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Optics of nonuniformly moving media
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A moving dielectric appears to light as an effective gravitational field. At low flow velocities the dielectric
acts on light in the same way as a magnetic field acts on a charged matter wave. We develop in detail the
geometrical optics of moving dispersionless media. We derive a Hamiltonian and a Lagrangian to describe ray
propagation. We elucidate how the gravitational and the magnetic models of light propagation are related to
each other. Finally, we study light propagation around a vortex flow. The vortex shows an optical Aharonov-
Bohm effect at large distances from the core, and, at shorter ranges, the vortex may resemble an optical black
hole. @S1050-2947~99!01912-5#

PACS number~s!: 03.65.Bz, 42.15.2i, 04.20.2q
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I. INTRODUCTION

Consider a glass container filled with a transparent liqu
say water. Let a plane wave of coherent laser light tra
through the water. Obviously, not much will happen. T
light will remain a plane wave and will only gather an ove
all phase shift. Now imagine that the water is set in moti
For example, a magnetic mixer at the bottom of the conta
creates a vortex. Let us assume that no air bubbles cont
nate the transparent liquid and that no heat gradient is g
erated. We know that water is to a large degree incompr
ible. Therefore, the refraction index of the whirling liquid
spatially uniform. Will the light remain a plane wave
Maybe surprisingly, it will not. Instead, the light will de
velop an interference structure that is sensitive to the velo
of the liquid. Furthermore, if we send in a narrow laser bea
the vortex will bend the ray. A moving medium drags ligh
This effect can be employed to gather information about
flow of a transparent liquid. One could think of reconstru
ing an unknown velocity profile from measured interferen
patterns, as a form of optical tomography.

In this paper we develop a systematic theory that expla
motional effects of a nondispersive dielectric medium
light propagation. We postulate that the wave equation
valid in all locally comoving frames of the medium. Then w
transform the wave equation to the laboratory frame. In
limit of geometrical optics we find the Hamiltonian that d
termines the trajectories of light rays. Using a differe
implementation of the same idea~transforming Maxwell’s
equations from the comoving to the laboratory frame! Berry
and Klein @1# have also derived effective scalar and vec
potentials and a Hamiltonian governing light rays and wav
In addition, we develop a covariant theory of light propag
tion in moving media. In accordance with earlier papers
Gordon@2# and Pham Mau Quan@3#, we find that light rays
follow zero-geodesic lines measured with respect to a cer
curved metric in space time, similarly to light propagation
general relativity. The metric of the ‘‘glass of water’’ de
pends on the refractive index and on the flow, and it est
lishes a fascinating analogy between moving media
gravitational fields.

Can we see some of the spectacular effects of gen
PRA 601050-2947/99/60~6!/4301~12!/$15.00
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relativity in an earthly laboratory? Most probably this wou
take flow velocities that are comparable to the speed of li
in the medium. Recently, dielectrics with incredibly lo
group velocities have been created@4#. These media are fa
from being as simple as ordinary liquids, and they are hig
dispersive. For instance, the refractive index reaches un
i.e., the phase velocity approachesc, at the frequency where
the group velocity is lowest, i.e., where the refractive ind
changes most rapidly. However, as we show in a sepa
paper@5#, many phenomena that are conceivable for disp
sionless media find an experimentally feasible analog in
persive dielectrics. We can thus employ dispersionless m
as perfectly consistent relativistic models to understand
key features of some exotic yet realistic effects of light
moving dielectrics.

The study of optics in moving media has a long history.
1818 Fresnel@6# discovered theoretically that the speed
light v in a uniform yet moving medium of refraction inde
n depends on the medium velocityu as

v5
c

n
1S 12

1

n2D u. ~1!

So the effective refraction indexc/v is changed when the
medium is moving. In 1851 Fizeau@7# verified experimen-
tally Fresnel’s motional effect~1!. In 1895 Lorentz@8# de-
rived an additional drag effect that is due to optical disp
sion. Zeeman@9# was able to measure Lorentz’s effect.
1913 Sagnac@10# observed phase shifts of light in a rotatin
interferometer. In 1925 Michelson, Gale, and Pearson@11#
measured the Sagnac effect of Earth’s motion in an incr
ible interferometer by 1925 standards. And, of course,
day’s fiber gyroscopes prove that the interference of ligh
sensitive to motion.

Despite the long history of the study of optics in movin
media, a sufficiently general theory has been still missi
with the exception of Berry’s and Klein’s parallel work@1#
and of two earlier papers by Pham Mau Quan@3#, to the best
of our knowledge. In 1908 Minkowski@12# pioneered the
modern theory of dielectrics. In 1923 Gordon published
far-sighted paper@2# on electromagnetism in dielectrics an
in gravitational fields. Here he discovered a deep anal
4301 ©1999 The American Physical Society
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4302 PRA 60U. LEONHARDT AND P. PIWNICKI
betweengravity and dielectric media. According to Anto
and Mihich @13#, Gordon @2# also settled the debate abo
Minkowski’s @12# versus Abraham’s@14# energy-momentum
tensor in Abraham’s favor. However, Gordon conside
only very briefly the geometrical optics of moving medi
Pham Mau Quan@3# studied ray propagation in more deta
but still not exhaustively. Landau and Lifshitz@15# and Van
Bladel@16# summarize to some extent the current state of
theory, but do not focus on the propagation of light. Mo
importantly, the motion of the medium has usually been
sumed to be uniform. Exceptions are the papers@17# that,
however, treat only special cases such as moving diele
boundaries and the consequent modification of Snell’s
and the Brewster angle. Landau and Lifshitz@15# write ex-
plicitly that they ‘‘neglect slight effects due to the possibili
of a velocity gradient.’’

