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Classical model for bulk-ensemble NMR quantum computation
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We present a classical model for bulk-ensemble NMR quantum computation: the quantum state of the NMR
sample is described by a probability distribution over the orientations of classical tops, and quantum gates are
described by classical transition probabilities. All NMR quantum computing experiments performed so far with
three quantum bits can be accounted for in this classical model. After a few entangling gates, the classical
model suffers an exponential decrease of the measured signal, whereas there is no corresponding decrease in
the quantum description. We suggest that for small numbers of quantum bits, the quantum nature of NMR
quantum computation lies in the ability to avoid an exponential signal decrease.@S1050-2947~99!04612-0#
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I. INTRODUCTION

The original proposals@1,2# for quantum computing using
high-temperature, liquid-state nuclear magnetic resona
~NMR! sparked an explosion of interest. The resulting wo
on NMR quantum-information processing has attracted
great deal of attention. In addition to a long list of public
tions @1–20#, there have been numerous news reports, e
cially on the recent NMR experiments on quantum error c
rection @5# and quantum teleportation@4#.

The fundamental information-processing elements
NMR are two-level nuclear spins, called quantum bits,
qubits for short, which are bound together in a single m
ecule. A liquid NMR sample contains a macroscopic num
of molecules, each of which functions as an independ
information-processing system. The molecules are initially
thermal equilibrium at high temperature; the nuclear sp
are only weakly polarized along the direction of a stro
applied magnetic field. NMR techniques cannot control
quantum states of individual molecules; instead, all the m
ecules in the sample are manipulated in parallel. Moreo
NMR readout techniques are sensitive to the average ma
tization of the entire sample. For these reasons the us
high-temperature, liquid-state NMR techniques for quantu
information processing is calledbulk-ensemble quantum
computation. Clever techniques have been devised to m
the coherent quantum-mechanical manipulations required
quantum computation to this situation in which one neith
controls nor makes measurements on individual molec
@1,2,8,11,13#.

This paper deals exclusively with bulk-ensemb
quantum-information processing, not with proposals~see, for
example, Ref.@21#! for using nuclear spins in situations, a
in solid-state systems, where they can be highly polariz
Although the paper is phrased in terms of and aimed at N
quantum computation, the analysis is not specific to NM
and could be applied to any realization of~low-polarization!
bulk-ensemble quantum computation.

*Electronic address: r.schack@rhbnc.ac.uk
†Electronic address: caves@tangelo.phys.unm.edu
PRA 601050-2947/99/60~6!/4354~9!/$15.00
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Bulk-ensemble NMR quantum computation is in princip
scalable to many qubits@20#, but it is unclear whether it will
ever lead to useful quantum computations involving mo
than a few dozen qubits@1,3#. Nevertheless, the experimen
performed so far, which use only a few qubits, are cited
important demonstrations of the principles of quantu
information processing and quantum computation. Th
has, however, been persistent skepticism about whether t
experiments demonstrate genuine quantum-information
cessing. Recently these doubts have been brought
sharper focus@22# with the realization that all quantum state
used in present NMR experiments areseparable@23#, i.e.,
unentangled. Entanglement is generally thought to be an
sential feature of quantum computation@24,25#, although
there have been suggestions that the power of quantum c
putation cannot be so simply characterized@26–28#.

In this paper we explore the ‘‘quantumness’’ of bul
ensemble quantum computation. There being no gen
definition of what it means to be doing genuine quantu
information processing, we begin by proposing three diff
ent criteria, which are investigated in the remainder of
paper.

~i! According to the first criterion, anN-qubit NMR ex-
periment does not demonstrate genuine quantum-informa
processing if all quantum states that occur during the exp
ment areseparable~unentangled!, i.e., are equivalent to clas
sical ensembles of spinning tops. The motivation for t
criterion is that for separable states, the statistics of any m
surement performed on the NMR sample can be describe
the language of classical probabilities for spin orientatio
With respect to this criterion, NMR experiments for up
about 15 qubits do not demonstrate genuine quant
information processing@23#. There is, however, an immedi
ate objection to this criterion: even if all states involved
the experiment are classical, the transformations between
states might be essentially quantum mechanical, not ha
any description in classical language.

~ii ! Our second criterion addresses this objection by s
ing that anN-qubit NMR experiment does not demonstra
genuine quantum-information processing if we can constr
an overall classical modelfor the experiment, by which we
mean that in addition to the experiment’s satisfying the fi
4354 ©1999 The American Physical Society
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PRA 60 4355CLASSICAL MODEL FOR BULK-ENSEMBLE NMR . . .
criterion, the transformationT that maps the initial quantum
state to the final quantum state can be described by clas
transition probabilities. The transition probabilities are
quired to be fully specified byT; in particular, they must be
independent of the initial and final states. We formulate
overall classical model below, which shows that, with
spect to this second criterion, NMR experiments for up
about six qubits do not demonstrate genuine quant
information processing. An objection to this second criter
is that an overall classical model does not constitute a v
model for a quantum computation, because the complexit
the overall transition probabilities might increase expon
tially with problem size; according to this objection, comp
tational complexity is at the heart of the question of whet
a given computation is quantum mechanical.

