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Optics of nonuniformly moving media
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A moving dielectric appears to light as an effective gravitational field. At low flow velocities the dielectric
acts on light in the same way as a magnetic field acts on a charged matter wave. We develop in detail the
geometrical optics of moving dispersionless media. We derive a Hamiltonian and a Lagrangian to describe ray
propagation. We elucidate how the gravitational and the magnetic models of light propagation are related to
each other. Finally, we study light propagation around a vortex flow. The vortex shows an optical Aharonov-
Bohm effect at large distances from the core, and, at shorter ranges, the vortex may resemble an optical black
hole.[S1050-294{@9)01912-5

PACS numbdss): 03.65.Bz, 42.15-i, 04.20—q

[. INTRODUCTION relativity in an earthly laboratory? Most probably this would
take flow velocities that are comparable to the speed of light
Consider a glass container filled with a transparent liquidjn the medium. Recently, dielectrics with incredibly low
say water. Let a plane wave of coherent laser light trave@roup velocities have been creafgd]. These media are far
through the water. Obviously, not much will happen. Thefrom being as simple as ordinary liquids, and they are highly
light will remain a plane wave and will only gather an over- dispersive. For instance, the refractive index reaches unity,
all phase shift. Now imagine that the water is set in motion.-€., the phase velocity approachgsat the frequency where
For example, a magnetic mixer at the bottom of the containethe group velocity is lowest, i.e., where the refractive index
creates a vortex. Let us assume that no air bubbles contanfihanges most rapidly. However, as we show in a separate
nate the transparent liquid and that no heat gradient is gef@per[5], many phenomena that are conceivable for disper-
erated. We know that water is to a large degree incompres&ionless media find an experimentally feasible analog in dis-
ible. Therefore, the refraction index of the whirling liquid is Persive dielectrics. We can thus employ dispersionless media
spatially uniform. Wil the light remain a plane wave? as perfectly consistent relativistic models to understand the
Maybe surprisingly, it will not. Instead, the light will de- key featu_res of_ some exotic yet realistic effects of light in
velop an interference structure that is sensitive to the velocitynoving dielectrics. _ _ _
of the liquid. Furthermore, if we send in a narrow laser beam, The study of optics in moving media has a long history. In
the vortex will bend the ray. A moving medium drags light. 1818 Fresne[6] discovered theoretically that the speed of
This effect can be employed to gather information about théight v in a uniform yet moving medium of refraction index
flow of a transparent liquid. One could think of reconstruct-n depends on the medium velocityas
ing an unknown velocity profile from measured interference
patterns, as a form of optical tomography. _C
; X . v=—+
In this paper we develop a systematic theory that explains n
motional effects of a nondispersive dielectric medium on
light propagation. We postulate that the wave equation iSo the effective refraction inde&/v is changed when the
valid in all locally comoving frames of the medium. Then we medium is moving. In 1851 Fized] verified experimen-
transform the wave equation to the laboratory frame. In theally Fresnel's motional effectl). In 1895 LorentZ8] de-
limit of geometrical optics we find the Hamiltonian that de- rived an additional drag effect that is due to optical disper-
termines the trajectories of light rays. Using a differentsion. Zeemar{9] was able to measure Lorentz’s effect. In
implementation of the same idd&ansforming Maxwell's 1913 Sagna€l10] observed phase shifts of light in a rotating
equations from the comoving to the laboratory frarBerry  interferometer. In 1925 Michelson, Gale, and PearsbH
and Klein[1] have also derived effective scalar and vectormeasured the Sagnac effect of Earth’s motion in an incred-
potentials and a Hamiltonian governing light rays and wavesible interferometer by 1925 standards. And, of course, to-
In addition, we develop a covariant theory of light propaga-day’s fiber gyroscopes prove that the interference of light is
tion in moving media. In accordance with earlier papers bysensitive to motion.
Gordon[2] and Pham Mau Quaf8], we find that light rays Despite the long history of the study of optics in moving
follow zero-geodesic lines measured with respect to a certaimedia, a sufficiently general theory has been still missing,
curved metric in space time, similarly to light propagation inwith the exception of Berry’s and Klein's parallel wofk]
general relativity. The metric of the “glass of water” de- and of two earlier papers by Pham Mau Quah to the best
pends on the refractive index and on the flow, and it estabef our knowledge. In 1908 MinkowskKil2] pioneered the
lishes a fascinating analogy between moving media andnodern theory of dielectrics. In 1923 Gordon published a
gravitational fields. far-sighted papef2] on electromagnetism in dielectrics and
Can we see some of the spectacular effects of generah gravitational fields. Here he discovered a deep analogy
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betweengravity and dielectric media. According to Antocimodel. Quantitative differences between the two concepts
and Mihich[13], Gordon[2] also settled the debate about are only visible in higher order. One example of gravitation-
Minkowski's [12] versus Abraham’§14] energy-momentum like effects is the light deflection at a vortex that we analyze
tensor in Abraham'’s favor. However, Gordon consideredn Sec. IV and that resembles the deflection of light due to
only very briefly the geometrical optics of moving media. the sun’s gravity. In an extreme case the vortex might even
Pham Mau Quaii3] studied ray propagation in more detail @Ppear as an optical black hd#]| similar to Unruh’s dumb
but still not exhaustively. Landau and Lifshitz5] and Van  hole[26,27.

