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Dirac-Maxwell solitons
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Detailed analysis of the coupled Dirac-Maxwell equations and the structure of their solutions is presented.
Numerical solutions of the field equations in the case of spherical symmetry with negligible gravitational
self-interaction reveal the existence of families of solitons with electric-field dominance that are completely
determined by the observed charge and mass of the underlying particles. A soliton is found which has the
charge and mass of the electron as well as a charge radius of 10223 m. This is well within the present
experimentally determined upper limit of.10218 m. Properties of these particles as well as possible extension
to the work herein are discussed.@S1050-2947~99!01612-1#

PACS number~s!: 12.20.Ds, 03.65.Ge, 11.10.Lm
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I. INTRODUCTION

Through the years, a number of authors have attempte
avoid the problems inherent in the point-particle model
focusing upon finite solitonlike structures. Fields interacti
nonlinearly provide the binding without invoking any ph
nomenological elements. Einstein and Rosen@1# pointed out
many years ago that particles should be contained with
field theory and not exist as independent entities. Rosen@2#
made considerable progress in implementing such a prog
in a gauge-invariant manner by minimally coupling a sca
field to the Maxwell field. However, the soliton solution
yielded negative masses. Later@3#, neutral quantized particle
states of positive mass were found and a more complic
model invoking up to three scalar fields coupled to the M
well field was shown to be capable of modeling the kno
massive leptons@4#. However, the particles were spinless a
the view then was that a subsequent quantization of
theory would induce spin.

In 1991, one of the present authors@5# suggested an alter
native route to elementary particle modeling, namely as s
tons of Dirac-Maxwell theory. Since Dirac-Maxwell theor
had been so successful in describing electron spin and m
netic moment, predicting the existence of the positron a
refining the energy levels in interacting systems such as
drogen, it seemed reasonable that this might successfully
tend to a self-interacting soliton structure to model the
ementary particles themselves. Spin would already exis
such a model via the spinor structure of the wave functi
Shortly thereafter, such solitons were found and their pr
erties studied@6#. A few years later, Lisi@7# independently
discovered some of the results in@6#. Recently, there has
been a revival of interest in this field and in particular, t
issue of gravitational coupling in the Dirac-Maxwell syste
has been considered@8#. However, there was the misconce
tion that gravitation was a necessary ingredient for the c
ation of the soliton.

In this paper, we develop the essential results in@5# and
@6# and discuss the role of gravitation in soliton structu
The experimental inputs are the respective masses of
electron, muon, and tau, their charge, and as a constrain
upper limit to their size, which is.10216 cm. The plan of
PRA 601050-2947/99/60~6!/4291~10!/$15.00
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the paper is as follows. In Sec. II, we set out the essen
coupled Dirac-Maxwell equations to be solved. The struct
of the Dirac wave function in spherical coordinates is giv
and particularized to the case of electric field dominan
The equation is separated in Sec. III and we contrast
standard treatment in which a potential function is impos
such as in the case of hydrogen and the present case o
soliton where the derivation of the potential is part of t
problem. The formal structure of the potential in terms of t
Green’s function is given. It is shown that there do ex
spherically symmetric potentials for appropriate choices
quantum numbers.

In Sec. IV, the spherically symmetric energy-momentu
tensor is derived. The relationship between the paramete
the Dirac equation and the physically measured quantitie
discussed and the expression for the spatial spread of
soliton is given. The various constraints including singular
avoidance lead to the required boundary conditions for
problem.

In Sec. V, the results are presented. New variables
convenience for numerical integration are introduced. T
parameters leading to 20 ground-state solitons are listed.
found that there is a critical range which leads to solito
within the experimentally observed upper limit to the size
the electron. Excited states are presented and the mass
are found.

In Sec. VI, the essential achievements as well as the li
tations of the results are discussed. It is stressed that
solitons have been found without the requirement of sign
cant gravitational interaction and it is conjectured that gr
ity will be significant for Dirac-Maxwell solitons when
e/m.1 in units for whichG5c51. In cgs units, this is
2.5831024 esugm21. By contrast, thee/m ratio for the
electron is 2.0431021 or 5.2731017 esugm21 in cgs units.

II. DERIVATION OF THE EQUATIONS

The field equations are obtained from the Lagrangian
quantum electrodynamics@9#,

L5 i\cc̄gm]mc2mc2c̄c2
1

16p
FmnFmn2ec̄gmcAm ,

~1!
4291 ©1999 The American Physical Society
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where c5(c1 ,c2 ,c3 ,c4)T is the Dirac spinor,c̄5c†g0

5(c1* ,c2* ,2c3* ,2c4* ), Am5(w,A) is the electromagnetic
four-vector potential, andFmn5]mAn2]nAm is the Maxwell
tensor. Thegm are 434 Hermitian anticommuting matrice
of the unit square,

g05S I 0

0 2I D , gk5S 0 sk

2sk 0 D , k51,2,3,

where I is the unit 232 matrix and thesk are the Pauli
matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

Variation with respect toAm and c̄, respectively, yields the
field equations

Fmn
,n524pc̄gmc, ~2!

i\cgm]mc2mc2c2egmcAm50. ~3!

