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Decoherence and programmable quantum computation
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When coherent states of the electromagnetic field are used to drive the evolution of a quantum computer, a
decoherence results due to the back reaction from the qubits onto the fields. We show how to calculate this
effect. No assumptions about the environment are necessary, so this represents a useful model to test the
fidelity of quantum error correcting codes. We examine two cases of interest. First, the decoherence from the
Walsh-Hadamard transformations in Grover’s search algorithm is found@Phys. Rev. Lett.79, 325 ~1997!#.
Interference effects, and decoherence-dependent phases, are present that could be useful in reducing the
decoherence. Second, Shor’s fault-tolerant controlled-NOT gate is examined, utilizing frequency-selective
pulses@Proceedings, 35th Annual Symposium on Foundations of Computer Science~IEEE Press, New York,
1994!, pp. 56–65#. This implementation is found not to be optimal in regards to fault-tolerant quantum
computation.@S1050-2947~99!07212-1#

PACS number~s!: 03.67.Lx, 32.80.Qk
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I. INTRODUCTION

In the original concept of quantum computation, the is
lated, coherent evolution of a quantum system correspon
to a series of logical operations which could be used to co
pute a solution to a problem@1#. Once a method of solving a
given problem is decided upon, the logical steps in
method are translated into unitary transforms of a quan
system@2#. These transforms place constraints on the fo
for the system HamiltonianH, which in turn constrains the
architecture of the computer. In other words, the progr
determines the system propagatorU(t)5exp(2iHt/\),
which constrains the form ofH, whose parameters indicat
the qubit-qubit interactions that must be present in orde
carry out the program.

Such quantum computers suffer from a significant dra
back: they are not programmable. Consider the case of N
quantum computing. A given program to solve a given pro
lem results in a set ofJ couplings between distinct spins
which in turn determines a geometry of the molecule to
used as the computer. Once the molecule is synthesized
useful only for the method of solving the problem origina
decided upon. In contrast with the flexibility of classica
transistor-based computers, these quantum computers
their programs ‘‘hard-wired’’ into their architecture.

However, recent proposals for quantum computer arc
tectures seek to overcome this limitation. They use exte
fields, generated by classical degrees of freedom, in orde
drive the quantum system’s evolution@3#. Since classical
sources can easily be manipulated by the programmer, t
methods offer a means by which the programmer can a
the evolution of the quantum system, and thus program
computer. Some of these proposals include the use of ra
frequency pulses acting upon nuclear spins in liquids@4–6#,
laser pulses acting upon ions trapped in resonators@7,8#, and
electrostatic fields generated from gated electrodes influ
ing the evolution of nuclear spins in semiconductors@9#, or
of electrons trapped in quantum dot structures@10#.

A question that naturally arises when one contempla
such proposals is the following: How can the evolution o
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quantum system remain coherent if it is interacting with cl
sical degrees of freedom? Consider trying to produce an a
log of the two-slit interference pattern with electrons, on
using light beams to drive the electrons into two separ
paths. The interaction of the field with the electron creates
entangled state of the electron and field, from which a m
surement of the state of the light will reveal informatio
about the position of the electron. To the extent to which
light carries information about which path the electron tak
interference is lost@11–13#. Such interference is central t
the working of many quantum programs, e.g., Grove
search algorithm@14#. If we use classically generated field
to drive qubit evolution, will that interaction effectively mea
sure the state of the qubits, and by doing so, destroy
coherent evolution of the system?

To answer this question, we derive quantitative decoh
ence rates for two cases. First, we examine the influenc
driving the Walsh-Hadamard transform in Grover’s quantu
search algorithm@14# with an external field. Second, we giv
a more general method by which to calculate this decoh
ence mechanism, and then apply it to Shor’s fault-toler
controlled-NOT ~CNOT! gate @15#. While these questions
have been previously raised@16#, to the authors knowledge
no quantitative assessment of their importance has yet b
given.

It is helpful to mention here that this decoherence mec
nism will turn out to be smaller, by many orders of magn
tude, than other decoherence mechanisms typically enc
tered. It certainly does not represent the most immed
difficulty with implementing NMR quantum computing
@6,17#. Rather, the usefulness of this result is that the de
herence can be calculated without any assumptions abou
nature of the environment. This is because the ‘‘enviro
ment’’ in this case is the well understood coherent state
the electromagnetic field. Thus it represents a useful
model by which to test the fidelity of various quantum err
correcting codes under arbitrarily harsh conditions@15,18–
20#. Simulations utilizing different error models may b
helpful in determining the accuracy threshold for fau
tolerant quantum computing@21#.
4363 ©1999 The American Physical Society
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II. GROVER’S ALGORITHM

A. Search algorithm

Before we consider how to drive a part of Grover’s sea
algorithm, let us briefly review it here. Grover’s quantu
search algorithm is a method by which to retrieve eleme
in a subset of a larger set@14#. It acts uponK qubits, or
two-level systems, whose levels are arbitrarily labeled asu0&
and u1&. A complete, orthonormal basis for th
system is the product basis, e.g., forK53,
$u000&,u001&,u010&,u011&,u100&,u101&,u110&,u111&%. It is
usual to refer to each element of the basis set by the int
whose binary expansion represents the string of 0’s and
so thatu3&[u011&. The elements of the set to be searched
labeled by integers from 0 to 2K21.

The subset whose elements we are searching for is sp
fied according to a condition. For example, we could sea
for any integer-valued roots of a given polynomial within
fixed range. There are many problems for which, given ax
of the set of possible solutions, it can be checked in a po
nomial number of steps whetherx is a solution to the prob-
lem, but no known method exists to find all solutions
polynomial steps@22#. These problems can be solved by
brute-force search over all possible solutions, which is w
Grover’s algorithm does. Since Grover’s algorithm has be
shown to be optimal@23–25#, its performance is one impor
tant indicator of how quantum computation might ou
perform classical computation.

In what follows, we assume there is only a single solut
y to the problem. It is not difficult to generalize this to mu
tiple solutions@24#. The initial state of the quantum com

puter is (x50
2K21ux&/A2K. The goal is to transfer amplitud

into the stateuy& @14# so that a measurement of the syste
yields the solution. This is achieved by a series of transfo
of the form (WRWO)N. W’s are products of operators actin
on a single qubit,)nWn . Each Wn is a Welsh-Hadamard
transform, Wn5A2(Sn,x2Sn,z). We employ a notation
which conforms to the common usage in magnetic resona
@26#. Each S indicates an operator that transforms only
single qubit, whose index is given by the first subscript. T
second subscript indicates what the operator does. Ther
two projection operators,Sn,a5u1&^1u and Sn,b5u0&^0u,
and the raising and lowering operators areSn,15u1&^0u and
Sn,25u0&^1u. Also, the three Pauli operators are given
Sn,x5(Sn,11Sn,2)/2, Sn,y5(Sn,12Sn,2)/2i , and Sn,z
5(Sn,a2Sn,b)/2.

