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Quantum entanglement and the maximum-entropy states from the Jaynes principle

A. K. Rajagopal
Naval Research Laboratory, Washington, D.C. 20375-5320

~Received 16 March 1999!

We show that the Jaynes principle is indeed a proper inference scheme when applied to compound systems
and will correctly produce the entangled maximum entropy states compatible with appropriate data. This is
shown in a particular example considered recently by Horodeckiet al. @Phys. Rev. A59, 1799 ~1999!#, by
including the dispersion of the entanglement along with its mean value as constraints and an application of the
uncertainty principle. We also construct a ‘‘thermodynamiclike’’ description of the entanglement arising out of
the maximum entropy principle.@S1050-2947~99!00512-0#

PACS number~s!: 03.67.2a, 03.65.Bz
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The importance of understanding quantum entang
states in the field of quantum information theory~quantum
teleportation, quantum computation, etc.! has been increas
ingly recognized. In the quest for quantifying entangleme
the methods of statistical inference of incomplete data h
been invoked most recently by Horodeckiet al. @1#. They
claimed that one of the powerful and frequently used me
ods is the Jaynes principle@2# which, when applied to com
posite quantum systems can produce fake entanglement
sense in which they termed it ‘‘fake’’ may be described
follows. Briefly, the Jaynes principle states that if some nu

ber ~p! of expectation values, Trr̂Âj[aj , j 51,2, . . . ,p of
an incomplete but linearly independent set of observab

Âj , has been measured, the state of the system is determ
by maximizing the von Neumann entropy:S@ r̂#5
2Tr r̂ ln r̂, subjected to the given constraints defined abo
along with the normalization Trr̂51 of the density matrix
r̂. The Lagrange multipliers that are associated with the c
straints in this procedure lend themselves to a general st
tical thermodynamic interpretation. The maximum entro
state so obtained will be here denoted byr̂Jp . Horodecki
et al. @1# noticed that in the case of two identical quantu
particles, the principle of minimum entanglement also p
vides an alternate method. They found that these two m
ods did not lead to the same state: Irrespective of wh
measure of entanglement is used, there are cases wher
principle of minimum entanglement yields a ‘‘separable
state, whereas the Jaynes principle gives a nonsepa
state, exhibiting some residue of entanglement, which
termed ‘‘fake’’ entanglement in@1#. This was explicitly dem-
onstrated in the example of a pair of spin-1/2 particles an
single observable, the Bell observable, leading tor̂J1 , which
we call in this sequel the ‘‘one-constraint case.’’ To rect
this, Horodeckiet al. @1# suggested that the Jaynes inferen
scheme be supplemented with a procedure of minimiza
of entanglement.

The purpose of this paper is to show that a resolution
this problem lies in incorporating the variance as a sec
constraint in the Jaynes principle. This is physically mo
vated by the fact that the accuracy of any experimental
termination of the mean value is assessed by having its
persion as small as possible. The clue to our resolution of
problem faced in@1# comes from considerations of~a! the
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relative Kullback-Leibler entropy and~b! the uncertainty
principle deduced from an application of Schwartz inequa
to the entanglement operator and the operator arising from
square. The minimization of entanglement in@1# is here
found to be nothing other than a statement of minimum
certainty. We have thus combined the two inference sche
of @1#, namely the entropic one and the entanglement o
into a single scheme. This idea of using ‘‘proper’’ set of da
to obtain physically meaningful inference is entirely with
the philosophy espoused by Jaynes himself@2#. We may add
that the notion of the use of linearly independent ‘‘sufficie
statistics’’ in the theory of statistical inference propound
by Fisher@3# is closely parallel to the use of mean values
linearly independent observables in constructing comple
a state of the quantum system. In view of the importance
the compound quantum systems in many new phenom
involving entangled quantum states in the recent past,
hope that the insight provided in this paper may prove use
in a proper quantification of the concept of entanglement

We follow @1# and begin by considering the Bell, Clause
Horne, Shimony, Holt~hereafter referred as Bell-CHSH! ob-
servable

B̂52&~ uF1&^F1u2uC2&^C2u! ~1!

with the mean value

^B̂&[Tr r̂B̂5b, 0<b<2&, ~2!

wherer̂ is the system density matrix. We use the Bell ba
as in @1#

uF7&5
1

&
~ u↑↑&7u↓↓&), C6&5

1

&
~ u↑↓&6u↓↑&). ~3!