However, these neglected effects are indeed measur
with modern interferometry~see Sec. IV A for an estima
tion!. Furthermore, effects due to velocity gradients estab
interesting connections between the optics of moving me
and other fields of physics. Hannay@18# discovered an anal
ogy between light in moving media and charged ma
waves in electromagnetic fields. The flowu turned out to
play the role of the electromagnetic vector potential. Hann
used path integrals in paraxial approximation to arrive at
conclusion. Cook, Fearn, and Milonni@19# analyzed further
the connection between light in moving media and char
matter waves, assuming relatively slow medium velocit
and light that is perpendicularly polarized with respect to
flow. The magnetic analogy of light in moving media is pa
ticularly interesting, because the light propagation at a fl
vortex corresponds to the Aharonov-Bohm effect@20# of
electron waves that enclose a localized magnetic flux. Li
that travels through a dielectric vortex attains an Aharon
Bohm phase shift. On the other hand, atoms that pas
electromagnetic vortex experience an Aharonov-Bohm ef
as well @21#. Interesting quantization effects arise when t
atoms form a macroscopic condensate@22#. The magnetic
model of waves in moving media is not restricted to lig
Indeed, Berryet al. @23# report both the theory and an ex
periment that demonstrates an Aharonov-Bohm effect w
water waves. Acoustical analogs of the effect have been
served in moving classical media@24# and are predicted fo
superfluids@25#. However@2#, the magnetic model of light in
moving media is only valid as long as the medium velocit
are sufficiently small. In general, the moving medium tur
out to act rather as a curved metric, i.e., as a gravitatio
field, on the light. Note that Unruh@26# arrived at a similar
model for nonrelativistic sound in moving fluids that al
holds for superfluids@27#.

In Sec. II we summarize the theory of effects in first ord
of u/c before we turn to the general case in Sec. III. Sect
II sets the scene by presenting a short review of partly p
lished yet not widely known results, whereas Sec. III is
core of our paper. Here we establish the effective wave eq
tion, a Hamiltonian, a Lagrangian, and the metric of light
moving dispersionless media. Additionally, we show ho
the magnetic model of Sec. II and Refs.@18,19# is related to
the gravitational one@2,3#. Both Sec. II and Sec. III derive
Fresnel’s formula~1!, at least to the lowest order inu/c,
seen, however, at each case in the light of a distinct phys
i
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model. Quantitative differences between the two conce
are only visible in higher order. One example of gravitatio
like effects is the light deflection at a vortex that we analy
in Sec. IV and that resembles the deflection of light due
the sun’s gravity. In an extreme case the vortex might e
appear as an optical black hole@5# similar to Unruh’s dumb
hole @26,27#.

II. SLOWLY MOVING MEDIA

Consider a moving nondispersive dielectric medium w
refractive indexn and flowu. We allow bothn andu to vary
in space and time. However,n and u shall not change sig-
nificantly over the spatial scale of an optical wave length a
over one optical cycle, respectively. In this section we mo
light waves by a scalar complex functionc, for simplicity.
In particular, we do not consider the polarization of ligh
However, we show in Sec. III that the propagation of light
indeed independent of the polarization, as long as the
dium varies only gradually compared to optical oscillation
Furthermore, we assume that the medium moves at mode
velocities such that we can restrict ourselves to effects
occur within the lowest order inu/c.

Our starting point is a simple model. Imagine that t
moving medium consists of small cells or drops. Each c
shall be small enough such that the refractive indexn and the
velocity profileu of the medium does not vary significantly
On the other hand, each cell shall be large compared to
wavelength of light. We thus assume that in each cell~in
each comoving frame of the medium denoted by primes! the
optical fieldc obeys the wave equation

S“822
n2

c2

]2

]t82D c50. ~2!

An observer sees the light in the laboratory frame. To tra
form the wave equation to the observer’s frame, we write
~2! as

S“822
1

c2

]2

]t82
2

n221

c2

]2

]t82D c50. ~3!

We note that the d’Alembert operator“822]2/(c]t8)2 is a
Lorentz invariant, and thus we transform solely the rema
ing time derivatives in the wave equation~3!. In the lowest
order inu/c a temporal change]/]t8 in the medium frame
appears in the laboratory frame as the time derivative]/]t
plus the local flowu•“. Therefore, we obtain in first orde

S“22
n2

c2

]2

]t2
2

n221

c2
u•“

]

]t D c50. ~4!

Note that this derivation of the wave equation for light
slowly moving media follows Fresnel’s original idea@6,28#
who divided the ether into an invariant part and a second
that the medium is able to drag. We will see shortly th
Fresnel’s formula~1! is a direct consequence of the wav
equation~4!.

In the limit of Hamilton’s geometrical optics we represe
the optical fieldc in terms of a slowly varying amplitude an
a rapidly changing phase,
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c5AeiS ~5!

with

S5E ~k•dx2vdt!. ~6!

The wave vectork corresponds to the momentum of a fic
tious particle that follows a light ray and the frequencyv
plays the role of the Hamiltonian. We substitute the ans
~5! and ~6! into the wave equation~4!, neglect the variation
of the amplitudeA, and obtain in first order inu/c the dis-
persion relation

05k22
n2

c2
v212v

n221

c2
u•k ~7!

5k22
n2

c2 S v2
n221

n2
u•kD 2

. ~8!

The Hamiltonian of light raysH is equal to the frequencyv.
We read immediately from Eq.~8! that

H5
c

n
k1S 12

1

n2D u•k. ~9!

The ray trajectories are solutions of Hamilton’s equations

dx

dt
5

]H

]k
,

dk

dt
52

]H

]x
. ~10!

The first part of the Hamiltonianck/n describes light rays in
a medium at rest@29#. The rays avoid regions of high refrac
tive index in order to minimize their dimensionless optic
path lengths*k•dx5(v/c)*n ek•dx with ek5k/k. The sec-
ond part of the Hamiltonian describes Fresnel’s drag eff
Indeed, we obtain from Hamilton’s equations~10!

v5
dx

dt
5

c

n
ek1S 12

1

n2D u, ek5
k

k
. ~11!

This is nothing but the vectorial version of Fresnel’s origin
formula ~1!.

As has been pointed out earlier@19#, a uniform medium in
stationary motion acts on light in the same way as a magn
field acts on charged matter waves. To understand this
markable connection within our theory of ray propagatio
we introduce a rescaled ray vectorw, or, equivalently, a
reparametrization of the ray trajectory,

w[kv5
c

n
k1S 12

1

n2D ku. ~12!

