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When coherent states of the electromagnetic field are used to drive the evolution of a quantum computer, a
decoherence results due to the back reaction from the qubits onto the fields. We show how to calculate this
effect. No assumptions about the environment are necessary, so this represents a useful model to test the
fidelity of quantum error correcting codes. We examine two cases of interest. First, the decoherence from the
Walsh-Hadamard transformations in Grover's search algorithm is foBhgls. Rev. Lett79, 325 (1997)].
Interference effects, and decoherence-dependent phases, are present that could be useful in reducing the
decoherence. Second, Shor’s fault-tolerant contralled-gate is examined, utilizing frequency-selective
pulsesProceedings35th Annual Symposium on Foundations of Computer Sci¢lfleE Press, New York,

1994, pp. 56—63. This implementation is found not to be optimal in regards to fault-tolerant quantum
computation[S1050-294{®9)07212-1

PACS numbes): 03.67.Lx, 32.80.Qk

[. INTRODUCTION quantum system remain coherent if it is interacting with clas-
sical degrees of freedom? Consider trying to produce an ana-

In the original concept of quantum computation, the iso-log of the two-slit interference pattern with electrons, only
lated, coherent evolution of a quantum system correspondagsing light beams to drive the electrons into two separate
to a series of logical operations which could be used to compaths. The interaction of the field with the electron creates an
pute a solution to a problefil]. Once a method of solving a entangled state of the electron and field, from which a mea-
given problem is decided upon, the logical steps in thesurement of the state of the light will reveal information
method are translated into unitary transforms of a quanturabout the position of the electron. To the extent to which the
system[2]. These transforms place constraints on the formlight carries information about which path the electron takes,
for the system Hamiltoniaf, which in turn constrains the interference is losf11-13. Such interference is central to
architecture of the computer. In other words, the programhe working of many quantum programs, e.g., Grover's
determines the system propagatd(t)=exp(-iHt/%), search algorithnf14]. If we use classically generated fields
which constrains the form dfl, whose parameters indicate to drive qubit evolution, will that interaction effectively mea-
the qubit-qubit interactions that must be present in order taure the state of the qubits, and by doing so, destroy the
carry out the program. coherent evolution of the system?

Such quantum computers suffer from a significant draw- To answer this question, we derive quantitative decoher-
back: they are not programmable. Consider the case of NMRnce rates for two cases. First, we examine the influence of
guantum computing. A given program to solve a given prob-driving the Walsh-Hadamard transform in Grover’s quantum
lem results in a set of couplings between distinct spins, search algorithni14] with an external field. Second, we give
which in turn determines a geometry of the molecule to bea more general method by which to calculate this decoher-
used as the computer. Once the molecule is synthesized, it éhce mechanism, and then apply it to Shor’s fault-tolerant
useful only for the method of solving the problem originally controlled-NOT (CNOT) gate [15]. While these questions
decided upon. In contrast with the flexibility of classical, have been previously rais¢d6], to the authors knowledge
transistor-based computers, these quantum computers hame guantitative assessment of their importance has yet been
their programs “hard-wired” into their architecture. given.

However, recent proposals for quantum computer archi- It is helpful to mention here that this decoherence mecha-
tectures seek to overcome this limitation. They use externatism will turn out to be smaller, by many orders of magni-
fields, generated by classical degrees of freedom, in order tiude, than other decoherence mechanisms typically encoun-
drive the quantum system’s evolutid8]. Since classical tered. It certainly does not represent the most immediate
sources can easily be manipulated by the programmer, theskfficulty with implementing NMR quantum computing
methods offer a means by which the programmer can altg6,17]. Rather, the usefulness of this result is that the deco-
the evolution of the quantum system, and thus program thlerence can be calculated without any assumptions about the
computer. Some of these proposals include the use of radimature of the environment. This is because the “environ-
frequency pulses acting upon nuclear spins in liqUis6], ment” in this case is the well understood coherent state of
laser pulses acting upon ions trapped in resondiB, and  the electromagnetic field. Thus it represents a useful toy
electrostatic fields generated from gated electrodes influenenodel by which to test the fidelity of various quantum error
ing the evolution of nuclear spins in semiconduct@} or correcting codes under arbitrarily harsh conditi¢hs,18—
of electrons trapped in quantum dot structurég. 20]. Simulations utilizing different error models may be

A question that naturally arises when one contemplatetelpful in determining the accuracy threshold for fault-
such proposals is the following: How can the evolution of atolerant quantum computin@1].
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Il. GROVER'S ALGORITHM [14,25. For any normalized state of the computer,

A. Search algorithm 32% 13 |x), the application of the transformatioWRWO

i ) alters the state as follows:
Before we consider how to drive a part of Grover's search

algorithm, let us briefly review it here. Grover's quantum a 2 2

search algorithm is a method by which to retrieve elements Y WRW 1-— —K\/ZK— 1
in a subset of a larger s¢il4]. It acts uponK qubits, or E a, | — 2 2
two-level systems, whose levels are arbitrarily labelefDas X#Y 2

and |1). A complete, orthonormal basis for the K1 ToK 2X-1  1- oK
system is the product basis, e.g., foK=3,

{|000,|001),|010,/011),/100),|101),|110),|11D}. 1t is a,

usual to refer to each element of the basis set by the integer

whose binary expansion represents the string of O’s and 1's, X Z ay |, (1)
so that|3)=|011). The elements of the set to be searched are xX#y

labeled by integers from 0 to¥2- 1. Vv2k—1

The subset whose elements we are searching for is speci-
fied according to a condition. For example, we could search , . . . . .
for any integer-valued roots of a given polynomial within aWh'Ch is a rotation of the probability amplitude betweigh

. : . and all other states, with sigr=2>"%? for large K. Whena
fixed range. There are many problems for which, giverxan andS...a. have the same sian. the amplitude for theystate
of the set of possible solutions, it can be checked in a poly Xzyux an, P

ial ber of st hether lution to th b [y) increases with every iteration, and decreases otherwise.
nomial number of Steps WNEeNS a Solton 1o the prob- Note thatR andO, unlike W, are not products of operators
lem, but no known method exists to find all solutions in

, acting independently upon each qubit. To see this, wRite
polynomial stepg22]. These problems can be solved by a_ _ 1 211,S, 4= — 1+ 211,(1/2-S, ). When the product

brute-force search over all possible solutions, which is whajg expanded, terms such &s,S,,, appear. Thus, they re-
Grover's algorithm does. Since Grover's algorithm has beenyire qubit-qubit interactions to implement.

