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Entanglement splitting of pure bipartite quantum states

Dagmar Bruß
Institut für Theoretische Physik, Universita¨t Hannover, Appelstraße 2, D-30167 Hannover, Germany
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The concept of entanglement splitting is introduced by asking whether it is possible for a party possessing
half of a pure bipartite quantum state to transfer some of his entanglement with the other party to a third party.
We describe the unitary local transformation for symmetric and isotropic splitting of a singlet into two
branches that leads to the highest entanglement of the output. The capacity of the resulting quantum channels
is discussed. Using the same transformation for less than maximally entangled pure states, the entanglement of
the resulting states is found. We discuss whether they can be used to do teleportation and to test the Bell
inequality. Finally, we generalize to entanglement splitting into more than two branches.
@S1050-2947~99!01112-9#

PACS number~s!: 03.67.2a, 03.65.2w
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Entanglement is a resource in the physics of quantum
formation that has deserved and received increased atte
over the recent years, as it is a main reason for fundame
differences with classical information: given a system t
consists ofn quantum bits, the total state is called separa
if it can be decomposed as

%sep5(
i

pi% i
(1)

^ % i
(2)

^ •••^ % i
(n) , ~1!

where% i
(n) is a density matrix for thenth subsystem, and th

positive weightspi obey ( i pi51. Otherwise the system i
called entangled—a property that exists only for quant
states.

Several features of entanglement have been studied so
e.g. how to concentrate entanglement of several pairs
more entangled fewer pairs~distillation or purification@1,2#!
or how to transfer entanglement to pairs that have not b
entangled before~swapping@3#!. It is desirable to study more
properties of entanglement, as we know that it is the cen
resource for speed-ups in quantum algorithms, but are
unable to fully classify multiparticle entanglement.

The purpose of this paper is to introduce the concep
entanglement splitting by answering the question whether
resource of entanglement can be shared, such that more
one party can profit from it. Apart from the fundament
aspect of this topic the setting has a direct relevance in t
portation@3#. This paper is restricted to entanglement sp
ting of two-dimensional states.

Let us consider the following situation: the two parti
Alice and Bob are sharing a singlet,1 i.e., the Bell state

uc2&5
1

A2
~ u01&2u10&). ~2!

This resource can be used to do teleportation of a quan
state from one party to the other. The singlet can thus be s
as an ideal quantum channel along which quantum infor

1Any other Bell state would be equally good for our consid
ations.
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tion can be sent. We ask the following question: let us im
ine Bob has a brother Brian and wants to generously sh
his resource with him. There is a limit to his generosi
though—for example he does not want to simply swap
entanglement to Brian, because then he would be left with
any entanglement himself. Can he design a unitary trans
mation acting on his and his brother’s state~which is sup-
posed to be in a prescribed stateu0& at the beginning! and, if
necessary, an ancilla, such that after the transformation
Bob and Brian have an identical amount of entanglem
with Alice? Thus she could teleport imperfectly a quantu
state to both of them. In other words, rather than using
perfect quantum channel, there would be two imperfect
noisy channels. To be precise, we would have create
channel bifurcation with one input side~Alice! and two out-
put sides~Bob, Brian!. Note that Bob’s action is local in the
sense that he does not act on Alice’s side. It is not local w
respect to Brian, though. Formally this transformation can
written as

uc& in5uc2&AB1
u0&B2

u0&anc→1A^ UB1B2ancuc& in, ~3!

where Bob is abbreviated asB1 and Brian asB2. What is the
highest entanglement that can remain between Alice and
after his transformation?

This question has not been addressed in work about
lated areas, namely about broadcasting of entanglem
@4,5#, where it was shown that an entangled pure state ca
copied imperfectly by employing a unitary transformation
bothsubsystems and about telecloning@6#, where the authors
described a multiparticle state which allows one to do imp
fect teleportation of a state from one party to several oth
Transformations of a subsystem of a maximally entang
state have been used in@7# in the context of asymmetric
cloning. Note that in this context one could generalize o
arguments to the case of asymmetric entanglement split
in a straightforward way.