Bladel[16] summarize to some extent the current state of the

theory, but do not focus on the propagation of light. More Il. SLOWLY MOVING MEDIA

importantly, the motion of the medium has usually been as- - cqnsider a moving nondispersive dielectric medium with
sumed to be uniform. Exceptions are the pad that,  ofractive indexn and flowu. We allow bothn andu to vary
however, treat only special cases such as moving dielectrig, space and time. Howeven, and u shall not change sig-

bo(ljncri]aries and the c?nsequ(;ent mogiifig;ation of Snell's lavyigicantly over the spatial scale of an optical wave length and
and the Brewster angle. Landau and LifsHilb] write ex- e one optical cycle, respectively. In this section we model
plicitly that they “neglect slight effects due to the possibility light waves by a scalar complex functiah for simplicity.

of a velocity gradient. In particular, we do not consider the polarization of light.

. Eowe(\j/er, these} neglected effg:-cts l&{;ep\irfldeed megsurab.lq:owever, we show in Sec. lll that the propagation of light is
with modern inter erometrysee Sec. : or an estima- jqaeq independent of the polarization, as long as the me-
tion). Furthermore, effects due to velocity gradients establlslaium varies only gradually compared to optical oscillations.

interesting connections between the optics of moving medig, thermore, we assume that the medium moves at moderate
and other fields of physics. Hannp3g] discovered an anal- oo cities such that we can restrict ourselves to effects that

ogy between light in moving media and charged matter).. .. \within the lowest order in/c
waves in electromagnetic fields. The flawturned out to Our starting point is a simple model. Imagine that the

play the role of the electromagnetic vector potential. Hannay,, . iny medium consists of small cells or drops. Each cell

Shall be small enough such that the refractive indexd the
elocity profileu of the medium does not vary significantly.
n the other hand, each cell shall be large compared to the

conclusion. Cook, Fearn, and Milonfi9] analyzed further
the connection between light in moving media and charge

matter waves, assuming relatively slow medium VeIOCitie%avelength of light. We thus assume that in each Gell

and light that is perpendicularly polarized with respect to theeach comoving frame of the medium denoted by printies
flow. The magnetic analogy of light in moving media is par-

ticularly interesting, because the light propagation at a quidp ptical field - obeys the wave equation
vortex corresponds to the Aharonov-Bohm eff¢20] of n2 52
electron waves that enclose a localized magnetic flux. Light ( [ — —) y=0. 2)
that travels through a dielectric vortex attains an Aharonov- c® at'?
Bohm phase shift. On the other hand, atoms that pass a
electromagnetic vortex experience an Aharonov-Bohm effec‘{&l ) i .
as well[21]. Interesting quantization effects arise when the orm the wave equation to the observer's frame, we write Eq.
atoms form a macroscopic condensf22]. The magnetic (2) as
model of waves in moving media is not restricted to light. (

12

n observer sees the light in the laboratory frame. To trans-

Indeed, Berryet al. [23] report both the theory and an ex-
periment that demonstrates an Aharonov-Bohm effect with
water waves. Acoustical analogs of the effect have been ob-
served in moving classical media4] and are predicted for We note that the d’Alembert operat®'?—%/(cdt')* is a
superfluidd25]. However[2], the magnetic model of lightin ~Lorentz invariant, and thus we transform solely the remain-
moving media is only valid as long as the medium velocitiesing time derivatives in the wave equati¢). In the lowest
are sufficiently small. In general, the moving medium turnsorder inu/c a temporal changé/dt’ in the medium frame
out to act rather as a curved metric, i.e., as a gravitationappears in the laboratory frame as the time derivaditi
field, on the light. Note that Unruf26] arrived at a similar ~ plus the local flowu- V. Therefore, we obtain in first order
model for nonrelativistic sound in moving fluids that also y 5
holds for superfluid$27]. LA Lt S y=0 @

In Sec. Il we summarize the theory of effects in first order c2 g2  ¢? at '
of u/c before we turn to the general case in Sec. lll. Section
Il sets the scene by presenting a short review of partly pubNote that this derivation of the wave equation for light in
lished yet not widely known results, whereas Sec. Il is theslowly moving media follows Fresnel’s original id¢6,28]
core of our paper. Here we establish the effective wave equavho divided the ether into an invariant part and a second part
tion, a Hamiltonian, a Lagrangian, and the metric of light inthat the medium is able to drag. We will see shortly that
moving dispersionless media. Additionally, we show howFresnel’'s formula(l) is a direct consequence of the wave
the magnetic model of Sec. Il and Reff$8,19 is related to  equation(4).
the gravitational oné¢2,3]. Both Sec. Il and Sec. Il derive In the limit of Hamilton’s geometrical optics we represent
Fresnel's formula(l), at least to the lowest order in/c, the optical fieldys in terms of a slowly varying amplitude and
seen, however, at each case in the light of a distinct physica rapidly changing phase,