~iii ! Our third criterion incorporates this objection as fo
lows. It states that anN-qubit NMR experiment does no
demonstrate genuine quantum information processing if
can construct agate-by-gate classical model, by which we
mean that in addition to the first criterion being satisfied, a
elementary gateU implemented in the experiment can b
described by classical transition probabilities, which, as
fore, are fully specified byU and which, apart from trivial
contributions for the qubits not involved in the gate, are
dependent of the total number of qubits@29#. We devise a
gate-by-gate classical model below. It shows that all thr
qubit quantum computing experiments performed so
@4–8# do not demonstrate genuine quantum-information p
cessing according to this third criterion.

We emphasize that the point of constructing gate-by-g
classical models is to answer the following question: Can
information processingthat occurs in bulk-ensemble qua
tum computation be accounted for in classical language?
purpose is not to provide a detailed physical model of
aspects of a particular realization of a bulk-ensemble qu
tum computer. Thus we consider a model successful
provides transition probabilities for the elementary quant
gates that are used to perform the information processing
an NMR experiment, an elementary two-qubit gate, such
controlled-NOT gate, is built up from many smaller buildin
blocks and requires a complex sequence of radio-freque
pulses, but in constructing classical models we adopt
view that this underlying sequence of pulses is not import
for assessing whether an NMR experiment is doing genu
quantum-information processing.

In the NMR literature, transformations are often rep
sented by diagrams that depict spins as arrows evolving
spheres; see, e.g., Ref.@30# or the ‘‘effective fields picture’’
in Ref. @14#, where a diagram representing a controlled-NO
gate is given. This diagram illustrates what is new in o
approach. The diagram assumes that the sample is split
two subpopulations, according to whether the control qub
up or down. Thus it provides a classical description of
gate for initial conditions corresponding to spin-up–sp
down ~computational-basis! states of the control qubit, bu
not for arbitrary, possibly entangled initial states. Con
quently, it does not give a classical model of the controlle
NOT gate in the sense of our third criterion.

We emphasize that our gate-by-gate classical model is
the same as a simulation of a quantum algorithm on a c
sical computer. First, in our classicalmodel, measuremen
cal
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statistics are determined by probabilities for classical s
orientations; this means that our classical model provide
local hidden-variable description of the experiment. In co
trast, in a classicalsimulation, where one calculates th
quantum amplitudes in, say, the computational basis, one
regard the entire state vector, a nonlocal object, as a hid
variable @29#. Second, the computational complexity of
classical simulation increases exponentially with the num
of gates@24#, whereas the complexity of our transition pro
abilities for an entangling gate increases only linearly w
the number of qubits.

Equally important is a difference between our gate-b
gate classical model and the quantum description of an N
experiment. In our classical model, the strength of the m
netization signal decreases exponentially with the numbe
entangling gates. Though this decrease can be staved o
a few entangling steps, it cannot be put off indefinitely. Su
a decrease is absent from the quantum description. Thus
straightforward to design experiments that cannot be
scribed by our classical model. Two-qubit experiments t
fall into this class are Ref.@9# and probably also Ref.@10#,
although in the latter case this is not clear from the publish
data. In order to prove conclusively, however, that a bu
ensemble NMR experiment demonstrates genuine quan
information processing in the sense of the third criteri
given above, one must rule outall gate-by-gate classica
models, not just the particular model given in this paper. W
stress that quantum mechanics accounts for all aspect
very sophisticated NMR experiments. Classical models
not meant to provide an alternative physical description
these experiments, but rather to contribute to understan
whether there is anything genuinely quantum mechan
about theinformation processingin the experiments.

The paper is organized as follows. In Sec. II, we give
brief description of bulk-ensemble NMR quantum compu
tion, and in Sec. III, we summarize the proof given in R
@23# that the states used in high-temperature NMR exp
ments are classical up to about 15 qubits in the sense o
first criterion above. In Sec. IV, we define the transitio
probabilities that are used in our overall and gate-by-g
classical models. Used directly in a gate-by-gate class
model, these transition probabilities give rise to a signal
crease by a constant factor at each entangling multi-q
operation. Section V shows how to modify the gate-by-g
model so as to avoid this signal decrease for a small num
of entangling steps. In Sec. VI we consider the implicatio
of our results for bulk-ensemble NMR quantum-informati
processing.