If c is chosen to be an energy eigenstate with energyE and
one chooses a static charge distribution with a four-vec
potential of the form

Am5„f~r ,u,w!,Ak~r ,u,w!…, k51,2,3,

then Eqs.~2! and ~3! are reduced to

@2 i\ca•“1a4mc22ea•A1ef2E#c50, ~4!

¹2f524pec†c, ~5!

“3~“3A!54pec†ac, ~6!

whereak5g0gk.
In spherical coordinates, (x,y,z)5(r sinu cosw,

r sin usinw,r cosu), the Dirac wave function has the stru
ture @10#

c~r ,u,w!
@ j 5 l 11/2#

51
A l 2m

2l 11
gYl

m

Al 1m11

2l 11
gYl

m11

2 iA l 1m

2l 21
f Yl 21

m

iAl 2m21

2l 21
f Yl 21

m11

2 ,
r

c~r ,u,w!
@ j 5 l 21/2#

51
Al 1m11

2l 11
gYl

m

2A l 2m

2l 11
gYl

m11

2 iAl 2m11

2l 13
f Yl 11

m

2 iAl 1m12

2l 13
f Yl 11

m11

2 , ~7!

where f 5 f (r ), g5g(r ), and the$Yl
m(u,w)% l ,m is the set of

orthonormal spherical harmonics defined forl 50,1, . . . , m
52 l ,2 l 11, . . . ,l and

Yl
m~u,w!5A2l 11

4p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!eimw. ~8!

In addition, m is an integer such that2 j <m11/2< j ; (m
11/2)\ is thez component of the total angular momentum

Consider the spinor withj 51/2, l 50, andm50, which
implies from the above representation~7!

4pc†c5 f ~r !21g~r !2,

4pc†ac52 f ~r !g~r !sinu~2sinw,cosw,0!T.

Resolving Eqs.~5! and ~6! into spherical coordinates gives

¹2f52e@ f ~r !21g~r !2#,

“3~“3A!u r̂50,

“3~“3A!u û50,

“3~“3A!u ŵ52e f~r !g~r !sinu.

Therefore, a four-vector potential of the form

Am5@f~r !,2Aw~r ,u!sinw,Aw~r ,u!cos~w,0!#

should be chosen where the components satisfy

d2f

dr2
1

2

r

df

dr
52e@ f ~r !21g~r !2#, ~9!

]2Aw

]r 2
1

2

r

]Aw

]r
1

cotu

r 2

]Aw

]u
1

1

r 2

]2Aw

]u2
2

Aw

r 2 sin2u

522e f~r !g~r !sinu. ~10!

Since the right-hand side of Eq.~10! is nonzero, the theory
can only be exact ifAw is nonzero. However, at this point w
will impose the assumption of electric field dominance a
hence the dominance off over A or f (r ) dominance over
g(r ).

For the validity of the approximationA50, one radial
component of the spinor must dominate over the other
that

f g! f 21g2.
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PRA 60 4293DIRAC-MAXWELL SOLITONS
It will be demonstrated that such objects do exist within
nonlinear field. With this approximation the equations
solve reduce to a Dirac equation coupled to a Poisson e
tion:

@2 i\a•“1a4mc21V~r !#c5Ec, ~11!

¹2V524pe2c†c. ~12!

With these facts in mind, we now turn to the separation
the stationary Dirac equation~11! with respect to a genera
central potential and the derivation of the form ofc†c for a
general set of quantum numbers.

III. SEPARATION OF THE EQUATION

The separation procedure follows that given in Bethe a
Salpeter@10#. First one introduces quantum numbersl and j;
l is the orbital angular momentum quantum number as w
as being an integer>0; j is the total angular momentum
quantum number and can assume just the two valuesl 11/2
and l 21/2 ~but only 11/2 for l 50). The forms assumed b
the four components ofc are given explicitly in Eq.~7!.

The explicit form of the Dirac equation~11! for the four
components of the wave function is

]c3

]z
1

]c4

]x
2 i

]c4

]y
2

i

\c
@E2V~r !2mc2#c150, ~13!

]c4

]z
2

]c3

]x
2 i

]c3

]y
1

i

\c
@E2V~r !2mc2#c250, ~14!

]c1

]z
1

]c2

]x
2 i

]c2

]y
2

i

\c
@E2V~r !1mc2#c350, ~15!

]c2

]z
2

]c1

]x
2 i

]c1

]y
1

i

\c
@E2V~r !1mc2#c450. ~16!

Therefore, by inserting the assumed wave functions~7! into
Eqs. ~13!–~16! and using identities similar to Eq.~A6!, we
find that the following two coupled equations betweenf and
g hold:

1

\c
@E2V~r !1mc2# f ~r !2Fdg

dr
1

11k

r
g~r !G50, ~17!

1

\c
@E2V~r !2mc2#g~r !1Fd f

dr
1

12k

r
f ~r !G50, ~18!

where the new quantum numberk is defined as

k5H 2 l 21 for j 5 l 11/2 ~ l 50,1, . . .!

l for j 5 l 21/2 ~ l 51,2, . . .!.
~19!

These equations are valid for all spherically symmetric
tentials V(r)5V(r ) and together they replace expressi
~11!.