=0. 3)
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= Ae'S (5) o du

w
. ngaan(V-V)u:(WV)u (14
with
that is valid in first order. We obtain the Lorentz-type equa-
S=f (k- dx— wdt). (6)  tion of motion
The wave vectok corresponds to the momentum of a ficti- dw
tious particle that follows a light ray and the frequenoy e o (VXu)xXw. (15

plays the role of the Hamiltonian. We substitute the ansatz
(5) and(6) into the wave equatiofd), neglect the variation
of the amplitude4, and obtain in first order iwi/c the dis-
persion relation

Light rays in slowly moving media behave like charged par-
ticles in magnetic fields where the flawappears as a vector
potential. The Lorentz-type fordd5) conserves the modulus

n2 n2—1 of the modified velocityw which is equal tow in regions
0=k?— _2w2+ 2w u-k (7)  where the medium is at rest,
c c
W= w?. (16)
, n? n?—1 2
=k= 2 w~ n2 u-kj . ®  we replacew with the right-hand side of Eq13) and re-

translate the resulting dispersion relation into a wave equa-
The Hamiltonian of light ray$i is equal to the frequenay.  tion, replacingky with —iV. In this way we obtain ex-
We read immediately from Ed8) that actly the Schrdinger equation of a charged matter wave in a
magnetic field 30]
c
H= ﬁk+ n2—

2 wz
(—iV+ 5 wu) p=n*—14 . (17)
c c

1
l_ﬁ u-k. (9)

The ray trajectories are solutions of Hamilton’s equations

dx o dk JH All these arguments support a magnetic model of light
=, —=——, (10)  Propagation in moving medi@l9]. The flow u acts as a
dt gk’ dt ax vector potential that modifies the relation between the ca-

. — . . . nhonical and the kinetic momentum
The first part of the Hamiltoniaok/n describes light rays in

a medium at red29]. The rays avoid regions of high refrac-

tive index in order to minimize their dimensionless optical k= —w— oU . (18)
path lengthg'k- dx=(w/c) [ n g - dx with g =k/k. The sec- c c?

ond part of the Hamiltonian describes Fresnel's drag effect.

Indeed, we obtain from Hamilton’s equatioffs)) For example, a rotating rigid glass cylinder will act like a

homogeneous magnetic field on light that travels inside. The
1 rotating cylinder will bend light rays, irrespective of their

1- F U, &= Kk (11 distance from the rotation axis. Another example is a vortex
that will act like a thin solenoid; see Sec. IV. Light rays are

This is nothing but the vectorial version of Fresnel's original ot bent but, similarly to the Aharonov-Bohm effd@0],

dx ¢

YTt ST

formula (1). rays that enclose the vortex attain a phase differ¢hég
As has been pointed out earl{d9], a uniform medium in
stationary motion acts on light in the same way as a magnetic . LIGHT IN MOVING MEDIA

field acts on charged matter waves. To understand this re-
markable connection within our theory of ray propagation,
we introduce a rescaled ray vectar, or, equivalently, a Let us develop a completely relativistic theory of light
reparametrization of the ray trajectory, propagation in moving nondispersive media. As in Sec. Il we
assume that the refractive indeyand the flomu do not vary
significantly over one optical wave length and one optical
cycle, respectively. We neglect the dispersion of light, i.e.,
the frequency dependence mfWe allow arbitrary medium

Let us derive an equation of motion far. First we replace Vvelocities and we will employ a covariant notatifi]. Our

A. Wave optics

c 1
w=kv=—k+| 1— —) ku. (12
n n2

ku with n(w/c)u in first order, and get starting point is the following postulate. In all locally comov-
ing medium framesdenoted by primesthe electromagnetic
c n2—1 field-strength tensoFl’w shall obey the wave equation
w= kv=ﬁ k+ =2 wu (13

n? 42
V- — F,,=0. (19)

Then we use Hamilton’s equatioi$0) and the relation c? at’?
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Note that this postulate uses implicitly the assumption that B. Geometrical optics(Hamiltonian)
the refractive index varies only gradually. Otherwise addi- 44y does a moving medium act on light rays? According

tional terms bec_ome ‘mp.ort"’?”t in the wave equafitf], to Hamilton’s geometrical optics, we try the eikonal ansatz
terms that describe polarization chandgasthe surfaces of [31]

dielectrics, for instange

Let us transform the wave equati¢id) to the laboratory Fuv=Fu eS+c.c. (26)
frame. As a first step we reformulate E49) in a covariant
notation. We employ the four gradients with
a/:<li,vr), w:(li,_vf>, S=f(k«dx—wdt)=—JkaxV. 27)
"o\cat C at’
19 J Here we have employed the four differential
d,=|=—=,V|, d'=|=-—=,-V], 20
v (c ot ) (c ot ) (20 dx”=(c dt,dx) (28
and the four-vector field of the medium flow and the wave four vector
vy 10 —yl1- 21 @
u _7 'C ] UV—’)’ ] C I ( ) kV:(E,_k):_ays (29)

with the relativistic factor Assuming a rapidly changing phagcompared with the

42\ 2 envelopeF,,, we derive from the wave equatid@5) the
’y: ( ) ,

1-— (22) Hamilton-Jacobi equation of light rays,
c
9+"(4,5)(9,9)=0, (30)
In a comoving medium frame the four vectot” is locally
with
u'’=(10). (23
— . . gh’= 7"+ (= Duru’, (3D)
Therefore, we can easily write our starting poif®) in the
covariant expression using the flat Minkowski metric
[9,0"*+(n*~1)(u'*d,)?]F,,=0. (24) 1 0
. o . = 77,w=( ) (32
Throughout this paper we employ Einstein’s summation con- 0 -1

vention. When we transform the wave equati@d) to the o . . .