II. NMR QUANTUM-INFORMATION PROCESSING

All NMR quantum computing experiments performed
far @4–16# work according to the following principles. Th
state of the sample is described by a density operatorr for
the N spins ~qubits! in each molecule. The molecules a
prepared in an initial state

r5~12e!M1er1 , ~2.1!

whereM5I /2N is the maximally mixed density operator fo
N qubits (I is the unit operator! andr1 is a density operator
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4356 PRA 60RÜDIGER SCHACK AND CARLTON M. CAVES
usually chosen to be the projector onto the computatio
basis stateu0•••0&. The parametere scales like

e5
aN

2N . ~2.2!

Herea5hn̄/2kT, wheren̄ is the average resonant frequen
of the active spins in the strong magnetic field, determi
the polarization of the sample. Ifr1 is a pure state,r is
called a pseudopure state@1#. Procedures for synthesizing
pseudopure state from an initial thermal density operator
described in Refs.@2,8,11,13#.

For typical molecules in present magnetic-field strengt
the average resonant frequency is roughlyn̄;300 MHz,
which at room temperature givesa;231025. It is difficult
to know the actual value ofa and e in the experiments,
because the polarization is not calibrated absolutely.
evaluating the experiments, we adopt the scaling of Eq.~2.2!,
with a conservative value ofa5231026, which is meant to
take into account inefficiencies in the experiments, especi
loss of polarization involved in the synthesis of a pseudop
state. The results of this paper do not depend significantly
the exact value fora chosen.

One interpretation ofe is that it specifies the fraction o
molecules in the sample that occupy the desired initial s
r1. This interpretation is not unique, and it is not manda
or even preferred by quantum mechanics. It is sometim
promoted to the level of a physical fact by advocates
NMR quantum computation, yet it becomes a physical f
only if one actually prepares a fraction of the molecules i
particular state@31#, a situation that does not apply to a hig
temperature NMR experiment. The freedom to interpretr in
terms of other ensembles underlies the conclusions of
paper.

After synthesis of the desired initial state, a sequence
radio-frequency pulses, alternating with continuous evo
tion, is applied to the sample. We first consider the c
where the evolution is described by a unitary transformat
U. Applying the unitary operatorU to r results in the state

rout[Ur U†5~12e!M1eUr1U†[~12e!M1er1
out.
~2.3!

The totally mixed part of the state is unaffected by the u
tary transformation. The output state retains the form~2.1!
with the same value ofe, but—and this is the essence of th
bulk-ensemble paradigm for quantum computation—r1 un-
dergoes the desired unitary transformation.

The same conclusions hold for transformations imp
mented using gradient pulses together with diffusion in
sample@8#; these are equivalent to mixtures of unitary tran
formations, as in

rout[(
l

plUlr Ul
†5~12e!M1e(

l
plUlr1Ul

†

[~12e!M1er1
out, ~2.4!

where thepl>0 are probabilities. We assume that decoh
ence also preserves the form of the density operator, lea
e unchanged. This assumption is certainly justified when
l-
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coherence is simulated by unitary transformations, as in
gradient pulses used to simulate decoherence in Ref.@5#. It is
also true for naturally occurring decoherence for times sh
compared to the characteristic time for relaxation to therm
equilibrium. These are the times of interest for quantu
information processing.

The last step in any NMR experiment is the readout.
applying radio-frequency pulses and then measuring
transverse magnetization of the sample, one can determ
all expectation values of the form

tr~routsb1
^ •••^ sbN

!5e tr~r1
outsb1

^ •••^ sbN
!.

~2.5!

The tensor product in this expression includes one oper
for each spin;sbk

denotes the unit operatorI for thekth spin

if bk50, and it denotes a Pauli matrix ifbk51, 2, or 3. In
writing Eq. ~2.5! and all such expectation values in this p
per, it is assumed that there is at least one Pauli matrix in
tensor product~not all the b ’s are zero!. The maximally
mixed part of the density operator does not contribute to
measured expectation values, which are determined by
stater1

out that undergoes the desired evolution. The para
eter e appears naturally as a measure of the strength of
magnetization signal~or of the signal-to-noise ratio!.

Throughout this paper we use the phrase ‘‘bulk-ensem
quantum computation’’ to refer to any scheme that uses
ensemble of information-processing elements, each con
ing of N qubits, in the manner described in this section. T
processing elements, prepared initially in a highly mix
state of the form~2.1!, are manipulated in parallel as in Eq
~2.3!, and the readout, involving the entire ensemble, yie
expectation values of the form~2.5!. Our results apply to any
such bulk-ensemble scheme.

III. SEPARABILITY OF STATES USED IN NMR

Our conclusions rest on the freedom to write states of
form ~2.1! in terms of probability distributions over spin or
entations forN classical tops. We review one such represe
tation @23#, the foundation for our work, which provides
classical description for all states of the form~2.1! provided
that

e<h[
1

1122N21
. ~3.1!