The operatorsR52112u0&^0u and O5122uy&^yu are
diagonal in the product basis.~The 1 is the unit operator.!
The operatorO is called the oracle. It is the only means b
which the algorithm has knowledge of the solution. For e
ample, if one were searching for the integer roots ofP(x),
theO transform might flip the amplitude of only those state
ux&, that satisfyP(x)50. The combinationWRWcan also

be written as2112((x50
2K21ux&)((x50

2K21^xu)/2K, which is
called the invert-about-average step.

The algorithm can be understood as a combination of
inversions, the first aboutuy& and the second about the sta
with an equal amplitude for all basis states. The two inv
sions result in a rotation, transferring amplitude intouy&
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@14,25#. For any normalized state of the compute

(x50
2K21axux&, the application of the transformationWRWO

alters the state as follows:

S ay

(
xÞy

ax

A2K21

D →
WRWOS 12

2

2K

2

2K
A2K21

2
2

2K
A2K21 12

2

2K

D
3S ay

(
xÞy

ax

A2K21

D , ~1!

which is a rotation of the probability amplitude betweenuy&
and all other states, with sinw'212K/2 for largeK. Whenay
and (xÞyax have the same sign, the amplitude for the st
uy& increases with every iteration, and decreases otherw

Note thatR andO, unlikeW, are not products of operator
acting independently upon each qubit. To see this, writeR
52112)nSn,b52112)n(1/22Sn,z). When the product
is expanded, terms such asSn,zSm,z appear. Thus, they re
quire qubit-qubit interactions to implement.

B. Adding classical fields

Consider how to drive the algorithm utilizing external
applied fields. The Walsh-Hadamard transformsWn can be
driven one qubit at a time. Some proposals include meth
by which qubit-qubit couplings, and thusR andO, could also
be driven@9,8#. We assume here that only theWn are exter-
nally driven. Because of the nature of decoherence, it is
sonable to expect that when further transforms are driven,
decoherence rate will only increase.

The electromagnetic-field–qubit coupling is of the for
ke(t)Sx , wheree(t) is the classical electric-field amplitude
and k is the coupling strength.@We are reserving capita
E(t) for the electric-field operator.# For magnetic transitions
substituteb(t) for e(t). The greatest possible control ove
the system occurs when any qubit can be separately dr
by the field. This can be achieved by either spatial resolut
or frequency resolution. In either case, the Fourier com
nents of the pulses acting upon separate qubits do not o
lap. To keep the derivations simple, we restrict the fie
modes to a single polarization and direction for each pu
For example, our system could sit inside of a wavegu
whose dispersion can be ignored. Since this artificially
stricts the spontaneous emission process, we expect th
more complete derivation would result in an increased de
herence rate.

The entire qubit-field system is then described by
Hamiltonian of the form

H/\5(
n

vnSn,z1(
n,m

Jn,mSn,zSm,z

1•••1k(
n

e~rWn ,t !Sn,x . ~2!
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The vn’s are the level separation~in frequency units! for
each qubit, and theJn,m’s are qubit-qubit interactions tha
may be necessary to implementR and O. There might be
higher-order coupling terms between qubits as well. T
e(rWn ,t) is the field that qubitn, at positionrWn , experiences a
time t. We assume that the field pulses that drive theWn are
of constant amplitude,en , of one fixed polarization, and o
fixed frequency,v̄n . Also, we assume that the field is stron
enough so that we can ignore the qubit-qubit couplings d
ing the pulse~but see Ref.@27#!. To implementWn , one
needs to choose the parameters so that the propagator,
by

i
]

]t
Wn~ t !5@vnSn,z1ken cos~v̄nt !Sn,x#Wn~ t !, ~3!

gives the desired transform by some timeT. Try a solution of
the form Wn(t)[exp(2iv̄nSn,zt) Qn(t), for some unknown
transformQ, and drop the rapidly oscillating terms~make the
rotating wave approximation!. Then

]

]t
Qn52 i S ~vn2v̄n!Sn,z1

k

2
enSn,xDQn . ~4!

The propagator for a time-independent Hamiltonian of
form aW •SW is given by exp(2iaW•SWt)5cos(at/2)
22i sin(at/2)aW •SW /a. In our case,aW 5(ken/2,0,vn2v̄n). We
arrive at the correct result when the first and last compon
of this vector are equal in magnitude but opposite in si
Thus, for someV, the field is detuned below the qubit b
v̄n5vn2V/A2, and the field strength isken/252V/A2,
and the pulse duration isp/V. Thus

Wn5 iA2 expS 2 ip
v̄n

V
Sn,zD ~Sn,x2Sn,z!. ~5!

This is the form we seek, except for an extra phase fac
SinceWn is applied uniformly to each qubit in the system,
the spread of thev̄n is not too large, it will be a constan
factor for the entire quantum computer, and can be igno
Otherwise, suitable time delays and phase shifts mus
implemented to achieve this result.

C. Description of the quantum field

Before t50, when the computation starts, the progra
mer creates pulses of the field that propagate toward
drive the qubits at separate times. This is accomplished
classical manner by turning on and off a classical curr
source,j (rW,t), which interacts with the field through the ve
tor potentialHI(t)52*drW A(rW,t) j (rW,t). ~As before, we are
assuming thatj and the fields are polarized along one dire
tion.! The current is classical in the sense that no quan
back reaction on the current source was included in the
teraction Hamiltonian.

Grover’s algorithm requires a series of pulses to dr
each qubitn. Let the current distribution that drives qubitn

be j n(rW,t). It has significant Fourier components over
e

r-
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range ofkWPK(n). As discussed previously,K(n)’s are mu-
tually disjoint sets. To create pulsei in the series, turnj n on
for a short timeDt at time t i . The field state is then trans

formed by exp(2iHI„j n(rW,t i)…Dt/\)5)kWPK(n)DkW(zkW).
DkW(z)5exp(zakW

†1z!akW) are called displacement operator

using akW as the annihilation operator on thekW field mode.
They separately transform each mode of the field accord

to the complex-valued argumentzkW}Dt* j (rW,t)exp(ikW•rW)drW.

Grover’s algorithm is thus (WRWO)N (x50
2K21ux&)n

qubits

) t i
pulses)kWPK(n)DkW„zkW(n,t i)…uvac&, where uvac& indicates the

vacuum state of the field. TheWn’s now act jointly over
qubit n and the field state.

