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Entanglement splitting of pure bipartite quantum states
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The concept of entanglement splitting is introduced by asking whether it is possible for a party possessing
half of a pure bipartite quantum state to transfer some of his entanglement with the other party to a third party.
We describe the unitary local transformation for symmetric and isotropic splitting of a singlet into two
branches that leads to the highest entanglement of the output. The capacity of the resulting quantum channels
is discussed. Using the same transformation for less than maximally entangled pure states, the entanglement of
the resulting states is found. We discuss whether they can be used to do teleportation and to test the Bell
inequality. Finally, we generalize to entanglement splitting into more than two branches.
[S1050-294@9)01112-9

PACS numbds): 03.67—a, 03.65-w

Entanglement is a resource in the physics of quantum intion can be sent. We ask the following question: let us imag-
formation that has deserved and received increased attentiame Bob has a brother Brian and wants to generously share
over the recent years, as it is a main reason for fundamentais resource with him. There is a limit to his generosity,
differences with classical information: given a system thathough—for example he does not want to simply swap the
consists ofn quantum bits, the total state is called separableentanglement to Brian, because then he would be left without
if it can be decomposed as any entanglement himself. Can he design a unitary transfor-

mation acting on his and his brother’s stdtehich is sup-

B 1 2 n posed to be in a prescribed st at the beginningand, if
Qsep_Ei pieiYeeiPe- @0, @ necessary, an ancilla, such that after the transformation both
Bob and Brian have an identical amount of entanglement

wheregi(”) is a density matrix for theth subsystem, and the with Alice? Thus she could teleport imperfectly a qu.antum

positive weightsp; obey 3;p;=1. Otherwise the system is State to both of them. In other words, rather tha}n using one
called entangled—a property that exists only for quantunPe_rfeCt guantum channel, thgre would be two imperfect or
states. noisy channels. To be precise, we would have created a

Several features of entanglement have been studied so f&hannel bifurcation with one input sidélice) and two out-

e.g. how to concentrate entanglement of several pairs intBUt Sides(Bob, Brian). Note that Bob's action is local in the
more entangled fewer paitdistillation or purification[1,2]) ~ S€nse that h(_a does not act on Allce’§ side. Itis not local with
or how to transfer entanglement to pairs that have not beefSPect to Brian, though. Formally this transformation can be
entangled beforéswapping 3)). It is desirable to study more Wrtten as

properties of entanglement, as we know that it is the central N i

resource for speed-ups in quantum algorithms, but are still )" = >ABl|0>BZ|O>anc—’JlA®Uslszancl )]
unable to fully classify multiparticle entanglement.

The purpose of this paper is to introduce the concept ofvhere Bob is abbreviated & and Brian as3,. What is the
entanglement splitting by answering the question whether thbighest entanglement that can remain between Alice and Bob
resource of entanglement can be shared, such that more thafier his transformation?
one party can profit from it. Apart from the fundamental This question has not been addressed in work about re-
aspect of this topic the setting has a direct relevance in teldated areas, namely about broadcasting of entanglement
portation[3]. This paper is restricted to entanglement split-[4,5], where it was shown that an entangled pure state can be

ting of two-dimensional states. copied imperfectly by employing a unitary transformation on
Let us consider the following situation: the two parties bothsubsystems and about teleclon[id, where the authors
Alice and Bob are sharing a singfet.e., the Bell state described a multiparticle state which allows one to do imper-
fect teleportation of a state from one party to several others.
1 Transformations of a subsystem of a maximally entangled
[y )= E(|01>—|10>)- (2)  state have been used [i] in the context of asymmetric

cloning. Note that in this context one could generalize our

. . arguments to the case of asymmetric entanglement splitting
This resource can be used to do teleportation of a quantury a straightforward way.

