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We present a classical model for bulk-ensemble NMR quantum computation: the quantum state of the NMR
sample is described by a probability distribution over the orientations of classical tops, and quantum gates are
described by classical transition probabilities. All NMR quantum computing experiments performed so far with
three quantum bits can be accounted for in this classical model. After a few entangling gates, the classical
model suffers an exponential decrease of the measured signal, whereas there is no corresponding decrease in
the quantum description. We suggest that for small numbers of quantum bits, the quantum nature of NMR
guantum computation lies in the ability to avoid an exponential signal decrezHe50-29479)04612-(

PACS numbd(s): 03.67.Hk

[. INTRODUCTION Bulk-ensemble NMR quantum computation is in principle
scalable to many qubif0], but it is unclear whether it will
The original proposalfl,2] for quantum computing using ever lead to useful quantum computations involving more
high-temperature, liquid-state nuclear magnetic resonandhan a few dozen qubifd,3]. Nevertheless, the experiments
(NMR) sparked an explosion of interest. The resulting workperformed so far, which use only a few qubits, are cited as
on NMR quantum-information processing has attracted amportant demonstrations of the principles of quantum-
great deal of attention. In addition to a long list of publica- information processing and quantum computation. There
tions[1-20], there have been numerous news reports, espéras, however, been persistent skepticism about whether these
cially on the recent NMR experiments on quantum error corexperiments demonstrate genuine guantum-information pro-
rection[5] and quantum teleportatide]. cessing. Recently these doubts have been brought into
The fundamental information-processing elements insharper focu§22] with the realization that all quantum states
NMR are two-level nuclear spins, called quantum bits, orused in present NMR experiments aeparable[23], i.e.,
qubitsfor short, which are bound together in a single mol-unentangled. Entanglement is generally thought to be an es-
ecule. A liguid NMR sample contains a macroscopic numbesential feature of quantum computati¢®4,25, although
of molecules, each of which functions as an independenthere have been suggestions that the power of quantum com-
information-processing system. The molecules are initially inputation cannot be so simply characterizeé-2§.
thermal equilibrium at high temperature; the nuclear spins In this paper we explore the “quantumness” of bulk-
are only weakly polarized along the direction of a strongensemble quantum computation. There being no general
applied magnetic field. NMR techniques cannot control thedefinition of what it means to be doing genuine quantum-
quantum states of individual molecules; instead, all the molinformation processing, we begin by proposing three differ-
ecules in the sample are manipulated in parallel. Moreoverent criteria, which are investigated in the remainder of the
NMR readout techniques are sensitive to the average magnpaper.
tization of the entire sample. For these reasons the use of (i) According to the first criterion, al-qubit NMR ex-
high-temperature, liquid-state NMR techniques for quantumyperiment does not demonstrate genuine quantum-information
information processing is calledulk-ensemble quantum processing if all guantum states that occur during the experi-
computation Clever techniques have been devised to mapment areseparablg(unentangley i.e., are equivalent to clas-
the coherent quantum-mechanical manipulations required faical ensembles of spinning tops. The motivation for this
quantum computation to this situation in which one neithercriterion is that for separable states, the statistics of any mea-
controls nor makes measurements on individual moleculesurement performed on the NMR sample can be described in
[1,2,8,11,13 the language of classical probabilities for spin orientations.
This paper deals exclusively with bulk-ensembleWith respect to this criterion, NMR experiments for up to
quantum-information processing, not with proposakse, for about 15 qubits do not demonstrate genuine quantum-
example, Ref[21]) for using nuclear spins in situations, as information processing23]. There is, however, an immedi-
in solid-state systems, where they can be highly polarizedate objection to this criterion: even if all states involved in
Although the paper is phrased in terms of and aimed at NMRhe experiment are classical, the transformations between the
quantum computation, the analysis is not specific to NMRstates might be essentially quantum mechanical, not having
and could be applied to any realization (&fw-polarization any description in classical language.
bulk-ensemble quantum computation. (ii) Our second criterion addresses this objection by stat-
ing that anN-qubit NMR experiment does not demonstrate
genuine quantum-information processing if we can construct
*Electronic address: r.schack@rhbnc.ac.uk anoverall classical modefor the experiment, by which we
"Electronic address: caves@tangelo.phys.unm.edu mean that in addition to the experiment’s satisfying the first
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criterion, the transformatiof that maps the initial quantum statistics are determined by probabilities for classical spin
state to the final quantum state can be described by classicatientations; this means that our classical model provides a
transition probabilities. The transition probabilities are re-local hidden-variable description of the experiment. In con-
quired to be fully specified by¥; in particular, they must be trast, in a classicakimulation where one calculates the
independent of the initial and final states. We formulate arfluantum amplitudes in, say, the computational basis, one can
overall classical model be|0W, which shows that, with re_regard the entire state vector, a nonlocal ObjeCt, as a hidden
spect to this second criterion, NMR experiments for up tovariable [29]. Second, the computational complexity of a
about six qubits do not demonstrate genuine quamumc_:lassmal simulation increases expc_)nenually with _the number
information processing. An objection to this second criterion®f 9ates|24], whereas the complexity of our transition prob-