Let us derive an equation of motion forw. First we replace
ku with n(v/c)u in first order, and get

w[kv5
c

n S k1
n221

c2
vuD . ~13!

Then we use Hamilton’s equations~10! and the relation
tz

l

t.

l

tic
e-
,

n
v

c

du

dt
5n

v

c
~v•“ !u5~w•“ !u ~14!

that is valid in first order. We obtain the Lorentz-type equ
tion of motion

dw

dt
5S 12

1

n2D ~“3u!3w. ~15!

Light rays in slowly moving media behave like charged p
ticles in magnetic fields where the flowu appears as a vecto
potential. The Lorentz-type force~15! conserves the modulu
of the modified velocityw which is equal tov in regions
where the medium is at rest,

w25v2. ~16!

We replacew with the right-hand side of Eq.~13! and re-
translate the resulting dispersion relation into a wave eq
tion, replacingkc with 2 i“c. In this way we obtain ex-
actly the Schro¨dinger equation of a charged matter wave in
magnetic field@30#

S 2 i“1
n221

c2
vuD 2

c5n2
v2

c2
c . ~17!

All these arguments support a magnetic model of lig
propagation in moving media@19#. The flow u acts as a
vector potential that modifies the relation between the
nonical and the kinetic momentum

k5
n

c
w2

n221

c2
vu . ~18!

For example, a rotating rigid glass cylinder will act like
homogeneous magnetic field on light that travels inside. T
rotating cylinder will bend light rays, irrespective of the
distance from the rotation axis. Another example is a vor
that will act like a thin solenoid; see Sec. IV. Light rays a
not bent but, similarly to the Aharonov-Bohm effect@20#,
rays that enclose the vortex attain a phase difference@19#.

III. LIGHT IN MOVING MEDIA

A. Wave optics

Let us develop a completely relativistic theory of lig
propagation in moving nondispersive media. As in Sec. II
assume that the refractive indexn and the flowu do not vary
significantly over one optical wave length and one opti
cycle, respectively. We neglect the dispersion of light, i.
the frequency dependence ofn. We allow arbitrary medium
velocities and we will employ a covariant notation@31#. Our
starting point is the following postulate. In all locally comov
ing medium frames~denoted by primes! the electromagnetic
field-strength tensorFmn8 shall obey the wave equation

S“822
n2

c2

]2

]t82D Fmn8 50. ~19!
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Note that this postulate uses implicitly the assumption t
the refractive index varies only gradually. Otherwise ad
tional terms become important in the wave equation@15#,
terms that describe polarization changes~at the surfaces o
dielectrics, for instance!.

Let us transform the wave equation~19! to the laboratory
frame. As a first step we reformulate Eq.~19! in a covariant
notation. We employ the four gradients

]n85S 1

c

]

]t8
,“8D , ]8n5S 1

c

]

]t8
,2“8D ,

]n5S 1

c

]

]t
,“ D , ]n5S 1

c

]

]t
,2“ D , ~20!

and the four-vector field of the medium flow

un5gS 1,
u

cD , un5gS 1,2
u

cD , ~21!

with the relativistic factor

g5S 12
u2

c2D 21/2

, ~22!

In a comoving medium frame the four vectoru8n is locally

u8n5~1,0!. ~23!

Therefore, we can easily write our starting point~19! in the
covariant expression

@]a8]8a1~n221!~u8a]a8 !2#Fmn8 50. ~24!

Throughout this paper we employ Einstein’s summation c
vention. When we transform the wave equation~24! to the
laboratory frame we should transform both the derivativ
and velocities, and the field-strength tensor. A Lorentz tra
formation of a tensor depends of course on the velocity
the moving frame@31#. Since the medium velocities var
only gradually compared with the rapid oscillations ofFmn8 ,
we can neglect the derivatives of the Lorentz transformati
of Fmn8 in Eq. ~24!. In other words, the wave equation~24! is
valid both for Fmn8 and Fmn . Furthermore, the differentia
operator]a8]8a1(n221)(u8a]a8 )2 is a Lorentz scalar, and
therefore we can simply drop the primes in Eq.~24!, to arrive
at

@]a]a1~n221!~ua]a!2#Fmn50. ~25!

This wave equation describes the propagation of light i
moving nondispersive medium, provided that both the
fractive indexn and the flowu varies only gradually.

We see that the final wave equation~25! does not mix the
components of the field-strength tensor. The propagatio
light beams does not depend on the polarization, i.e., mov
media are not birefringent. This result justifies the sca
model of Sec. II. Note however, that the transport of the fi
amplitudes along light beams is certainly polarization dep
dent. To describe this effect one should consider, instea
the wave equation~25!, the complete set of Maxwell’s equa
tions in moving dielectrics@2,15,16#.
t
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B. Geometrical optics„Hamiltonian …

How does a moving medium act on light rays? Accordi
to Hamilton’s geometrical optics, we try the eikonal ansa
@31#

Fmn5Fmn eiS1c.c. ~26!

with

S5E ~k•dx2vdt!52E kndxn. ~27!

Here we have employed the four differential

dxn5~c dt,dx! ~28!

and the wave four vector

kn5S v

c
,2kD52]nS. ~29!

Assuming a rapidly changing phaseS compared with the
envelopeFmn , we derive from the wave equation~25! the
Hamilton-Jacobi equation of light rays,

gmn~]mS!~]nS!50, ~30!

with

gmn5hmn1~n221!umun, ~31!

using the flat Minkowski metric

hmn5hmn5S 1 0

0 21D . ~32!

Explicitly, we get the dispersion relation

v22c2k21~n221!g2~v2u–k!250. ~33!

To find a Hamiltonian for light beams we solve Eq.~33!
for v5H. We obtain

H5S c22u2

n2c22u2D 1/2S c2k22
n2c22c2

n2c22u2
~u–k!2D 1/2

1
n2c22c2

n2c22u2
u–k. ~34!