shown to be optimdl23-25, its performance is one impor-

tant indicator of how quantum computation might out-

perform classical computation. B. Adding classical fields

In what follows, we assume there is only a single solution  Consider how to drive the algorithm utilizing externally
y to the problem. It is not difficult to generalize this to mul- applied fields. The Walsh-Hadamard transforviis can be
tiple solutions[24]. The initial state of the quantum com- driven one qubit at a time. Some proposals include methods
puter is 32°;1x)/y2X. The goal is to transfer amplitude by which qubit-qubit couplings, and thiandO, could also
into the statdy) [14] so that a measurement of the systemP€ driven[9,8]. We assume here that only thié, are exter-
yields the solution. This is achieved by a series of transform&@lly driven. Because of the nature of decoherence, it is rea-
of the form WRWQN. W’s are products of operators acting sonable to expect that when further transforms are driven, the

: . : decoherence rate will only increase.
| W, . EachW Welsh-H L - L
on a single qubitllyWy . EachWy is a Welsh-Hadamard The electromagnetic-field—qubit coupling is of the form

. . xe(t)S,, wheree(t) is the classical electric-field amplitude,
which conforms to the common usage in magnetic resonancg 1’ is the coupling strengthiWe are reserving capital
[26]. Each S indicates an operator that transforms only a

E(t) for the electric-field operatdrFor magnetic transitions,

single qubit, whose index is given by the first subscript. Theg htitten(t) for e(t). The greatest possible control over
second ;ub_scrlpt indicates what the operator does. There afjg, system occurs when any qubit can be separately driven
two projection operatorss, ,=|1)(1| and Sn,f: 10X0l, by the field. This can be achieved by either spatial resolution
and the raising and lowering operators &g, =[1)(0| and o frequency resolution. In either case, the Fourier compo-
Sh,-=10)(1|. Also, the three Pauli operators are given bynents of the pulses acting upon separate qubits do not over-
Shx=(Sn++S0-)/2, Shy=(Sy+=S,-)/2, and S,; jap. To keep the derivations simple, we restrict the field
=(Sna=Shp)/2. modes to a single polarization and direction for each pulse.

~ The operatorsR=—1+2[0)(0|] and O=1-2|y)y| are  For example, our system could sit inside of a waveguide
diagonal in the product basi¢The 1 is the unit operatof.  \whose dispersion can be ignored. Since this artificially re-
The operatoO is called the oracle. It is the only means by gyricts the spontaneous emission process, we expect that a
which the algorithm has knowledge of the solution. For ex-more complete derivation would result in an increased deco-
ample, if one were searching for the integer rootP¢x), herence rate.

the O transform might flip the amplitude of only those states, The entire qubit-field system is then described by a
|X>, that SatiSfyP(X):O. The combinatioWWRW can also Hamiltonian of the form

be written as— 1+ 2(Z2 51 x)) (225, X(x|)/2X, which is
x=0 x=0 '
called the invert-about-average step. _
The algorithm can be understood as a combination of two HIR En: w”S”'ZJr;m Jn.mSn,2Sm.2
inversions, the first abody) and the second about the state
with an equal amplitude for all basis states. The two inver- I +K2 e(r,,1)S, .. 2
sions result in a rotation, transferring amplitude it n e
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The w,'s are the level separatiofin frequency unitsfor  range ofk e K(n). As discussed previousK(n)’s are mu-
each qubit, and the, ,'s are qubit-qubit interactions that 41y gisjoint sets. To create pulsén the series, turti, on
may be hecessary to implemeRtand O. Th_ere might be for a short timeAt at timet;. The field state is then trans-
higher-order coupling terms between qubits as well. The

e(r,,t) is the field that qubit, at positionr ,, experiences at g)rzr;;zi ox tzzy + +§3(:5'2r'g né;iltézjm(jti/sh)lgcgﬁfgr({t])?)iz(ezrﬁzz&ors
time t. We assume that the field pulses that drive\tieare Kl2) = explea P P '

of constant amplitudeg,, of one fixed polarization, and of USingai as the annihilation operator on thefield mode.
fixed frequency;n. Also, we assume that the field is strong They separately transform each mode oféthe fleldéaéccg)rdmg
enough so that we can ignore the qubit-qubit couplings durto the complex-valued argumemgecAt[j(r,t)exp(k-r)dr.
ing the pulse(but see Ref[27]). To implementW,, one  Grover's algorithm is thus WRWQN 2§i61|x>ng“bit3
needs to choose the parameters so that the propagator, givﬁﬂmseﬁlzeK(n)DE(ZE(n,ti))WaC), where |vad) indicates the
by vacuum state of the field. The/,'s now act jointly over
9 _ qubit n and the field state.
= Wa(t)=[@nSy .+ k€, COS @nt) Sy JWn(1),  (3) The displacement operators produce coherent field states
that have many classical propert{&8]. We require the fol-

gives the desired transform by some tifelry a solution of  lowing: Di"(2)Di(2) =1z, andDi'(2)agDg(z) = ag+z, and
the form Wi(t)=exp(—iwyS,.0) Qu(t), for some unknown Di'(2)ai'Di(z)=a;'+2". These lead to the following
transfoer’ and drop the rap|d|y osci”ating termmake the |dent|ty Define the pOSitive and negative frequency electric
rotating wave approximationThen field operators as

d . — K +, 2 — = : ho (K T—w
Q=i (0n=0)Sht 585 Qn- (4 E*(r,t)=[E (r,t)]T=2E |\/260L3ake(k NG

The propagator for a time-independent Hamiltonian of the

fom ~a-S ‘is given Dby exp{ia-)=Cos@l2) | nere | s an arbitrary quantization volume. The total
—2i sin@t’2)a- Sla. In our casea=(«ey/2,0wn~wn). We  glectric-field operatoE=E*+E~ obeys Maxwell's opera-
arrive at the correct result when the first and last componentg,, equations for a source-free region. Given a funcfitmat

of this vector are equal in magnitude but opposite in signc,n pe represented by a Taylor expansion, then the following
Thus, for some&, the field is detuned below the qubit by operator equation holds:

w,=w,— /2, and the field strength ise, /2= —Q/\2,
and the pulse duration is/€). Thus

_ fEY(r,t),E~(r,t)exd —iH,((r' ,t')At/#]
. . wWp
W= 28"‘(_'“6311)(3”“_8“1)' ® =exp —iH,(/(r t )DAUVATTET () +e" (F6r 1),

This is the form we seek, except for an extra phase factor.
SinceW, is applied uniformly to each qubit in the system, if

the spread of thgn is not too large, it will be a constant
factor for the entire quantum computer, and can be ignored.