At this point, the standard procedure is to specify an
ternal spherically symmetric potential, an example of wh
is the electrostatic potential energy of the proton-elect
interaction. That is, simply,
e

a-

f

d

ll

-

-
h
n

V~r !52
Ze2

r
,

which is the fundamental solution of Laplace’s equation@11#

¹2V54pZe2d3~r!, ~20!

whered3(r) is a three-dimensional Dirac delta function ce
tered at the origin. This is consistent with the far rang1

behavior that we expect to find for the self-field of the fe
mion since, when we compare Eq.~20! with Eq. ~12!, we see
that the fermion is treated as an object without struct
through the equality

c†c52d3~r!.

There is one additional problem that must be explor
namely how to couple relation~5! to Eqs.~17! and~18!. This
will be achieved in three parts. First, we find the Gree
function for Eq.~5!. Second, we find an analytic form for th
probability densityc†c using Eq.~7!. Once this equation is
known, we can proceed to the third step, which is to fi
V(r ) by forming the convolution of the Green’s function o
step one, with the probability density of step two.

The potentialV(r ) satisfies the Poisson equation~12!, and
by assuming that the solution is sufficiently regular, this c
be converted to an integral equation@12#

V~r!524pe2E G~r,r8!c†~r8!c~r8!dr8, ~21!

whereG(r,r8) is the Green’s function of the Laplacian op
erator in three dimensions,

G~r,r8!52
1

4p

1

ur2r8u

52(
l 50

`
1

2l 11

r ,
l

r .
l 11 (

m52 l

l

Yl
m~u,w!Yl

m* ~u8,w8!.

~22!

With the Green’s function determined, we can turn o
attention to the probability density. This is accomplished
using a pair of identities for the associated Legen
functions,2

~12m2!~Pl
m11!25@~ l 2m!mPl

m2~ l 1m!Pl 21
m #2, ~23!

~12m2!~Pl 21
m11!25@~ l 1m!mPl 21

m 2~ l 2m!Pl
m#2 ~24!

together with the definition of the spherical harmonics~8!.
The resulting expression for the charge density of the Di
particle is given by

1By far range, we mean those distances much larger than the B
radiusr @\2/me2.

2Both Eqs.~23! and ~24! follow directly from Eqs.~8.5.1! and
~8.5.3! of Abramowitz and Stegun@13#.
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c†c5
f 21g2

2l 11
@~ l 2m!uYl

m11u21~ l 1m11!uYl
mu2#

~25!

when j 5 l 11/2 and

c†c5
f 21g2

2l 11
@~ l 1m11!uYl

m11u21~ l 2m!uYl
mu2#

~26!

when j 5 l 21/2.
Therefore, by using Eqs.~21!, ~22!, and~25!, one obtains

the expression

V~r!524pe2E G~r,r8!c†~r8!c~r8!dr8

5
4pe2

2l 811
E (

l 50

` r ,
l

r .
l 11 (

m52 l

l
1

2l 11
Yl

m~u,w!Yl
m~u8,w8!

3@ f ~r 8!21g~r 8!2#@~ l 82m8!uYl 8
m811

~u8,w8!u2

1~ l 81m811!uYl 8
m8~u8,w8!u2#r 82dr8 d~cosu8!dw8

for the casej 5 l 11/2. Similarly, with the use of Eq.~26!, it
can be shown that the potentialV(r) takes the form

V~r!5
4pe2

2l 811
E (

l 50

` r ,
l

r .
l 11 (

m52 l

l
1

2l 11
Yl

m~u,w!Yl
m~u8,w8!

3@ f ~r 8!21g~r 8!2#@~ l 81m811!uYl 8
m811

~u8,w8!u2

1~ l 82m8!uYl 8
m8~u8,w8!u2#r 82dr8 d~cosu8!dw8

for the casej 5 l 21/2. It is to be noted that the primed ind
ces (l 8,m8) correspond to the angular momentum of the p
ticle, while the unprimed indices run over the complete se
permissible angular momentum quantum numbers. By p
forming the angular integration of the above formulas, o
can immediately conclude that both of the above integ
vanish except whenm50 andl 50,2, . . . ,2l 8. This implies
that

V~r!54pe2
2~ l 82 j 8!

2l 811
(
n50

l 8 Y2n
0 ~u,w!

4n11 E
r 850

` r ,
2n

r .
2n11 @ f ~r 8!2

1g~r 8!2#r 82dr8@~k81m811!^ l 8,m811uY2n
0

3u l 8,m811&1~k82m8!^ l 8,m8uY2n
0 u l 8,m8&#, ~27!

where the casesj 5 l 61/2 have been combined by the app
cation of the definition ofk8. Expression~27! replaces Eq.
~12!. When written in this form, it is clearly seen that th
potentialV(r) is not in general spherically symmetric. Tab
I lists the potential~27! for l 850,1 and illustrates the fac
that there exists spherically symmetric states withl 8Þ0.

A localized solution of this model must satisfy the fie
equations~17! and ~18! for f and g and a given energyE
where the potential is given by the expression~27!. More-
over, it is required that the total probability
-
f
r-
e
ls

^cuc&5(
i 51

4

^c i uc i&5E
0

`

~ f 21g2!r 2dr,`.