If we assume thata5231026 in Eq. ~2.2!, this inequality
holds forN,16 qubits.

The argument is straightforward@23#. The most genera
pure product state ofN qubits has the form

P1~ ñ![P1~nW 1 , . . . ,nW N!

5
1

2N ~ I 1nW 1•sW ! ^ •••^ ~ I 1nW N•sW !. ~3.2!

This state can be interpreted asN classical tops pointing in
the directions given by the unit vectorsnW 1 , . . . ,nW N , denoted
collectively by ñ. Since the operatorsP1(ñ) form an over-
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complete basis in the space of linear operators acting oN
qubits, anyN-qubit density operatorr can be expanded as

r5E dV ñwr~ ñ!P1~ ñ!, ~3.3!

where dV ñ[dVnW 1
•••dVnW N

. The overcompleteness mea
that the expansion coefficients are not unique. One choic

wr~ ñ![tr„rQ1~ ñ!…, ~3.4!

where the operatorsQ1(ñ) are defined by

Q1~ ñ![
1

~4p!N~ I 13nW 1•sW ! ^ •••^ ~ I 13nW N•sW !.

~3.5!

The representation~3.4!, which is analogous to theP repre-
sentation for a harmonic oscillator, was introduced by Ar
chi et al. @32# and studied in detail by Scully and Wo´d-
kiewicz @33#. The expansion coefficientswr(ñ) can be posi-
tive or negative, but they obey the bound

wr~ ñ!>@smallest eigenvalue ofQ1~ ñ!#52
22N21

~4p!N
.

~3.6!

When wr(ñ) is everywhere non-negative, it can be inte
preted as a classical probability distribution for theN spins to
point in the directionsnW 1 , . . . ,nW N . Since the maximally
mixed density operatorM has probability densitywM(ñ)
51/(4p)N, it follows that for a density operatorr of the
form ~2.1! with e<h,

wr~ ñ!5
12e

~4p!N 1ewr1~ ñ!>
12e/h

~4p!N >0. ~3.7!

A density operator for a joint system isseparableif it can
be written as a non-negative linear combination of prod
density operators. Whenwr(ñ) is everywhere non-negative
the expansion~3.3! provides a separable representation forr.
Related work on the separability of states near the maxim
mixed state can be found in Refs.@31# and @34#. Separable
states have no quantum entanglement@35#. The importance
of separability in this paper is that a separable state oN
qubits can be interpreted in terms of an ensemble of class
tops, because the expectation values~2.5! measured in NMR
experiments have the standard form for an ensemble
probability distributionwr(ñ):

tr~r sb1
^ •••^ sbN

!5E dV ñwr~ ñ!

3tr@P1~ ñ!sb1
^ •••^ sbN

#,

~3.8!

where tr@P1(ñ)sb1
^ •••^ sbN

)5(n1)b1
•••(nN)bN

. In this

expression, (nj )b j
51 if b j50, and (nj )b j

is a Cartesian

component of the vectornW j if b j51, 2, or 3. Although a
is

-

t

ly

al

th

classical interpretation of the expectation values~2.5! is all
we need for understanding the measurements in b
ensemble quantum computation, we can demonstrate a m
stronger result: for separable states ofN qubits, all measure-
ments, including nonfactorizable measurements, can be
terpreted in terms of an ensemble of classical top orien
tions. To see this, consider an arbitrary measurement on
N qubits, its statistics described by a positive-operat
valued measure~POVM! with POVM elementsEa @36#. The
probability to obtain resulta is

tr~rEa!5E dV ñwr~ ñ!tr@P1~ ñ!Ea#. ~3.9!

Here the quantity tr„P1(ñ)Ea…>0 can be interpreted as th
conditional probability to obtain resulta, given that the spins
point in the directions specified byñ. Thus, as long as
wr(ñ)>0, the measurement statistics can be interpreted
terms of an ensemble of classical tops@37#.

If one adopts our first criterion, none of the NMR expe
ments performed to date has done any genuine quan
information processing, since they all use two or three
bits. Yet the fact that all states—initial, intermediate, a
final—that occur in a given NMR experiment are equivale
to ensembles of classical tops does not mean, by itself,
there is a classical model for the entire experiment. To
this, consider the following naive attempt to describe a u
tary transformationU by classical transition probabilities:

wUr U†
~ ñ!5tr„Ur U†Q1~ ñ!…

5E dVm̃wr~m̃!tr@UP1~m̃!U†Q1~ ñ!#,

~3.10!

where tr@UP1(m̃)U†Q1(ñ)#[tU(ñum̃). The transition func-
tion tU(ñum̃) is not a transition probability because it a
sumes negative values; for example, for the trivial case of
identity transformation,U5I , we have

t I~ ñum̃!5tr„P1~m̃!Q1~ ñ!…5
1

~4p!N )
j 51

N

~113mW j•nW j !.