Otherwise, suitable time delays and phase shifts must beh * is the classical litude of th ii
implemented to achieve this result. wheree~ is theclassicalamplitude of the positive or nega-

tive frequency components of the electric field that one ex-
pects at position? and timet, from the classical current dis-
tribution j(r’,t'), turned on for a short timat.

E-(r,t)+e (r,t:r’,t")), 7

C. Description of the quantum field

Beforet=0, when the computation starts, the program-
mer creates pulses of the field that propagate toward and
drive the qubits at separate times. This is accomplished in a
classical manner by turning on and off a classical current
source (', t), which interacts with the field through the vec-  The goal of this section is to find the form of tki, when
tor potentialH, (t) = — [dFA(F.1)](T.1). (As before, we are the field is quantized. We are going to use the idea that each

assuming that and the fields are polarized along one direc-puISe should only interact with one qubit, over one short-

tion) The current is classical in the sense that no quanturfime interval, and then interact with no other qubit during
back reaction on the current source was included in the in@ny other time. We again assume square pulses, with con-

teraction Hamiltonian. stant frequency:n, and a detuning from a qubit resonance

Grover's algorithm requires a series of pulses to driveof A w=w,— w,. First, commute the displacement operators
each qubitn. Let the current distribution that drives quiit  jnto Grover's algorithm until they are just to the right of the
be j,(r,t). It has significant Fourier components over atransform they will drive:

D. Walsh-Hadamard transform
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form, the displaced one-photon states are orthogonal to the
displaced vacuum states that describe the pulses. Whus
] can entangle the qubit with a field state that is orthogonal to
O---,

I1 {wnai)‘H Di@zi(n,t)

thogonal to the vacuum state. Becalxés a unitary trans-
n ke K(n)

the original field state. This is precisely the description of a
decoherence mechanism.

The idea that the classical field represents the lowest-
] order behavior of the system suggests that one should expand

xRI] |vvn<til>‘H Di(zi(n,ti 1))

ke K(n)

out P, as a series in powers of the quantum field operators,

I1 [wnaz)_H Di@zi(n,t,))

n ke K(n)

21 LENOR S (1S, et +e (1S, _e PO
XR];[ [Wn(tl)QH Dg(z,;(n,tl))]o XEO [x)|vac). dt " 2 o e "
ke K(n) =

for the classical behavior, and, fpe 1,
WhenD commutes pasR, O, andW,, with m#n, thez;'s d
pick up a phase of exp(iot), due to the free propagation of  ~ p()— _; 5(e+(t)8n Lelontre™(1)S, _e ient)pl)
the pulse while these calculations occur. HoweZgacting dt' " 2 ’ ' "
on qubitn at one time will not commute pagY,, at any other «
time, even though classically the qubit is not within the pulse —i=(E*S, e +E"S, e lentypU-D
envelope. This reflects the interaction of the qubit with the 2 ’ ’

vacuum field, i.e., spontaneous emission. Our interest is th

decoherence that occurs as a result of the field-qubit intera(E{‘l) 'S the evolut|on.under a completely clas§|cal field, while
tion, so we ignore this commuter hefiacluding it would P, incorportates field operators once, so it represents the

increase the total decoherence yathus, in trying to find ~lOWest g)rder quaz'gum effec(tjs). We expaﬁfﬁ')sshyaPﬁ,{)a
the qubit propagator, we only need to considérand those  +Sn gPrisT Sn+ P’ +Sy -Py’, resulting in
D, just to the right ofW,, that correspond to the pulse that

classically drives the transition. Ep(o) K ontegt (1) PO
. . . - n,a n,—?
The Hamiltonian of Eq(3), except with the quantum field dt ’
operators, describesW,. Again, try a solution of
the form W,=exp(—iHo(n)t/A)Q, where Hy(n)/h EP(O):_ife_iwnte_(t)P(O)
=Skeknm@ak ag+ ©,Sy ., and drop the rapidly rotating dt ™A 2 o
terms. Then g (9
K .
d Ko qiPns=ime et (OPT,
&Qn(t):_lg(sn,-#ewnE (rn,t)
: R d o K —iopta 1y p(0)
+Sp, e MET(r, ))Qn(D). (8 qion-=ize e (DPg,

The modes oveK(n) in the operator€™ slowly dephase and, forj=1,
during the interaction of the pulse with the qubit. This gives

the effect of the pulse envelope on the qubit, but makes an ip(i) _ fe“”nt(e*(t)P(” LETPU-D)
exact solution difficult. However, our interest is to find only dt ne 2 n-— n-— /-
the lowest-order departures from classical behavior. The fol-

lowing trick is helpful: we are going to commute tiepast d ) K ) Coi-1)
Q,,. To do this, first insert a unit factor into the propagator, giPne="ige e (WPLL+E PL ™),

exp(— iH o(n) /7)) DD Qp(t) ryDi. The leftmost
D will commute to the front of the entire algorithm, and we _ K _ )
solve for the new operatd®,=(IID")Q,(IID). From Eq. —PW) =i Ee""”t(e+(t)Pﬂ,)g+ ETPUSY),
(7), this results in replacing ™ with E* +e™(t) in Eq. (8),
wheree™ (t)=e,e*'“nte™¢n is the classical field, with pulse d . K _ _
amplitude 2,, and phasep,. The phase is added in to allow apf{l =i §ef'°’”t(ef(t)P,(1’,)a+ E"PU.Y),
for an interesting observation later on.