The displacement operators produce coherent field st
that have many classical properties@28#. We require the fol-
lowing: DkW

†(z)DkW(z)51kW , andDkW
†(z)akWDkW(z)5akW1z, and

DkW
†(z)akW

†DkW(z)5akW
†1z!. These lead to the following

identity. Define the positive and negative frequency elec
field operators as

E1~rW,t !5@E2~rW,t !#†5(
kW

iA \v

2e0L3
akWe

i (kW•rW2vt), ~6!

where L is an arbitrary quantization volume. The tot
electric-field operatorE5E11E2 obeys Maxwell’s opera-
tor equations for a source-free region. Given a functionf that
can be represented by a Taylor expansion, then the follow
operator equation holds:

f „E1~rW,t !,E2~rW,t !…exp@2 iH I„j ~rW8,t8!…Dt/\#

5exp@2 iH I„j ~rW8,t8!…Dt/\# f „E1~rW,t !1e1~rW,t;rW8,t8!,

E2~rW,t !1e2~rW,t;rW8,t8!…, ~7!

wheree6 is theclassicalamplitude of the positive or nega
tive frequency components of the electric field that one

pects at positionrW and timet, from the classical current dis

tribution j (rW8,t8), turned on for a short timeDt.

D. Walsh-Hadamard transform

The goal of this section is to find the form of theWn when
the field is quantized. We are going to use the idea that e
pulse should only interact with one qubit, over one sho
time interval, and then interact with no other qubit durin
any other time. We again assume square pulses, with

stant frequencyv̄n , and a detuning from a qubit resonan

of Dv5vn2v̄n . First, commute the displacement operato
into Grover’s algorithm until they are just to the right of th
transform they will drive:
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)
n H Wn~ t i ! )

kWPK(n)

DkW„zkW~n,t i !…J
3R)

n H Wn~ t i 21! )
kWPK(n)

DkW„zkW~n,t i 21!…J O•••,

)
n H Wn~ t2! )

kWPK(n)

DkW„zkW~n,t2!…J
3R)

n H Wn~ t1! )
kWPK(n)

DkW„zkW~n,t1!…J O (
x50

2K21

ux&uvac&.

WhenD commutes pastR, O, andWm with mÞn, thezkW ’s
pick up a phase of exp(2ivt), due to the free propagation o
the pulse while these calculations occur. However,D acting
on qubitn at one time will not commute pastWn at any other
time, even though classically the qubit is not within the pu
envelope. This reflects the interaction of the qubit with t
vacuum field, i.e., spontaneous emission. Our interest is
decoherence that occurs as a result of the field-qubit inte
tion, so we ignore this commuter here~including it would
increase the total decoherence rate!. Thus, in trying to find
the qubit propagator, we only need to considerWn and those
D, just to the right ofWn , that correspond to the pulse th
classically drives the transition.

The Hamiltonian of Eq.~3!, except with the quantum field
operators, describesWn . Again, try a solution of
the form Wn[exp„2 iH 0(n)t/\…Qn where H0(n)/\
5(kPK(n)vakW

†akW1vnSn,z , and drop the rapidly rotating
terms. Then

d

dt
Qn~ t !52 i

k

2
„Sn,1eivntE1~rWn ,t !

1Sn,2e2 ivntE2~rWn ,t !…Qn~ t !. ~8!

The modes overK(n) in the operatorsE6 slowly dephase
during the interaction of the pulse with the qubit. This giv
the effect of the pulse envelope on the qubit, but makes
exact solution difficult. However, our interest is to find on
the lowest-order departures from classical behavior. The
lowing trick is helpful: we are going to commute theD past
Qn . To do this, first insert a unit factor into the propagat
exp„2 iH 0(n)t/\…)K(n)DkWDkW

†Qn(t))K(n)DkW . The leftmost
D will commute to the front of the entire algorithm, and w
solve for the new operatorPn[()D†)Qn()D). From Eq.
~7!, this results in replacingE6 with E61e6(t) in Eq. ~8!,
wheree6(t)5ene7 i v̄nte7 ifn is the classical field, with pulse
amplitude 2en and phasefn . The phase is added in to allow
for an interesting observation later on.

Just as theQn’s live in a rotating frame, thePn’s exist in
a frame in which the coherent state of the field is mapp
onto the vacuum state. The appearance of the classical
profiles in Eq.~8! implies that part of the qubit evolution i
the same as if a ‘‘classical’’ field existed. Photons are s
absorbed and emitted, but in such a way so that the cohe
state of the field is not altered. However, the propagator a
contains field operators, acting upon the transformed vacu
state of the field to create one-photon states which are
e
e
he
c-

n

l-

,

d
ld

ll
nt
o
m
r-

thogonal to the vacuum state. BecauseD is a unitary trans-
form, the displaced one-photon states are orthogonal to
displaced vacuum states that describe the pulses. ThusWn
can entangle the qubit with a field state that is orthogona
the original field state. This is precisely the description o
decoherence mechanism.

The idea that the classical field represents the low
order behavior of the system suggests that one should ex
out Pn as a series in powers of the quantum field operato

d

dt
Pn

(0)52 i
k

2
„e1~ t !Sn,1eivnt1e2~ t !Sn,2e2 ivnt

…Pn
(0) ,

for the classical behavior, and, forj >1,

d

dt
Pn

( j )52 i
k

2
„e1~ t !Sn,1eivnt1e2~ t !Sn,2e2 ivnt

…Pn
( j )

2 i
k

2
~E1Sn,1eivnt1E2Sn,2e2 ivnt!Pn

( j 21) .

Pn
(0) is the evolution under a completely classical field, wh

Pn
(1) incorportates field operators once, so it represents

lowest order quantum effects. We expandPn
( j )[Sn,aPn,a

( j )

1Sn,bPn,b
( j ) 1Sn,1Pn,1

( j ) 1Sn,2Pn,2
( j ) , resulting in

d

dt
Pn,a

(0) 52 i
k

2
eivnte1~ t !Pn,2

(0) ,

d

dt
Pn,b

(0) 52 i
k

2
e2 ivnte2~ t !Pn,1

(0) ,

~9!
d

dt
Pn,1

(0) 52 i
k

2
eivnte1~ t !Pn,b

(0) ,

d

dt
Pn,2

(0) 52 i
k

2
e2 ivnte2~ t !Pn,a

(0) ,

and, for j >1,

d

dt
Pn,a

( j ) 52 i
k

2
eivnt

„e1~ t !Pn,2
( j ) 1E1Pn,2

( j 21)
…,

d

dt
Pn,b

( j ) 52 i
k

2
e2 ivnt

„e2~ t !Pn,1
( j ) 1E2Pn,1

( j 21)
…,

~10!
d

dt
Pn,1

( j ) 52 i
k

2
eivnt

„e1~ t !Pn,b
( j ) 1E1Pn,b

( j 21)
…,

d

dt
Pn,2

( j ) 52 i
k

2
e2 ivnt

„e2~ t !Pn,a
( j ) 1E2Pn,a

( j 21)
…,

Call L65(d/dt)26 iDv(d/dt)1(ke/2)2 a pair of linear
differential operators, recalling thatDv5vn2v̄n is the de-
tuning, and the field amplitude is 2en . We can then rear-
range Eqs.~9! and ~10! to read

L2Pn,a
(0) 50, L1Pn,b

(0) 50, L2Pn,1
(0) 50, L1Pn,2

(0) 50,
~11!

and, for j >1,
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L2Pn,a
( j ) 52 i

k

2 S d

dt
2 iDv D ~eivntE1Pn,2

( j 21)!