Since the equations which describe the spatial evolu
of the wave function~17! and ~18! were derived under the
assumption that the potential,V(r ), is spherically symmetric,
they are not valid for an extended Dirac particle in an ar
trary state of angular momentum. We have shown that th
do exist certain choices ofl and m where the probability
density is spherically symmetric and it is these cases
which our primary interest lies.

We can conclude that with the spinor representation gi
by Eq.~7!, there are essentially three differential equations
be solved simultaneously. Equations~17! and ~18! specify
the spatial evolution of the wave function and Eq.~27! re-
flects the spatial extent of the self-field of the particle.
strategy for solving these intrinsically nonlinear equations
well as a few of their interesting properties, will be explor
in the following sections.

IV. BOUNDARY CONDITIONS

From the preceding section we have found that the eq
tions to be satisfied for a self-interacting fermion are E
~17! and ~18! and

¹2V524pe2
2~ l 2 j !

2l 11
~ f 21g2!

3@~k1m11!uYl
m11~u,w!u21~k2m!uYl

m~u,w!u2#,

~28!

where we have combined thej 5 l 61/2 cases by using the
definition of k. Since we have assumed that the potentiaV
in Eqs.~17! and~18! is spherically symmetric, this necessa
ily restricts the choice ofl andm. Assume from this point on
that l and m are chosen to satisfy this criterion. Cons
quently, Eq.~28! becomes

¹2V52e2~ f 21g2!. ~29!

Since the soliton arises as a coupling between Dirac
Maxwell fields, the energyE that appears in the Dirac equa
tion is not the total energy of the particle. The total ener
can be obtained by calculating theT0

0 component of the
energy-momentum tensor. For our field, the Lagrangian
given by Eq.~1!, where Am is the vector potential of the

TABLE I. The Dirac-Maxwell particle self-field potential. The
self-field potential energy for a Dirac-Maxwell particle in th
states l 50,1, where I l(r )5*0

r @ f (r 8)21g(r 8)2#r 8 l 12/r l 11dr8
1* r

`@ f (r 8)21g(r 8)2#r l /r 8 l 22dr8.

Statesu l 8,m8, j 8& Corresponding potentialV(r)

u0,0,1/2&,u0,21,1/2& e2I 0

u1,0,1/2&,u1,21,1/2& e2I 0

u1,1,3/2&,u0,22,3/2& e2@ I 02
3
2 (3 cos2u821)I2#

u1,0,3/2&,u0,21,3/2& e2@ I 01
3
2 (3 cos2u821)I2#
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electromagnetic field. One generates the symmetric ene
momentum tensor directly from the Lagrangian in the fo
@14#

Tmn5
]L

]gmn
2

gmn

2
L. ~30!

Applying Eq. ~30! to Eq. ~1! yields

Tmn5F i\c

2
~ c̄gm]nc1c̄gn]mc!2

1

4p
FamFbngab

2
e

2
~ c̄gmcAn1c̄gncAm!G2

gmn

2 F i\cc̄gagab]bc

2mc2c̄c2
1

8p
FabFab2ec̄gacAbgabG .

Further simplification gives

T0
05Ec†c1

1

8p S df

dr D 2

.

This yields an expression for the total energy,Etot , of

Etot5E T0
0dVol5EE

0

`

~ f 21g2!r 2 dr1
1

2E S df

dr D 2

r 2 dr,

~31!

where dVol is an infinitesimal volume element. This tot
energy should be associated with the observed mass o
particle asEtot5mc2. There is still sufficient freedom re
maining to set limr→`V(r )50 because the spinor is invar
ant under the transformation

V→V1b; E→E1b

for any real-valuedb.
The massm and the chargee that appear in the Dirac

equation are not necessarily the experimentally meas
quantities, just as the charge that appears at a vertex
Feynman graph is not the experimentally measured charg
the particle. Because of this, we will replace them in Eqs.
~17! and~18! by the symbolm. In addition, thee in Eq. ~29!
will be replaced by ane. The symbolsm and e will be re-
served for the physically observed quantities. With the
substitutions, we convert to a set of variables whereby E
~17!, ~18!, and ~31! are independent of any physical co
stants. The particular transformation chosen is

f 5hF, g5hG, r 5
\x

mc
, E5lmc2, V5mc2U,

where h25m3c4/e2\2. These redefined variables have t
following dimensions in terms of length (L):

@x#5L0; @l#5L0; @F#5L23/2;

@G#5L23/2; @U#5L0.

This yields the transformed equations
y-

he

ed
f a
of

e
s.

@l2U~x!11#F~x!2FdG

dx
1

11k

x
G~x!G50, ~32!

@l2U~x!21#G~x!1FdF

dx
1

12k

x
F~x!G50, ~33!

¹2U1~F21G2!50, ~34!

where¹2 is now the Laplacian with respect to thex coordi-
nate. The mass of the soliton comes from the transform
version of the total energy expression~31!,

mc25
\mc3

e2 FlE
0

`

~F21G2!x2 dx1
1

2E0

`S dU

dx D 2

x2 dxG ,
~35!

and the total charge is given as the integral of the cha
density,

e5eE r dVol5
\c

e E
0

`

~F21G2!x2 dx. ~36!

