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Quantum entanglement and the maximum-entropy states from the Jaynes principle
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We show that the Jaynes principle is indeed a proper inference scheme when applied to compound systems
and will correctly produce the entangled maximum entropy states compatible with appropriate data. This is
shown in a particular example considered recently by Horodetki. [Phys. Rev. A59, 1799 (1999], by
including the dispersion of the entanglement along with its mean value as constraints and an application of the
uncertainty principle. We also construct a “thermodynamiclike” description of the entanglement arising out of
the maximum entropy principl¢ S1050-2947@9)00512-0

PACS numbegs): 03.67—a, 03.65.Bz

The importance of understanding quantum entangledelative Kullback-Leibler entropy andb) the uncertainty
states in the field of quantum information thedguantum  principle deduced from an application of Schwartz inequality
teleportation, quantum computation, ¢thas been increas- to the entanglement operator and the operator arising from its
ingly recognized. In the quest for quantifying entanglementsquare. The minimization of entanglement [it] is here
the methods of statistical inference of incomplete data havéound to be nothing other than a statement of minimum un-
been invoked most recently by Horodedt al. [1]. They certainty. We have thus combined the two inference schemes
claimed that one of the powerful and frequently used meth®f [1], namely the entropic one and the entanglement one,
ods is the Jaynes princip|@] which, when applied to com- into a s_mgle sc_heme. Thls_|dea o_f using “proper’i set of_dqta
posite quantum systems can produce fake entanglement. THR obtqm physically meaningful mference is entirely within
sense in which they termed it “fake” may be described ast1€ Philosophy espoused by Jaynes himgalf we may add

follows. Briefly, the Jaynes principle states that if some num-that. the I:],O'tlon of the use of Imgayly mdependent sufficient
_ N _ statistics” in the theory of statistical inference propounded
ber (p) of expectation values, A;=a;, j=1,2,... p of

) ' > by Fisher[3] is closely parallel to the use of mean values of
an incomplete but linearly independent set of observableginearly independent observables in constructing completely
A;, has been measured, the state of the system is determinadstate of the quantum system. In view of the importance of
by maximizing the von Neumann entropySp]l= the compound quantum systems in many new phenomena
—TrpInp, subjected to the given constraints defined abovénvolving entangled quantum states in the recent past, we
along with the normalization Tr=1 of the density matrix hope that the insight provided in this paper may prove useful
p. The Lagrange multipliers that are associated with the conin @ proper quantification of the concept of entanglement.
straints in this procedure lend themselves to a general statis- We follow [1] and begin by considering the Bell, Clauser,
tical thermodynamic interpretation. The maximum entropyHorne, Shimony, Holthereafter referred as Bell-CHSIdb-
state so obtained will be here denoted fy,. Horodecki ~ Servable

et al. [1] noticed that in the case of two identical quantum A

particles, the principle of minimum entanglement also pro- B=2v2(| ") (D[ [P WV [) 1)
vides an alternate method. They found that these two meth-.
ods did not lead to the same state: Irrespective of whicﬁ'\”th the mean value
measure of en_tqnglement is used, the_re are c?ses wher(?' the (B)ETrﬁ|§=b, 0<b=2v3, )
principle of minimum entanglement yields a “separable

state, whereas the Jaynes principle gives a nonseparabiferep is the system density matrix. We use the Bell basis
state, exhibiting some residue of entanglement, which wagg in[1]
termed “fake” entanglement ifil]. This was explicitly dem-

onstrated in the example of a pair of spin-1/2 particles and a 1
single observable, the Bell observable, leading o, which  |® )= —
we call in this sequel the “one-constraint case.” To rectify V2

this, Horodecket al. [1] sugge_sted that the Jaynes_ir}fe_renpeBefore we apply the Jaynes inference scheme, we make the
scheme be supplemented with a procedure of minimizatio

o observationga) and(b) mentioned above.
of entanglement.

Th  thi is 10 show that luti (a) First, by using the Kullback-Leibler relative entropy
_'he purpose ot this paper IS 1o show that a resolution o 4] which gives a measure of the difference between two

this problem lies in incorporating the variance as a secon ensity operators. 5

constraint in the Jaynes principle. This is physically moti- yop ¥1:P2;

vate(_j by the fact that the accuracy of any experimen'gal d_e- K(p1.p2)=Trpo(Inp,—Inp1)=0, (4)

termination of the mean value is assessed by having its dis-

persion as small as possible. The clue to our resolution of th&ve show that the entropys,, associated with the density

problem faced iM1] comes from considerations ¢&) the  operatorp,, determined by the Jaynes principle of maximum

= + _i +
(T, v >—ﬁ(|Tl)—|lT>)- ()
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Applying the separability criterion given ifl] that the ei-

entropy with two constraintsp=TrBp, and another con- _ X .
genvalues of this density matrix do not exceed 1/2, we have

straint as yet unspecified, is smaller than the entr8pys- ) -
sociated with the density operat@r, with only one con- the inequalities
straint chosen such that="Tr Bf)1282$ S;. This is because
the Jaynes principle in the one-constraint case gives

L 52+ 2vab) 1(102) ! (1D)
. —(0?* Lo l1—|<==.
p31=[Z1(A 1)1t exp—(7\1B), 16 2\78/) 2
Zi(N ) =Trexp—(\,B),
1(\p) p—(\1B) Thus if
81:)\1b+|nzl()\1). (5)
This gives us a motivation to look for a second constraint in o?>(8-2v2b), (12

the entanglement problem. It may not be out of place here to

mention that there have been entropic measures suggested

earlier such as entanglement of format[&h, quantum rela- the statep;, is inseparable.

tive entropy[6], and quantum mutual entropy’]. These We now make several observations which follow as con-

methods have been used to study entanglement features sequences of this procedure:

the Jaynes-Cummings model of the interacting two-level sys- (1) The minimum entanglement state obeying the Jaynes

tem and radiatio8,9]. maximum entropy principle obtained ] corresponds here
(b) Second, any measurementtfust be accompanied to the minimum uncertainty state given lf,,=2v2b. In

by a statement about its dispersion quantifying the accuracys way, the two inference schemed i get combined into

of the result of the measurement. So we consider the squagge following the Jaynes principle. The inseparability condi-
of the Bell-CHSH observable given by E{): tion in Eq. (12) becomes>v2.