2S k

2D 2

ene2 ifne2 i v̄ntE2Pn,a
( j 21) ,

L1Pn,b
( j ) 52 i

k

2 S d

dt
1 iDv D ~e2 ivntE2Pn,1

( j 21)!

2S k

2D 2

eneifnei v̄ntE1Pn,b
( j 21) ,

~12!

L2Pn,1
( j ) 52 i

k

2 S d

dt
2 iDv D ~eivntE1Pn,b

( j 21)!

2S k

2D 2

ene2 ifne2 i v̄ntE2Pn,1
( j 21) ,

L1Pn,2
( j ) 52 i

k

2 S d

dt
1 iDv D ~e2 ivntE2Pn,a

( j 21)!

2S k

2D 2

eneifnei v̄ntE1Pn,2
( j 21) .

The initial conditions arePn,a
(0) 5Pn,b

(0) 51 andPn,6
(0) 50, and

all the P( j )50 for j >1; and for the first derivatives
dPn,a

(0) /dt5dPn,b
(0) /dt50, and dPn,6

(0) /dt52 i (k/2)ene7 ifn,
and dPn,a

(1) /dt5dPn,b
(1) /dt50, and dPn,6

(1) /dt5

2 i (k/2)E6(rWn,0), and all thedP( j )/dt50 for all j >2. We
solve,

Pn,a
(0) 5eiDvt/2Fcos~ut !2 i

sin~ut !

u

Dv

2 G ,
Pn,b

(0) 5e2 iDvt/2Fcos~ut !1 i
sin~ut !

u

Dv

2 G ,
~13!

Pn,1
(0) 52 ieiDvt/2Fsin~ut !

u Gk2 ene2 ifn,

Pn,2
(0) 52 ie2 iDvt/2Fsin~ut !

u G k

2
eneifn,

whereu5ADv21(ken)2/2. This is the usual expression fo
a Bloch vector influenced by a monochromatic field.

The solutions forP(1) are linear in the creation and ann
hilation operators. However, the field state they operate o
the vacuum state, so for the lowest order effect we will o
require the solution for the creation operators. These are
sonably complex, so we simplify by settingDv5V/A2,
kE52V/A2, and the pulse length top/V to reproduce the
classical Walsh-Hadamard transform. Then, to lowest or
P is

i

A2
S e2 ip/A8 e2 ip/A8eifn

eip/A8e2 ifn 2eip/A8 D 1
k

4V (
kWPK(n)

A \v

2e0L3

3S e2 ip/A8e2 ifngb e2 ip/A8g2

eip/A8e2ifng1 eip/A8e2 ifnga
D e2 ikW•rWnakW

†. ~14!
is
y
a-

r,

The functions that give the Fourier components for the sh
of the one-photon ‘‘back reaction field’’ are given by

ga5

2x21
x

A2
211S 11

x

A2
D eipx

2A2x~x221!
,

gb52

11
x

A2
1S 2x21

x

A2
21D eipx

2A2x~x221!
, ~15!

g152
11eipx

4~x221!
, g25

~4x13A2!~11eipx!

4A2~x221!
,

for which x[(v2v̄n)/V. As in the classical field case, th
extra phase factors of6 ip/A8 in Eq. ~14! can be compen-
sated for. Now we can see a curious feature of the b
reaction:g1 picks up twice the phase 2fn of any of the
other terms. This is consistent with the property that the
moval of a photon from a coherent state does not alte
while the addition of a photon does, so to create an ‘‘erro
by raising the qubit state, at least two absorptions need
occur. It also demonstrates that the phase of the field en
into the decoherence. Thus phase cycling@26# could be used
to cancel signal from those computers that suffered ag1

scattering event.
The Fourier transform of theg functions are given in Fig.

1. They are the time-domain envelopes of the one-pho
states that accompany the change in the qubit state. At
point, Eq. ~14! is exactly the kind of single-qubit decohe
ence that quantum error correction is typically designed
repair @18–20#. In the second part of this paper, we w
examine an interesting case where this decoherence me
nism can flip multiple qubits at once.

FIG. 1. A plot of the Fourier transform of theg functions of Eq.
~15!. Time is scaled to the parameterV21, which has arbitrary
units, and the functions are unitless. They are the envelope
one-photon states emitted by a qubit whose state changes are
cated. For comparison, the envelope of the classical pulse is
shown~not to scale!.
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Now setting the field phases to zero, we want to coll
the sum of creation operators with the factorsg into a single
operatorG that creates a normalized one-photon state, so

P5
i

A2
S 1 1

1 21D 1eS AI bGb AI 2G2

AI 1G1 AI aGa
D , ~16!

whereG†G51. To find the normalization for the one-photo
states, first change(v into (L/2pc)*dv. However, there is
sufficient bandwidth to allow the square pulse, with Four
components (eipx21)/x. The one-photon states have the
Fourier components concentrated in this range as well, so
can let the limits of integration extend to infinity. Finally, w
assume the bandwidth is small compared to the center
quency of the pulse, so theAv term can be removed from
the integrand. This results in a prefactor ofe

5(k/4)A\v̄n /4pe0cL2V. By numerical integration,I a

5*2`
` uga(x)u2 dx54.297, I b54.297, I 150.617, and I 2

510.451. Although theGuvac& states are orthogonal to th
initial coherent state, they are not mutually orthogonal. La
on, we will require their~non-normalized! overlap integrals
I a,b 5AI aI b ^vacuGa

†Gb uvac&5*2`
` ga

!(x)gb (x) dx50.614
1 i2.221, I a,1520.6171 i1.110, I a,254.3002 i3.331,
I b,150.6171 i1.110, I b,2524.3002 i3.331, and I 1,2
521.850.