is that an overall classical model does not constitute a vali(ﬁlb'“tIes for an entgnglmg gate increases only linearly with
model for a quantum computation, because the complexity otlhe number_ of qu'tS'. .

the overall transition probabilities might increase exponen- Equally_ important is a difference betwer_en_our gate-by-
tially with problem size; according to this objection, compu- gate classical model and the quantum description of an NMR

tational complexity is at the heart of the question of Whetherexge”p]em'. In Ollg classical model, t?e”stre_rt]rg]]ttrr]] of thet;nag}
a given computation is quantum mechanical, netization signal decreases exponentially wi e number o

(iii) Our third criterion incorporates this objection as fol- entangling gates. Though this decrease can be _st_aved off for
lows. It states that am-qubit NMR experiment does not a few entangling steps, it cannot be put off indefinitely. Such

demonstrate genuine quantum information processing if Wgtdgc;]??se |s§1btser&t frpm the qu.anturtn dtﬁs;:rlptlon.tTEus(;t IS
can construct gjate-by-gate classical moddby which we straightiorward to design experiments that cannot be de-

mean that in addition to the first criterion being satisfied, anf‘cnbed by. our classical model. Two-qubit experiments that
elementary gatd) implemented in the experiment can be fall into th's class are Re[.9]_ aﬂd probably also Re[lO]!
described by classical transition probabilities, which, as be2itnough in the latter case this is not clear from the published
fore, are fully specified by) and which, apart from trivial 922 'Elorﬂiﬂréo prove cor:colluswely,t htowever, that a butlk-
contributions for the qubits not involved in the gate, are in-Ensemole experiment demonstratés genuineé quantum-
dependent of the total number of qubi9]. We devise a information processing in the sense of the third criterion

gate-by-gate classical model below. It shows that all threed!Ven above, one must rule oall gate-by-gate classical

qubit quantum computing experiments performed so falmodels, not just the particular model given in this paper. We

[4—8] do not demonstrate genuine quantum-information pro_stress that quantum mechanics accounts for all aspects of

cessing according to this third criterion. very sophisticated NMR experiments. Classical models are

We emphasize that the point of constructing gate-by-gat ot meant to provide an alternative p_hysmal description .Of
classical models is to answer the following question: Can th ese experiments, but rather to contribute to understanding

information processindghat occurs in bulk-ensemble quan- Whether there is anything genuinely quantum mechanical

tum computation be accounted for in classical language? Th%bOUt thenforr_natlon processinin the experiments. .
The paper is organized as follows. In Sec. Il, we give a

purpose is not to provide a detailed physical model of all_. .
aspects of a particular realization of a bulk-ensemble qua orief description of bulk-ensemble NMR quantum computa-

tum computer. Thus we consider a model successful if i '20:';] tz;nctj tlrr: Setc.tlll, we jgmwaﬂzte the pr:)of gll\lvl\(jlrll?m Ref.'
provides transition probabilities for the elementary quantu at the states used In high-temperature experi-

gates that are used to perform the information processing. IE.‘rentS are classical up to about 15 qubits in the sense of the

. - t criterion above. In Sec. IV, we define the transition
an NMR experiment, an elementary two-qubit gate, such as S o~ ; '
b y q g9 probabilities that are used in our overall and gate-by-gate

controlled-NOT gate, is built up from many smaller building ical dels. Used directly i te-b te classical
blocks and requires a complex sequence of radio-frequenc assical modeis. sed directly in a gate-by-gate classica
odel, these transition probabilities give rise to a signal de-

pulses, but in constructing classical models we adopt th b tant fact ¢ h entangli lti-qubit
view that this underlying sequence of pulses is not importanfrease y a constant factor at each entangiing mufti-qubl

for assessing whether an NMR experiment is doing genuingpedrar'on' SiCt'On _\(/j;?_ow_s h0\|/vdto mOd'f{, the gatel-lby-gatt)e
quantum-information processing. model so as to avoid this signal decrease for a small number