In our scenario of entanglement splitting the emerg
imperfect quantum channels can, in principle, be of any ki
depending on Bob’s transformation. We do not attemp
complete study here, but restrict ourselves to the case w
the ideal channel is split such that it can serve equally w
for teleportation of any quantum state. The motivation

-
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this is not to introduce any spatial asymmetry into the sp
ted channel. This means we only consider splitting of
singlet into two identical branches that act as depolariz
channels~i.e., with the same probability of error in thex, y,
and z directions! when using the standard teleportatio
scheme. The equivalence between quantum channels an
partite states has been studied in@8,9# where it was shown
that a Werner state@i.e., a state that is with probabilityFW in
one of the Bell states and with equal probabilities
2FW)/3 in the remaining three Bell states#, acts as a depo
larizing channel when used for standard teleportation.
other words, we require the reduced density matrix of Al
and Bob after Bob’s transformation to be a Werner state

The most general transformation that Bob can perform
given by its action on the basis of his qubit~Brians qubit and
the ancilla are initially fixed! and can be written as

UB1B2ancu0&u0&u0&5au00&uA&1b~ u01&1u10&)uB&

1cu11&uC&, ~4!

UB1B2ancu1&u0&u0&5ãu11&uÃ&1b̃~ u10&1u01&)uB̃&

1 c̃u00&uC̃&. ~5!

where we have used the same notation as in@10# and implied
symmetry under the exchange of Bob’s and Brian’s qub
The coefficients and ancilla states are restricted by c
straints from unitarity ofUB1B2anc. We also require symme
try under renaming the basis, namely exchange
u0&B1

↔u1&B1
. Inserting Eqs.~4! and ~5! into Eq. ~3! and

tracing overB2 one finds the following structure before tra
ing over the ancilla:

rAB1
5

1

4
Tranc@$a~ uC1&1uC2&!uA&1b~ uF1&1uF2&)uB&

2b̃~ uC1&2uC2&)uB̃&2 c̃~ uF1&

2uF2&)uC̃&%$^ . . . u%1$b~ uC1&1uC2&!uB&

1c~ uF1&1uF2&)uC&2ã~ uC1&2uC2&)uÃ&

2b̃~ uF1&2uF2&)uB̃&%$^ . . . u%#. ~6!

Here the notation$^•••u% indicates that the whole ket-vecto
to the left now appears as bra-vector. We have used
customary definition for the Bell states, namely

uC6&5
1

A2
~ u01&6u10&),

uF6&5
1

A2
~ u00&6u11&). ~7!

After tracing over the ancilla we have to set Eq.~6! equal to
the Werner state we aim at, namely
-
e
g

bi-

n
e

is

.
n-

f

he

rAB1
5FWuC2&^C2u

1
12FW

3
~ uC1&^C1u1uF1&^F1u1uF2&^F2u!.

~8!

The explicit calculation is laborious and, therefore, n
shown explicitly. It yields some constraints for the para
eters characterizing this transformation:

~i! uau22ucu25uãu22uc̃u2,
~ii ! uau22ucu25Re@ b̃* a^B̃uA&1ã* b^ÃuB&#,
~iii ! Im@ b̃* a^B̃uA&1ã* b^ÃuB&#50,
~iv! b* c̃^BuC̃&1c* b̃^CuB̃&50,
~v! b* a^BuA&1c* b^CuB&50,
~vi! b̃* ã^B̃uÃ&1 c̃* b̃^C̃uB̃&50
~vii ! c̃* a^C̃uA&2ãc* ^CuÃ&5b̃b* ^BuB̃&2bb̃* ^B̃uB&.
It turns out that these constraints coincide—apart fr

~vii !—with the ones the parameters of an isotropic and sy
metric 1→2 quantum cloning transformation have to fulfil
~These are given in Sec. II A of@10#.! This is not astonishing,
as in both scenarios we want to find a transformation w
the highest possible degree of symmetry. Nevertheless is
obvious, either, as in this paper we perform a transforma
on a part of an entangled state, i.e., a system in which
reduced density matrix is the identity and does not cont
information about any direction of polarization, in contra
with the scenario in quantum cloning. As mentioned abo
the sets of constraints in the two scenarios are not exa
identical.