state from one party to the other. The singlet can thus be seen |, our scenario of entanglement splitting the emerging

as an ideal quantum channel along which quantum informag, herfect quantum channels can, in principle, be of any kind,

depending on Bob’s transformation. We do not attempt a

complete study here, but restrict ourselves to the case where
tAny other Bell state would be equally good for our consider-the ideal channel is split such that it can serve equally well
ations. for teleportation of any quantum state. The motivation for
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this is not to introduce any spatial asymmetry into the split- PAB,= Ful¥ W (¥
ted channel. This means we only consider splitting of the
singlet into two identical branches that act as depolarizing
channeld(i.e., with the same probability of error in they, +
and z directiong when using the standard teleportation
scheme. The equivalence between quantum channels and bi- 8
partite states has been studied[#9] where it was shown
that a Werner stat.e., a state that is with probabilify,, in ~ The explicit calculation is laborious and, therefore, not
one of the Bell states and with equal probabilities (1Shown explicitly. It yields some constraints for the param-
—Fy)/3 in the remaining three Bell stafesicts as a depo- €ters characterizing this transformation:
larizing channel when used for standard teleportation. In (i) |a|?—|c|?=]a|?—|c|?,
other words, we require the reduced density matrix of Alice  (jj) |a|?—|c|?=Rgb* a(B|A)+a*b(A[B)],
and Bob after Bob’'s transformation to be a Werner state. (iii) Im[B* a(B|A)+a* b(A|B)]=0

The most general transformation that Bob can performis =~ =" " - = = '
given by its action on the basis of his quirians qubit and (iv) tl C<B|C>+i b(C[B)=0,
the ancilla are initially fixeland can be written as (v) b*a(B|A)+c*b(C[B)=0,

(vi) b*a(B|A)+c*b(C|B)=0

FAW YW+ DN D+ ]D WD),

Ug. 5.and 0)]0)]0)=a|00)| A) +b(|01) +|10))|B) (vii) c*a(C|A)—ac*(C|A)=bb* (B|B) —bb* (B|B).
e It turns out that these constraints coincide—apart from
+¢c|11)|C), (4)  (vii)—with the ones the parameters of an isotropic and sym-

metric 1—2 quantum cloning transformation have to fulfill.
(These are given in Sec. Il A ¢10].) This is not astonishing,

UBleanJ 1)|0)[0)=a[13)|A)+b(|10)+[01))|B) as in both scenarios we want to find a transformation with
~ ~ the highest possible degree of symmetry. Nevertheless is not
+¢[00)[C). ) obvious, either, as in this paper we perform a transformation

on a part of an entangled state, i.e., a system in which the
where we have used the same notation §4@ and implied  reduced density matrix is the identity and does not contain
symmetry under the exchange of Bob’s and Brian’s qubitsinformation about any direction of polarization, in contrast
The coefficients and ancilla states are restricted by conwith the scenario in quantum cloning. As mentioned above,
straints from unitarity OUB B, anc- We also require symme- the sets of constraints in the two scenarios are not exactly
entical.
An isotropic 1—2 cloner was introduced by Bak and
Hillery [11] and shown to be optimal if10,12. A less than
optimal but still isotropic cloning transformation can be con-
structed by varying not only the coefficients of the unitary
transformation, but also the scalar products of the ancilla,
such that the conditions given {10] are preservedNote
that for the case of less than optimal cloning the ancilla di-
mension has to be increased to at least two qubithis

try under renaming the basis, namely exchange ofd
|0)g,[1)g,. Inserting Eqs.(4) and (5) into Eq. (3) and
tracing overB, one finds the following structure before trac-
ing over the ancilla:

1
pae,= 3 Thand (BT )+ [ )| A)+b(| D7) +|@7))[B)

b ¥y —|w))By—c(|®*) statement is best illustrated by providing an example. The
o N B fidelity Fc={(y"p°“]4") of a cloning transformation is a
— [ NICH(. . . [FH{b(¥T )+ [¥))[B) measure for how close the reduced density maifi# of a
clone is to the input. With the following bad cloner we reach