laboratory frame we should transform both the derivativedEXplicitly, we get the dispersion relation

and velocities, and the field-strength tensor. A Lorentz trans- > 202 ) ) )

formation of a tensor depends of course on the velocity of w=ck+(n“— 1)y (w—u-k)*=0. (33)

the moving frame[31]. Since the medium velocities vary i I .

only gradually compared with the rapid osciIIationstI , To find a Ham|lt_on|an for light beams we solve EG3)
oo v’ . for o=H. We obtain

we can neglect the derivatives of the Lorentz transformations

of F,,, in Eq.(24). In other words, the wave equati¢®4) is c2_y2 |12 262 c2 1/2

valid both forF/ , andF,,. Furthermore, the differential H= ﬁ) ( 2 2—ﬁ(u-k)2

operatord’, ¢’ *+(n?—1)(u’'%9.)? is a Lorentz scalar, and nTc=—u n=c —u

therefore we can simply drop the primes in E2¢), to arrive 262 G2

at +ﬁu~k. (39
n“cc—u

[3,9*+(n?=1)(u“d,)?]F ,,=0. (25)

In first order inu/c we recognize our previous res(®). Ray

Th's. wave eq.“a“oﬂ descrlbes the pr_opagatlon of light in alrajectories follow from the Hamiltonia(B4) as solutions of
moving nondispersive medium, provided that both the re-

fractive ind d the Tl i | duall Hamilton’s equation$10). Here the time plays merely the
rai:vae n ;ehxr][ ‘;? i el owu varlestg;)y dgra uaty._ th role of a parameter to describe the trajectories. Of course,
€ see that Ine final wave equatl oes not mix the finitely many parametrizations exist that result in equiva-

components of the field-strength tensor. The propagation qf; ray trajectories but stem from different Hamiltonians.

ﬂ?:é-geggs:&ez-ngtr-?]egi?dTor?;hreego:?r-'zstt-:«qgg Iiﬁé’ n;g;/||2r%°es our particular parametrization have a physical mean-
! Iretringent. 1hi uit justin ing? Let us consider the formal velocity in the comoving

modgl of Sec. Il. N.ote however, that the transport pf the fiel edium framd 16],
amplitudes along light beams is certainly polarization depen-
dent. To describe this effect one should consider, instead of
the wave equatio25), the complete set of Maxwell's equa-

tions in moving dielectric$2,15,16. y(1—u-v/c?)

_ _ v 112Y/112
V,=v u+(y—21)u(u-v—u2)/u (35
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We use the first of Hamilton's equatiofs0) and the Hamil- 1
tonian (34), and obtain after some algebra Q= 77;w+(_2 - 1) u,u,. (42
n
C2
v’2:—2. (36) One verifies easily thag,,, is the inverse ofg*”, utilizing
n thatu,u” is normalized to unity,
Light travels at the velocity of light. Therefore, we can iden- 9,.9%"=5" . (43)
tify the formal ray parameterwith the physical travel time e #
of light in the laboratory frame. . _ We obtain the solution of the Hamilton-Jacobi equation
Apart from elucidating the physical meaning of time for
our Hamiltonian, relatior(36) is simply an explicit conser-
vation law during the ray propagation. Conservation laws are S=- me ds (44)
connected to symmetries. In fact, the Hamiltoni@4) has
the remarkable structure with
k ds’=g,,,dx“dx". 45
H=kh({), {=u-g, &= - (37) Yuv (45)
To prove this result we note that the wave four vector gives
Consequently,
dx”
B JH —h dh 38 k,u:_(?,uS:ng,u,VEv (46)
V=T €1<+(9—§Q<><(U><ek)- (39
and thus satisfies the Hamilton-Jacobi equafi4b)
We see that the velocity vectoris independent of the wave
numberk. The trajectories of light beams in moving media v > 5 dx* dx” 5
do not depend on the wave properties of light. Geometrical 9*"k,.k,=m"c°g,, 4o 5 ~mc” (47)
optics involves indeed solely the geometrical aspects of light
rays. Expression(44) of the phaseS has the desired Lagrangian

structure,
C. Lagrangian

773 v
We have studied the propagation of light in moving media S=— mcf \ /g’“ddit O(Ij_xtdt: f L dt, (48)

in the spirit of Hamilton’s geometrical optics. Can we find a
Lagrangian as well? Let us calculate the Lagrangian directly . )
from the Hamiltonian, using the structufd?) and (38 of  With the explicit Lagrangian

the Hamiltonian and the velocity vector, respectively. We get >
1 u-v
v 9H o i L=—mC\/CZ—V2+ E—l)yz(c—7> . (49
=k — - —H=0. (39
The Lagrangian vanishes. Furthermore, we cannot express D. Metric
the canonical momenturk in terms of the velocity, be- According to the action principle, light rays minimize the

cause, according to E(88), v does not depend on the modu- phaseS Because the phagd4) is proportional to the artifi-