An isotropic 1→2 cloner was introduced by Buzˇek and
Hillery @11# and shown to be optimal in@10,12#. A less than
optimal but still isotropic cloning transformation can be co
structed by varying not only the coefficients of the unita
transformation, but also the scalar products of the anc
such that the conditions given in@10# are preserved.~Note
that for the case of less than optimal cloning the ancilla
mension has to be increased to at least two qubits.! This
statement is best illustrated by providing an example. T
fidelity FC5^c inuroutuc in& of a cloning transformation is a
measure for how close the reduced density matrixrout of a
clone is to the input. With the following bad cloner we rea
only FC53/4:

Ubadu0&u0&u0&a1u0&a25
1

A2
u00&u0&a1u0&a21 1

2 ~ u01&

1u10&)u1&a1u0&a2 ,

Ubadu1&u0&u0&a1u0&a25
1

A2
u11&u1&a1

1

A2
~ u0&a21u1&a2)

1 1
2 ~ u01&1u10&)u0&a1

1

A2
~ u0&a2

1u1&a2), ~9!

where the two first bits on the right-hand side are the clo
and the subscriptsa1, a2 denote the ancilla states.
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Which of the many possible isotropic cloning machin
optimizes the quality of the channels resulting from e
tanglement splitting? From Eq.~6! and the constraints give
above one finds that the fraction of the singlet in our out
channel is

FW5
1

4
@3~ uau22ucu2!11#, ~10!

which is related to the cloning fidelityFC in a simple way,
namely

FW5 1
2 ~3FC21!. ~11!

Remember that our constraint~vii ! is slightly different from
the according constraint in cloning. When going through
maximization procedure, given in the appendix of@10#, step
by step, it turns out, however, that the same transforma
that maximizes the cloning fidelity also maximizesFW in our
scenario. The upper bound of a universal cloner is given
FC<5/6, and therefore the Werner fidelity has to fulfillFW
<3/4. The entanglement of a Werner state withFW>1/2 is
an increasing function ofFW . In other words, the highes
entanglement of the output is reached when Bob perform
optimal cloning transformation on his and Brian’s qubit.

It is interesting to observe that our method provides
simple derivation for the upper limit of the quality of th
universalNOT or spin-flip ~which is equal to the lower boun
on the cloning fidelity!: as FW5^C2urABuC2& has to be
positive, we arrive atFC>1/3 which corresponds to the up
per bound for the universal NOT given in@13#. In other
words, when applying our positive map it is enough to
quire positivity ofrAB in order to find an explicit bound fo
the best universalNOT ~when the corresponding transform
tion acts on Bob’s qubit it erases the singlet completely!.

We have shown that the best way to split entanglemen
to use the optimal universal cloner. Note that even a glo
unitary transformation acting on Alice’s, Bob’s, and Brian
bit cannot split the singlet into depolarizing channels w
higher degree of entanglement because Alice could then
port a state to both Bob and Brian with higher quality th
the optimal cloning quality. It was shown in@10# that the
quantum capacity of the depolarizing channels that can
reached in this scenario vanishes. In other words: it is
possible to bifurcate a perfect quantum channel into two
polarizing channels with nonvanishing capacity.

Note that this observation sets limits on the possi
amount of entanglement of subsystems in multipartite st
with the described structure, see also the generalizatio
splitting into more than two branches given below.

Let us now look at the case where Alice and Bob shar
pure, but not maximally entangled state of the kind

uc2~a!&5au01&2bu10& with uau21ubu251.
~12!