Just as th&@,’s live in a rotating frame, th®,'s existin  call £, =(d/dt)2=iAw(d/dt)+ (ke/2)? a pair of linear
a frame in which the coherent state of the field is mappe 'fferer;tial operators, recalling thatw= . is the de-
onto the vacuum state. The appearance of the classical fie ning, and the field,amplitude ise2 W(na caa then rear-
profiles in Eq.(8) implies that part of the qubit evolution is range ’Eqs(9) and (10) to read '
the same as if a “classical” field existed. Photons are still
absorbed and emitted, but in such a way so that the coherent,, PO =0, L, pﬁ%ZQ’ £ PO =0, £,PQ =0,
state of the field is not altered. However, the propagator also (11)
contains field operators, acting upon the transformed vacuum
state of the field to create one-photon states which are omnd, forj=1,

(10
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K 2 : i i
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(12
QM _ . Kk(d ionte+p(i—1)
E,Pnj——lz a—lAw (e“"E"PL ™)
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_(E) enef"ﬁ”ef'w”tEinjﬁl)’
) k(d i i
£+p§1{)_=—i§ EJriAa))(e"”ntEPf{al))

K 2 . — .
- (§> ene el entEr Pl

The initial conditions are?(?),=P{)=1 andP{’. =0, and
all the PW)=0 for j=1; and for the first derivatives,
dP/dt=dP{P)/dt=0, and dP{’L/dt=—i(x/2)e,e™ *n,
and  dP{)/dt=dP{)/dt=0, and  dP{)/dt=
—i(k/2)E*(r,,0), and all thed PY)/dt=0 for all j=2. We
solve,

_ sin(6t) Aw
(0) _ pidot/2) i
P..=¢€ cog 6t) —i ) > |
: sin(6t) Aw
(0) _ a-idwt/2 ;
Phs=¢€"' cog 6t) +i 7 2|
o0 (13)
. Si K :
Pﬁ?)+=—ie'A‘”“2 Eeneﬂ%a
PO) = —jg-idet2 sm(;t) geneiqsn,

whereé= \JAw?+ (xe,)?/2. This is the usual expression for
a Bloch vector influenced by a monochromatic field.
The solutions foP™) are linear in the creation and anni-
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pulse shapes

\

0.5

03 04 0.6 0.7
interaction time
FIG. 1. A plot of the Fourier transform of trgefunctions of Eqg.
(15). Time is scaled to the paramet&—!, which has arbitrary
units, and the functions are unitless. They are the envelopes of
one-photon states emitted by a qubit whose state changes are indi-
cated. For comparison, the envelope of the classical pulse is also

shown(not to scalg

The functions that give the Fourier components for the shape
of the one-photon “back reaction field” are given by

X\
1+ —|e'™

V2

X
2%+ ——1+

2
22x(x2—1)

ga 1

X
1+ —+

V2

X .
2+ —=— 1) e'™

V2
2\2x(x2—1)

1+e ™

-  (4x+32)(1+€™)
4(x2-1)’ -

4./2(x2—1)

9+=

for which x=(w—w,)/€. As in the classical field case, the
extra phase factors of i 7/\/8 in Eq.(14) can be compen-
sated for. Now we can see a curious feature of the back
reaction:g, picks up twice the phaseds, of any of the
other terms. This is consistent with the property that the re-
moval of a photon from a coherent state does not alter it,

hilation operators. However, the field state they operate on ig/hile the addition of a photon does, so to create an “error”
the vacuum state, so for the lowest order effect we will onlyby raising the qubit state, at least two absorptions need to
require the solution for the creation operators. These are reaccur. It also demonstrates that the phase of the field enters

sonably complex, so we simplify by settinjw=Q/+/2,
«xE=—Q//2, and the pulse length 1/ to reproduce the

into the decoherence. Thus phase cyc[iag] could be used
to cancel signal from those computers that suffereg,a

classical Walsh-Hadamard transform. Then, to lowest ordeiscattering event.

Pis

e*iﬂ'/v“g

i
E ( el ™ \Bg—idy
(eiw/@ei%gﬁ e iBg

ei 77/\5§e2i ¢>ng+

hw
2¢ol3

o7 Bgi g «
BTN R Toge >

ke K(n)

—ikTpq -t
eiﬂ'/\geiﬁsnga)e I rnak ’ (14)

The Fourier transform of thg functions are given in Fig.
1. They are the time-domain envelopes of the one-photon
states that accompany the change in the qubit state. At this
point, Eq.(14) is exactly the kind of single-qubit decoher-
ence that quantum error correction is typically designed to
repair [18—20. In the second part of this paper, we will
examine an interesting case where this decoherence mecha-
nism can flip multiple qubits at once.
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Now setting the field phases to zero, we want to collectThe displacement operators, now to the left of the algorithm,
the sum of creation operators with the factgrsito a single  are not shownA and B are from Eq.(16), from which a
operatorG that creates a normalized one-photon state, so thdactor of W is first removed:

i1 VI,Gs \I_G_ WG+ I G- 1,G5—\I_G_
i (1 —1)+6(JCG+ JCGQ)’ o A”:(ﬁei+ﬂea J%Gi—@ea)’

whereG'G=1. To find the normalization for the one-photon

states, first changg,, into (L/27c) [dw. However, there is 5 ( \/GGBJr \/EG+ JI_G_+ \/CGQ) 18
sufficient bandwidth to allow the square pulse, with Fourier n= _ _

components € ™ —1)/x. The one-photon states have their \/GGﬁ \/EG+ -G \/CG“

Fourier components concentrated in this range as well, so we
can let the limits of integration extend to infinity. Finally, we : 2
assume the bandwidth is small compared to the center fre- We expand out Eq(17), dropping terms oO(e") and

£ th | thew t b df greater. As previously discussed, eakh and B,, can en-
quency of the puiseé, So thew term can be removed from tangle qubitn with field states that are mutually orthogonal,
the integrand. This results in a prefactor o€

— and orthogonal to the initial field state, since the spatial en-
=(kl4)Vhow,/4me,cl?Q. By numerical integration,!,  velope of photons emitted during different Walsh-Hadamard
=[7.19.(X)|?dx=4.297,1,=4.297,1,=0.617, and|_  transforms do not overlap. Thus the probability that the final
=10.451. Although the5|vac) states are orthogonal to the qubit state isly) is the sum of the squares of the separate
initial coherent state, they are not mutually orthogonal. Lateterms in Eq.(17). This is what we wish to find.
on, we will require theirlnon-normalizefl overlap integrals After j successful steps of the algorithm, the computer
lo.p= 1ol g(vadG!Gylvac)=*..g4(x)gs(x)dx=0.614  state is given by
+i2.221,1, ,=-0.617+i1.110,1, _=4.300-i3.331,
lg+=0.617+i1.110, 15 _=-4.300-i3.331, and I, _
=—1.850.