We will show that if the chargee is replaced bye, then
the f component of the spinor greatly dominates theg com-
ponent. By substitutinge5e and choosing a value form, the
value of m can be determined numerically once the spa
extent of the soliton is known. In this case, the expectat
value of the radius of the particle becomes

^r &5
\c

mc2
^x&5

e2

mc2

\c

e2

E ¹2Ux3 dx

E ¹2Ux2 dx

5
e2

mc2

E ¹2Ux3 dx

F E ¹2Ux2 dxG2 .

To stay within the current experimental bounds of the me
charge radius, this value must be less thanr exp, which is
<10218 m in the case of an electron. Hence,

E
0

`

¹2Ux3 dx<
r exp

r e

m

me
F E

0

`

¹2Ux2 dxG2

,

wherer e is the classical electron radiusr e5e2/mec
2.

Since we know thatU has zero slope atx50 and that it
must behave asN/x for large argument (N is the amount of
enclosed charge!, we assume as a first approximation thatU
can be represented as the electrostatic potential produce
a sphere of radiusR0 with uniform charge density. There
fore,

U~r !55
N

R0
F3

2
2

1

2

r 2

R0
2G for r ,R0

N

r
for r>R0 .

~37!
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With this representation, one finds that

^r &5
9

4

r emeR0

mN
,

which means that since 0,^r &,r exp, we can conclude tha

0,
R0

mN
,

4

9

r exp

r eme
.3.08831024 c2/MeV

in the case of the electron.
Let R0 be defined as the effective range of the no

Coulombic behavior of the potential energy so that forx
.R0 , U(x);N/x. SinceU is a solution to a Poisson equa
tion with a negative definite charge density,U(0) must be
larger thanU(R0). This can be quickly verified by conside
ing the opposite. IfU(0),U(R0), then there exists somer
P(0,R0) such thatU8(r )50. Therefore, integrating Eq.~34!
from 0 to r, one obtains

r 2U8~r !5052E
0

r

~F21G2!x2 dx,

which is clearly a contradiction.
To determine the initial values ofF and G, one simply

eliminates eitherF or G from Eqs. ~32! and ~33!, say F,
which leads to a second-order equation for the other, nam

G91PG81QG50,

where bothP andQ are functions ofU, U8, k, l, andx. To
avoid a singularity in the potentialU(x), it must be both
bounded and have zero slope in a neighborhood of the or
Moreover, bothF andG are bounded in this same neighbo
hood. From this, it is easy to verify that

F~0!5H 0 k521

arbitrary k511

0 ; other k,

~38!

G~0!5H arbitrary k521

0 k511

0 ; other k.

~39!

Furthermore, by examining the indicial equation, it can
shown that no fractional powers exist in a power series
lution of eitherF or G about the originx50.

Summarizing the boundary conditions

U~x!,U~0!,`, xP@0,̀ !,

U8~0!50,

together with the conditions~38! and ~39!. For the casek
521, the initial values ofU, G, and the energyl are de-
termined by the requirement that the wave functionc, and
hence bothF andG, vanish exponentially asx→`.
-

ly,

in.

e
-

V. RESULTS

In the search for numerical solutions, it was specified t
k521 andl51 giving the set of differential equations

dG

dx
5@22U~x!#F~x!,

dF

dx
52

2

x
F~x!1U~x!G~x!,

¹2U52F22G2.

To find a soliton, the values ofF(0),G(0) are specified and
a search is made for the value ofU(0) whereby
limx→` xF(x)50 and limx→` xG(x)50. Only values of
G(0).0 are considered because the equations are sym
ric under the transformationG→2G, F→2F, U→U. In a
neighborhood of a ground-state soliton, the radial probabi
density is numerically seen to have a single well-defin
minimum value forx.0. The choice ofk521 gives the
initial condition F(0)50.

The choice ofl51 is simply a numerical convenience
Outside the neighborhood of a soliton it is expected that
potential will behave asU(x);A1B/x for large x. The
value of l should have been chosen so that the asympt
behavior of the potentialU(x) is purely Coulombic in na-
ture. By defining a shifted potentialŨ(x)5U(x)
2 limx→` U(x), this value ofl must satisfy 12U(x)5l

2Ũ(x). Therefore, after a soliton is found the value ofl is
given asl512 limx→` U(x). In addition, the starting value
of Ũ(x) is given byŨ(0)5U(0)1l21.