+c(|@H)+| ) Cy—a( vy~ [V ))|A)
=D ")~ D N[BYH(...[}. (6)

only Fc=3/4:

1
. o Uba‘10>|0)|0)a1|0>32=T|OO>|O>a1|O)a2+%(|01>
Here the notatiod(- - |} indicates that the whole ket-vector 2
to the left now appears as bra-vector. We have used the n
customary definition for the Bell states, namely 110))[1) 21/ 022,

kS U529 1)[0)]0)/0) o= [|11>|1>a1} (10) a2+ | 1a2)

V)= 01)+|10

=)= [I )*110)),

|CI)i>— 1 (|OO>+|11>) (7) 2(|01>+|10>)|0>a1\/—(|0>a2
. +11)a2), 9

After tracing over the ancilla we have to set E6) equal to  where the two first bits on the right-hand side are the clones
the Werner state we aim at, namely and the subscriptal, a2 denote the ancilla states.
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Which of the many possible isotropic cloning machinesered above do not applythe reduced density matrix of Alice
optimizes the quality of the channels resulting from en-and Bob(or Alice and Brian after this operation is
tanglement splitting? From E@6) and the constraints given

2
above one finds that the fraction of the singlet in our output ol 0 0 0
channel is 1| O 5la|? —4ap* O
1 PAe=61 0 —4a*p 5|82 0 13
— 2 2
FW—Z[3(|3| —le[9)+1], (10 0 0 0 |18)2

in the basig|00),|01),|10),|11)}. Is this matrix inseparable?

which is related to the cloning fidelitif - in a simple way, ; - /1= -
g ¥e P y Using the separability criterion established by Péfe and

namel
y the Horodeckig15] one has to check the partially transposed
Fw=3(3Fc—1). (11)  density matrix for positivity. Its eigenvalues are
Remember that our constraitii) is slightly different from )\1:§|a|2
6 L)

the according constraint in cloning. When going through the

maximization procedure, given in the appendiX @], step

by step, it turns out, however, that the same transformation )\2:§|B|2

that maximizes the cloning fidelity also maximizeg in our 6 '

scenario. The upper bound of a universal cloner is given by 1

Fc=<5/6, and therefore the Werner fidelity has to fulf = —(1+J1+60a|? 8]

<3/4. The entanglement of a Werner state Wify=1/2 is Mas 12(1_ 1+60al%45, 4

an increasing function oF,. In other words, the highest . o

entanglement of the output is reached when Bob performs a@nd ask,<0 for any a with |e|#0,1, the output is insepa-

optimal cloning transformation on his and Brian’s qubit. ~ rable foranyentangled input. So, no matter how small Bob’s
It is interesting to observe that our method provides aehtanglement was at the beginning, he can still make a do-

simple derivation for the upper limit of the quality of the nation of it to Brian. Something like a smallest unit of en-

universalnoT or spin-flip (which is equal to the lower bound tanglement, that could not be split, does not exist.
on the cloning fidelity: as Fy,=(¥ ~|pag/¥ ") has to be How much entanglement remains in the state of Alice and

positive, we arrive aF = 1/3 which corresponds to the up- Bob after the transformation? The entanglement of formation
per bound for the universal NOT given {i3]. In other fqr a given density matrip was introduced if16] and is
words, when applying our positive map it is enough to re-given by

quire positivity of pag in order to find an explicit bound for 1,1 e 1,1 AR

the best universaloT (when the corresponding transforma- E(p)=—(z+32V1-C%)logy(z+3V1-C%)

i Bob’ iti he singl letel

tion acts on Bob’s qubit it erases the singlet complétely (-1 ToClog(i-2VI=CY). (15