Before we apply the Jaynes inference scheme, we make
two observations~a! and ~b! mentioned above.

~a! First, by using the Kullback-Leibler relative entrop
@4# which gives a measure of the difference between t
density operators,r̂1 ,r̂2 ,

K~ r̂1 ,r̂2![Tr r̂2~ ln r̂22 ln r̂1!>0, ~4!

we show that the entropy,S2 , associated with the densit
operatorr̂2 , determined by the Jaynes principle of maximu
4338
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entropy with two constraints,b5Tr B̂r̂2 and another con-
straint as yet unspecified, is smaller than the entropyS1 as-
sociated with the density operatorr̂1 with only one con-
straint chosen such thatb5Tr B̂r̂1 :S2<S1 . This is because
the Jaynes principle in the one-constraint case gives

r̂J15@Z1~l1!#21 exp2~l1B̂!,

Z1~l1!5Tr exp2~l1B̂!,

S15l1b1 ln Z1~l1!. ~5!

This gives us a motivation to look for a second constrain
the entanglement problem. It may not be out of place her
mention that there have been entropic measures sugg
earlier such as entanglement of formation@5#, quantum rela-
tive entropy @6#, and quantum mutual entropy@7#. These
methods have been used to study entanglement featur
the Jaynes-Cummings model of the interacting two-level s
tem and radiation@8,9#.

~b! Second, any measurement ofb must be accompanie
by a statement about its dispersion quantifying the accur
of the result of the measurement. So we consider the sq
of the Bell-CHSH observable given by Eq.~1!:

B̂258~ uF1&^F1u1uC2&^C2u!. ~6!

This operator is linearly independent of the first one and
expectation value gives the dispersion about the mean va
b:

s2[Tr r̂B̂2, ~7!

which clearly obeys the obvious inequalitys22b2>0. Since
the two operators considered here commute, an applica
of Schwartz inequality in the form

^X̂2&^Ŷ2&>^X̂Ŷ&2 ~8!

with X̂5B̂, Ŷ5B̂2, and the observation thatX̂25B̂2, Ŷ2

58B̂2, X̂Ŷ58B̂, and using the definitions above, gives
an important uncertainty principle, namely

s2>2&ubu. ~9!

The equality in Eq.~9! gives the minimum uncertainty. Thi
development suggests that we employ Eq.~6! as the second
constraint in this problem.

Now, applying the maximum entropy principle with the
two constraints given above, we obtain, after some alge
the density matrix

r̂J25
1

16
~s212&b!uF1&^F1u

1
1

16
~s222&b!uC2&^C2u

1
1

2 S 12
s2

8 D ~ uF2&^F2u1uC1&^C1u!. ~10!
n
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Applying the separability criterion given in@1# that the ei-
genvalues of this density matrix do not exceed 1/2, we h
the inequalities

1

16
~s262&b!,

1

2 S 1
s2

8 D<
1

2
. ~11!

Thus if

s2.~822&b!, ~12!

the stater̂J2 is inseparable.
We now make several observations which follow as co

sequences of this procedure:
~1! The minimum entanglement state obeying the Jay

maximum entropy principle obtained in@1# corresponds here
to the minimum uncertainty state given bysmin

2 52&b. In
this way, the two inference schemes in@1# get combined into
one following the Jaynes principle. The inseparability con
tion in Eq. ~12! becomesb.&.

~2! For the single constraint case considered in@1#, the
dispersion is found to be

sJ1
2 54S 11

b2

8 D . ~13!

The obvious inequalitys22b2>0 then leads to the condi
tion thatb should obey the inequality 0,b<2&.