The important result of this section is the transformatio
Eq. ~16!. Each qubit-field interaction has a probability am
plitude, proportional toV21/2, to entangle the qubit with a
field state orthogonal to the original field state. Thus lar
fields cause less decoherence. Actually, this may seem c
terintuitive. Consider the interference pattern produced b
coherent beam of electrons incident upon a double slit. N
allow a laser to interact with one of the two paths the el
tron could travel from the slit to the detector. If photons a
scattered out of the coherent modes into vacuum states,
the visibility of the interference pattern is degraded, as
pected@11#. If, however, only stimulated emission is impo
tant, then the visibility of the interference pattern should
crease as the laser intensity is increased. The Poi
statistics of a coherent state can more efficiently hide
information about which path the electron takes as the n
ber of photons in the beam increases, when the incohere
emitted photon travels along with the original pulse. A sim
lar situation has been noted with regard towelcher Wegex-
periments in atomic interferometry~see, e.g., Ref.@29#!.

E. Grover’s algorithm with decoherence

Taking the result from the previous section, Grover’s
gorithm is now

)
j

stepsF )
n51

K S 12
i e

A2
An~ t j 11!D WRW

3 )
n51

K S 12
i e

A2
Bn~ t j !D OG S 1

A2K (
x

ux& D uvac&.

~17!
t

at

r

e

e-

r

,

r
n-
a
w
-

en
-

-
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e
-
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-

-

The displacement operators, now to the left of the algorith
are not shown.A and B are from Eq.~16!, from which a
factor of W is first removed:

An5S AI bGb1AI 2G2 AI bGb2AI 2G2

AI 1G11AI aGa AI 1G12AI aGa
D ,

Bn5S AI bGb1AI 1G1 AI 2G21AI aGa

AI bGb2AI 1G1 AI 2G22AI aGa
D ~18!

We expand out Eq.~17!, dropping terms ofO(e2) and
greater. As previously discussed, eachAn and Bn can en-
tangle qubitn with field states that are mutually orthogona
and orthogonal to the initial field state, since the spatial
velope of photons emitted during different Walsh-Hadam
transforms do not overlap. Thus the probability that the fi
qubit state isuy& is the sum of the squares of the separ
terms in Eq.~17!. This is what we wish to find.

After j successful steps of the algorithm, the compu
state is given by

S cos~ j w!

A2K21
(
xÞy

ux&1sin~ j w!uy& D uvac&,

where sinw52A2K21/2K @25#. The general trend for the
influence of the back reaction can be discerned from
specific example ofK53 qubits, with a solutiony52, or the
stateu010&. Suppose the back reaction occurs for the firstW
of the two in the next step of the algorithm. If it isW for the
least significant qubit, then the computer state becomes

H cos~ j w!

A2K21
„~Bbu0&1B1u1&)1~Bau1&1B2u0&)

1~Bau3&1B2u2&)1~Bbu4&1B1u5&)

1~Bau5&1B2u4&)

1~Bbu6&1B1u7&)1~Bau7&1B2u6&)…

2sin~ j w!~Bbu2&1B1u3&)J uvac&. ~19!

The above subscripts indicate the matrix elements ofB, so
Bb[^0uBu0&, B2[^0uBu1&, Ba[^1uBu1&, and B1

[^1uBu0&. The decoherence, like the Walsh-Hadama
transform, is the same from qubit to qubit, so no qubit ind
is required. The amplitudes of pairs of states that differ
their least significant digit such as~0,1! and~2,3!, and so on,
are mixed. If the error occurs for the second least signific
qubit, then
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H cos~ j w!

A2K21
„~Bbu0&1B1u2&)1~Bau1&1B2u3&)1~Bau3&1B2u1&)1~Bbu4&1B1u6&)

1(Bau5&1B2u7&)1~Bbu6&1B1u4&)1(Bau7&1B2u5&)…2sin(j w)~Bbu2&1B1u0&)J uvac&. ~20!

The difference is in which pairs of states are mixed, and whether the qubit involved in the back reaction was initially
0 or 1. This gives us the trend for the case of any number ofK qubits. Summing the squares of these states over all the qu
the total probability for a back reaction during the first of the twoW’s at stepj, is

e2

2 FK

2

2K22

2K21
cos2~ j w!„u~Bb1B2!uvac&u21u~Ba1B1!uvac&u2…

1~K2i yi!S Ucos~ j w!

A2K21
B2uvac&2sin~ j w!Bbuvac&U2

1Ucos~ j w!

A2K21
Bauvac&2sin~ j w!B1uvac&U2D

1i yi S Ucos~ j w!

A2K21
Bbuvac&2sin~ j w!B2uvac&U2

1Ucos~ j w!

A2K21
B1uvac&2sin~ j w!Bauvac&U2D G .
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The factori yi appears since the back reaction depends u
whether a qubit was initially in state 0 or 1. When 2K@1, we
use the approximations ( j 51

p/2wcos2(jw)'*0
p/2cos2 x dx/w

5p/4w, ( j 51
p/2wsin2(jw)'p/4w, and ( j 51

p/2wsin(jw)cos(jw)
'1/2w. Keeping only the largest terms inK, the probability
that a back reaction occurs for any qubit, and at any s
during the first of the twoW transforms is given by

e2

2

p

8
2K/2FK

2
~ u~Bb1B1!uvac&u21u~Ba1B1!uvac&u2)

1~K2i yi!~ uBbuvac&u21uB1uvac&u2)

1i yi(uB2uvac&u21uBauvac&u2)G . ~21!

If the back reaction occurs during the secondW in an
iteration, thenj starts at 2~the first invert-about-average ste
is always carried out!, and the sign of the amplitude foruy& is
positive. Taking the limit for largeK, the cross-terms tha
depend upon the sign ofay drop out, and the final expressio
is the same as above except with theB replaced withA, and
the total probability for a back reaction is then the sum
these two. From Eq.~18!, the matrix elements are express
in terms of the normalization and overlap integrals, e
u(Bb1B2)uvac&u21u(Ba1B1)uvac&u252(I a1I b1I 11I 2)
14 Re(I b,21I a,1). Plugging in, the final probability to end
up entangled with an orthogonal field state is

e2A2K~6.75K17.71iyi !. ~22!

If a computer is altered after emission of an incoher
photon, this does not necessarily imply that further iteratio
of Grover’s algorithm cannot produce a useful result. H
much do the orthogonal field states contribute to the cor
final answer? First, note that the matrix elements ofA andB
all have similar magnitudes. Thus they equally mix the st
uy& with the state connected to it by flipping the qubit th
n

p,

f

.,

t
s

ct

e
t

experiences the back reaction. Early in the algorithm wh
sin(jw)!1, this does not increase the amplitude inay signifi-
cantly, since the state that mixes withuy& has amplitude
cos(jw)/A2K!1. At later times, however, the amplitude o
uy& is near 1, so the back reaction decreases the probabili
be in stateuy& by roughly half.