coq ]
The important result of this section is the transformation, il ¢) > ) +sine)ly) | |vad,
Eq. (16). Each qubit-field interaction has a probability am- v2h -1 x#y

plitude, proportional ta)~*?, to entangle the qubit with a

field state orthogonal to the original field state. Thus larger

fields cause less decoherence. Actually, this may seem couwhere sinp=22X—1/2¢ [25]. The general trend for the
terintuitive. Consider the interference pattern produced by #fluence of the back reaction can be discerned from the
coherent beam of electrons incident upon a double slit. Nov@pecific example ok =3 qubits, with a solutiory=2, or the
allow a laser to interact with one of the two paths the elecstate|010. Suppose the back reaction occurs for the fist
tron could travel from the slit to the detector. If photons areof the two in the next step of the algorithm. If it W for the
scattered out of the coherent modes into vacuum states, thégast significant qubit, then the computer state becomes
the visibility of the interference pattern is degraded, as ex-

pected/11]. If, however, only stimulated emission is impor-

tant, then the visibility of the interference pattern should in- cosj @)
crease as the laser intensity is increased. The Poisson = ((Bgl0)+B.|1))+(B,|1)+B_|0))
statistics of a coherent state can more efficiently hide the v2h-1

information about which path the electron takes as the num-
ber of photons in the beam increases, when the incoherently
emitted photon travels along with the original pulse. A simi- +(B,[5)+B_|4))
lar situation has been noted with regardaelcher Wegex- “« -

periments in atomic interferometrgee, e.g., Ref29]). +(Bg|6)+B.|7))+(B,|7)+B_|6)))

+(B,[3)+B_|2)) +(Bgl4) +B.[5))

E. Grover's algorithm with decoherence —sin(je)(Bgl2) +B.[3)) { [vac. (19

Taking the result from the previous section, Grover’s al-
gorithm is now

The above subscripts indicate the matrix element8,0fo
B;=(0|B|0), B_=(0|B|1), B,=(1|B[1), and B,
=(1|B|0). The decoherence, like the Walsh-Hadamard
transform, is the same from qubit to qubit, so no qubit index
1 is required. The amplitudes of pairs of states that differ at
\/? 2 Ix) | lvag. their least significant digit such #8,1) and(2,3), and so on,
are mixed. If the error occurs for the second least significant
(17) qubit, then

steps

WRW

K .
| Lﬂl (1— %An<tj+1>

—i—EBt)O
\/En(,

K
<11
n=1
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cogjo)
J2K—1

((Bgl0) +B.[2)) +(B,|1) +B_[3)) + (B,|3) + B_|1)) +(Bgl4) +B.[6))

+(B,|5)+B_|7)) +(Bg|6) +B.[4)) +(B,|7) +B_|5))) —sin(j ¢) (Bgl|2) + B+|0>)} |vag). (20

The difference is in which pairs of states are mixed, and whether the qubit involved in the back reaction was initially in state
0 or 1. This gives us the trend for the case of any numb& gfibits. Summing the squares of these states over all the qubits,
the total probability for a back reaction during the first of the W& at stepj, is

€| K 2%-2 2 ) )
> EECO (ie)((Bg+B_)|vag|“+|(B,+B,)|vag|?)
cosj¢) - ® |codjg) - ’
+(K_||y||)( me|VaC>_Sm(J(P)BB|VaC> + mBa|VaC>_Sm(J(P)B+|VaC> )
cosj¢) . * |cogje) . ’
+lyl WBMV%)—SIH(J(P)BJV&C) +WB+|V3C>—SIH(J¢)BQ|V8C> :

The factor||y| appears since the back reaction depends upoexperiences the back reaction. Early in the algorithm when
whether a qubit was initially in state 0 or 1. Whefs21, we  sin(j¢)<1, this does not increase the amplitudeajnsignifi-

use the approximations =¥ cof(j¢)~[7’codxdxe  cantly, since the state that mixes with) has amplitude
=mldp, IT%sinf(jg)~mldp, and ST¥sin(e)cosfe)  cos(¢)/V2X<1. At later times, however, the amplitude of
~1/2¢. Keeping only the largest terms Ify the probability  |y) is near 1, so the back reaction decreases the probability to
that a back reaction occurs for any qubit, and at any stefhe in statdy) by roughly half.

during the first of the twdN transforms is given by Thus, a back reaction at st¢sets the computer back to

step~j/2. Recall from Eq(1) that amplitude is rotated into
2

€ m K ly) only when the signs of, and=,..,a, are the same. For
5 5295 (I(Bg+B.)vag|*+|(B,+B.)|vag|?) |a?ge K, the amplitude a, is ~sinGe)(Vi,Gp
+ \/fG,)|vac>. The other qubit states are entangled with
+(K=[yl)(|Bglvag|?+ B |vac|?) field states that are partly orthogonal to this state, but the
amplitude that lies along the same direction in the Hilbert
+lyll(|B-|vac|?+|B,|vac)|?)|. (22) space of the field is, for largeK, cos{¢)(lg+lg

1o gH_ N g+ —+2Re( g -)=(—2.232-10.448)cosfp).
The real part has switched sign, and so further iterations will
actually remove amplitude froty). In general, decoherence
adds a random phase that will prevent the computer from
recovering the correct result roughly half the time. The con-
clusion is that a continued operation of Grover’s algorithm
reduces the decoherence rate of &) by roughly half, but
cannot eliminate it.

If the back reaction occurs during the secoiin an
iteration, therj starts at Athe first invert-about-average step
is always carried oyt and the sign of the amplitude foy) is
positive. Taking the limit for large, the cross-terms that
depend upon the sign af, drop out, and the final expression
is the same as above except with Bieeplaced withA, and
the total probability for a back reaction is then the sum of
these two. From Eq18), the matrix elements are expressed
in terms of the normalization and overlap integrals, e.g., Ill. CONTROLLED-NOT GATE
|(Bg+B_)|vag|*+|(B,+B.)vag|?=2(I ,~ 1 g+ 1. +1_)
+4Re(g - +1, ). Plugging in, the final probability to end Nothing in Sec. Il is necessarily troublesome to quantum

up entangled with an orthogonal field state is computing, since quantum error correcting methods have
been devised to correct these single-qubit erfd&-24.
€ TIKH+7. . though codes to correct a greater range of errors than just
2. [2X6.7 +7.71lyl) (22)  Although cod g ge of han j