Note thateverypure bipartite state can be written in this wa
by using the Schmidt decomposition and naming the base
the two systems accordingly. If Bob performs the same
timal cloning transformation as above~note that the original
channel is not an ideal channel and the outcomes are
depolarizing channels, so our optimality arguments con
-
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ered above do not apply!, the reduced density matrix of Alice
and Bob~or Alice and Brian! after this operation is

rAB5
1

6 S uau2 0 0 0

0 5uau2 24ab* 0

0 24a* b 5ubu2 0

0 0 0 ubu2
D ~13!

in the basis$u00&,u01&,u10&,u11&%. Is this matrix inseparable?
Using the separability criterion established by Peres@14# and
the Horodeckis@15# one has to check the partially transpos
density matrix for positivity. Its eigenvalues are

l15
5

6
uau2,

l25
5

6
ubu2,

l3,45
1

12
~16A1160uau2ubu2!, ~14!

and asl4,0 for anya with uauÞ0,1, the output is insepa
rable foranyentangled input. So, no matter how small Bob
entanglement was at the beginning, he can still make a
nation of it to Brian. Something like a smallest unit of e
tanglement, that could not be split, does not exist.

How much entanglement remains in the state of Alice a
Bob after the transformation? The entanglement of format
for a given density matrixr was introduced in@16# and is
given by

E~r!52~ 1
2 1 1

2 A12C2!log2~ 1
2 1 1

2 A12C2!

2~ 1
2 2 1

2 A12C2!log2~ 1
2 2 1

2 A12C2!, ~15!

where the concurrenceC is defined as

C~r!5max$0,Aj12Aj22Aj32Aj4% ~16!

with j i being the eigenvalues ofr@(sy^ sy)r* (sy^ sy)#,
ordered by size asj1>j2>j3>j4.

The entanglement of formation for the density matrix
Eq. ~13!, i.e., the density matrix of Alice and Bob or Alic
and Brian after the transformation is found by calculating
concurrence as

C~r!5uabu. ~17!

Note that the concurrence of the original state wasCorig
52uabu. We observe thatC(r).0 for 0,uau,1. A dis-
cussion about inequalities for the squares of the concurre
in the subsystems of three-particle states is presented in@17#.
The curve for the entanglement of formation is shown in F
1.

There is some loss of entanglement in the system of
ice, Bob, and Brian compared to the original entanglem
because the unavoidable ancilla is entangled as well. Wh
subsystems of the total state after the transformation will
entangled with each other? By looking at the density ma
ces for the bipartite subsystems one finds the following:A is
entangled withB1 and withB2. The ancilla is entangled with
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B1 and with B2 . B1 and B2 are not entangled with eac
other. This can be visualized as in Fig. 2.

Is the remaining entanglement between Alice and eac
the brothers enough so that she can do teleportation to
for any initial a? We learned in@18# that a mixed state is
better for teleportation than classically whenever the follo
ing criterion for the maximally reachable fidelity is fulfilled

Fmax5
1

2S 11
1

3
TrAT†TD.

2

3
, ~18!

where the matrixT is defined by the general expansion of t
density matrix

r5
1

4
~1^ 11sW (1)

•sW ^ l1l^ sW (2)
•sW 1Ti j s i ^ s j !, ~19!

and in our case given by

T5
2

3 S 22 Re@ab* # 22 Im@ab* # 0

22 Im@ab* # 22 Re@ab* # 0

0 0 21
D ~20!

in the basis$x,y,z%.
In order for the teleportation scheme to work we thus fi

the following window for the initial state:

1

2 S 12
A15

4 D ,uau2,
1

2 S 11
A15

4 D . ~21!

FIG. 1. Entanglement of formation~EOF! of any of the resulting
branches as a function of initial parameteruau, see Eq.~12!, for
different numbers of branchesN.
of
th

-

This is a very wide range fora, namely 0.008,a,0.992.
Thus, even for small initial entanglement the teleportat
fidelity of the splitted channel is still higher than the classic
fidelity.