We have shown that the best way to split entanglement is
to use the optimal _univers_al cloner_. l\!ote thz?t even a glo,ba\}vhere the concurrend@ is defined as
unitary transformation acting on Alice’s, Bob’s, and Brian’s
b?t cannot split the singlet into depolarizirjg channels with C(p)=max0,Jé — V& — Véa— Vés) (16)
higher degree of entanglement because Alice could then tele-
port a state to both Bob and Brian with higher quality thanwith & being the eigenvalues of (oy® ay)p* (oy® 7)],
the optimal cloning quality. It was shown ii0] that the ordered by size a§;=&,=¢&;=¢,.
quantum capacity of the depolarizing channels that can be The entanglement of formation for the density matrix in
reached in this scenario vanishes. In other words: it is imEg. (13), i.e., the density matrix of Alice and Bob or Alice
possible to bifurcate a perfect quantum channel into two deand Brian after the transformation is found by calculating the
polarizing channels with nonvanishing capacity. concurrence as

Note that this observation sets limits on the possible
amount of entanglement of subsystems in multipartite states C(p)=lap|. (17)

with the described structure, see also the generalization tl(\Jlote that the concurrence of the original state
U

splitting into more than two branches given below. = )
Let us now look at the case where Alice and Bob share a_2|‘?"g|' We o_bserve_ 'ghaC(p)>O for 0<|a|<1. A dis-
pure, but not maximally entangled state of the kind cussion about inequalities for the squares of the concurrences

in the subsystems of three-particle states is presenteld|n
|4~ (a))=a|01)— B|10)  with |a|2+ |,3|2= 1. The curve for the entanglement of formation is shown in Fig.
1.

There is some loss of entanglement in the system of Al-
Note thateverypure bipartite state can be written in this way ice, Bob, and Brian compared to the original entanglement
by using the Schmidt decomposition and naming the bases difecause the unavoidable ancilla is entangled as well. Which
the two systems accordingly. If Bob performs the same opsubsystems of the total state after the transformation will be
timal cloning transformation as aboyeote that the original entangled with each other? By looking at the density matri-
channel is not an ideal channel and the outcomes are naes for the bipartite subsystems one finds the followkis
depolarizing channels, so our optimality arguments considentangled witlB, and withB,. The ancilla is entangled with
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FIG. 2. Entanglement of the total state before and after splitting
a pure entangled bipartite state into two branches. The wavy lines
between two parties indicate that their reduced density matrix is
entangled.

FIG. 1. Entanglement of formatidit OF of any of the resulting

b.ranches as a function of initial parameted|, see Eq.(12), for This is a very wide range for, namely 0.00& «<0.992.
different numbers of brancheé Thus, even for small initial entanglement the teleportation
) . fidelity of the splitted channel is still higher than the classical
B, and with B,. B; and B, are not entangled with each fidelity.
other. This can be visualized as in Fig. 2. Could we also use the output state to do a three-party test
Is the remaining entanglement between Alice and each of¢ 1o Bell.CHSH inequalitf19]? Using the criterion given
the brothers enough so that she can do teleportation to boj [20,21], we have to calculate the eigenvalues OFT
for any initial @? We learned ir{18] that a mixed state is \\hereT is given in Eq.(20). The authors showed that the
better for teleportation than classically whenever the follow-gg inequality is equivalent to the sum of the two largest
ing criterion for the maximally reachable fidelity is fulfilled: eigenvalues being smaller or equal to one. In our example
1 1 2 this is the case for anw, so our outputs do not violate the
Fmaxzz 1+ §TNT T >3 (18)  Bell inequality. The output state is another examffier
|a| #| B| distinct from the ones given if21]) for the fact that

where the matrixX is defined by the general expansion of theseparabi”ty is a different criterion from violation of Bell's

density matrix inequalities. . _
In the remaining part of the paper we want to generalize

our results to the case where Bob is willing to share part of
his entangled state, given in E(L2), with more than one
_ . brother. Let us denote the number of brotherd\syt. Thus
and in our case given by N refers to the number of output channels including Bob.
Making use of the &N cloning transformation given in
-2R *1 —=2ImlaB* 0 ) o ;
dap’] [af”] [12] we can generalize entanglement splitting into N