~3.11!

The expansion coefficientswP1(m̃)(ñ)5tr„P1(m̃)Q1(ñ)…
in Eq. ~3.11! are the coefficients for the pure product sta
P1(m̃). That these coefficients can be negative might se
to be a drawback of our representation, but in fact it is
essential feature of a program to construct a classical mo
To see this, suppose that we could use a representationwr,
linear in r, to construct a classical model for all unitar
operators acting on density operators sufficiently close to
maximally mixed state. This means that there is a n
negative transition probabilitywU(ñum̃)>0 such that

wUr U†
~ ñ!5E dVm̃wU~ ñum̃!wr~m̃! ~3.12!

for all unitary operatorsU and for all density operatorsr of
the form~2.1!, providede is sufficiently small. Applying Eq.
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4358 PRA 60RÜDIGER SCHACK AND CARLTON M. CAVES
~3.12! to the case wherer1 is a pure stateP and using the
linearity of wr, we get immediately that

wUPU†
~ ñ!5E dVm̃wU~ ñum̃!wP~m̃!. ~3.13!

If wP(m̃) is everywhere non-negative, we get a non-nega
representation forUPU† and, hence, conclude thatUPU† is
separable. This cannot be true, however, because we
always chooseU to mapP to an entangled state. The co
clusion is thatwP must go negative for all pure statesP. This
tells us something useful only for pure product states,
cause all other pure states are entangled and necessarily
a representation that goes negative. The representation
are using, embodied in Eq.~3.4!, does go negative for al
pure product states.

Returning now to the first criterion, we note that ev
though it is not the whole story, it is the right criterion fo
judging claims of having produced entangled states us
bulk-ensemble NMR. For example, as pointed out in R
@23#, the claim of Laflammeet al. @6# to have created a three
qubit Greenberger-Horne-Zeilinger~GHZ! entangled state is
incorrect. Despite the authors’ assertion, ‘‘We describe
creation of a Greenberger-Horne-Zeilinger state of the fo
(u000&1u111&)/A2 ~three maximally entangled quantu
bits! using nuclear magnetic resonance. . . . We have t
extended the space of entangled quantum states exp
systematically to three quantum bits. . . ,’’ no entanglement
was created in that experiment; the statistics of any meas
ment performed on the purported GHZ state could have b
explained in terms of classical correlations contained
wr(ñ). Similar conclusions apply to the experiments
which Chuanget al. @11# and Coryet al. @8# claim to have
created two-qubit Einstein-Podolsky-Rosen~EPR! entangled
states. The states created in these experiment were u
tangled, though Chuanget al. write, ‘‘As an application of
the controlled-NOT gate, we used it in a simple quant
circuit to create entangled states from the thermal mixtu
. . . We have experimentally confirmed this~nonclassical!
behavior, and the signature of the entanglement—a pu
non-classicaleffect—is the strong reverse diagonal me
sured in the density matrix,’’ and Coryet al. refer to apply-
ing the ‘‘spin-coherence XOR gate to a one-spin superp
tion to create an entangled state.’’

Indeed, the first criterion can be applied to any NM
experiment that claims to have manipulated quantumstates
in a particular way. For example, in describing the NM
version of quantum teleportation@4#, a three-qubit experi-
ment, the authors assert, ‘‘Quantum-mechanical syst
have information processing capabilities that are not poss
with classical devices. One example is quantum telepo
tion, in which the quantum state of a system is transpor
from one location to another without moving through t
intervening space. . . . Here we report an experime
implementation of full quantum teleportation over inte
atomic distances using liquid-state nuclear magnetic re
nance.’’ This claim cannot be supported, because the q
tum state at all stages of the experiment could be interpr
in terms of classical correlations among spin directio
What the experiment achieved was a reshuffling of th
e
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classical correlations. Nonetheless, as noted above, this
clusion does not imply that there is a classical model for
entire experiment.

IV. TRANSITION PROBABILITIES FOR QUANTUM
GATES

The essence of a classical model lies in the construc
of non-negative transition probabilities to describe unita
transformations. We first consider product unitaries, i.e., u
tary transformations of the formV5V1^ •••^ VN , and then
tackle the tougher task of entangling unitaries, i.e., unit
transformations that are not product unitaries.

The expansion coefficients for the output state are gi
by

wVrV†
~ ñ!5tr„VrV†Q1~ ñ!…5tr„rV†Q1~ ñ!V…. ~4.1!