Using the redefined value ofl, the observed charge an
mass of the particle are compared to the values used in
Lagrangian by using the expressions~36! and ~35!, respec-
tively. By defining

P5E
0

`

~F21G2!x2 dx, X5E
0

`

~F21G2!x3 dx,

E5lP1
1

2E0

`S dU

dx D 2

x2 dx,

the charge ratioe/e is given as

e

e
5

\c

e2
P5

P
a

,

wherea is the fine-structure constant. The mass ratiom/m
5P 2/aE and the expectation value for the radius of the so
ton is

^r &5

E ~ f 21g2!r 3dr

E ~ f 21g2!r 2dr

5
\

mc

E ~F21G2!x3dx

E ~F21G2!x2dx

5r eS me

m D EX
P 3

.
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Both of the quantitiesP and X are positive. However
depending upon the value ofl, E could be positive, negative
or even zero if the electromagnetic and ‘‘bare mass’’ ter
in the energy exactly cancel. A negative value forE will give
an unphysical negative value for the observed radius^r &.
Because of this ambiguity, both the value of^r & and the
particle widthDr 5A^r 2&2^r &2 are presented. Tables II an
III respectively, list the numerical parameters and the
served properties of a number of ground-state particles fo
wherem was taken to be the observed mass of the elec
me .

Figure 1 illustrates the radial behavior ofF andG for the
casee5e ( i 51). It is to be noted that forx.0, F is much
larger thanG and, as a consequence,FG!F21G2. In fact,
G is so small that it resembles a straight line along thex axis.
This supports the argument that the four-vector potential
be reasonably approximated with only a radialA0 compo-
nent.

The characteristics of a typical soliton witheÞe is illus-
trated with the choicee/e5454.8 (i 519). In this case the
potential plays a much more dominant role in holding t
particle together than in the casee5e. However, since in
this case the approximation ofFG!F21G2 is violated, one
would have to solve the full model@Eqs. ~9! and ~10!# to
properly analyze this situation. This would be a far mo
complicated problem. Figure 2 illustrates the radial com
nents of this spinor and it shows that the magnitude ofG is
now comparable to the magnitude ofF. Table III also shows
that the choice ofe5389.0e, m52.36031012me ( i 515)
yields a soliton with an expectation value for the radius
5.05310223 m. This size is well within the present exper

TABLE II. Numerical parameters for a set of various groun
state particles. For each particle, the value ofG(0) is selected and
one searches for the value ofU(0)1l that gives a bounded solu
tion. The physical parameters are computed from the solution
fined onxP@0,xmax#. G* (0)50.4273589430.

i G(0) U(0) l xmax

1 3.86431029 4.887985231026 20.99999712 8342.9
2 1.031028 9.212204731026 20.99999457 6103.6
3 1.031025 9.212284231024 20.99945701 688.37
4 1.031024 4.276098731023 20.99748078 330.61
5 1.031023 1.985076331022 20.98833078 158.92
6 5.031023 5.806375831022 20.96604870 81.570
7 1.031022 9.219698831022 20.94634242 77.061
8 5.031022 2.699268331021 20.84654287 50.139
9 1.031021 4.288421231021 20.76093227 38.686

10 2.031021 6.813413031021 20.63095887 33.509
11 3.031021 8.931588331021 20.52683528 23.495
12 4.031021 1.08213933100 20.43716613 26.964
13 4.131021 1.10010613100 20.42878460 27.544
14 4.231021 1.11792613100 20.42049493 26.049
15 G* (0) 1.13094873100 20.41445154 24.146
16 4.331021 1.13560393100 20.41229414 24.382
17 5.031021 1.25570443100 20.35715757 24.156
18 6.031021 1.41785263100 20.28421512 22.584
19 1.03100 1.99136703100 20.03776277 20.438
20 2.03100 3.15197613100 10.42244841 18.125
s

-
d
n

n

-

f

mentally determined upper limit for the electron radius
.10218 m.

These equations also exhibit excited states. Thenth ex-
cited state of our field is characterized through the functio
Fn(x), Gn(x), and Un(x), for which the Gn component
crosses the abscissan11 times while theFn component
crosses itn times. Once the ground-state solution is foun
the value ofm can be determined through Eq.~36!. The
correspondingnth excited state is that excited state with t
same observed charge ratio,e/e, as the ground state. There
fore, in this interpretation of the theory, the ratio of the ma
of the nth excited state to the ground state is given by
expression

e-

TABLE III. Corresponding observable quantities for a set
various ground-state particles. The values^r & andDr are measured
in meters and are computed from a soliton defined onxP@0,xmax#.
For this calculation it is assumed thatm5me .

i e/e m/m ^r & Dr

1 1.000 21.0003100 26.6131028 2.3131028

2 1.371 21.3713100 23.5131028 1.2231028

3 13.74 21.3743101 23.51310210 1.22310210

4 29.55 22.9553101 27.53310211 2.63310211

5 63.46 26.4623101 21.60310211 5.61310212

6 107.6 21.1353102 25.30310212 1.87310212

7 134.7 21.4793102 23.21310212 1.14310212

8 222.1 22.9913102 29.07310213 3.31310213

9 271.3 24.5043102 24.64310213 1.73310213

10 326.2 28.6873102 21.87310213 7.23310214

11 359.7 21.8383103 27.51310214 2.99310214

12 383.6 29.6583103 21.27310214 5.16310215

13 385.6 21.5383104 27.89310215 3.21310215

14 387.6 23.6663104 23.28310215 1.34310215

15 389.0 12.36031012 15.05310223 2.06310223

16 389.5 11.0323105 11.15310215 4.71310216

17 401.8 13.9983103 12.79310214 1.16310214

18 416.4 11.8183103 15.68310214 2.39310214

19 454.8 16.8003102 11.21310213 5.35310214

20 498.7 13.3053102 11.78310213 8.59310214

FIG. 1. F andG components of the wave function for the ca
e/e51. Shown here is the radial dependence of theF andG com-
ponents of the soliton. Note thatG is much smaller thanF. G is
barely discernible above thex axis.
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mn

m0
5

m/m0

m/mn
5

lnE
0

`

~Fn
21Gn

2!x2dx1
1

2E0

`S dUn

dx D 2

x2dx

lE
0

`

~F21G2!x2dx1
1

2E0

`S dU

dx D 2

x2dx

.