Thus, a back reaction at stepj sets the computer back t
step' j /2. Recall from Eq.~1! that amplitude is rotated into
uy& only when the signs ofay and(xÞyax are the same. Fo
large K, the amplitude ay is 'sin(jw)(AI bGb

1AI 2G2)uvac&. The other qubit states are entangled w
field states that are partly orthogonal to this state, but
amplitude that lies along the same direction in the Hilb
space of the field is, for largeK, cos(jw)(Ib1Ib,1

1I2,b1I2,1)/AI b1I 212 Re(I b,2)5(22.2321 i0.448)cos(jw).
The real part has switched sign, and so further iterations
actually remove amplitude fromuy&. In general, decoherenc
adds a random phase that will prevent the computer fr
recovering the correct result roughly half the time. The co
clusion is that a continued operation of Grover’s algorith
reduces the decoherence rate of Eq.~22! by roughly half, but
cannot eliminate it.

III. CONTROLLED-NOT GATE

Nothing in Sec. II is necessarily troublesome to quant
computing, since quantum error correcting methods h
been devised to correct these single-qubit errors@18–20#.
Although codes to correct a greater range of errors than
the single-qubit errors can also be derived, they beco
more complex and difficult to implement. Thus an interesti
question is the following: Are there cases for this decoh
ence where multiple qubit flips or phase flips occur? To fi
out, we first generalize the method to calculate the deco
ence. We then examine a specific implementation of
fault-tolerantCNOT gate, as outlined by Shor@15#. The gate
is fault tolerant when several assumptions can be made a
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the nature of the decoherence@20#. A detailed calculation of
the errors allows one to observe how well these assumpt
are justified. It also represents an example of how the ch
of a quantum computer architecture can influence the de
herence mechanism.

A. Calculation of the decoherence

Using the notation of Eqs.~2! and ~6!, we have a system
of qubits and field modes whose evolution is described b

H/\5(
n

vnSn,z1 (
n.m

Jn,mSn,zSm,z

1•••1(
kW

vakW
†akW1kE(

n
mnSn,x . ~23!

TheJn,m’s are needed to drive theCNOT gates. LetH0 denote
the terms inH that describe the evolution of the qubits alon
H0 could include couplings besides the form give above,
example, the secular dipolar coupling(n.m(Kn,m/4)
3(Sn,1Sm,21Sn,2Sm,1). Call uq& the eigenstates ofH0,
with eigenvalues\vq . Pairs of theuq& form two-level sys-
tems that are the qubits of the computer. Themn’s describe
the coupling of the field with each qubit. If qubits are chos
as the internal states of individual particles, and the fi
spatially overlaps with only a few of these particles, th
mostly mn50. As previously, we ignore issues such as
divergence of the beam by restricting the modes of the fi
to a single polarization and direction.

To find the total qubit-field propagator during the acti
of a pulse,U(t), first commute the displacement operato
describing the coherent field state to the left. Spontane
emission from qubits not under the influence of the field
ignored, so only the commuters of the displacement op
tors with those operators describing the field-qubit gate
calculated, as discussed previously. ThusE6→E61e6(t)
in Eq. ~23!. Let H(t)5HC(t)1HQ , whereHQ contains the
quantum-field–qubit coupling terms. Except for the phot
number operators,HC(t) describes the behavior of the qua
ns
ce
o-

.
r

n
d

e
ld

us
s
a-
re

n

tum computer under the influence of a completely class
driving field,e(t). If the propagator forHC(t), call it UC(t),
is known, then

U~ t !5UC~ t !2
i

\E0

t

dt8UC~ t2t8!HQUC~ t8!

2
1

\2E0

t

dt8E
0

t8
dt9UC~ t2t8!

3HQUC~ t82t9!HQUC~ t9!1••• ~24!

is a formal solution forU(t).
There are multiple sources for errors here. FirstUC might

not be exactly the desired transform. This represents an
perfection in the coherent evolution of the computer. Th
there is the first integral, call itUE . It results from the quan-
tum computer, accelerating under the influence of a driv
field, emitting a photon in a state that is orthogonal to t
coherent state of the field~in other words, incoherently!, and
thus altering the state of the computer. Finally, the high
order terms represent multiple incoherent photon scatte
processes.

FindingUC(t) can be a formidable task, especially for a
arbitrary pulse shape. The simplest case is whene(t)
5e0 cos(v̄t), acting for a timeT. In this case, we letUC(t)
5exp(2it(kWvakW

†akW)exp(2iv̄t(nSn,z)UC1, and make the
rotating-wave approximation. The effective Hamiltonian f
UC1 is then

(
n

~vn2v̄ !Sn,z1 (
n.m

Jn,mSn,zSm,z

1•••1~ke0 /2!(
n

mnSn,x , ~25!

which is time independent. Thus the eigenvalueslp and
eigenvectorsucp& can be numerically determined. Note th
these states are not the same asuq&. Since the lowest orde
decoherence comes only from emission of a photon, we
keep only the creation operators to find
UE52
i

\E0

T

UC~T2t8!HQUC~ t8!dt8→2
k

2
UC~T!(

kW
eikW•rWA \v

2e0L3

3E
0

T

UC1
† ~ t8!eit 8~(kWvakW

†akW1(nv̄Sn,z!S akW
†(

n
mnSn,2De2 i t 8((kWvakW

†akW1(nv̄Sn,z)UC1~ t8!dt8

52
k

2
UC~ t !(

kW
eikW•rWA \v

2e0L3
akW

†E
0

T

UC1
† ~ t8!S (

n
mnSn,2DUC1~ t8!ei (v2v̄)t8dt8

52
k

2 (
kW

eikW•rWA \v

2e0L3
eiT(kWvakW

†akWakW
†(

p,q
e2 i v̄T(nSn,zucp&^cpu

3S (
n

mnSn,2D ucq&^cque2 ilpT
ei (v2v̄1lp2lq)T21

i ~v2v̄1lp2lq!
. ~26!
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The difference between this derivation and the result in S
II is that, in general, an analytical determination of the f
quency dependence of the one-photon states on the pa
eters inH0 is not possible, unless an exact diagonalization
Eq. ~25! is known. As previously, we can breakUE up ac-
cording to its effect on the qubits, and collect the terms t
create a normalized one-photon state. The normalization
troduces a factor ofALT/c, along with unitless overlap in
tegrals.