For a product unitaryV, the unitary transform ofQ1(ñ) fac-
tors into a product of transformations for each qubit. If w
introduce the three-dimensional rotation operatorRk ~an or-
thogonal transformation! corresponding to the unitary opera
tor Vk , i.e., Vk

†sW Vk5RksW , and use the fact thatnW k•RksW

5Rk
21nW k•sW , then the unitary transform ofQ1(ñ) assumes

the form

V†Q1~ ñ!V5Q1~R1
21nW 1 , . . . ,RN

21nW N!5Q1~R̃21ñ!.
~4.2!

Here R̃ stands for the rotations on all the qubits. Now t
output expansion coefficients assume the form

wVrV†
~ ñ!5wr~R̃21ñ!5wr~R1

21nW 1 , . . . ,RN
21nW N!.

~4.3!

Not surprisingly, the action of the product unitaryV is
equivalent to rotating each of the classical tops. The co
sponding non-negative transition probabilities arew(ñum̃)
5d(R̃21ñ2m̃). This result shows that, for product unitarie
our transition probabilities are equivalent to the simple cl
sical diagrams often used in the NMR literature@30#.

Before proceeding to entangling unitaries, we descr
how decoherence is incorporated into our classical mod
In some experiments decoherence is simulated as a mix
of product unitary transformations; an example is the use
gradient pulses in Ref.@5#. In current experiments, naturall
occurring decoherence processes can be regarded as a
independently on the various qubits; on time scales sh
compared to the thermal relaxation time, they preserve
maximally mixed density operator. Any decoherence proc
that satisfies these two properties can be described as a
ture of product unitaries@38#. Thus decoherence can b
handled in our classical models as a mixture of rotations
the qubits.

To describe general, entangling unitaries, we need to
troduce some additional notation. For an arbitrary dens
operatorr and for 0,u<1, we define

ru[~12u!M1ur. ~4.4!

Furthermore, we define the states



n

-
on

ot
io

e

o

ag-
ble

cal
ion

f an
he
cay

to

del,

ated

PRA 60 4359CLASSICAL MODEL FOR BULK-ENSEMBLE NMR . . .
Pu~ ñ![~12u!M1uP1~ ñ! ~4.5!

and associated operators

Qu~ ñ![
12u21

~4p!N
I 1u21Q1~ ñ!. ~4.6!

For a general unitary operatorU, we define the transition
probabilities

wU~ ñum̃![tr„UPh~m̃!U†Q1~ ñ!…5
12h

~4p!N 1htU~ ñum̃!>0,

~4.7!

where tU(ñum̃) is defined in Eq.~3.10!. The non-negativity
of these transition probabilities follows from the argume
leading to Eq.~3.7!, sinceUPh(m̃)U† is a state of the form
~2.1! with e5h.

It is straightforward to write down the transition prob
abilities for elementary entangling gates. As an illustrati
we compute them for the controlled-phase gate,

U5Ci j 5u0&^0u ^ 11u1&^1u ^ s3

5
1

2
~11s3! ^ 11

1

2
~12s3! ^ s3 , ~4.8!

acting on qubitsi and j. We obtain

wCi j
~ ñum̃!5tr„Ci j Ph~m̃!Ci j Q1~ ñ!…

5
1

~4p!N S 12h1h )
lÞ i , j

~113mW l•nW l !

3$@113~mi !3~ni !3#@113~mj !3~nj !3#

19~mW i3nW i !3~mW j3nW j !313@~mi !313~ni !3#

3~mW j'•nW j'!13@~mj !313~nj !3#~mW i'•nW i'!% D ,

~4.9!

wheremW ' is the projection ofmW into the 1-2 plane, obtained
by settingm3 to zero. As in this example, the qubits n
involved in an entangling gate do appear in the transit
probabilities, but in a simple, universal way.

Applying the transition probabilities~4.7! to an input en-
semblewin[wr(ñ), we obtain a classical output ensembl

wout~ ñ![E dVm̃wU~ ñum̃!win~m̃!

5trS UF E dVm̃wr~m̃!Ph~m̃!GU†Q1~ ñ! D
5wUrhU†

~ ñ!5
12h

~4p!N 1hwUr U†
~ ñ!, ~4.10!

where we have used the fact that*dVm̃wr(m̃)Ph(m̃)5rh .
Unlike the quantum output ensemblewUr U†

(ñ), the classical
output ensemble suffers an increase in the fraction of m
t

,

n

l-

ecules that are maximally mixed. This means that the m
netization signal produced by the classical output ensem
is a factor ofh smaller than in the quantum description:

E dV ñwout~ ñ!~n1!b1
•••~nN!bN

5tr~UrhU†sb1
^ •••^ sbN

!

5h tr~Ur U†sb1
^ •••^ sbN

!. ~4.11!