In the NMR literature, transformations are often repre-Of entangling steps. In Sec. VI we consider the implications

sented by diagrams that depict spins as arrows evolving oﬂf our “?SU”S for bulk-ensemble NMR quantum-information
spheres; see, e.g., RERO] or the “effective fields picture” processing.

in Ref.[14], where a diagram representing a controlled-NOT

gate is given. This diagram illustrates what is new in our 1. NMR QUANTUM-INFORMATION PROCESSING
approach. The diagram assumes that the sample is split into

two subpopulations, according to whether the control qubit i AIAIf NlMR qul?ntum c(:jpmputinr? cafxgl)leriments_pe_rf?rm(a_lgihso
up or down. Thus it provides a classical description of the ar [4-16] work according to the following principles. The

gate for initial conditions corresponding to spin-up—spin-State of the sample is described by a density opeyatiar

down (computational-basjsstates of the control qubit, but the N Spins (qubﬂ_s? in each molecule. The molecules are

not for arbitrary, possibly entangled initial states. ConsePrepared inan initial state

quently, it does not give a classical model of the controlled-

NOT gate in the sense of our third criterion. p=(1—€)M+epy, 2.1
We emphasize that our gate-by-gate classical model is not

the same as a simulation of a quantum algorithm on a clasvhereM =1/2V is the maximally mixed density operator for

sical computer. First, in our classicalode] measurement N qubits ( is the unit operatgrandp, is a density operator,
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usually chosen to be the projector onto the computationaleoherence is simulated by unitary transformations, as in the

basis stat¢0- - -0). The parametee scales like gradient pulses used to simulate decoherence in[BEft is
also true for naturally occurring decoherence for times short
aN compared to the characteristic time for relaxation to thermal
€T oN - (2.2 equilibrium. These are the times of interest for quantum-

information processing.

Herea=hw/2kT, wherev is the average resonant frequency ~ 1ne last step in any NMR experiment is the readout. By

of the active spins in the strong magnetic field, determine&PPlying radio-frequency pulses and then measuring the

the polarization of the sample. J§; is a pure statep is  ransverse magnetization of the sample, one can determine

called a pseudopure stdfte]. Procedures for synthesizing a &ll expectation values of the form

pseudopure state from an initial thermal density operator are out -

described in Refd.2,8,11,13. tr(p™op ®---@0ag )=€tr(p
For typical molecules in present magnetic-field strengths, (2.9

the average resonant frequency is roughh 300 MHz,
which at room temperature gives~2x10°. It is difficult
to know the actual value o& and e in the experiments, . i ) )
because the polarization is not calibrated absolutely. IAf Bx=0, and it denotes a Pauli matrix #iy=1, 2, or 3. In
evaluating the experiments, we adopt the scaling of E@), wrltlr_ng_ Eqg. (2.5 and all such_ expectation vaIue; in th_ls_pa-
with a conservative value af=2x 10", which is meantto  P€’ it is assumed that there is at least one Pauli matrix in the
take into account inefficiencies in the experiments, especiall{ensor product(not all the g's are zerg. The maximally
loss of polarization involved in the synthesis of a pseudopurdnixed part of the density operator does not contribute to the

state. The results of this paper do not depend significantly of€asured expectation values, which are determined by the

the exact value for chosen. statep?"" that undergoes the desired evolution. The param-

One interpretation of is that it specifies the fraction of €ter e appears naturally as a measure of the strength of the
molecules in the sample that occupy the desired initial stat&'a@gnetization signaor of the signal-to-noise ratjo
p1. This interpretation is not unique, and it is not mandated Throughout this paper we use the phrase “bulk-ensemble
or even preferred by quantum mechanics. It is sometimeguantum computation” to refer to any scheme that uses an
promoted to the level of a physical fact by advocates ofensemble of information-processing elements, each consist-
NMR quantum computation, yet it becomes a physical facind of N qubits, in the manner described in this section. The
only if one actually prepares a fraction of the molecules in aProcessing elements, prepared initially in a highly mixed
particular stat¢31], a situation that does not apply to a high- State of the form2.1), are manipulated in parallel as in Eq.
temperature NMR experiment. The freedom to interprét (2.3, an(_JI the readout, involving the entire ensemble, yields
terms of other ensembles underlies the conclusions of thi§XPectation values of the for(@.5). Our results apply to any

out

1 O'B1®®O'BN)

The tensor product in this expression includes one operator
for each spinacrﬁk denotes the unit operatbfor thekth spin

paper. such bulk-ensemble scheme.
After synthesis of the desired initial state, a sequence of
radio-frequency pulses, alternating with continuous evolu- I1l. SEPARABILITY OF STATES USED IN NMR

tion, is applied to the sample. We first consider the case

where the evolution is described by a unitary transformation ©OUr conclusions rest on the freedom to write states of the
U. Applying the unitary operatod to p results in the state form (2.1) in terms of probability distributions over spin ori-
entations foN classical tops. We review one such represen-

pM=UpUT=(1—e)M+eUpUT=(1— )M+ pd™. tation [23], the foundation for our work, which provides a
(2.3  Classical description for all states of the foth1) provided
that