~3! The dispersion in the one-constraint state given in@1#
is found to be larger than the minimum dispersion, as
pected:

sJ1
2 2smin

2 54S 11
b2

8 D22&b5
1

2
~b22& !2>0. ~14!

~4! One obtains a pure state,r̂5uF1&^F1u, if we are at
the minimum allowed values,s258, b52&. Thus the pu-
rification of the state is achieved by a suitable choice of
values for the constraints, which arise from general cons
erations of uncertainty principle and the Bell equality@equal-
ity sign in Eq.~2!#.

~5! A ‘‘thermodynamiclike’’ version of the above expres
sion for the density matrix and the corresponding von N
mann entropy may be developed as follows. It may not
out of place here to point out that one of the important co
sequences of the Jaynes principle@2# was the development o
statistical thermodynamics. This is because it replaces
idea of ‘‘ensembles’’ by ‘‘constraints’’ on the maximizatio
of entropy and the associated Lagrange multipliers are t
the corresponding thermodynamic variables. In this spirit,
first express the density matrix in the form
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r̂J25ZJ2
21~l1 ,l2!@exp~2l12&28l2!uF1&^F1u1exp~l12&28l2!uC2&^C2u1~ uF2&^F2u1uC1&^C1u!#,

ZJ2~l1 ,l2!5$exp~2l12&28l2!1exp~l12&28l2!12%. ~15!
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The Lagrange parameters are determined by the usual
tions.

b52
] ln ZJ2~l1 ,l2!

]l1
, and s252

] ln ZJ2~l1 ,l2!

]l2
. ~16!

The von Neumann entropy is then found to be

S25 ln ZJ2~l1 ,l2!1l1b1l2s2. ~17!

We may interpret lnZ(l1,l2) as the ‘‘free energy’’ of the
Bell-CHSH state. When both the Lagrange multipliers go
minus infinity, the entropy vanishes fors258, b52&, and
the Bell-CHSH pure state is reached, at this ‘‘zer
temperature’’ limit, if we identify the Lagrange paramete
as in the usual statistical mechanics,l152b, l252bm,
whereb is identified with the inverse ‘‘temperature’’ andm
with the ‘‘chemical potential.’’ In fact solving for the
Lagrange multipliers in terms of the constraint patramete
at equilibrium, we have,

l152
1

4&
$ ln~s21b2& !2 ln~s22b2& !%,

l252
1

16
$ ln~s21b2& !1 ln~w22b2& !22 ln~82s2!%,

~18!

and these certainly seem to admit the ‘‘thermodynam
identification suggested above. Since all the quantities
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pearing here pertain to entanglement, we may say that
development lends itself to the notion of ‘‘thermodynami
of entanglement.’’

In conclusion, we have shown here that if the mean va
is going to be the measured quantity, the theory should b
constructed such that the fluctuation about this mean is m
mal. In this regard, it seems reasonable that the Jaynes
ciple applied to the problem of quantum entanglem
should involve both the mean value and the dispersion of
Bell operator as constraints. We hope that the present w
has thus clarified the Jaynes scheme of statistical infere
for entanglement processing. This clarification is particula
important in view of the power of the Jaynes principle
solving important statistical inference problems, be it clas
cal or quantal@2#. We also outline an interpretation of th
results obtained here in terms of the thermodynamic l
guage by identifying the Lagrange multipliers in terms
inverse ‘‘temperature’’ and ‘‘chemical potential.’’ Thus
appears that the maximum entropy principle may lead to
notions of ‘‘thermodynamics of entanglement’’ that is bein
discussed in the current literature@10#. Even though we have
shown here the utility of the Jaynes principle in a spec
example, its applicability in a more extended setting is
sured by its many already existing applications in the rec
literature@11#.
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Sumiyoshi Abe for reading an early draft of this paper. P
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reference to work on thermodynamical analogies in@10#.
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