Figure 3 shows the radial probability density of the first thr
states for the caseG(0)51. Each of these solitons has
different value ofe/e.

Figure 4 illustrates the behavior of the mass ratio,m/m, as
a function of the charge ratioe/e for the ground state and th
first two excited states. For each class of particles there
charge ratio where the electromagnetic and bare mass c
ponents of the energy balance makeE50. At this value of
e/e, the mass ratiom/m→`. At charge ratios less than thi
critical value, the mass ratio is negative whereas charge
tios above this critical value result in a positive value
m/m. There is numerical evidence that each class of parti
has an upper bound for the charge ratio. Above this ma

FIG. 2. F andG components of the wave function for the ca
e/e5454.8. Shown here is the radial dependence of theF and G
components of the soliton. The magnitudes ofF and G are now
comparable in contrast to the case wheree5e.

FIG. 3. Excited states of the theory. This figure shows the ra
probability density of the first three particle state in the caseG(0)
51. These particles have different charge ratiose/e. There exist
excited states beyond the ones illustrated.
e

a
m-

a-
f
s

i-

mum charge ratio we were unable to find any solutions s
that limx→` xF(x)→0 or limx→` xG(x)→0. This necessar-
ily restricts the definition of the mass ratio defined abo
Figure 4 also illustrates the fact that at moderate charge
tios, the electromagnetic field does not contain an app
ciable amount of the particle energy resulting in the behav
um/mu.e/e.

The mass ratios of the first and second excited states
respect to the ground-state solutions are shown in Fig
This ratio is only defined up to a maximum value ofe/e
since beyonde/e.550 a ground state fails to exist. For e
cited states, this maximum admissible charge ratio increa
This implies that for a fixed value ofe/e, there may not exist
a ground-state solution, but there will be arbitrarily ma
excited states. As is readily apparent from Fig. 5, the o
appreciable mass splitting occurs for large charge rat

l

FIG. 4. Dependence of the mass ratio as a function of the ch
ratio. Shown is the dependence of the mass ratiom/m as a function
of the charge ratioe/e for the ground-state and first two excited
state solitons. For each class of particles, there is a maxim
charge ratio beyond which no solitons were found.

FIG. 5. Mass ratios of the first and second excited states w
respect to the ground state. There are essentially two region
interest. For moderate charge ratios, the value ofmn /m0.1 with
the mass ratio of the excited staten52 slightly larger than for the
n51 state. Beyond the point where the ground-state mass r
becomes unbounded, the mass ratios begin to split. In this reg
the um1 /m0u ratio exceeds theum2 /m0u ratio. In this region, the
approximationFG!F21G2 is no longer valid.
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However, it is precisely for large charge ratios where o
approximation thatFG!F21G2 breaks down.

VI. CONCLUDING REMARKS

We have seen that spherically symmetric Dirac-Maxw
solitons can be constructed and with a charge and mas
model the electron successfully. However, it should be no
that the higher-energy excited states of this form did
yield the large mass separations of the muon and tau rela
to the electron in this model. The search thus far has b
restricted to spherical solitons. It is conceivable that a rel
ation of this restriction or some other change in conditio
would increase the mass splitting. In any event, we h
shown that Dirac-Maxwell solitons exist and are capable
modeling an electron where the charge-to-mass ratio is
observed.1021 in units in whichG5c51. Furthermore, we
have found a charge-to-mass ratio that simultaneously yi
the observed charge and mass of the electron as well a
hibiting a degreee of compactification that is well within t
current experimental upper limit. Finsteret al. @8# have con-
sidered Einstein-Dirac-Maxwell~EDM! solitons and con-
cluded that it is the interaction with gravitation which
responsible for the existence of bound states. However,
see here that bound states exist with negligible gravitatio
interaction. While thee/m ratio at which significant gravita
tional coupling sets in is yet to be determined for EDM so
tons, it is our conjecture that this will be so at the same le
that was found earlier in the case of minimally coupled sca
interaction@4#, namely fore/m.1. The known fundamenta
charged particles of nature, on the other hand, have e
mouse/m ratios.

APPENDIX: DERIVATIVES OF f „r …Yl
m
„u,w…

In the Dirac wave equation, all of the derivatives are w
respect to Cartesian coordinates. We can change to a sp
cal polar representation via the transformation

x5r sinu cosw,

y5r sinu sinw,

z5r cosu.

By applying the chain rule, it is trivial to show that th
changes the first-order partial derivatives via

]

]x
5sinu cosw

]

]r
1

cosu cosw

r

]

]u
2

sinw

r sinu

]

]w
,

~A1!