The totally mixed part of the state is unaffected by the uni-
tary transformation. The output state retains the f@) 1

with the same value of, but—and this is the essence of the esn= m (3.1)
bulk-ensemble paradigm for quantum computatign—un-
dergoes the desired unitary transformation.

) . . If we assume thatr=2x10"% in Eq. (2.2), this inequality
The same conclusions hold for transformations |mple-hOIdS forN< 16 qubits.

mented using gradient pulses together with diffusion in the . :
sample[8]; these are equivalent to mixtures of unitary trans- The a(;gument 'S dﬂstralg_h tfcr)wrwar[;]m]f. The most general
formations, as in pure product state dfl qubits has the form

Pl(ﬁ)Epl(ﬁla LI 1ﬁN)

poutzzl pUp U|Jr=(1—'5)|\/|+62I pUip U] 1
t :W(|+ﬁl.(})®...®(l+ﬁ,\‘~5). (3.2

=(1—e)M+ep™, 2.4

where thep,=0 are probabilities. We assume that decoher-Th'S state can be interpreted Bsclassical tops pointing in

ence also preserves the form of the density operator, leavinge directions given by the unit vectang, . .. ,ny, denoted
e unchanged. This assumption is certainly justified when deeollectively by n. Since the operator®;(n) form an over-
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complete basis in the space of linear operators actingyon classical interpretation of the expectation val@2s) is all
qubits, anyN-qubit density operatop can be expanded as we need for understanding the measurements in bulk-
ensemble quantum computation, we can demonstrate a much
stronger result: for separable statesNofjubits, all measure-
ments, including nonfactorizable measurements, can be in-
terpreted in terms of an ensemble of classical top orienta-
where dQz=dQ; ---dQg . The overcompleteness means tions. To see this, consider an arbitrary measurement on the
that the expansion coefficients are not unique. One choice ¥ qubits, its statistics described by a positive-operator-
5 ~ valued measuréPOVM) with POVM elementE , [36]. The
w”(n)=tr(pQ,(n)), (3.9 probability to obtain resultr is

p=f dQrwP(n)Py(n), 3.3

where the operator®,(n) are defined by tr(pE ):f dQ=we (M)t Py (TE, 1. 3.9

~ 1 . N
Qu(n)= (477)N(| +3ny-0)@- - - @(1+3ny-0). Here the quantity tP4(n)E,)=0 can be interpreted as the

(3.5  conditional probability to obtain resudt, given that the spins
point in the directions specified by. Thus, as long as

wP(n)=0, the measurement statistics can be interpreted in
terms of an ensemble of classical td33].

If one adopts our first criterion, none of the NMR experi-
ments performed to date has done any genuine quantum-
information processing, since they all use two or three qu-

The representatiofB.4), which is analogous to the repre-
sentation for a harmonic oscillator, was introduced by Arec
chi et al. [32] and studied in detail by Scully and We

kiewicz [33]. The expansion coefficients’(n) can be posi-
tive or negative, but they obey the bound

S2N-1 bits. Yet the fact that all states—initial, intermediate, and
wP(n)=[ smallest eigenvalue @,(n)]= — _ final—that occur in a given NMR experiment are equivalent
(4m)N to ensembles of classical tops does not mean, by itself, that

(3.6 there is a classical model for the entire experiment. To see
5 this, consider the following naive attempt to describe a uni-
When w”(n) is everywhere non-negative, it can be inter-tary transformatior by classical transition probabilities:
preted as a classical probability distribution for tepins to

point in the directionsn,, ...,ny. Since the maximally w9 V() =tr(Up UTQ, ()
mixed density operatoM has probability densityw™ (n) _ ~ _
=1/(4m)N, it follows that for a density operatqs of the =f dQzw (Mt UP(mUTQ(n)],
form (2.1) with e< 7,
(3.10
~ —€ ~ —e€lny _ _ .
W”(n)=(4w)N +ewli(n)= @m" =0. (3.7 where tfUP;(m)UTQ,(n)]=ty(n|m). The transition func-

tion ty(n/m) is not a transition probability because it as-
A density operator for a joint systemsgparabldf it can ~ sumes negative values; for example, for the trivial case of the
be written as a non-negative linear combination of productdentity transformationlJ=1, we have

density operators. When”(n) is everywhere non-negative, 1 N
the expansiori3.3) provides a separable representationgor ~ i~ ~ ~ N