In first order inu/c we recognize our previous result~9!. Ray
trajectories follow from the Hamiltonian~34! as solutions of
Hamilton’s equations~10!. Here the timet plays merely the
role of a parameter to describe the trajectories. Of cou
infinitely many parametrizations exist that result in equiv
lent ray trajectories but stem from different Hamiltonian
Does our particular parametrization have a physical me
ing? Let us consider the formal velocityv8 in the comoving
medium frame@16#,

v85
v2u1~g21!u~u–v2u2!/u2

g~12u–v/c2!
. ~35!
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We use the first of Hamilton’s equations~10! and the Hamil-
tonian ~34!, and obtain after some algebra

v825
c2

n2
. ~36!

Light travels at the velocity of light. Therefore, we can ide
tify the formal ray parametert with the physical travel time
of light in the laboratory frame.

Apart from elucidating the physical meaning of time f
our Hamiltonian, relation~36! is simply an explicit conser-
vation law during the ray propagation. Conservation laws
connected to symmetries. In fact, the Hamiltonian~34! has
the remarkable structure

H5k h~z!, z5u•ek, ek5
k

k
. ~37!

Consequently,

v5
]H

]k
5h ek1

]h

]z
ek3~u3ek!. ~38!

We see that the velocity vectorv is independent of the wav
numberk. The trajectories of light beams in moving med
do not depend on the wave properties of light. Geometr
optics involves indeed solely the geometrical aspects of l
rays.

C. Lagrangian

We have studied the propagation of light in moving me
in the spirit of Hamilton’s geometrical optics. Can we find
Lagrangian as well? Let us calculate the Lagrangian dire
from the Hamiltonian, using the structure~37! and ~38! of
the Hamiltonian and the velocity vector, respectively. We

L5k•
]H

]k
2H50. ~39!

The Lagrangian vanishes. Furthermore, we cannot exp
the canonical momentumk in terms of the velocityv, be-
cause, according to Eq.~38!, v does not depend on the mod
lus of k. The encountered problems in introducing a L
grangian for light rays in moving media have been kno
for the special case of light in vacuum@31# and have been
attributed@31# to the vanishing rest mass of light.

Let us provide light with an artificial rest massm that we
let approach zero at a later, appropriate moment. We rep
the right-hand side of the wave equation~25! with m2c2Fmn ,
and we obtain in the limit of geometrical optics th
Hamilton-Jacobi equation

gmn~]mS!~]nS!5m2c2. ~40!

We wish to find a Lagrangian representation of the phasS
such that

S5E L dt. ~41!

For this we introduce the matrix
e

al
t

ly

t

ss

-

ce

gmn5hmn1S 1

n2
21D umun. ~42!

One verifies easily thatgmn is the inverse ofgmn, utilizing
that unun is normalized to unity,

gmagan5dm
n . ~43!

We obtain the solution of the Hamilton-Jacobi equation

S52mcE ds ~44!

with

ds25gmndxmdxn. ~45!

To prove this result we note that the wave four vector giv

km52]mS5mc gmn

dxn

ds
, ~46!

and thus satisfies the Hamilton-Jacobi equation~40!

gmnkmkn5m2c2gmn

dxm

ds

dxn

ds
5m2c2. ~47!

Expression~44! of the phaseS has the desired Lagrangia
structure,

S52mcEAgmn

dxm

dt

dxn

dt
dt5E L dt, ~48!

with the explicit Lagrangian

L52mcAc22v21S 1

n2
21D g2S c2

u•v

c D 2

. ~49!

D. Metric

According to the action principle, light rays minimize th
phaseS. Because the phase~44! is proportional to the artifi-
cial massm, the minima ofSdo not depend on the numerica
value of m at all. We thus arrive at an entirely geometric
picture of ray optics in moving media, in complete analo
to the equivalence principle of general relativity. Light ra
are geodesic lines with respect to Gordon’s metric@2#

ds25hmndxmdxn1S 1

n2
21D ~umdxm!2

5hmndx8mdx8n1S 1

n2
21D c2dt82 ~50!

5
c2

n2
dt822dx82. ~51!

While traveling in a moving medium, light minimizes th
proper time measured with respect toc/n. And, because
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light actually travels at the velocity of light~36!, the proper
time is zero on the ray trajectory. Light rays follow zer
geodesic lines of the metric~50!.
t

an
o
tr

e

w
w

l
w
d
ith

t-
A moving medium acts as a curved space time on light
terms of Riemann’s geometry, a medium with uniform r
fractive indexn turns out to have the scalar curvature@31#
R5
~n221!2

2n2
~umun2hmn!~]mui!~]nui!1

12n4

2n2
~]mun!~]num!1~12n2!@2un]n]mum1~]mum!2#, ~52!
the

al
um,
are
nce

ki-
t is
lve

-

e
by
p-
g

as one obtains after some algebra. When the flow obeys
continuity equation,

]nun50, ~53!

the curvature simplifies to

R5
~n221!2

2n2
~umun2hmn!~]mui!~]nui!

1
12n4

2n2
~]mun!~]num!. ~54!

In curved space time the distinction between covariant
contravariant objects is particularly profound. Let us intr
duce the contravariant wave vector with respect to the me
of the moving medium,

km[gmnkn . ~55!

According to Eqs.~43! and ~46! the km four vector is pro-
portional to the four velocity,

km5mc
dxm

ds
5mc

dt

ds

dxm

dt
. ~56!

Becausedx0/dt is equal toc, by definition~28!, we obtain

km5
k0

c

dxm

dt
, ~57!

a relation that remains valid for vanishingm andds. In the
magnetic model of light propagation in moving media, s
Sec. II, the three-dimensionalk vector differs from the ve-
locity by an additional term that is proportional to the flo
and that plays the role of a vector potential. However, as
have seen, the contravariantkm vector is in fact proportiona
to the velocitydxm/dt. Therefore, the appearance of the flo
as a vector potential is an illusion that we get when we
not discriminate between co- and contravariant vectors, w
out yet appreciating the inherent space-time geometry
geometrical optics of moving media.

E. Slowly moving media

In Sec. II we summarized the magnetic model@18,19# of
light in slowly moving media. Let us formulate the firs
order effects in terms of the geometrical model@2#. To the
lowest order inu/c we obtain the metric
he

d
-
ic

e

e

o
-

of

ds25
1

n2
~cdt!22dx212

n221

n2

u

c
•dx cdt. ~58!