If we use the transition probabilities~4.7! to describe tran-
sitions of the spin directions in a gate-by-gate classi
model of an NMR quantum computation, the magnetizat
signal of the model loses a factor ofh at each entangling
gate. Though such a model gives a satisfactory account o
NMR experiment in which one ignores the strength of t
signal, we can formulate a better model that avoids the de
for a few entangling gates.

V. GATE-BY-GATE CLASSICAL MODEL

The key idea in constructing an improved model is
introduce auxiliary, ‘‘hidden’’ spinsaW 1 , . . . ,aW N[ã, one for
each qubit. We also need a ‘‘counter index’’k, which incre-
ments by 1 at each entangling gate. In the improved mo
we can avoid the decay of the signal forK entangling gates,
whereK is the largest integer such that

e<hK11. ~5.1!

We assume thate<h2 to ensure thatK>1. It is useful to
introduce the function

hk[H hK2k, 0<k,K,

1, k>K.
~5.2!

Between thekth and (k11)th entangling gates (k>0),
we represent a density operatorr by the expansion coeffi-
cients

wk
r~ ã![tr„rQhk

~ ã!…. ~5.3!

It is easy to show that these expansion coefficients are rel
to the original coefficients~3.4! by

wk
r~ ã!5

12hk
21

~4p!N
1hk

21wr~ ã! ~5.4!

and thatr can be expanded as

r5E dV ãwk
r~ ã!Phk

~ ã!. ~5.5!

For density operators of the form~2.1!, Eqs.~5.4! and ~3.7!
imply that

wk
r~ ã!>

12e/hK11

~4p!N
>0 ~5.6!
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for all k>0. Throughout the experiment, the expansion
efficients wk

r(ã) can be interpreted as probability distrib
tions.

In our improved classical model, the gate operations m
nipulate the hidden spins; the effect of a gate shows up in
observable spinsñ through the correlations ofñ with ã. Be-
tween thekth and (k11)th entangling gates, this correlatio
is described by the joint distribution

wk
r~ ñ,ã![qk~ ñuã!wk

r~ ã!, ~5.7!

where

qk~ ñuã![
12hk

~4p!N 1hkd~ ñ2ã! ~5.8!

is a conditional probability distribution. The marginal distr
bution for the observable spin variables,

E dV ãwk
r~ ñ,ã!5

12hk

~4p!N 1hkwk
r~ ñ!5wr~ ñ!, ~5.9!

is just the right mixture ofwk
r(ñ) with the uniform distribu-

tion to produce the distributionwr(ñ) that gives the mea
sured expectation values.

We now define transition probabilities for quantum gat
distinguishing as before between product unitaries and en
gling unitaries. For a product unitaryV, we find, by an argu-
ment analogous to the previous one, that

wk
VrV†

~ ñ,ã!5wk
r~ ñ,R̃21ã!. ~5.10!

The effect ofV is to rotate the hidden spins. Decoherence
handled, as previously, by mixtures of product unitaries.

To deal with an entangling unitary transformationU, we
first note that the transition probabilitieswU(ãub̃) defined in
Eq. ~4.7! can be expressed as

wU~ ãub̃!5tr„UPhu~ b̃!U†Qu~ ã!…>0. ~5.11!

Using this result, together with Eq.~5.5!, we find

E dV b̃wU~ ãub̃!wk
r~ b̃!

5trS UF E dV b̃Phhk11
~ b̃!wk

r~ b̃!GU†Qhk11
~ ã! D

5H wk11
Ur U†

~ ã!, 0<k,K,

wk11
UrhU†

~ ã!, k>K,
~5.12!

where we have used the fact that

E dV b̃Phhk11
~ b̃!wk

r~ b̃!5H r, 0<k,K,

rh , k>K.

To describe the effect of the (k11)th entangling gate, we
use transition probabilities

wk11
U ~ ñ,ãum̃,b̃![qk11~ ñuã!wU~ ãub̃!, ~5.13!
-

-
e

,
n-

s

which take the input ensemblewin[wk
r(ñ,ã) to an output

ensemble

wout~ ñ,ã!5E dVm̃dV b̃wk11
U ~ ñ,ãum̃,b̃!win~m̃,b̃!

5qk11~ ñuã!E dV b̃wU~ ãub̃!wk
r~ b̃!

5H wk11
Ur U†

~ ñ,ã!, 0<k,K,

wk11
UrhU†

~ ñ,ã!, k>K.
~5.14!

We have now constructed a gate-by-gate classical mo
in which there is no loss of magnetization signal for the fi
K entangling gates. How this works can be summarized
follows. The initial distributionw0

r(ã) of the hidden spin
variables is chosen to have as little contribution from t
uniform distribution as is consistent with non-negativity. A
each entangling gate, the ensemble of hidden spins suffe
increase in the proportion of molecules that are maxima
mixed, but the observable spins retain the statistics of
quantum description by becoming more tightly correlat
with the hidden spins. AfterK entangling gates, the observ
able and hidden spins becomed-correlated; thus from the
(K11)th entangling gate on, the signal decreases by a fa
of h at each entangling gate.