Relate[()j work on thpe separabilitypof states Irc‘)1ear the magmally ti(n[m) =tr(P4(m)Qu(n)= (4m)N J-Hl
mixed state can be found in Ref81] and[34]. Separable (3.11
states have no quantum entanglem&]. The importance .

of separability in this paper is that a separable statd of The expansion coefficienta”1(™(n)=tr(P,;(m)Q;(n))
qubits can be interpreted in terms of an ensemble of classicé Eq. (3.11) are the coefficients for the pure product state
tops, because the expectation val(@$) measured in NMR  p, (m). That these coefficients can be negative might seem
experiments have the standard form for an ensemble withy he a drawback of our representation, but in fact it is an
probability distributionw?(n): essential feature of a program to construct a classical model.
To see this, suppose that we could use a representatipn
linear in p, to construct a classical model for all unitary
operators acting on density operators sufficiently close to the
maximally mixed state. This means that there is a non-

negative transition probabilitw,(n|m)=0 such that

(1+3m;-nj).

XtPi(Nog - @og ],

(3.8
uput =\ _ - - fod
where tfPl(F‘)‘Tm@'"®‘7BN):(“1)31"'(”N)BN- n this wYP Ul () fdewU(nlm)WP(m) (3.12

expression, mj)Bj:]' if 5j=0, and hj)ﬁj s a Cartesian ¢, 5 unitary operators&) and for all density operators of

component of the vectoﬁj if B;=1, 2, or 3. Although a the form(2.1), providede is sufficiently small. Applying Eq.
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(3.12 to the case wherp, is a pure staté and using the classical correlations. Nonetheless, as noted above, this con-
linearity of w?, we get immediately that clusion does not imply that there is a classical model for the
entire experiment.

wUPUT(ﬁ)zj dQqrwy(njmwP(m). (3.13 IV. TRANSITION PROBABILITIES FOR QUANTUM
GATES

If wP(m) is everywhere non-negative, we get a non-negative The essence of a classical model lies in the construction
representation fod PUT and, hence, conclude thatP U is of non-negative transition probabilities to describe unitary
separable. This cannot be, true However because we ciignsformations. We first consider product unitaries, i.e., uni-

always choos&J to mapP to an entangled state. The con- @1y fransformations of the fori=V,® - - - @V, and then
clusion is thaw® must go negative for all pure statesThis tackle the t_ougher task of entangling unitaries, i.e., unitary
transformations that are not product unitaries.

tells us something useful only for pure product states, be* X - .
cause all other pure states are entangled and necessarily have! "€ €xpansion coefficients for the output state are given

a representation that goes negative. The representation W&

are using, embodied in Eq3.4), does go negative for all Vol = fm fm

pure product states. WP (n) =tr(VpV'Q(n))=tr(pV'Qy(n)V). (4.1)
Returning now to the first criterion, we note that even ) ) ~

though it is not the whole story, it is the right criterion for FOr @ product unitary, the unitary transform oQ,(n) fac-

judging claims of having produced entangled states usindPrs into a product of transformations for each qubit. If we

bulk-ensemble NMR. For example, as pointed out in Refintroduce the three-dimensional rotation operagr(an or-

[23], the claim of Laflammet al.[6] to have created a three- thogonal transformatigrcorresponding to the unitary opera-

qubit Greenberger-Horne-ZeilingéBHZ) entangled state is tor V,, i.e., Vlavk:Rko, and use the fact thaty-R.o

incorrect. Despite the authors’ assertion, “We describe the-R n,. s, then the unitary transform of,(n) assumes

creation of a Greenberger-Horne-Zeilinger state of the formpe form

(/000 +|112))/y2 (three maximally entangled quantum

bits) using nuclear magnetic resonance. ... We have thus VIQ:(MV=0Q,(R; ny, ... Ryny)=Qi(R™ ).

extended the space of entangled quantum states explored (4.2

systematically to three quantum bits . ,” no entanglement

was created in that experiment; the statistics of any measurgtere R stands for the rotations on all the qubits. Now the
ment performed on the purported GHZ state could have beegutput expansion coefficients assume the form

explained in terms of classical correlations contained in

wP(n). Similar conclusions apply to the experiments in WYV () =wr(R™ ) =wP(R; Iy, « . . Ryy).