B. Implementing the CNOT gate

The CNOT gate is defined as the transform on two qub
that flips the second qubit only if the first qubit is 1. If a pa
of qubits have distinct transition frequencies, and are coup
resulting in a spectrum as shown in Fig. 2, then a simple w
to implement this gate is to use a frequency-selective p
that drives only the transitionu11&↔u10&. An illuminating
account is found in Ref.@30#. Our interest is to use this
technique to implement Shor’s prescription for a fau
tolerantCNOT @15#. Two qubits are encoded into two separa
seven-qubit spaces, which we label asA1 –A7 andB1 –B7.
The codewords to be used are given in Ref.@31#. This par-
ticular code has the property that the application ofCNOT

gates from An to Bn for eachn results in the application o
a CNOT gate between the two encoded qubits. The encod
can correct one spin-flip error, but not in general two or m
@31#.

This gate is fault tolerant because each individualCNOT

gate is a transversal operation: no more than one qub
each codeword is acted upon during the entire process.
pose one makes the natural assumption that errors occur
at those qubits that are ‘‘acted upon’’ by the gate, e.g.,
CNOT gate fromA1 to B1 does not influence the state of th
A2 qubit. In that case, any error atA1 andB1 can not grow
due to the action of subsequentCNOT gates. Further, to low-
est order, any scrambling of theA1 andB1 qubits is still a
single error per codeword, which can be corrected. The
sumption that errors between separate qubits within a co
word are uncorrelated is one of several listed by Pres
@20#.

We focus on theCNOT gate fromA1 to B1, and suppose
that the encoding, decoding, error correction, and the o
CNOT gates, are all flawless. Further, we limit the calculati
to A1, B1, A2, andB2, to avoid having to treat all 16 38
levels of the total system. We wish to selectively invert t
fourth transition from the left in Fig. 2 with a square puls
From Eq.~13! with Dv50, this can be achieved when th
pulse length and field amplitude are related byke0T5p. To
increase the accuracy of the gate, suppose all the transi

FIG. 2. The first 16 allowed transitions of 28 total, in a 14-qu
system used to implement a fault-tolerantCNOT gate. The two sets
of seven qubits, labeledA andB, are used to encode a single qub
separately. Couplings from eachA to B are necessary in order t
drive the gate.
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are equally spaced, with spacingJ5J(A1,B1)5J(A2,B2)
5„v(A1)2v(A2)…/25„v(A1)2v(B1)…/4. From Eq.~13!,
transitions detuned byDv5(2p/T)AN221/4, for positive
integerN, suffer no change in their populations due to t
pulse. Thus chosing the pulse length to be an integer mult
of 2p/J means that transitions further from the center f
quency of the pulse are less likely to suffer spin-flip erro
In any case, asT→`, UC from Eq.~24! becomes a perfectly
executedCNOT gate.

In order to see this, we first need to determine wh
should be called an error. Starting from an initial codewo
uC&, the state of the system just before error correction i

@UCNOT,A22B2~UC1eUE1••• !UCNOT,A22B2UCNOT,A12B1#

3F )
n51

7

UCNOT,An2BnuC&G ~27!

whereUCNOT is an error-freeCNOT gate. The state of the righ
bracket of Eq.~27!, uC f&, is the correct final codeword. Th
operator in the left bracket of Eq.~27!, F1eG, represents
deviations fromuC f& that the code must correct for.

The different errors are categorized as follows. The o
diagonal elements ofF correspond to spin-flip errors due t
an imperfect, but coherent,CNOT gate. Phase sign-flip errors
which we ignore here, are determined by the diagonal e
ments. There are 64 single spin flip elements, e
z^1110uFu1111& z2 ~states are listed asuA1B1A2B2&). The
code can also repair any of the 64 possible double spin fl
on separate codewords, e.g.,z^0011uFu1111& z2. The remain-
ing 112 off-diagonal elements are ‘‘disallowed.’’ The pos
tions of the different errors in the unitary transform of E
~27! are shown in Fig. 3. A relative measure of the impo
tance of these different processes is given by the sum of
absolute squares of their matrix elements, as shown in Fig
Similarly, the off-diagonal elements ofG are also spin-flip
errors, but accompanied by an incoherently emitted pho
Assuming this photon is lost, we traceG over the field states
before summing the squares of the matrix elements for
different kinds of errors. The elements ofG also have the
prefactor e25(p/16)(ke0)(\v̄)/(e0e0

2/2)(cL2), which is
proportional to the Rabi frequency per photon flux in t
pulse.

The solid lines in Fig. 4 suggest the relative importance
the various errors inF as a function of pulse length. Sinc
the pulse does influenceA2 andB2, there is a possibility
that double spin-flips within a codeword occurs. As the pu
duration lengthens, the excursions of the state vectors forA2
andB2 become smaller, and the gate more nearly fulfills
property that it acts only uponA1 andB1. Thus very short
pulses must be avoided. Since the disallowed errors decr
as the square of the allowed errors, this fault tolerantCNOT

represents a scalable implementation@15#.
On the other hand, the dashed lines in Fig. 4 are sum

squares of elements inG, excluding the prefactore2}T. The
magnitude ofe depends greatly upon the method chosen
implement the gate~see Sec. IV!, but for large enoughT it
will force the dashed lines of Fig. 4 to have a positive slo
As the pulse becomes longer, the field strength decrea
and eventually the probability for single and allowed doub
spin-flip errors to occur increases. Thus, very long pul
must also be avoided. The sum of the squared matrix
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ments for the disallowed double spin flip errors asympto
cally approaches (JT/p)22 for largeT, the same as for the
allowed errors inF. Thus, for largeT, these errors scale a
T21. This curious behavior can be explained as follows. F
a weak field,

FIG. 3. A classification of the different errors found in the un
tary transformsF andG from Eq.~27!. Matrix elements are listed in
the orderu0000&, u0001&, u0010&, and so on tou1111& ~labeled as
uA1B1A2B2&). Circles are single spin-flips, crosses are dou
spin-flips where no more than one spin flip occurs in each co
word, and shaded elements are unrecoverable errors, with tw
more spin-flips per codeword.

FIG. 4. The~unitless! sums of the squares of the matrix el
ments corresponding to different types of spin-flip errors in
implementation of a fault-tolerant CNOT gate, using frequen
selective pulses, as a function of the pulse length. Time is scale
the separation of the different transitions (TJ is unitless!. The solid
lines are fromF, where the single and allowed double spin-fl
errors lie on the same line. Disallowed spin-flip errors~two or more
spin-flips within a codeword! decrease as the square of the repa
able errors. The dashed lines are fromG, representing spin-flips
accompanied by the incoherent emission of a photon. A prefa
e2}T is not included in the plot.
-

r

ucq&'uq&1
ke0

2 (
q8Þq

uq8&

^q8u(
n

mnSn,xuq&

vq82vq

. ~28!