Therefore, the covariant metrical tensorgmn is given by the
matrix

gmn5S 1

n2

n221

n2

u

c

n221

n2

u

c
21

D . ~59!

To find the contravariant metrical tensor we compare
dispersion relation~7! with Eqs.~29! and ~30!, and read off
the result

gmn5S n2 ~n221!
u

c

~n221!
u

c
21

D . ~60!

In the limit of low medium velocities, three-dimension
space appears to be flat to light that travels in the medi
yet four-dimensional space time is curved. Let us comp
covariant and contravariant wave vectors. As a conseque
of Eqs. ~13! and ~29! and of the definition~55!, the space
componentski of the contravariantkm are given by

ki5k1~n221!
v

c
u5

n

c
w5

n

c
k v. ~61!

Therefore, the contravariant wave vector appears as the
netic momentum, in contrast to the canonical one tha
represented by the covariant wave vector. Finally, we so
Eq. ~61! for k/k and arrive at the vectorial form~11! of
Fresnel’s classic result~1!, seen here in the Riemann
geometrical model of light in moving media.

IV. LIGHT AROUND A VORTEX

A. Optical Aharonov-Bohm effect

Consider a vortex flow in an incompressible liquid. Th
vortex may be created by the action of a mixer or simply
letting the liquid flow out of the container. To a good a
proximation the velocity profile of the vortex is given, usin
cylindrical coordinates, by the expression@32#
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u5
W
r

ew . ~62!

Let light travel through the whirling liquid. In first order o
u/c, light experiences the medium flow in the same way a
charged matter wave experiences a vector potential@18,19#.
In particular, the vortex~62! corresponds to an infinitely thin
solenoid that generates a strong magnetic field inside ye
field outside,

“3u50. ~63!

However, as Aharonov and Bohm discovered in their se
nal 1959 paper@20#, a charged matter wave will attain
phase shift without feeling a force, and so will light. W
compare the Schro¨dinger equation of Aharonov and Bohm
@20# with the wave equation~17! and read off the optica
Aharonov-Bohm phase shift

w
AB

52pn
AB

, n
AB

5
v

c
~n221!

W
c

. ~64!

How large is the effect? For estimating the order of mag
tude we assume a refractive indexn of 1.5 and an optical
frequencyv of 331015s21. Furthermore, we assume th
the liquid circulates at a radiusr of 2 cm with a frequency
u/r of 10 s21. We obtain a phase shiftw

AB
of 1023. The

effect is small, yet one could enhance it significantly by l
ting the light travel through the liquid many times in a
interferometer. In this case the phase shiftw

AB
is effectively

multiplied by the number of round trips. One could also p
ceive the interferometer as a resonator where the effect o
moving medium changes the spatial mode profile. The p
cision of modern interferometry is certainly sufficient to d
tect the optical Aharonov-Bohm effect.~Remember that
Fizeau@7# saw the precursor of the effect as early as 185!
Figure 1 illustrates the long-range behavior of light wav
that pass a vortex flow.

B. Relativistic vortex

Let us analyze vortex effects to higher order inu/c. Note,
however, that the nonrelativistic vortex~62! permits medium
velocities that exceed the speed of light, when taken s
ously near the vortex core where higher-order effects ar
be expected. Let us therefore seek a proper relativistic
tex. We anticipate that the flow is still circular,

u5u~r !ew , ~65!

but that we must correct the nonrelativistic velocity profi
~62! by the relativisticg factor ~22!,

u5
W
gr

, ~66!

to prevent the medium from becoming tachyonic. Given
velocity profile ~66!, we solve Eq.~22! for g, and obtain

g5A11
W 2

c2r 2
. ~67!

Therefore, the four flow~21! is finally
a

no

i-

i-

-

-
he
e-

.
s

ri-
to
r-

e

un5SA11
W 2

c2r 2
,

W
cr

ewD . ~68!

FIG. 1. Light wave passing through a vortex flow.~A! illustrates
the optical Aharonov-Bohm effect. Light is incident from the righ
and we plot the real part of the optical fieldc that is subject to the
wave equation~17!. We use forc the well-known Bessel series du
to Aharonov and Bohm@20#. ~B! sketches the wave patterns o
light, taking into account the slight ray bending that we discuss
Sec. IV C. We use the same scale as in~A!. Before reaching the
vortex the wave fronts bend and then they split at the vortex co
Behind the core the two parts of the wave interfere. We created
picture by following a bundle of exact ray trajectories~76!. A wave
front is defined by the points reached at a particular value of
time parameter. Although this approach does not provide inform
tion about the wave amplitudes, the picture is quite accurate,
cause mostly only one part of the split wave contributes to interf
ence, except in regions very close to the cut at the negativex axis.
We see that picture~B! reproduces the prominent long-range fe
tures of the Aharonov-Bohm wave depicted in~A!.
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Of course, so far we have simply guessed the proper rela
istic generalization of the vortex flow~62!. To prove that our
result is indeed physically meaningful, we shall show th
the four flow~68! is consistent with relativistic hydrodynam
ics @33#. First we note that any circular flow~65! satisfies the
equation of continuation~53!. Then we prove that the par
ticular four flow ~68! is a solution of the relativistic Eule
equation. For this we construct the energy-momentum ten
@33#

Tmn5~rc21p!umun2p hmn ~69!

and assume the pressure profile

p5rc2expS 2
W 2

2c2r 2D 2rc2. ~70!

Herer denotes the constant mass density of the incompr
ible fluid. We obtain by direct calculation thatTmn satisfies
the Euler equation

]mTmn50. ~71!

This proves that the vortex~68! is indeed a possible flow
that, as we have seen as well, generates the pressure p
~70!. At sufficiently large distances from the vortex core t
pressure behaves like

p;2
rW 2

2r 2
. ~72!

The rapidly falling pressure will attract the surface of t
liquid and create a hole at the vortex core. Let us never
less treat the hole as being infinitely thin. Near the vor
core the pressure is finite

lim
r→0

p52rc2, ~73!

and the medium velocity reaches the speed of light

lim
r→0

u5c. ~74!