(2) For the single constraint case considered 1 the

BZ=8(|® (@ |+[W )W ). ©) dispersion is found to be

This operator is linearly independent of the first one and its
expectation value gives the dispersion about the mean value,

b2
b: 031:4

1+ —

5l (13

a?=TrpB?, 7)

which clearly obeys the obvious inequalitf —b?=0. Since ~ The obvious inequality®—b?=0 then leads to the condi-
the two operators considered here commute, an applicatioiion thatb should obey the inequality Ob<2v2.

of Schwartz inequality in the form (3) The dispersion in the one-constraint state givefilin
is found to be larger than the minimum dispersion, as ex-
(K22 =(XT)? (8  pected:

with X=B, Y=B2 and the observation that®=B?, Y2
=8B% XY=8B, and using the definitions above, gives us ;2 _ ;2 _4
an important uncertainty principle, namely mn

2

1+ —

1
3 —2ﬁb=§(b—2ﬁ)2>o. (14)

a?=2v2|b|. 9
(4) One obtains a pure statg=|® *)(P |, if we are at
The equality in Eq(9) gives the minimum uncertainty. This the minimum allowed valuesr?=8, b=2v2. Thus the pu-
development suggests that we employ Hj.as the second rification of the state is achieved by a suitable choice of the
constraint in this problem. values for the constraints, which arise from general consid-
Now, applying the maximum entropy principle with these erations of uncertainty principle and the Bell equaligual-
two constraints given above, we obtain, after some algebraty sign in Eq.(2)].
the density matrix (5) A “thermodynamiclike” version of the above expres-
sion for the density matrix and the corresponding von Neu-
mann entropy may be developed as follows. It may not be
out of place here to point out that one of the important con-
sequences of the Jaynes princif2¢was the development of
statistical thermodynamics. This is because it replaces the
idea of “ensembles” by “constraints” on the maximization
of entropy and the associated Lagrange multipliers are then
- - + + the corresponding thermodynamic variables. In this spirit, we
)(|cb HOT[+[¥ )W) (10 first express the density matrix in the form

1
paz=g(02+2v2b) [0 ) (7|

1
(g2 — - -
+ 7507~ 2v2b) [ W) (V|

+11 o
2 8
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P12=Z35 (A1, \)[€XP — N 12VZ—8X5)| " )(D [ +exp(h12v2—8Np)|[W " )(W [+ (|O TN [+[W ) (W],

Z3o( 1 No) = {EXP — N 12V2—8\,) + exp(\12VZ — 8\,) + 2} (15)

The Lagrange parameters are determined by the usual relpearing here pertain to entanglement, we may say that this

tions. development lends itself to the notion of “thermodynamics
of entanglement.”
~9InZ5(Ng,0p) o 9InZp(Ng,Np) In conclusion, we have shown here that if the mean value
b=— Ny , ando=-— AN, - (16) is going to be the measured quantity, the theory should be so
constructed such that the fluctuation about this mean is mini-
The von Neumann entropy is then found to be mal. In this regard, it seems reasonable that the Jaynes prin-
ciple applied to the problem of quantum entanglement
$,=InZ3p(N1,Np) + N b+ o072, (17 should involve both the mean value and the dispersion of the

) Bell operator as constraints. We hope that the present work
We may interpret IiZ(A;,\;) as the “free energy” of the has thus clarified the Jaynes scheme of statistical inference
Bell-CHSH state. When both the Lagrange multipliers go tofor entanglement processing. This clarification is particularly
minus infinity, the entropy vanishes fof=8, b=2v2, and  important in view of the power of the Jaynes principle in
the Bell-CHSH pure state is reached, at this “zero-solving important statistical inference problems, be it classi-
temperature” limit, if we identify the Lagrange parameterscal or quantal2]. We also outline an interpretation of the
as in the usual statistical mechaniés=—8, \o=—Bu, results obtained here in terms of the thermodynamic lan-
where g is identified with the inverse “temperature” and  guage by identifying the Lagrange multipliers in terms of
with the “chemical potential.” In fact solving for the inverse “temperature” and “chemical potential.” Thus it
Lagrange multipliers in terms of the constraint patrametersappears that the maximum entropy principle may lead to the
at equilibrium, we have, notions of “thermodynamics of entanglement” that is being
discussed in the current literatyrE0]. Even though we have
shown here the utility of the Jaynes principle in a special

1 example, its applicability in a more extended setting is as-
A=——{In(a?+b2v2)—In(0>—b2v2)}, sured by its many already existing applications in the recent
42 literature[11].

1 5 5 ) Thanks are due to Professor R. Horodecki and Professor
No=— 751IN(0"+b2v2) +In(*~b2v2) ~2In(8— o)}, Sumiyoshi Abe for reading an early draft of this paper. Pro-
(18) fessor R. Horodecki also provided me with a copy of the last
reference to work on thermodynamical analogies[10].
and these certainly seem to admit the “thermodynamic”This work is supported in part by the Office of Naval Re-
identification suggested above. Since all the quantities apsearch.
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