lus of k. The encountered problems in introducing a La-cial massm, the minima ofSdo not depend on the numerical

grangian for light rays in moving media have been knownyalue ofm at all. We thus arrive at an entirely geometrical

for the special case of light in vacuuf81] and have been picture of ray optics in moving media, in complete analogy

attributed[31] to the vanishing rest mass of light. to the equivalence principle of general relativity. Light rays
Let us provide |Ight with an artificial rest massthat we are geodesic lines with respect to Gordon’s mdﬁib

let approach zero at a later, appropriate moment. We replace

the right-hand side of the wave equati@®) with m*c*F ,,,,

and we obtain in the limit of geometrical optics the ds*= 7,,dx#dx"+

Hamilton-Jacobi equation

1 2
F_l (u,dx®)

v _ 1
g,u (aMS)(é’VS)—mZCZ. (40) =77,u,,dx”‘dx”’+ ﬁ_ )CZdt/Z (50)
We wish to find a Lagrangian representation of the pitase
such that 2
c
=—2dt’2—dx’2. (51)
S=deL (41) n

While traveling in a moving medium, light minimizes the
For this we introduce the matrix proper time measured with respect ¢on. And, because
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light actually travels at the velocity of lighB6), the proper A moving medium acts as a curved space time on light. In
time is zero on the ray trajectory. Light rays follow zero- terms of Riemann’s geometry, a medium with uniform re-
geodesic lines of the metri&0). fractive indexn turns out to have the scalar curvat(iBd]

(n2—1)2 1-n* ) 5
=————(u*u"—»*")(9,u")(d,u,)+——=(d,u")(d,u*)+(1—n*)[2u"d,d,u"+(d,u*)], (52

R
2n? 2n?

as one obtains after some algebra. When the flow obeys the

g ; 1 n—1u
continuity equation, ds’=— (cdt)’—dx’+2—; o-dxedt. (58
n n
a,u"=0, (53
Therefore, the covariant metrical tenggy, is given by the
the curvature simplifies to matrix
n2—1)>2 2_
R="" 2w g0, S
2n n n?
= . 59
NELP (54) RS 1 ()
u”)(d,ut). — -
oz (3,07 (0,0) 2 C

In curved space time the distinction between covariant ando find the contravariant metrical tensor we compare the

contravariant objects is particularly profound. Let us intro-dispersion relatiorf7) with Egs.(29) and(30), and read off
duce the contravariant wave vector with respect to the metrighe result

of the moving medium,

_ 2 2_ 4\ Y
kt=g*'k,. (55 n (n _1)6
. . ghr= . (60)
According to Eqgs(43) and (46) the k* four vector is pro- ) u _q
portional to the four velocity, (n"— 1)E
kﬂ:mcdﬁ_ dt dx* (56) In the limit of low medium velocities, three-dimensional

ds _ "%ds dt - space appears to be flat to light that travels in the medium,

yet four-dimensional space time is curved. Let us compare

Becausedx’/dt is equal toc, by definition(28), we obtain  covariant and contravariant wave vectors. As a consequence
of Egs. (13) and (29) and of the definition(55), the space

M_k_o dﬁ (57) componentk' of the contravariank* are given by
~ ¢ dt’
. o n n
a relation that remains valid for vanishimyandds. In the k'=k+(n*-1) cu=gw=ckv. (61)

magnetic model of light propagation in moving media, see

lSe;. IL; the th(;((ajt_ajd|m:an3|onarllve.ctor d|ffer§ frolm thﬁ V]fla' Therefore, the contravariant wave vector appears as the ki-
ocity by an additional term that is proportional to the Tlow o momentum, in contrast to the canonical one that is

and that plays the role of_a vector pc_)te_ntial. Howeve_r , as W(?epresented by the covariant wave vector. Finally, we solve
have seen, the contravariddt vector is in fact proportional Eq. (61) for k/k and arrive at the vectorial formll) of
to the velocitydx*/dt. Therefore, the appearance of the flow Frésnel’s classic resultl), seen here in the Riemann-

as a vector potential is an illusion that we get when we dogeometrical model of light in moving media.
not discriminate between co- and contravariant vectors, with=

out yet appreciating the inherent space-time geometry of

geometrical optics of moving media. IV. LIGHT AROUND A VORTEX

A. Optical Aharonov-Bohm effect

E. Slowly moving media Consider a vortex flow in an incompressible liquid. The

In Sec. Il we summarized the magnetic mofi#8,19 of  vortex may be created by the action of a mixer or simply by
light in slowly moving media. Let us formulate the first- letting the liquid flow out of the container. To a good ap-
order effects in terms of the geometrical mof2). To the  proximation the velocity profile of the vortex is given, using
lowest order inu/c we obtain the metric cylindrical coordinates, by the expressi82]



PRA 60 OPTICS OF NONUNIFORMLY MOVING MEDIA 4307

W
U*Teq,.