At large distances from the core the medium flows as
scribed by the nonrelativistic Eq.~62!. Of course, dramati-
cally relativistic vortices are not expected to be created
experiments on Earth in the near future, but they might e
as astronomical objects.

C. Light bending

Let us study the propagation of light rays around the re
tivistic vortex ~68!. For this we solve the Hamilton-Jacob
equation~40! that reads explicitly

Ṡ22c2~¹S!21~n221!g2 ~Ṡ1u•“S!250. ~75!

We obtain for any circular flow~65! the solution

S5
v

c
@2ct1 lw1R~r !# ~76!

with
v-

t

or

s-

file

e-
x

-

n
st

-

S dR

dr D 2

512
l 2

r 2
1

n221

12
u2

c2

S 12
ul

cr D
2

. ~77!

Let us first study light rays that travel sufficiently far outsid
the vortex core. We use our velocity profile~66! with the
factor ~67!,

S dR

dr D 2

5n22
l

AB

2

r 2
1~n221!

n2W 2

c2r 2
~78!

with

l
AB

5 l 1~n221!
W
c

. ~79!

As we shall see below,l
AB

plays the role of the kinetic an
gular momentum that is altered by the optical Aharono
Bohm effect. According to canonical mechanics@34# trajec-
tories are given requiring that the derivative of the acti
with respect to generalized canonical momenta is a se
constants. In particular, we set

]S

] l
5

v

c
w0. ~80!

In this way we obtain the trajectories

w2w05E
r 0

r l
AB

r 22 dr

An22
l

AB

2

r 2
1~n221!

n2W 2

c2r 2

, ~81!

with

r 0
25

l
AB

2

n2
2~n221!

W 2

c2
~82!

and, after solving the integral,

w2w05
l

AB

nr0
arccosS r 0

r D . ~83!

To first order inu/c we disregard theW 2/c2 term in Eq.~82!
and get from Eq.~83!

r cos~w2w0!5r 0. ~84!

Therefore, far outside the vortex core light travels alo
straight lines~in accordance with our previous consideratio
on the optical Aharonov-Bohm effect!. Let us study indica-
tions of higher-order effects. At infinity the anglew ap-
proaches

w`[ lim
r→`

w5w01
p

2

l
AB

nr0
. ~85!

The impact parameter of the ray is given by
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b[ lim
r→`

r sin~w2w`!52
l

AB

n
. ~86!

This result shows explicitly thatl
AB

indeed corresponds t
the kinetic angular momentum. When the light leaves
vortex region the ray is deflected by the angle@34#

w
D
5p22~w`2w0!5p2p

l
AB

nr0
'

p

2

~n221!W 2

b2c2

~87!

to second order inW/c. Similar to the bending of star ligh
due to the sun’s gravity@31#, light is attracted by a vortex
and is consequently slightly deflected. We expressw

D
in

terms of the first-order phase shift~64!, and obtain to second
order inW/c

w
D
5

n2

8p~n221!
n

AB

2
l2

b2
, l5

2pc

vn
. ~88!

The deflection angle is extremely small for small Aharono
Bohm phases 2pn

AB
. Figure 2 illustrates the bending of ligh

at a vortex. The figure shows also light rays in the immedi
vicinity of the core, a case that we shall consider in the n
subsection.

D. Optical black hole

A vortex attracts light like any other test particle, becau
of the rapidly falling pressure profile~70!. Can light fall into
the vortex core? To answer this question we study the tu
ing points of light rays, using the complete relativistic acti
~76! with the radial component~77!. Turning points are the
zeros of (dR/dr)2 because beyond these points the actioS
is purely imaginary and hence covers a forbidden region.
represent Eq.~77! as

S dR

dr D 2

5g2Fn2S 12
ul

cr D
2

2S u

c
2

l

r D
2G . ~89!

We see that each radiusr can be reached as a turning point
two trajectories that are characterized by the angular
menta

l 65r
nc6u

nu6c
. ~90!

The point may be an inner or an outer turning point, depe
ing on the sign of

z6[
]

]r S dR

dr D 2U
l 6

. ~91!

The vortex may emit light that begins to fall back to the co
at an inner turning point with negativez. Or, alternatively,
incident light from outside the vortex is bent and comes cl
est to the core at an outer turning point with positivez. To
distinguish inner and outer turning points we calculatez6

and write the resulting expression in terms of the derivat
of l 6 regarded as a function ofr. We obtain
e

-

e
t

e

n-

e

o-

-

-

e

z6562n
dl6

dr
,

dl6

dr
5

l 6

r
2

n221

~nu6c!2
ru8c. ~92!

The velocity profileu(r ) of the vortex~68! is monotonically
decreasing and positive.~We assume a positiveW. Other-
wise one could invert the system of coordinates to arrive
positive vorticity.! Therefore,l 1 is positive and also yields a
positivez1 . Given a positive angular momentum, any po
can be reached as an outer turning point of incident li
rays. Let us turn to thel 2 . The angular momentuml 2 of a
turning point is negative outside the radius where the m
dium velocity reaches the speed of light in the medium,c/n.
Inside this radius the trajectory that corresponds tol 2 ap-

FIG. 2. Trajectories of light rays in the vicinity of a vortex flow
Each picture shows a pair of trajectories belonging to the sa
value of the angular momentum. In one case the light ray
proaches the vortex from infinity, is bent, and disappears to infin
In the other case the light stems from the origin and falls back a
having reached its maximal range from the vortex core. At d
tances not covered by these trajectories no light rays are allo
that belong to the chosen particular value of the angular mom
tum. ~A! Negative angular momentum~positive impact parameter!.
Light swims against the current.~B! Positive angular momentum
~negative impact parameter!. Light travels with the flow.
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proaches an inner turning point, becausez2 is negative. On
the other hand, for negative angular momenta a critical
dius r s exists wherez2 vanishes. Beyond this radius all ligh
rays with negativel must fall into the vortex core. The vorte
appears as a black hole to light with negative angular m
menta. Let us calculate the optical Schwarzschild radiusr s .
We utilize that

ru852uS 12
u2

c2D ~93!

for the relativistic vortex~68! and arrive at a third-orde
equation for the velocityus at the Schwarzschild radiu
wheredl2 /dr vanishes,

~n221!j31nj222n2j1n50, j5
us

c
. ~94!