which Chuanget al. [11] and Coryet al. [8] claim to have 4.3
created two-qubit Einstein-Podolsky-Rod@&PR entangled

states. The states created in these experiment were undNot surprisingly, the action of the product unitaky is
tangled, though Chuanet al. write, “As an application of equivalent to rotating each of the classical tops. The corre-
the controlled-NOT gate, we used it in a simple quantumsponding non-negative transition probabilities ave|~1|r~n)
circuit to create entangled states from the thermal mixture= §(R~‘n—m). This result shows that, for product unitaries,

. We have experimentally confirmed thisonclassical  our transition probabilities are equivalent to the simple clas-
behavior, and the signature of the entanglement—a purelyjca] diagrams often used in the NMR literat(is].
non-classicaleffect—is the strong reverse diagonal mea- Before proceeding to entangling unitaries, we describe
sured in the density matrix,” and Cost al. refer to apply-  how decoherence is incorporated into our classical models.
ing the “spin-coherence XOR gate to a one-spin superposim some experiments decoherence is simulated as a mixture
tion to create an entangled state.” of product unitary transformations; an example is the use of

Indeed, the first criterion can be applied to any NMR gradient pulses in Ref5]. In current experiments, naturally
experiment that claims to have manipulated quantates  occurring decoherence processes can be regarded as acting
in a particular way. For example, in describing the NMR jndependently on the various qubits; on time scales short
version of quantum teleportatiod], a three-qubit experi- compared to the thermal relaxation time, they preserve the
ment, the authors assert, “Quantum-mechanical systemgaximally mixed density operator. Any decoherence process
have information processing capabilities that are not possiblghat satisfies these two properties can be described as a mix-
with classical devices. One example is quantum teleportature of product unitariei?,g]' Thus decoherence can be
tion, in which the quantum state of a system is transportethandled in our classical models as a mixture of rotations of
from one location to another without moving through thethe qubits.
intervening space. ... Here we report an experimental To describe general, entangling unitaries, we need to in-

implementation of full quantum teleportation over inter- roduce some additional notation. For an arbitrary density
atomic distances using liquid-state nuclear magnetic reseperatorp and for 0< #<1, we define

nance.” This claim cannot be supported, because the quan-

tum state at all stages of the experiment could be interpreted po=(1—6)M+ 6p. (4.4
in terms of classical correlations among spin directions.

What the experiment achieved was a reshuffling of thes&urthermore, we define the states
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P,(R)=(1— )M+ 6P (1) (4.5 ecules that are maximally mixed. This means that the mag-
f ! netization signal produced by the classical output ensemble
and associated operators is a factor of» smaller than in the quantum description:
~ - _1 ~ ~
Q,(n)= I+ 671Q,(n). (4.6 f dQrwou(N)(Ny) g, -+ - (NN) g,
(4m)N
=tr(Up,UTop® - -®
For a general unitary operattd, we define the transition (Upy T UﬁN)
probabilities =ntr(Up UT‘Tﬁ1®' @0, ). (4.11)
wy(n|m)=tr(U P,,(ﬁ)UTQl(ﬁ))=M_—)7L+ nty(n|m)=0, If we use the transition probabilitiéd.7) to describe tran-
an

sitions of the spin directions in a gate-by-gate classical
4.7 model of an NMR quantum computation, the magnetization
signal of the model loses a factor ef at each entangling
tga’[e. Though such a model gives a satisfactory account of an
NMR experiment in which one ignores the strength of the
signal, we can formulate a better model that avoids the decay
for a few entangling gates.

wheret(n|m) is defined in Eq(3.10. The non-negativity
of these transition probabilities follows from the argumen
leading to Eq«(3.7), sinceU P,y(ﬁ)UJr is a state of the form
(2.1) with e= 7.