L s1). & S(2). &
p=Z(1®1+S co®l+1es - o+ Tjoi®0j), (19

T=3 —2Imlep*] —2Rdap*] O (200 branches. In this case the ancilla swallows a higher amount
0 0 -1 of entanglement. Therefore, the interesting questions here
are: is there a threshold numbemhere not every entangled
in the basigx,y,z}. input leads to entangled outputs? Is teleportation through the
In order for the teleportation scheme to work we thus findoutput channels still possible for any numtérand what is
the following window for the initial state: the condition the initial entanglement has to fulfill?
Explicitly we find the following results. The reduced den-
}( 1— _‘/1—5> <|a|2<1 1+ _‘/1—5> 21) sity matrix of Alice and Bok(or any of his brothelsis given
2 4 2 4 ) by
(N=1)|a|? 0 0 0
1 0 (2N+1)|al> —(N+2)ap* 0
pas(N)= ﬁ 0 o * 2 (22
(N+2)a*B  (2N+1)|B| 0

0 0 0 (N-1)|g|?
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The concurrence of this density matrix is leads to an output density matrix for Alice and Bob that is
separable for 12 F\,<5/8, a parameter region in which the
C(p)= E|aﬁ|, (23) input was entangled. In this sense mixed-state entanglement
N is qualitatively different from pure state entanglement. It is

_ _ ) still an open question, though, whether there exists a differ-
i.e., the output concurrences of Alice with all brothers sument transformation that could split any initial mixed state
up to the input concurrence between Alice and Bob. Th%ntanglement.
according entanglement of formation of one of tihe To summarize, we have introduced the concept of en-
branches is shown in Fig. 1 fot=3 andN=4: we find that  tanglement splitting. We have shown that the well-known
the output states are inseparableday a with [@|#0,1 and  gptimal cloning transformation also maximizes the entangle-
for any N Bob can give as many brothers as he wants somgnent after symmetric splitting of a singlet into two branches.
of his entanglement, no matter how much he had to starthe capacity of the resulting depolarizing channels vanishes.
with. ForN—c the output entanglement goes to zero for anywe observed thaany pure entangled state of two qubits can
a. be split such that after the transformation there is some re-
The condition the initial state has to fulfill in order to maining entanglement. Teleportation, though, can only be
make teleportation through the output channels possible is performed better than classically if the entanglement of the

YCINEEES original state exceeds a certain threshold. We have general-
1( _ Y3(N+1) <|a|2<1( 1+ V3(@N+1) . ized the results to the case of splitting into more than one
2 (N+2) 2 (N+2) branch. In this scenario we still find nonvanishing resulting

(24) entanglement for any initial entanglement amy number of
branchesN, tending to zero for infinitely many branches.
Teleportation is possible for any, if the initial entangle-
ment is higher than a threshold that depend$NokVe hope

We found that entanglement splitting is an "easy” task, that the ideas developed in this paper help the reader to un-

in the sense that we only need to apply the optimal clonin%
) ; . s erstand some fundamental aspects of entanglement.
transformation, which splits any initial pure state entangle-

ment. Does the same statement also hold for an initial mixed

state? It does not, as can be seen by giving a counter ex- Helpful discussions with Vlatko Vedral are gratefully ac-
ample. Let us consider the same scenario as above, but ndmowledged. This work was partly completed with support
Alice and Bob share an initial Werner state with fidelty, = from the European TMR Research Network, ERP-
and of the form given in Eq(8). If Bob simply applies the 4061PL95-1412, partly with support from Deutsche For-
cloning transformation as for the case of a pure input, thischungsgemeinschaft under Grant No. SFB 407.

The window for teleportation shrinks like N to zero width
for N— oo,
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