(62

Let light travel through the whirling liquid. In first order of

u/c, light experiences the medium flow in the same way as a
charged matter wave experiences a vector potefit&ig. 50
In particular, the vortex62) corresponds to an infinitely thin
solenoid that generates a strong magnetic field inside yet no

field outside,

V xu=0. (63)

However, as Aharonov and Bohm discovered in their semi-
nal 1959 papef20], a charged matter wave will attain a
phase shift without feeling a force, and so will light. We
compare the Schdinger equation of Aharonov and Bohm ‘
[20] with the wave equatiorf17) and read off the optical -50
Aharonov-Bohm phase shift

_® 2 w
(] s v —E(n _1)? (64)

=2mv
A AB

AB B

How large is the effect? For estimating the order of magni-
tude we assume a refractive indaxof 1.5 and an optical
frequencyw of 3x10%s . Furthermore, we assume that
the liquid circulates at a radiusof 2 cm with a frequency
u/r of 10s 1. We obtain a phase shitbAB of 10 3. The

effect is small, yet one could enhance it significantly by let-
ting the light travel through the liquid many times in an ”
interferometer. In this case the phase stz»i/l"g3 is effectively ;

u
multiplied by the number of round trips. One could also per- ﬂ\&\\“';
ceive the interferometer as a resonator where the effectof the i
moving medium changes the spatial mode profile. The pre-
cision of modern interferometry is certainly sufficient to de-
tect the optical Aharonov-Bohm effectRemember that
Fizeau[7] saw the precursor of the effect as early as 1851.
Figure 1 illustrates the long-range behavior of light waves
that pass a vortex flow.

gw

/f‘l“\ y\l'l Ml\ B A d i

M x

B. Relativistic vortex y

Let us analyze vortex ef_fe_ct_s to higher Orde_uml:. the, FIG. 1. Light wave passing through a vortex flo) illustrates
howeygr, that the nonrelativistic vorté&_Z) permits medium the optical Aharonov-Bohm effect. Light is incident from the right,
velocities that exceed the speed of light, when taken serizng e piot the real part of the optical fiefdithat is subject to the
ously near the vortex core where higher-order effects are tqayve equatiori17). We use fory the well-known Bessel series due
be expected. Let us therefore seek a proper relativistic Voly Aharonov and Bohnf20]. (B) sketches the wave patterns of

tex. We anticipate that the flow is still circular, light, taking into account the slight ray bending that we discuss in
Sec. IV C. We use the same scale agA). Before reaching the
u=u(rje,, (65 yortex the wave fronts bend and then they split at the vortex core.

Behind the core the two parts of the wave interfere. We created the
picture by following a bundle of exact ray trajectorig$). A wave
front is defined by the points reached at a particular value of the

but that we must correct the nonrelativistic velocity profile
(62) by the relativisticy factor (22),

W time parameter. Although this approach does not provide informa-
u=—, (66) tion about the wave amplitudes, the picture is quite accurate, be-
¥ cause mostly only one part of the split wave contributes to interfer-

to prevent the medium from becoming tachyonic. Given theE"'Ce: €xCceptin regions very close to the cut at the negates.

. . : We see that pictur€B) reproduces the prominent long-range fea-
I rofil Ilve Eq(22) for n n ! ;
velocity profile (66), we solve Eq(22) for ¥, and obtai tures of the Aharonov-Bohm wave depicted(/).

w?
=\/1+ —. 6 —
7 c?r? ©7 w2 W
u’= 1+ — ae¢ . (68
Therefore, the four flow21) is finally cr
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Of course, so far we have simply guessed the proper relativ- dR\ 2 12 n2-1 ul\ 2
istic generalization of the vortex flog62). To prove that our (d—> =l-—+ 2( - —) (77)
result is indeed physically meaningful, we shall show that r r u cr

the four flow(68) is consistent with relativistic hydrodynam- c2

ics[33]. First we note that any circular floy®5) satisfies the

equation of continuatiort53). Then we prove that the par- Let us first study light rays that travel sufficiently far outside
ticular four flow (68) is a solution of the relativistic Euler the vortex core. We use our velocity profi(66) with the
equation. For this we construct the energy-momentum tensdactor (67),

[33]
) ) , dR)?2 12 n?m?
TH'=(pc?+p)uru’—p n* (69) (—) —n2— 224 (n2-1) (78
dr r2 c2r2
and assume the pressure profile
) with
— 2 _ w _ 2
p=pcC exp( > 2) pc-. (70 W
2¢r |AB=|+(n2—1)? (79

Herep denotes the constant mass density of the incompress- o
ible fluid. We obtain by direct calculation that” satisfies ~AS We shall see below, _ plays the role of the kinetic an-
the Euler equation gular momentum that is altered by the optical Aharonov-
Bohm effect. According to canonical mechanj&4] trajec-
a3,T#"=0. (71)  tories are given requiring that the derivative of the action
with respect to generalized canonical momenta is a set of