VI. DISCUSSION

Consider a bulk-ensemble NMR experiment whose
rametere satisfies the conditione<h2 that underlies the
argument in Sec. V. If we assumea5231026 in Eq. ~2.2!,
this condition is fulfilled forN<6 qubits. The model con-
structed in Sec. V provides an overall classical model in
sense of our second criterion: the unitary transformationU
that maps the initial state to the final state is described in
model, with no loss of magnetization signal, by the transit
probabilitiesw1

U(ñ,ãum̃,b̃); mixtures of such transition prob
abilities are used to incorporate decoherence. The predict
of the model for the signal derived from the output state
identical to the quantum predictions. Since all NMR expe
ments to date involve two or three qubits, this overall cla
sical model applies to all such experiments.

We turn now to the implications of the gate-by-gate cla
sical model constructed in Sec. V. If we assume again
a5231026, in a two-qubit experiment the model procee
throughK55 entangling gates with no signal loss, and in
three-qubit experiment throughK53 entangling gates. We
illustrate the implications by considering a particular thre
qubit experiment, the NMR version of quantum teleportati
@4#. After preparation of a pseudopure state by the gradie
pulse technique@8#, the teleportation experiment consisted
four operations:~i! an entangling two-qubit gate,~ii ! a two-
qubit mapping of the Bell basis to the computational bas
~iii ! decoherence of two qubits in the computational ba
and ~iv! a conditional three-qubit unitary. Our model inco
porates the decoherence step as a mixture of classical
tions of the hidden spins. Since the model can account
K53 entangling gates without loss of signal, it provides
gate-by-gate classical model whose predictions are iden
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to the quantum predictions. This experiment therefore d
not demonstrate genuine quantum-information processin
the sense of our third criterion. For a larger value ofa, when
K52, our model predicts a drop in signal by a factor ofh
51/33 at the third entangling step. Nevertheless, even w
K52, the classical model can still account for the telepor
tion experiment if the first two two-qubit gates are ‘‘com
piled’’ into a single three-qubit gate.

Similar conclusions apply to the other three-qubit expe
ments performed to date@5–8# and to most of the two-qubi
experiments@8,11–16#. The two-qubit experiment describe
in Ref. @9# ran through 15 entangling gates with an appro
mately exponential signal-to-noise decrease that is, howe
much slower than the factor ofh51/9 per entangling gate
predicted by our model after the firstK55 steps. The 2-qubi
experiment reported in Ref.@10# implemented up to 14 en
tangling gates, but the absence of signal-to-noise data m
comparison with our model difficult.

This paper, together with Ref.@23#, begins the task of
establishing standards for assessing the quantumness of
ensemble NMR quantum computation@39,40#. Our gate-by-
gate classical model erects a hurdle in the way of NM
quantum-information processing. ‘‘Testing’’ our classic
model is not the point, for no one would contend that
describes the physics that underlies an NMR experim
The point is that experiments that fail to clear the hurdle c
be explained in classical language and thus do no gen
quantum-information processing according to our third cr
rion.

It will be easy for NMR experimenters to clear our hurd
by measuring the signal-to-noise ratio in experiments invo
ing many entangling gates, like the experiment reported
Ref. @9#. Yet jumping over our hurdle is probably not suffi
cient to provide a warranty of genuine quantum-informat
processing, for that would require showing that a given
periment is inconsistent withall gate-by-gate classical mod
els, not just the model formulated in this paper. There
reasons for believing that our classical model is not optim
d.
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the most cogent of which is that the model’s transition pro
abilities for an entangling gate transform qubits that are
affected by the gate. Avenues for improving the model
clude the following: ~i! investigating more efficient
representations both for quantum states near the maxim
mixed density operator and for the transition probabilit
between states,~ii ! seeking gate representations that are m
efficient when fewer qubits are involved in the gate, and~iii !
addressing the extent to which one is allowed to ‘‘compil
successive entangling unitaries into a single operation~com-
piling is routine in NMR experiments as a method for redu
ing the length of a computation!.

We conjecture, however, that no matter how efficient
gate representations are made, an ultimate signal decrea
an unavoidable consequence of any attempt to describe
tangling unitaries classically, even when the unitaries
only on separable states. Indeed, more interesting than
results would be a demonstration of this conjecture. Sho
the conjecture prove to be correct, one could conclude
the quantumness of NMR quantum computation, for sm
numbers of qubits, lies in the ability to avoid any sign
decrease. More broadly, we speculate that the powe
quantum-information processing comes not from entang
ment itself @26–28#, but rather from the information-
processing capabilities of entangling unitaries.
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