It is straightforward to write down the transition prob-
abilities for elementary entangling gates. As an illustration,

we compute them for the controlled-phase gate, V. GATE-BY-GATE CLASSICAL MODEL

The key idea in constructing an improved model is to
U=C,;=|0)(0]®1+|1)(1|® o y g P

introduce auxiliary, “hidden” spins,, . .. ,ay=a, one for
1 1 each qubit. We also need a “counter indek,’which incre-
=5(1+05)®1+5(1-05)®03, (4.8)  ments by 1 at each entangling gate. In the improved model,
we can avoid the decay of the signal #rentangling gates,
acting on qubits andj. We obtain whereK is the largest integer such that
~= ~ ~ K+1
we, (R[m) =tr(C;jP,(M)C;; Qa() LA (5.1
1 .o We assume thaé< 7 to ensure thak=1. It is useful to
= @m)N 1=-n+ ”Il;[j (1+3m-ny) introduce the function
XA[1+3(my)3(np)z][1+3(my)3(nj)s] 7“7k, 0=k<K,

= (5.2

I - - 1, k=K.
+9(m; X n;)3(mM; X n;j)g+3[(mM;)3+3(n;)3]
.. I Between thekth and k+ 1)th entangling gatesk&0),
X(my, - nj ) +3[(my)3+3(nj)s](mi -ni )} |, we represent a density operatorby the expansion coeffi-
cients
4.9
B, B, wi(a)=tr a)). 5.3
wherem, is the projection ofn into the 1-2 plane, obtained K@) (pQ”k( 2 63
by settingms to zero. As in this example, the qubits not
involved in an entangling gate do appear in the transitio
probabilities, but in a simple, universal way.
Applying the transition probabilitie&4.7) to an input en- 4
semblew;,=w"(n), we obtain a classical output ensemble Wﬁ(a)z ~ 4 nkflwp('é) (5.4
(4m)N

It is easy to show that these expansion coefficients are related
Mo the original coefficient$3.4) by

WOU&E)EJ Az ()W ) and thatp can be expanded as

:tr(uU anWp(Fn)Pn(ﬁn)}uTQl(ﬁ)) p:f d0=WE(3)P, (3) 5.5
(). .
~ -7 ~
=wYrV' ()= (47)N+ wUPY' (M), (410 For density operators of the forf2.1), Egs.(5.4) and(3.7)
imply that
where we have used the fact thadQzw(m)P,(m)=p,.
1—¢€l 77K+2I.

Unlike the quantum output ensemibié? V' (R), the classical wl(@)=————" >0 (5.6)
. . . k N .
output ensemble suffers an increase in the fraction of mol- (4r)
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for all k=0. Throughout the experiment, the expansion co-hich take the input ensemblg;,= Wk(” a) to an output
efficients wf (a) can be interpreted as probability distribu- ensemble
tions.

In our improved classical model, the gate operations ma-
nipulate the hidden spins; the effect of a gate shows up in the

observable sping through the correlations af with a. Be-
tween thekth and K+ 1)th entangling gates, this correlation :qk+1(ﬁ|§)J dQpwy(alb)wi(b)
is described by the joint distribution

Woul7i3) = [ 4505, (R.3IB wi(B)

— — - Up uf <k<
WA =g FRWR), 52 _ [ Wil (1), OSkSl
U :
where Wt (1E), k=K.
1— 7 We have now constructed a gate-by-gate classical model
qk(n|a)_ @mN + p8(n—a) (5.8 in which there is no loss of magnetization signal for the first

K entangling gates. How this works can be summarized as

is a conditional probability distribution. The marginal distri- follows. The initial distributionwg(a) of the hidden spin
bution for the observable spin variables, variables is chosen to have as little contribution from the
uniform distribution as is consistent with non-negativity. At
~~ 1=y ~ ~ each entangling gate, the ensemble of hidden spins suffers an
f dQE‘W‘k)(n'a):(MT)N Wi =w’(n), 5.9 increase in the proportion of molecules that are maximally
mixed, but the observable spins retain the statistics of the
is just the right mixture ofv2(n) with the uniform distribu- ~duantum description by becoming more tightly correlated
tion to produce the distributiom?(n) that gives the mea- with the h|d_den SPINS. AfteK entangling gates, the observ-
sured expectation values. able and h|dden_sp|ns becomﬁaco_rrelated; thus from the
We now define transition probabilities for quantum gates (< +1)th entangling gate on, the signal decreases by a factor

distinguishing as before between product unitaries and entar(?f 7 at each entangling gate.
gling unitaries. For a product unitaky, we find, by an argu-

ment analogous to the previous one, that VI. DISCUSSION
~ = g~ Consider a bulk-ensemble NMR experiment whose pa-
VpV p 1
(n2)=w(mRa). (5.10 rametere satisfies the conditiore< »? that underlies the

The effect ofV is to rotate the hidden spins. Decoherence is argument in Sec. V. If we assunae=2x10 ° in Eq. (2.2),

handled, as previously, by mixtures of product unitaries, this condition is fulfilled forN<6 qubits. The model con-
To deal with an entangling unitary transformation we structed in Sec. V provides an overall classical model in the