This proves that the vorte68) is indeed a possible flow f(I:I%nstants. In particular, we set

that, as we have seen as well, generates the pressure pro

(70). At sufficiently large distances from the vortex core the IS
pressure behaves like 577 ¢ o (80)
pW? i i jectori
p~— _ (72) In this way we obtain the trajectories
2r2
; |, r2dr
The rapidly falling pressure will attract the surface of the @‘@o:f , (81)
liquid and create a hole at the vortex core. Let us neverthe- "o \/ |2 N2
less treat the hole as being infinitely thin. Near the vortex 2_ "8 2_
o n +(n°—1)
core the pressure is finite r2 c?r2
lim p=—pc?, (73 with
r—0
and the medium velocity reaches the speed of light 5 |iB ) w?
I’OZ—Z—(I’I —l)—2 (82)
lim u=c. (74) n ¢
o and, after solving the integral,
At large distances from the core the medium flows as de-
scribed by the nonrelativistic Eq62). Of course, dramati- |AB ro
cally relativistic vortices are not expected to be created in <p—cp0=n—roarcco rak (83)
experiments on Earth in the near future, but they might exist
as astronomical objects. To first order inu/c we disregard th&V?/c? term in Eq.(82)
and get from Eq(83)
C. Light bending
r cog ¢ — o) =To. (84)

Let us study the propagation of light rays around the rela-
tivistic vortex (68). For this we solve the Hamilton-Jacobi Therefore, far outside the vortex core light travels along
equation(40) that reads explicitly straight linegiin accordance with our previous considerations
on the optical Aharonov-Bohm effgctLet us study indica-
tions of higher-order effects. At infinity the angle ap-
proaches

S —c3(VS)?%+(n?—1)y?(S+u-VS)2=0. (75
We obtain for any circular flow65) the solution

™ IAB

w =i = _
S=—[-ct+le+R(] (76) ‘P“‘:JTL e=¢ot 3 (85

with The impact parameter of the ray is given by
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| A
b= lim rsiw—%):—f. (86) y

r—o

This result shows explicitly thaitAB indeed corresponds to //
the kinetic angular momentum. When the light leaves the

vortex region the ray is deflected by the angg3d]

le m(n2—1)W?

¢D=W—2(¢x—¢o)=w—wn—ro 7 pec?

(87 2
to second order iW/c. Similar to the bending of star light

due to the sun’s gravity31], light is attracted by a vortex
and is consequently slightly deflected. We expre%sin \

terms of the first-order phase shif4), and obtain to second ' -'4 ' _'2 ' @/ ' 2 x

order inW/c

o , N\ - 2mc -
“ g1 o N an

The deflection angle is extremely small for small Aharonov-
Bohm phases 2v, . Figure 2 illustrates the bending of light
at a vortex. The figure shows also light rays in the immediate ‘ //‘N
vicinity of the core, a case that we shall consider in the next @
subsection.

D. Optical black hole

A vortex attracts light like any other test particle, because
of the rapidly falling pressure profil@0). Can light fall into
the vortex core? To answer this question we study the turn-
ing points of light rays, using the complete relativistic action
(76) with the radial componen{77). Turning points are the
zeros of @IR/dr)? because beyond these points the acson yt

is purely imaginary and hence covers a forbidden region. We
represent Eq(77) as FIG. 2. Trajectories of light rays in the vicinity of a vortex flow.

Each picture shows a pair of trajectories belonging to the same

ul\2 (u 12 value of the angular momentum. In one case the light ray ap-

1-—] —|z— = (89 proaches the vortex from infinity, is bent, and disappears to infinity.
cr c r . -

In the other case the light stems from the origin and falls back after

We see that each radiugan be reached as a turning point of having reached its maximal range from the vortex core. At dis-

two trajectories that are characterized by the angular motances not covered by these trajectories no light rays are allowed

that belong to the chosen particular value of the angular momen-

dR
dr

2
=2 n2

menta ) e
tum. (A) Negative angular momentufpositive impact parameter
nc+u Light swims against the currentB) Positive angular momentum
l.=r e (90 (negative impact paramejetight travels with the flow.
The point may be an inner or an outer turning point, depend- dl. dl. |« n°-1
ing on the sign of {e=%2n4-, G =7 gru‘c. (92)
g g dr dr r  (nuxc)
9 (dR)?2 : , . .
(o=—|— ) (91)  The velocity profileu(r) of the vortex(68) is monotonically
Soorldr] decreasing and positivéWe assume a positive). Other-

wise one could invert the system of coordinates to arrive at a
The vortex may emit light that begins to fall back to the corepositive vorticity) Therefore] . is positive and also yields a
at an inner turning point with negative Or, alternatively, positive{, . Given a positive angular momentum, any point
incident light from outside the vortex is bent and comes clos€an be reached as an outer turning point of incident light
est to the core at an outer turning point with positiveTo  rays. Let us turn to thé_ . The angular momentuiin. of a
distinguish inner and outer turning points we calculdte turning point is negative outside the radius where the me-
and write the resulting expression in terms of the derivativedium velocity reaches the speed of light in the mediann.,.
of |. regarded as a function of We obtain Inside this radius the trajectory that correspondd toap-
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proaches an inner turning point, becadseis negative. On
the other hand, for negative angular momenta a critical ra-
diusrg exists wherg/_ vanishes. Beyond this radius all light
rays with negativé must fall into the vortex core. The vortex

A

appears as a black hole to light with negative angular mo- 2 //
menta. Let us calculate the optical Schwarzschild radius
We utilize that

u2

ru’:—u(l——2> (93) 2

c
for the relativistic vortex(68) and arrive at a third-order
equation for the velocityus at the Schwarzschild radius \
whered|_ /dr vanishes, — ‘ _—

x =2 4
u
(N2—1)&3+nE2—2n2E+n=0, ng. (94)
This equation has three real solutions Ilabeled by y
B
2

ie{l,2,3,
2ncy6n’—5 coga;(n)] nc
ui(n)= > - > ;
3(n?-1) 3(n°—1)

