv,(r) for the exchange potential
vx(r)zéEx[p]/ﬁp(r) [12]. For two electron systems, where

Edpl=—3U[p] and v,(r)=—3¢(r), this virial relation
becomes—3U[p]=4n[5drr? p(r) ¢'(r). Therefore, we
are left with the proof that V5Sqp]

=4 fodrri3p(r)w’(r), or, usingw’(r)=[r+f(r)] 2 and

rearranging terms,

p(r) P(f)
fd r+fr>]7f“)_J TR TrSycE

Replacing here on the left-hand side?p(r) by
—f'(r)f(r)?p(f(r)), according to Eq(14), we may substi-
tutef’(r)dr=df. Sincef (f(r))=r, we may interchange the
names of the variablesandf so we just obtain the integral
on the right-hand side and the proof is complete.
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