The presence of the lowering operator in Eq.~26! means that
at least one spin-flip occurs; becauseucq& mixes the different
uq&, a single coherent error can become a disallowed er
Thus, for frequency-selective pulses, the decoherence e
can scale in a worse way than the single spin-flip erro
although with a potentially small constant in front. This
consistent with the case ofm50 for A2 andB2, where it
can be shown that all the matrix elements in bothF and G
corresponding to the disallowed errors are zero, for any va
of T.

IV. DISCUSSION

A. Grover’s algorithm

When unitary transforms are driven by externally gen
ated coherent fields in the manner discussed above, a d
herence mechanism exists that, with each applied pu
tends to scramble the computer’s memory. This decohere
mechanism is slightly different from the usual environme
tally induced decoherence, in that it increases as the num
of times the programmer attempts to manipulate the qu
system coherently. In the case of Grover’s search algori
where the Walsh-Hadamard transforms are externally driv
the degradation of the correct response scales ase2K2K/2.

A criticism of this analysis might be in the specific choic
used to implement theWn . Whatever method is chosen, th
field-qubit propagators still hold, and some back react
must exist ~but see below!. In general, the degradatio
should scale as the number of times a qubit transform
driven. For Grover’s algorithm, if no error correction rou
tines are implemented, then the amplitude of the field w
have to increase exponentially with increasing number
qubits, K, in order to keep the error below a fixed boun
Clearly, this is not a scalable way to implement Grove
algorithm.

How important is this decoherence mechanism to the
ferent proposed quantum computer schemes? Let us em
simple order of magnitude arguments, and ignore for
moment the implementation of error-correcting codes.
previously mentioned, the prefactore25(1/64p)(kE/
A2)(\v̄)/(e0E2/2)(cL2) is proportional to the photon flux
in the pulse per Rabi frequency of the qubit. The Wals
Hadamard transforms are roughly a single Rabi cycle lo
so e2 is also the inverse of the total number of photons in
pulse. The rest of the factors are of order unity, so that
probability for decoherence goes asK2K/2 per number of
photons per pulse.

Examine the case where lasers are used to drive si
ions or atoms. A recent experimental demonstration o
logic gate using trapped9Be1 ions as qubits@32# used
1-mW pulses of'1024-s duration at 300 nm. This corre
sponds to 1012 photons per pulse. The very small prefact
will not pose a problem for computations involving a pol
nomial number of steps with increasingK, but for Grover’s
algorithm this mechanism limits the number of qubits
'70.
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Next let us examine the case for NMR quantum comp
ing. First, let us address how to utilize the signal from a la
number of independent quantum computers. Assume th
sample can be prepared in the ground state, and let us ig
the interaction of the computers with one another. The d
culties with these assumptions have been discussed
where@33#. The application of Grover’s algorithm results
a final state

uC&5)
i 51

1023

S ~12g2/2!uy( i )&1g(
x

G~x!ux( i )& D uvac&,

whereG creates orthogonal field states that contribute li
amplitude to the correct solution. The total signal is the s
from all of the quantum computers in the samp
^Cu( i(uy( i )&^y( i )u)uC&5N(12g2/2). The point is that at
low temperatures, the macroscopic decoherence rate is
tiplied by the total number of independent quantum comp
ers in the sample. Typically, NMR usesn'108 Hz, or a
photon energy of 10225 J. Pulses are 100 W for 10ms, for a
total energy of 1023 J. Thus, there are 1022 photons per
pulse. This limits Grover’s algorithm for NMR to'140 qu-
bits if we can do NMR on a single spin system, which is
improvement over other techniques. However, if we requ
the signal from a micromole of computers (1017) in order to
detect the final answer, then we are limited to'25 qubits.
Electron spin resonance is not sufficiently better:n
'1010 Hz, pulses are 1 kW for 10 ns, and thus use 118

photons.
If, as is usually the case,V!vn , then the number of

photons required to generateWn is proportional to
V/(k2vn). Thus physical systems with small values ofvn
or k are the most resistant to the above decoherence me
nism. Unfortunately, such systems have other limitations
vn is small, then the temperature of the system is require
scale with increasingK in an unfortunate manner@33#; while
if k is small, then the time required to drive a gate increas
which slows computation down.

Will driving qubits by externally applied, static electri
fields @9# offer any significant advantages? A similar pr
posal could be envisioned for NMR by applying static ma
netic fields along different directions to the individual spi
to drive the gates. To describe such a process, note that
longitudinal fields are not independent degrees of freedom
the Coulomb gauge@34#. They arise from matrix element
between the qubits and the charged particles that give ris
the static field. Thus, for the case electrostatic fields fr
electrodes, decoherence might result from the field opera
describing the motion of electrons at the Fermi level of
electrodes. Unfortunately, an explicit calculation of this d
coherence is complicated by the band structure of the e
trode, but it would be surprising if no decoherence w
present.
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B. Assumption of uncorrelated errors

The above observations suggest certain types of cohe
manipulations of entire quantum computers should
avoided, even if they result in fewer coherently produc
errors. If frequency-selective pulses are implemented, the
seems that an optimum pulse length must exist: longer pu
use weak fields whose quantum nature becomes more ap
ent to the qubit, while shorter pulses are less frequency
lective, violating the idea that qubits not directly acted up
by the gate are immune to spin-flip errors. It should be no
that there do exist continuously amplitude- and pha
modulated pulses that can selectively invert transitions w
high accuracy within a given bandwidth@35#. They do so
partly by sending the states of qubits that are just outside
the bandwidth along complex orbits whose end points ne
match their starting points. It seems possible that pul
could be tailored to reduce these types of errors. A be
solution might be to avoid these errors altogether by hav
the field spatially overlap with only those qubits to be drive

Finally, we note a few other means by which to redu
this decoherence. First, the appearance of terms suc
uBb1B2u in Eq. ~21! shows that destructive interference c
lessen the probability of photon emission. It is known to
possible to quench spontaneous emission in multilevel s
tems@36#. It seems likely that certain systems could be d
signed to remove, through destructive interference,
lowest-order terms in Eq.~24!. Second, for bulk quantum
computation where there is an excess of signal, phase
cling can be used to cancel the signal from those compu
that suffer certain kinds of errors.

V. CONCLUSIONS

Quantum computers that use external, classically ge
ated electromagnetic fields to drive the evolution of the s
tem undergo a decoherence induced by the quantum b
reaction to those fields. The probability for the quantum s
tem to be degraded increases as the total number of e
nally driven transforms, and inversely as the photon flux
pulse, per Rabi frequency of the transition. Algorithms th
require an exponentially increasing number of pulses as
problem size increase, and thus require some form of e
correction for a scalable implementation. It is also found t
implementing fault-tolerant gates with externally appli
fields that influence all qubits in the system at once, is not
optimal implementation, at least in regards to this decoh
ence mechanism.
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