the single-qubit errors can also be derived, they become
If a computer is altered after emission of an incoherentmore complex and difficult to implement. Thus an interesting
photon, this does not necessarily imply that further iterationgjuestion is the following: Are there cases for this decoher-
of Grover’s algorithm cannot produce a useful result. Howence where multiple qubit flips or phase flips occur? To find
much do the orthogonal field states contribute to the correabut, we first generalize the method to calculate the decoher-
final answer? First, note that the matrix elementé@hndB  ence. We then examine a specific implementation of the
all have similar magnitudes. Thus they equally mix the statdault-tolerantcNOT gate, as outlined by Sh¢i5]. The gate
ly) with the state connected to it by flipping the qubit thatis fault tolerant when several assumptions can be made about
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the nature of the decoheren@d]. A detailed calculation of tum computer under the influence of a completely classical
the errors allows one to observe how well these assumptiordriving field, e(t). If the propagator foH(t), call it Uc(t),

are justified. It also represents an example of how the choicts known, then

of a quantum computer architecture can influence the deco-

herence mechanism. U(t)=U(t) - %—f;dt’uc(t—t’)HQUc(t’)
A. Calculation of the decoherence 1 y
Using the notation of Eq€2) and(6), we have a system - — dt’f dt"Uc(t—t")
of qubits and field modes whose evolution is described by n?Jo 0
XHoUc(t'—t")HgUc(t") + - - - (29
H”FZ Sy 2+ nzm Jn,mSh,z5m,2 is a formal solution fotU(t).

There are multiple sources for errors here. Rirgstmight
. not be exactly the desired transform. This represents an im-
e +Z waiagt kED, unSax. (29 perfection in the coherent evolution of the computer. Then
K n . . .
there is the first integral, call Wg. It results from the quan-

Thed, ,'s are needed to drive thenoT gates. LetH, denote tum computer, accelerating under the influence of a driving
the terms irH that describe the evolution of the qubits alone. fi€ld; emitting a photon in a state that is orthogonal to the

H, could include couplings besides the form give above, forcoherent §tate of the fielah other words, inqoherent]yar!d
e>?amp|e the secul?ar gdipolar couplin@ngm(Kn 4 thus altering the state of the computer. Finally, the higher-

X(SnsSn_+S,_Sm.). Call |q) the eigenstates oFto, order terms represent multiple incoherent photon scattering

ith o lued: Pairs of th ¢ lovel processes.
with eigenvalues g . Pairs of t €lg) form two-leve Sys- Finding U(t) can be a formidable task, especially for an
tems that are the qubits of the computer. Thes describe

- X - ; - arbitrary pulse shape. The simplest case is wilegt)
the coupling of the field with each qubit. If qubits are chosen:e cos@_)t) acting for a timeT. In this case, we let(t)
as the internal states of individual particles, and the field ©° >/ + 9 — ' €
spatially overlaps with only a few of these particles, then— EXP( 12w a)exp(-iwt=,$,)Uc;, and make the
mostly x,=0. As previously, we ignore issues such as the'otating-wave approximation. The effective Hamiltonian for
divergence of the beam by restricting the modes of the ﬁeléJCl is then
to a single polarization and direction. _

To find the total qubit-field propagator during the action 2 (0n=®)Sh,+ > JnmSh Sz
of a pulse,U(t), first commute the displacement operators A nem
describing the coherent field state to the left. Spontaneous
emission from qubits not under the influence of the field is T +(Keo/2); HnShx s (25
ignored, so only the commuters of the displacement opera-
tors with those operators describing the field-qubit gate argvhich is time independent. Thus the eigenvalugs and
calculated, as discussed previously. THifs—E™ +e™(t) eigenvectorgy,) can be numerically determined. Note that
in Eq. (23). Let H(t)=Hc(t)+Hq, whereHq contains the these states are not the samda@s Since the lowest order
quantum-field—qubit coupling terms. Except for the photondecoherence comes only from emission of a photon, we can

number operatordi(t) describes the behavior of the quan- keep only the creation operators to find

U "My (T—t" ) HoUo(t)dt' — — =U(T)S) ek fro
_ b ~ _k .
E , e oUc > Uc - 2L’

h

T _
> f Uél(t/)eit '(Spoag agt =08, )
0

aIZTE Mnsn _)e—it'(ngagfa(+2n;SH’Z)UC1(t/)dt/
n
K ik-r ho _t T T ’ ’ i(wfg)t’ ’
“pUcX e 2o 3% |, Vet 2 Sy, - [Uea(t)elm M dt

K - | he —
[ e|k-r el TZkway aka-’r e 1oTZ Sy,
2 EIE ZEoL3 K ;1 |'70p><‘/’p|

i(0-0thp=AT_ 1

X

; ,UvnSn,—) | ‘//q><‘//q|e7i)\p-r .

— . 26
(o= w+N;—Ng) (29
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The difference between this derivation and the result in Secare equally spaced, with spacidg=J(A1,B1)=J(A2B2)
Il is that, in general, an analytical determination of the fre-=(w(A1)— w(A2))/2=(w(Al)— w(B1))/4. From Eq(13),
quency dependence of the one-photon states on the paragiansitions detuned by w=(27/T)N?—1/4, for positive
eters inH, is not possible, unless an exact diagonalization ofintegerN, suffer no change in their populations due to the
Eq. (25 is known. As previously, we can bredkz up ac- pulse. Thus chosing the pulse length to be an integer multiple
cording to its effect on the qubits, and collect the terms thabf 277/J means that transitions further from the center fre-
create a normalized one-photon state. The normalization irquency of the pulse are less likely to suffer spin-flip errors.
troduces a factor of/LT/c, along with unitless overlap in- In any case, a§—, U from Eq.(24) becomes a perfectly
tegrals. executedcNOT gate.
In order to see this, we first need to determine what
should be called an error. Starting from an initial codeword
B. Implementing the cNOT gate | W), the state of the system just before error correction is