Could we also use the output state to do a three-party
of the Bell-CHSH inequality@19#? Using the criterion given
in @20,21#, we have to calculate the eigenvalues ofT†T
whereT is given in Eq.~20!. The authors showed that th
Bell inequality is equivalent to the sum of the two large
eigenvalues being smaller or equal to one. In our exam
this is the case for anya, so our outputs do not violate th
Bell inequality. The output state is another example~for
uauÞubu distinct from the ones given in@21#! for the fact that
separability is a different criterion from violation of Bell’
inequalities.

In the remaining part of the paper we want to general
our results to the case where Bob is willing to share par
his entangled state, given in Eq.~12!, with more than one
brother. Let us denote the number of brothers byN-1. Thus
N refers to the number of output channels including Bo
Making use of the 1→N cloning transformation given in
@12# we can generalize entanglement splitting into
branches. In this case the ancilla swallows a higher amo
of entanglement. Therefore, the interesting questions h
are: is there a threshold numberN where not every entangle
input leads to entangled outputs? Is teleportation through
output channels still possible for any numberN, and what is
the condition the initial entanglement has to fulfill?

Explicitly we find the following results. The reduced de
sity matrix of Alice and Bob~or any of his brothers! is given
by

FIG. 2. Entanglement of the total state before and after splitt
a pure entangled bipartite state into two branches. The wavy l
between two parties indicate that their reduced density matri
entangled.
rAB~N!5
1

3N S ~N21!uau2 0 0 0

0 ~2N11!uau2 2~N12!ab* 0

0 2~N12!a* b ~2N11!ubu2 0

0 0 0 ~N21!ubu2
D . ~22!
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The concurrence of this density matrix is

C~r!5
2

N
uabu, ~23!

i.e., the output concurrences of Alice with all brothers su
up to the input concurrence between Alice and Bob. T
according entanglement of formation of one of theN
branches is shown in Fig. 1 forN53 andN54: we find that
the output states are inseparable foranya with uauÞ0,1 and
for any N; Bob can give as many brothers as he wants so
of his entanglement, no matter how much he had to s
with. ForN→` the output entanglement goes to zero for a
a.

The condition the initial state has to fulfill in order t
make teleportation through the output channels possible

1

2 S 12
A3~2N11!

~N12!
D ,uau2,

1

2 S 11
A3~2N11!

~N12!
D .

~24!

The window for teleportation shrinks like 1/AN to zero width
for N→`.

We found that entanglement splitting is an ‘‘easy’’ tas
in the sense that we only need to apply the optimal clon
transformation, which splits any initial pure state entang
ment. Does the same statement also hold for an initial mi
state? It does not, as can be seen by giving a counter
ample. Let us consider the same scenario as above, but
Alice and Bob share an initial Werner state with fidelityFW
and of the form given in Eq.~8!. If Bob simply applies the
cloning transformation as for the case of a pure input, t
m

c
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e
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d
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leads to an output density matrix for Alice and Bob that
separable for 1/2<FW<5/8, a parameter region in which th
input was entangled. In this sense mixed-state entanglem
is qualitatively different from pure state entanglement. It
still an open question, though, whether there exists a dif
ent transformation that could split any initial mixed sta
entanglement.

To summarize, we have introduced the concept of
tanglement splitting. We have shown that the well-know
optimal cloning transformation also maximizes the entang
ment after symmetric splitting of a singlet into two branche
The capacity of the resulting depolarizing channels vanish
We observed thatanypure entangled state of two qubits ca
be split such that after the transformation there is some
maining entanglement. Teleportation, though, can only
performed better than classically if the entanglement of
original state exceeds a certain threshold. We have gen
ized the results to the case of splitting into more than o
branch. In this scenario we still find nonvanishing resulti
entanglement for any initial entanglement andanynumber of
branchesN, tending to zero for infinitely many branche
Teleportation is possible for anyN, if the initial entangle-
ment is higher than a threshold that depends onN. We hope
that the ideas developed in this paper help the reader to
derstand some fundamental aspects of entanglement.
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