This equation has three real solutions labeled
i P$1,2,3%,

ui~n!5
2ncA6n225 cos@a i~n!#

3~n221!
2

nc

3~n221!
,

a i~n!5
1

3
@2p~ i 21!1b~n!#,

b~n!5arccosS 2
27270n2145n4

2n2~6n225!3/2 D . ~95!

The values of the physical solution must lie in the interv
0<ui,c in order to be velocities allowed by the theory
relativity. The refractive indexn is confined to the interva
1<n,`. The only function assuming physically permitte
values at the ends of this interval isu3(n) with

u3~1!5c, lim
n→`

u3~n!50. ~96!

In order to prove that the results for intermediate values on
are physical as well, we show thatu3(n) is a monotonically
decreasing function. The first term in Eq.~95! is a product of
two positive and monotonically decreasing functions a
thus is a positive monotonically decreasing function itse
So is the second term that is subtracted. In order to show
the total expression stays positive one can employ the
mates

arccos~x!>2
1

2
A11x p1p, for 21<x<0,

cos~x!>
3

p
x2

9

2
, for

p

2
<x<p. ~97!

This leads to an algebraic inequality that can be solved
standard way, thus proving our assumption. In an analog
way one can show thatu1 and u2 do not assume physica
values. Finally, to calculate the optical Schwarzschild rad
r s , we solve Eqs.~66! and ~67! for r, and get
-

-

y

l

d
.
at
ti-

a
us

s

r s5
W
u3
A12

u3
2

c2
. ~98!

Optical black holes could be created using highly dispers
dielectrics @4,5#. These media are distinguished by an e
tremely low group velocity of light. To some extent, the
resemble dispersionless dielectrics with an extremely la

FIG. 3. Optical black hole. The pictures show trajectories
light rays falling into the vortex core. In case the angular mom
tum of an incident ray lies within a critical interval, the ray
dragged by the vortex flow and finally falls into the singularity.~A!
We have chosen several values of the angular momentum that c
most of the critical interval.~B! The chosen values of the angula
momentum lie immediately above the negative bound of the crit
interval. In this case a trajectory is very sensitive to small chan
in the angular momentum. The radius of the limiting circle is t
optical Schwarzschild radius.
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refractive index. Let us, therefore, consider the limit of lar
n. We obtain from Eq.~95! the critical flow velocity

us5u3;
c

2n
. ~99!

A light ray with a negative angular momentum, i.e., light th
swims against the current, is trapped when the flow velo
approaches half of the speed of light in the medium. Figur
illustrates the fall into the optical black hole.

E. Scaling

A vortex flow can cause an optical Aharonov-Bohm effe
and may force light to fall into an optical black hole. No
that these phenomena depend, in principle, entirely on
mere presence of the vortex and not on the particular va
of the vorticity, even whenW is very small. To see this we
study the scaling properties of the relativistic vortex.
closer inspection to Eqs.~65!–~67! reveals that the dimen
sionless velocity profileu/c depends only on the combina
tion (c/W) r . Let us introduce the new variables

t̄ 5
c2

W t, r̄ 5
c

W r , l̄ 5
c

W l , S̄5
c

W S. ~100!

Due to the scaling ofu/c the scaled eikonalS̄ is a solution of
the Hamilton-Jacobi equation~75! in the variables~100!. The
scale of l̄ and S̄ was chosen such thatS̄ corresponds to the
explicit solution~76! with the parametersv and l. Note that
the Hamilton-Jacobi equation~75! in the dimensionless co
ordinatest̄ , r̄ , andw does not containW anymore. Conse-
quently, the relativistic effects on light at a vortex flow d
not disappear when the vorticity approaches zero. Howe
the smaller the vorticity is the higher should be the freque
of light, in order to produce an equivalent Aharonov-Boh
phase shift~64!. This is caused by the scaling of the eikon
S that governs the phase profile of the optical field. Furth
more, for a low vorticity the optical Schwarzschild radius
accordingly small. In our idealized model, any vortex is
optical black hole, irrespective of the value ofW. In prac-
tice, the incident light is more likely to hit an obstacle th
we have entirely ignored — the vortex core. Similar to a s
that acts as a black hole when the gravitational Schw
schild radius exceeds the star’s size, a vortex is an op
black hole only if the core is smaller than the optic
Schwarzschild radius.

V. SUMMARY

A moving dielectric appears to light as an effective gra
tational field@2#. At low flow velocities the dielectric acts on
re
t
y
3

t

e
e

r,
y

l
r-

t
r
z-
al
l

-

light in the same way as a magnetic field acts on a char
matter wave@18,19#. The flow plays the role of the vecto
potential. We have shown how the two effective models
related to each other: The covariant wave vector correspo
to the canonical momentum of a light ray, whereas the c
travariant wave vector plays the role of the kinetic mome
tum. In curved space time, and hence in a dielectric, cov
ant and contravariant vectors are distinct. For low medi
velocities they differ in precisely the same way as the
nonical momentum of a charged particle differs from t
kinetic one by the vector potential. Additionally, we hav
derived and studied an effective Hamiltonian for ray prop
gation in moving media. Within the limits of geometrica
optics, ray trajectories do not depend on the polarizati
Introducing a fictitious rest mass for light we have co
structed a corresponding Lagrangian. This path has led u
the description of a medium in terms of a metric@2#.

First-order optical phenomena are certainly detectable
ing modern interferometry and ordinary dielectric fluids.
this way one could infer the velocity profile of transpare
incompressible liquids from interferometric measuremen
To observe some spectacular relativistic effects, one co
employ highly dispersive quantum dielectrics@4#. One can
demonstrate an optical Aharonov-Bohm effect and create
optical black hole with a quantum vortex as the center
attraction@5#. Our paper has established a consistent yet s
plified model of such phenomena. Thus we have reaso
hope that we may stimulate experiments to demonst
gravitational effects on Earth that usually belong to the rea
of astronomy.