The cNOT gate is defined as the transform on two qubits[U
that flips the second qubit only if the first qubit is 1. If a pair
of qubits have distinct transition frequencies, and are coupled
resulting in a spectrum as shown in Fig. 2, then a simple way X
to implement this gate is to use a frequency-selective pulse

that drives only the transitiopl1)«|10). An illuminating  whereUy,, is an error-freeNoT gate. The state of the right
account is found in Ref[30]. Our interest is to use this pracket of Eq(27), |¥;), is the correct final codeword. The
technique to implement Shor's prescription for a fault-operator in the left bracket of Eq27), F+ G, represents
tolerantcNOT [15]. Two qubits are encoded into two separatedeviations from W) that the code must correct for.
seven-qubit spaces, which we label/sbk-A7 andB1-B7. The different errors are categorized as follows. The off-
The codewords to be used are given in R&il]. This par-  diagonal elements df correspond to spin-flip errors due to
ticular code has the property that the applicationcefor  an imperfect, but coherergNOT gate. Phase sign-flip errors,
gates from A to Bn for eachn results in the application of which we ignore here, are determined by the diagonal ele-
a cNOT gate between the two encoded qubits. The encodingnents. There are 64 single spin flip elements, e.g.,
can correct one spin-flip error, but not in general two or mord(1110F|1111|? (states are listed aA1B1A2B2)). The
[31]. code can also repair any of the 64 possible double spin flips
This gate is fault tolerant because each individoabT  on separate codewords, e.J0011F|111D]?. The remain-
gate is a transversal operation: no more than one qubit img 112 off-diagonal elements are “disallowed.” The posi-
each codeword is acted upon during the entire process. Sutiens of the different errors in the unitary transform of Eq.
pose one makes the natural assumption that errors occur onlg7) are shown in Fig. 3. A relative measure of the impor-
at those qubits that are “acted upon” by the gate, e.g., théance of these different processes is given by the sum of the
CNOT gate fromA1 to B1 does not influence the state of the absolute squares of their matrix elements, as shown in Fig. 4.
A2 qubit. In that case, any error AL andB1 can not grow Similarly, the off-diagonal elements @ are also spin-flip
due to the action of subsequezNOT gates. Further, to low- errors, but accompanied by an incoherently emitted photon.
est order, any scrambling of th&l andB1 qubits is still a  Assuming this photon is lost, we traGover the field states
single error per codeword, which can be corrected. The afefore summing the squares of the matrix elements for the
sumption that errors between separate qubits within a codelifferent kinds of errors. The elements Gf also have the
word are uncorrelated is one of several listed by Preskilbrefactor 62:(77/16)(Ke0)(ﬁg)/(foeg/z)(cLz), which is
[20]. proportional to the Rabi frequency per photon flux in the
We focus on theeNoT gate fromAl to B1, and suppose pulse.
that the encoding, decoding, error correction, and the other The solid lines in Fig. 4 suggest the relative importance of
CNOT gates, are all flawless. Further, we limit the calculationthe various errors iff as a function of pulse length. Since
to Al, B1, A2, andB2, to avoid having to treat all 16384 the pulse does influenca&2 andB2, there is a possibility
levels of the total system. We wish to selectively invert thethat double spin-flips within a codeword occurs. As the pulse
fourth transition from the left in Fig. 2 with a square pulse. duration lengthens, the excursions of the state vector&Zor
From Eq.(13) with Aw=0, this can be achieved when the andB2 become smaller, and the gate more nearly fulfills the
pulse length and field amplitude are relatedd®yT=7. TO  property that it acts only upoAl andB1. Thus very short
increase the accuracy of the gate, suppose all the transitiopgiises must be avoided. Since the disallowed errors decrease
as the square of the allowed errors, this fault tolenT
A1 B1 A2 B2 A3 B3 A4 B4 represents a scalable implementatias].
| | | | | | | | | | | | | | | | On the other hand, the dashed lines in Fig. 4 are sums of
squares of elements i@, excluding the prefactog?=T. The
l‘m’l (';a’é) ~RTA4E4) magnitude ofe depends greatly upon the method chosen to
’ ’ ’ implement the gatésee Sec. IV, but for large enougf it
FIG. 2. The first 16 allowed transitions of 28 total, in a 14-qubit Will force the dashed lines of Fig. 4 to have a positive slope.
system used to implement a fault-toleramtoT gate. The two sets As the pulse becomes longer, the field strength decreases,
of seven qubits, labeled andB, are used to encode a single qubit and eventually the probability for single and allowed double
separately. Couplings from ea¢hto B are necessary in order to spin-flip errors to occur increases. Thus, very long pulses
drive the gate. must also be avoided. The sum of the squared matrix ele-

CNOT,AZ—BZ(UC+ €UE+ e )UCNOT,A2—BZUCNOT,A1—B].]

7
nl;[1 UCNOT,An— Bn|w>} (27)
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The presence of the lowering operator in E26) means that

at least one spin-flip occurs; becalh&q) mixes the different

|g), a single coherent error can become a disallowed error.
Thus, for frequency-selective pulses, the decoherence errors
can scale in a worse way than the single spin-flip errors,
although with a potentially small constant in front. This is
consistent with the case @f=0 for A2 andB2, where it

can be shown that all the matrix elements in bBtland G
corresponding to the disallowed errors are zero, for any value
of T.
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IV. DISCUSSION
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A. Grover’s algorithm

o ) ] ] When unitary transforms are driven by externally gener-
FIG. 3. A classification of the dlfferen_t errors found in the uni- ated coherent fields in the manner discussed above, a deco-
tary transforms= andG from Eq.(27). Matrix elements are listed in - harence mechanism exists that, with each applied pulse,
the order|0000, |0003), [0019, and so on 4111} (labeled as o5 to scramble the computer's memory. This decoherence
|ALB1A2B2)). Circles are single spinlips, crosses are doubley o anism is slightly different from the usual environmen-
spin-flips where no more than one spin flip occurs in ea.Ch COde‘EaIIy induced decoherence, in that it increases as the number
word, and shaded elements are unrecoverable errors, with two or, 7. . .
more spin-flips per codeword. of times the programmer attempts to m?nlpulate the q_ublt
system coherently. In the case of Grover’'s search algorithm
ments for the disallowed double spin flip errors asymptoti-where the Walsh-Hadamard transforms are externally driven,
cally appro(;lches‘]('l'/77-)*2 for large T, the same as for the the degradation of the correct response scales gk’
allowed errors inF. Thus, for largeT, these errors scale as A criticism of this analysis might be in the specific choice
T~ . This curious behavior can be explained as follows. Foused to implement th&/,. Whatever method is chosen, the
a weak field, field-qubit propagators still hold, and some back reaction
must exist (but see beloyw In general, the degradation
should scale as the number of times a qubit transform is
driven. For Grover’s algorithm, if no error correction rou-
tines are implemented, then the amplitude of the field will
have to increase exponentially with increasing number of
qubits, K, in order to keep the error below a fixed bound.
Clearly, this is not a scalable way to implement Grover's
algorithm.
How important is this decoherence mechanism to the dif-
ferent proposed quantum computer schemes? Let us employ
simple order of magnitude arguments, and ignore for the

o
T

]
N
T

=4r single and

log, 0 =l matrix elements 1>

-6F double moment the implementation of error-correcting codes. As
previously mentioned, the prefactoe®=(1/64m)(kE/