1

ai(n):§[277(i —1)+B(n)],

27—70nz+45n4>
. (95)

IB(I’]) = arcco{ - m

The values of the physical solution must lie in the interval @

O=<u;<c in order to be velocities allowed by the theory of -4 \\\y \J 2
relativity. The refractive index is confined to the interval
1=n<®. The only function assuming physically permitted

=

values at the ends of this intervalus(n) with Lo
uz(1)=c, lim us(n)=0. (96)
n—oo
In order to prove that the results for intermediate values of y
are physical as well, we show thaf(n) is a monotonically . . ) _
decreasing function. The first term in B§5) is a product of FIG. 3. Optical black hole. The pictures show trajectories of

two positive and monotonically decreasing functions and'9nt rays fa_llin_g into the vortex core. In case .the angular momen-
thus is a positive monotonically decreasing function itself. UM of an incident ray lies W'th'n a cr|t|c.al mterva}l, the ray is
So is the second term that is subtracted. In order to show th {agged by the vortex flow and finally falls into the singular(#)

the total expression stavs positive one can emplov the est e have chosen several values of the angular momentum that cover
mates P ys p ploy F‘nost of the critical interval(B) The chosen values of the angular

momentum lie immediately above the negative bound of the critical
interval. In this case a trajectory is very sensitive to small changes

arcco$x)=— 1@774- T for —1=x<0 in the angular momentum. The radius of the limiting circle is the
2 ' ’ optical Schwarzschild radius.

>3 9 f 71-< = 9 4% u
cos{x)/;x 5 foro=x=m. (97 -l 15 98)

This leads to an algebraic inequality that can be solved in a

standard way, thus proving our assumption. In an analogou®ptical black holes could be created using highly dispersive
way one can show thai; andu, do not assume physical dielectrics[4,5]. These media are distinguished by an ex-
values. Finally, to calculate the optical Schwarzschild radiugremely low group velocity of light. To some extent, they
rs, we solve Eqs(66) and(67) for r, and get resemble dispersionless dielectrics with an extremely large
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refractive index. Let us, therefore, consider the limit of largelight in the same way as a magnetic field acts on a charged
n. We obtain from Eq(95) the critical flow velocity matter wave[18,19. The flow plays the role of the vector
potential. We have shown how the two effective models are
— (99 related to each other: The covariant wave vector corresponds
2n to the canonical momentum of a light ray, whereas the con-
A light ray with a negative angular momentum, i.e., light thattravariant wave vector plays the role of the kinetic momen-

swims against the current, is trapped when the flow velocitfum. In curved space time, and hence in a dielectric, covari-
approaches half of the speed of light in the medium. Figure &nt and contravariant vectors are distinct. For low medium

Cc
us: U3""

illustrates the fall into the optical black hole. velocities they differ in precisely the same way as the ca-
nonical momentum of a charged particle differs from the
E. Scaling kinetic one by the vector potential. Additionally, we have

A vortex flow can cause an optical Aharonov-Bohm eﬁcec,[derlved and studied an effective Hamiltonian for ray propa-

and may force light to fall into an optical black hole. Note gat!on I moving m_edla. Within the limits of geome_tncgl
that these phenomena depend, in principle, entirely on thaptics, ray trajectories do not depend on the polarization.

mere presence of the vortex and not on the particular valuftroducing a fictitious rest mass for light we have con-
of the vorticity, even when is very small. To see this we Structed a corresponding Lagrangian. This path has led us to

study the scaling properties of the relativistic vortex. A the description of a medium in terms of a me{i&].

closer inspection to Eqg65)—(67) reveals that the dimen-  First-order optical phenomena are certainly detectable us-
sionless velocity profilai/c depends only on the combina- ing modern interferometry and ordinary dielectric fluids. In
tion (c/W) r. Let us introduce the new variables this way one could infer the velocity profile of transparent
2 incompressible liquids from interferometric measurements.
— C — C — C — C L
=t r=—r, I=—I, S=—S. (100 [To observe some spectacular relativistic effects, one could
w w w w employ highly dispersive quantum dielectrig§). One can

) ) — ) demonstrate an optical Aharonov-Bohm effect and create an
Due to the scaling ofi/c the scaled eikona is a solution of  ,rica) plack hole with a quantum vortex as the center of
the Hamilton-Jacobi equatidifs) in the variables100. The 44 ction[5]. Our paper has established a consistent yet sim-
scale ofl andS was chosen such th& corresponds to the pjified model of such phenomena. Thus we have reason to
explicit solution(76) with the parameters andl. Note that  pope that we may stimulate experiments to demonstrate
the Hamilton-Jacobi equatiof75) in the dimensionless co- rayitational effects on Earth that usually belong to the realm
ordinatest, r, and¢ does not contain’y anymore. Conse- of astronomy.
quently, the relativistic effects on light at a vortex flow do
not disappear when the vorticity approaches zero. However,
the smaller the vorticity is the higher should be the frequency ACKNOWLEDGMENTS
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