ACKNOWLEDGMENTS

We thank Daniel Andre, Sir Michael Berry, Balasz Gyo
ffy, John Hannay, Jon Keating, Susanne Klein, and Dun
O’Dell at the University of Bristol for their hospitality and
for fruitful and pleasant conversations. We are grateful
Harry Paul for a helpful correspondence and Benita Fin
von Finckenstein, Michael Nieto, and Martin Wilkens fo
conversations on the Aharonov-Bohm effect. We thank S
vatore Antoci, Carsten Henkel, Bjo¨rn Hessmo, Daniel James
Gerd Leuchs, Rodney Loudon, Peter Milonni, Wolfga
Schleich, and Stig Stenholm for discussions on the optic
moving dielectrics and on related subjects. U.L. gratefu
acknowledges the support of the Alexander von Humbo
Foundation and of the Go¨ran Gustafsson Stiftelse. P.P. wa
partially supported by the research consortiumQuantum
Gasesof the Deutsche Forschungsgemeinschaft.
d

@1# M. V. Berry and S. Klein~private communication!.
@2# W. Gordon, Ann. Phys.~Leipzig! 72, 421 ~1923!.
@3# Pham Mau Quan, C. R. Acad. Sci.~Paris! 242, 465 ~1956!;

Arch. Ration. Mech. Anal.1, 54 ~1957/58!.
@4# L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Natu

~London! 397, 594 ~1999!.
@5# U. Leonhardt and P. Piwnicki, e-print cond-mat/9906332.
@6# A. J. Fresnel, Ann. Chim. Phys.9, 57 ~1818!.
@7# H. Fizeau, C. R. Acad. Sci.~Paris! 33, 349 ~1851!.
@8# H. A. Lorentz, Versuch einer Theorie der elektrischen un

optischen Erscheinungen von bewegten Ko¨rpern ~Brill,
Leiden, 1895!.



.-

B

-

t

J.

ett.

-

4312 PRA 60U. LEONHARDT AND P. PIWNICKI
@9# P. Zeeman, Proc. R. Acad. Sci. Amsterdam17, 445~1914!; 18,
398 ~1915!.

@10# M. G. Sagnac, C. R. Acad. Sci.~Paris! 157, 708 ~1913!; 157,
1410 ~1913!.

@11# A. A. Michelson, H. G. Gale, and F. Pearson, Astrophys. J.61,
140 ~1925!.

@12# H. Minkowski, Nachr. d. K. Ges. d. Wiss. Zu Gott., Math
Phys. Kl. 53~1908!.

@13# S. Antoci and L. Mihich, Nuovo Cimento Soc. Ital. Fis.,
112, 991 ~1997!; Eur. Phys. J. D3, 205 ~1998!.

@14# M. Abraham, Rend. Circ. Matem. Palermo28, 1 ~1909!; 30, 33
~1910!.

@15# L. D. Landau and E. M. Lifshitz,Electrodynamics of Continu
ous Media~Pergamon, Oxford, 1984!.

@16# J. Van Bladel,Relativity and Engineering~Springer, Berlin,
1984!.

@17# C. Yeh, J. Appl. Phys.36, 3513~1965!; V. P. Pyati,ibid. 38,
652 ~1967!; T. Shiozawa, K. Hazama, and N. Kumagai,ibid.
38, 4459~1967!; C. W. Chuang and H. C. Ko,ibid. 45, 1154
~1974!; K. Tanaka,ibid. 49, 4311~1978!; R. C. Costen and D.
Adamson, Proc. IEEE53, 1181 ~1965!; J. M. Saca,ibid. 68,
409 ~1980!.

@18# J. H. Hannay~unpublished!.
@19# R. J. Cook, H. Fearn, and P. W. Milonni, Am. J. Phys.63, 705

~1995!.
@20# Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!; M.

Peshkin and A. Tonomura,The Aharonov-Bohm Effec
~Springer, Berlin, 1989!.

@21# M. Wilkens, Phys. Rev. Lett.72, 5 ~1994!; H. Wei, R. Han,
and X. Wei, ibid. 75, 2071 ~1995!; G. Spavieri, ibid. 82,
3932 ~1999!.
@22# U. Leonhardt and P. Piwnicki, Phys. Rev. Lett.82, 2426

~1999!.
@23# M. V. Berry, R. G. Chambers, M. D. Large, C. Upstill, and

C. Walmsley, Eur. J. Phys.1, 154 ~1980!.
@24# P. Roux, J. de Rosny, M. Tanter, and M. Fink, Phys. Rev. L

79, 3170~1997!.
@25# H. Davidowitz and V. Steinberg, Europhys. Lett.38, 297

~1997!.
@26# W. G. Unruh, Phys. Rev. Lett.46, 1351~1981!; Phys. Rev. D

51, 2827~1995!.
@27# T. A. Jacobson, Phys. Rev. D44, 1731~1991!; T. A. Jacobson

and G. E. Volovik,ibid. 58, 064 021~1998!; N. B. Kopnin and
G. E. Volovik, Pis’ma Zh. E´ksp. Teor. Fiz.67, 124 ~1998!
@JETP Lett.67, 140 ~1998!#; T. A. Jacobson and G. E. Volo
vik, ibid. 68, 874 ~1998!; G. E. Volovik, ibid. 69, 705 ~1999!;
M. Visser, Class. Quantum Grav.15, 1767~1998!.

@28# C. Mo” ller, The Theory of Relativity~Oxford University Press,
Oxford, 1972!.

@29# M. Born and E. Wolf,Principles of Optics~Pergamon, Oxford,
1959!.

@30# L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-
mon, Oxford, 1977!.

@31# L. D. Landau and E. M. Lifshitz,The Classical Theory of
Fields ~Pergamon, Oxford, 1975!.

@32# H. Lamb,Hydrodynamics~Dover, New York, 1945!.
@33# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,

Oxford, 1987!.
@34# L. D. Landau and E. M. Lifshitz,Mechanics~Pergamon, Ox-

ford, 1976!.