-t disallowsd V2)(fiw)!(€9E?2)(cL?) is proportional to the photon flux
in the pulse per Rabi frequency of the qubit. The Walsh-
Hadamard transforms are roughly a single Rabi cycle long,

=10, 4 8 16 32 84  SO€?is also the inverse of the total number of photons in a

Td/n pulse. The rest of the factors are of order unity, so that the

o K/2
FIG. 4. The(unitless sums of the squares of the matrix ele- probability for decoherence goes &< per number of

) ) B . photons per pulse.
ments corresponding to different types of spin-flip errors in an Examine the case where lasers are used to drive sinale
implementation of a fault-tolerant CNOT gate, using frequency-. 9

selective pulses, as a function of the pulse length. Time is scaled t:éms or atoms_. A recent exge_rlmental demonstratlon of a
the separation of the different transitionBXis unitless. The solid ogic gate using traneC?Be _'Ons as qu'tS[sz], used
lines are fromF, where the single and allowed double spin-flip 1-MW pulses of~10""-s duration at 300 nm. This corre-
errors lie on the same line. Disallowed spin-flip errtivso or more ~ SPONds to 18 photons per pulse. The very small prefactor
spin-flips within a codeworddecrease as the square of the repair-Will not pose a problem for computations involving a poly-
able errors. The dashed lines are fr@n representing spin-flips  nomial number of steps with increasiig but for Grover's
accompanied by the incoherent emission of a photon. A prefactoalgorithm this mechanism limits the number of qubits to
€?«T is not included in the plot. ~70.
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Next let us examine the case for NMR quantum comput- B. Assumption of uncorrelated errors
ing. First, Ie_t us address how to utilize the signal from alarge 115 spove observations suggest certain types of coherent
number of independent quantum computers. Assume thatlzﬁ

; . anipulations of entire quantum computers should be
sample can be prepared in the grolund state, and let us 'g.n.ogl?/oided, even if they result in fewer coherently produced
the interaction of the computers with one another. The diffi- . : .
culties with these assumptions have been discussed els frors. If frequency-selecnve pulses are mplgmented, then it
where[33]. The application of Grover's algorithm results in seems that an optimum pulse length must exist: longer pulses

use weak fields whose quantum nature becomes more appar-

a final state ; :
ent to the qubit, while shorter pulses are less frequency se-
1073 lective, violating the idea that qubits not directly acted upon
[WYy=[T [ (1= y22)lyD)+ 5> G(x)|xD)]||vad), by the gate are immune to spin-flip errors. It should be noted
1 X

i= that there do exist continuously amplitude- and phase-

whereG creates orthogonal field states that contribute ”ttlemodulated pulses that can selectively invert transitions with

amplitude to the correct solution. The total signal is the sunf'gh accuracy within a given baanidﬂ%]' They do S0
from all of the quantum computers in the Samp|e,partly by sending the states of qubits that are just outside of

(W[=(ly DYy D)) | wy=N(1—y%2). The point is that at the bandwidth along complex orbits whose end points nearly

low temperatures, the macroscopic decoherence rate is mJiatch their starting points. It seems possible that pulses

tiplied by the total number of independent quantum comput-COUId_ be t_ailored to red_uce these types of errors. A beFter
ers in the sample. Typically, NMR uses~1CP Hz, or a solution might be to avoid these errors altogether by having

photon energy of 107° J. Pulses are 100 W for 10s, for a the f_ield spatially overlap with only those qubits' to be driven.
total energy of 103 J. Thus, there are 1 photons per _Fmally, we note a few other means by which to reduce
pulse. This limits Grover’s algorithm for NMR te- 140 qu- this decqherence. First, the appearance .Of terms such as
bits if we can do NMR on a single spin system, which is an|BﬁJr B_| in Eq. (2%). shows that dest_rugtlve mFerference can
improvement over other techniques. However, if we requir essen the probability of photon emission. It. IS kno_vvn to be
the signal from a micromole of computers &4)0in order to possible to quench spontaneous emission in multilevel sys-
detect the final answer, then we are limited~@5 qubits. t‘?ms[%]- It seems likely that certain S.VSte'.’“S could be de-
Electron spin resonance is not sufficiently better: signed to remove, through destructive interference, the
~10° Hz, pulses are 1 KW for 10 ns, and thus usé®10 Iowest—order terms in Eq(.2A). Second, for b_ulk guantum
photons. computation where there is an excess of signal, phase cy-

If, as is usually the cas€)<w,, then the number of cling can be used to cancel the signal from those computers

X . . that suffer certain kinds of errors.
photons required to generat®/, is proportional to
Q/(k?w,). Thus physical systems with small values wf
or k are the most resistant to the above decoherence mecha-

nism. Unfortunat8|y, such systems have other limitations: if Quantum computers that use externaL C|assica||y gener-
wy is small, then the temperature of the system is required t@ted electromagnetic fields to drive the evolution of the sys-
scale with increasing in an unfortunate mann¢83]; while  tem undergo a decoherence induced by the quantum back
if « is small, then the time required to drive a gate increaseseaction to those fields. The probability for the quantum sys-
which slows computation down. tem to be degraded increases as the total number of exter-
Will driving qubits by externally applied, static electric nally driven transforms, and inversely as the photon flux per
fields [9] offer any significant advantages? A similar pro- pulse, per Rabi frequency of the transition. Algorithms that
posal could be envisioned for NMR by applying static mag-require an exponentially increasing number of pulses as the
netic fields anng different directions to the individual spinS prob|em size increase, and thus require some form of error
to drive the gates. To describe such a process, note that theggrrection for a scalable implementation. It is also found that
longitudinal fields are not independent degrees of freedom ifmplementing fault-tolerant gates with externally applied
the Coulomb gaugg34]. They arise from matrix elements fields that influence all qubits in the system at once, is not an

between the qubits and the charged particles that give rise tptimal implementation, at least in regards to this decoher-
the static field. Thus, for the case electrostatic fields fromence mechanism.

electrodes, decoherence might result from the field operators

describing the motion of electrons at the Fermi level of the

electrodes. Unfortunately, an explicit calculation of this de- ACKNOWLEDGMENT

coherence is complicated by the band structure of the elec-

trode, but it would be surprising if no decoherence was We gratefully acknowledge support from the Air Force
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