. . e ) ) sense of our second criterion: the unitary transformation
first note that the transition probabilities,(a[b) defined in 4t maps the initial state to the final state is described in the
Eq. (4.7) can be expressed as

model, with no loss of magnetization signal, by the transition
(3[B)=tr(UP ,(B)UTQ,(3))=0 (5.1 probabilitiesw} (n,a|m,b); mixtures of such transition prob-
v 70 o ' ' abilities are used to incorporate decoherence. The predictions
Using this result, together with E¢5.5), we find of the model for the signal derived from the output state are
identical to the quantum predictions. Since all NMR experi-
— - ments to date involve two or three qubits, this overall clas-
f dQgwy(alb)wi(b) sical model applies to all such experiments.

We turn now to the implications of the gate-by-gate clas-
sical model constructed in Sec. V. If we assume again that
a=2x10"%, in a two-qubit experiment the model proceeds
throughK=5 entangling gates with no signal loss, and in a

tr(U{ f dQBPWkH(B)W’;(B)}UTQ”k+l(E)

t o~
WlkalU (a), Os=k<K, three-qubit experiment througk=3 entangling gates. We
=\ uput~ K=K (5.12 illustrate the implications by considering a particular three-
Wi (@), k=K, qubit experiment, the NMR version of quantum teleportation

[4]. After preparation of a pseudopure state by the gradient-
pulse techniqugs], the teleportation experiment consisted of
p 0=k<K four operations(i) an entangling two-qubit gatéii) a two-
' ' qubit mapping of the Bell basis to the computational basis,
[p,], k=K. (iii) decoherence of two qubits in the computational basis,
_ _ and (iv) a conditional three-qubit unitary. Our model incor-
To describe the effect of thek-1)th entangling gate, we porates the decoherence step as a mixture of classical rota-
use transition probabilities tions of the hidden spins. Since the model can account for
U o~y — — K =3 entangling gates without loss of signal, it provides a
Wy, 1(n,alm,b)=qy 1 (nla)wy(alb), (5.13  gate-by-gate classical model whose predictions are identical

where we have used the fact that

f dQgP,, . (b)wi(b)=
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to the quantum predictions. This experiment therefore doethe most cogent of which is that the model’s transition prob-
not demonstrate genuine quantum-information processing iabilities for an entangling gate transform qubits that are un-
the sense of our third criterion. For a larger valuexpfvhen  affected by the gate. Avenues for improving the model in-
K=2, our model predicts a drop in signal by a factorspf clude the following: (i) investigating more efficient
=1/33 at the third entangling step. Nevertheless, even wherepresentations both for quantum states near the maximally
K =2, the classical model can still account for the teleportamixed density operator and for the transition probabilities
tion experiment if the first two two-qubit gates are “com- between stategii) seeking gate representations that are more
piled” into a single three-qubit gate. efficient when fewer qubits are involved in the gate, &iid
Similar conclusions apply to the other three-qubit experi-addressing the extent to which one is allowed to “compile”
ments performed to daf®—8] and to most of the two-qubit successive entangling unitaries into a single opergtom-
experimentg8,11-14. The two-qubit experiment described piling is routine in NMR experiments as a method for reduc-
in Ref.[9] ran through 15 entangling gates with an approxi-ing the length of a computation
mately exponential signal-to-noise decrease that is, however, We conjecture, however, that no matter how efficient the
much slower than the factor of=1/9 per entangling gate gate representations are made, an ultimate signal decrease is
predicted by our model after the filst="5 steps. The 2-qubit an unavoidable consequence of any attempt to describe en-
experiment reported in Ref10] implemented up to 14 en- tangling unitaries classically, even when the unitaries act
tangling gates, but the absence of signal-to-noise data make#ly on separable states. Indeed, more interesting than our
comparison with our model difficult. results would be a demonstration of this conjecture. Should
This paper, together with Ref23], begins the task of the conjecture prove to be correct, one could conclude that
establishing standards for assessing the quantumness of butke quantumness of NMR quantum computation, for small
ensemble NMR quantum computatip39,40. Our gate-by- numbers of qubits, lies in the ability to avoid any signal
gate classical model erects a hurdle in the way of NMRdecrease. More broadly, we speculate that the power of
quantum-information processing. “Testing” our classical quantum-information processing comes not from entangle-
model is not the point, for no one would contend that itment itself [26—2§, but rather from the information-
describes the physics that underlies an NMR experimenprocessing capabilities of entangling unitaries.
The point is that experiments that fail to clear the hurdle can
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