]

]y
5sinu sinw

]

]r
1

cosu sinw

r

]

]u
1

cosw

r sinu

]

]w
,

~A2!

]

]z
5cosu

]

]r
2

sinu

r

]

]u
. ~A3!

If the functions c j ( j 51, . . . ,4) from expression~7! are
substituted into Eqs.~13!–~16!, and if one uses the formula
given in Bethe and Salpeter@10# for the derivatives of a
r

ll
to
d
t
ve
en
-

s
e
f
e

ds
ex-

e
al

l
r

r-

eri-

function of the formf (r )Yl
m(u,w) with respect tox, y, andz,

one finds a coupled pair of first-order ordinary equations
f (r ) andg(r ).

For example, in order to calculate

]

]z
@ f ~r !Yl

m~u,w!#,

we first require the identities

cosuPl
m~cosu!5

1

2l 11
@~ l 2m11!Pl 11

m ~cosu!

1~ l 1m!Pl 21
m ~cosu!#, ~A4!

sinu
d

du
Pl

m~cosu!5
1

2l 11
@ l ~ l 2m11!Pl 11

m ~cosu!

2~ l 11!~ l 1m!Pl 21
m ~cosu!#,

~A5!

which can both be verified through the use of Rodrigu
formula

Pl
m~m!5

~21!m

2l l !
~12m2!m/2

dl 1m

dm l 1m
~m221! l .

Writing Yl
m(u,w) as a function ofPl

m by using Eq.~8! gives
the relationship

]

]z
@ f ~r !Yl

m~u,w!#5A2l 11

4p

~ l 2m!!

~ l 1m!!
eimw

3Fcosu Pl
m~cosu!

d f

dr

2sinu
d

du
Pl

m~cosu!
f

r G .
By substituting Eqs.~A4! and ~A5! in the above, collecting
terms, and applying the definition ofYl

m(u,w) once again,
one obtains the simplification

]

]z
@ f ~r !Yl

m~u,w!#

5A~ l 2m11!~ l 1m11!

~2l 11!~2l 13!
Yl 11

m ~u,w!Fd f

r
2

l

r
f G

1A ~ l 2m!~ l 1m!

~2l 21!~2l 11!
Yl 21

m ~u,w!Fd f

dr
1

l 11

r
f G .

~A6!

Similar relationships for]/]x6 i ]/]y can be found in Bethe
and Salpeter,3 but there is a very elegant way to derive the
operators by applying the Wigner-Eckart theorem.

3See formulas~A38! and ~A39!, respectively, in Bethe and Sa
peter@10#.
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First, we evaluate the matrix element^ l 0u¹0u l 0& of the
gradient operator, which is an example of a vector opera
Specifically,

¹05
]

]z
, ¹657

1

A2
S ]

]x
6 i

]

]yD .

Since

¹0f ~r !Yl
05

l 11

A~2l 11!~2l 13!
Yl 11

0 Fd f

dr
2

l

r
f G

1
l

A~2l 21!~2l 11!
Yl 21

0 Fd f

dr
1

l 11

r
f G

for the special case of Eq.~A6!, where m50, we have
t

.

r. ^ l 8 0u¹0u l 0&5
l 11

A~2l 11!~2l 13!
Fd f

dr
2

l

r
f Gd l 11

l 8

1
l

A~2l 21!~2l 11!
Fd f

dr
1

l 11

r
f Gd l 21

l 8 .

Now, we are at a point where we can use the Wigner-Eck
theorem. By inspection, the general matrix element is giv
by

^ l 8 m8u¹mu l m&5~21! l 82m8S l 8 1 l

2m8 m mD ^ l 8uu¹uu l &

5(21)m8
S l 8 1 l

2m8 m mD
S l 8 1 l

0 0 0D
^ l 8 0u¹0u l 0&.

After evaluating the 32 j symbols, one can quickly verify
the following equations:
]

]z
@ f ~r !Yl

m~u,w!#5A~ l 2m11!~ l 1m11!

~2l 11!~2l 13!
Yl 11

m ~u,w!Fd f

dr
2

l

r
f G1A ~ l 2m!~ l 1m!

~2l 21!~2l 11!
Yl 21

m ~u,w!Fd f

dr
1

l 11

r
f G ,

~A7!

F ]

]x
1 i

]

]yG@ f ~r !Yl
m~u,w!#5A~ l 1m11!~ l 1m12!

~2l 11!~2l 13!
Yl 11

m11~u,w!Fd f

dr
2

l

r
f G

2A~ l 2m21!~ l 2m!

~2l 21!~2l 11!
Yl 21

m11~u,w!Fd f

dr
1

l 11

r
f G , ~A8!

F ]

]x
2 i

]

]yG@ f ~r !Yl
m~u,w!#52A~ l 2m11!~ l 2m12!

~2l 11!~2l 13!
Yl 11

m21~u,w!Fd f

dr
2

l

r
f G

1A~ l 1m21!~ l 1m!

~2l 21!~2l 11!
Yl 21

m21~u,w!Fd f

dr
1

l 11

r
f G . ~A9!

Linear combinations of Eqs.~A8! and ~A9! yield the derivatives with respect tox andy.
-
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