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Dirac-Maxwell solitons
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Detailed analysis of the coupled Dirac-Maxwell equations and the structure of their solutions is presented.
Numerical solutions of the field equations in the case of spherical symmetry with negligible gravitational
self-interaction reveal the existence of families of solitons with electric-field dominance that are completely
determined by the observed charge and mass of the underlying particles. A soliton is found which has the
charge and mass of the electron as well as a charge radius 8f 1. This is well within the present
experimentally determined upper limit o110 *® m. Properties of these particles as well as possible extension
to the work herein are discussé&1050-294{©9)01612-1

PACS numbd(s): 12.20.Ds, 03.65.Ge, 11.10.Lm

[. INTRODUCTION the paper is as follows. In Sec. Il, we set out the essential
coupled Dirac-Maxwell equations to be solved. The structure

Through the years, a number of authors have attempted @ the Dirac wave function in Spherical coordinates is given
avoid the problems inherent in the point-particle model byand particularized to the case of electric field dominance.
focusing upon finite solitonlike structures. Fields interactingTh€ equation is separated in Sec. Ill and we contrast the
nonlinearly provide the binding without invoking any phe- standard.treatment in which a potential function is imposed
nomenological elements. Einstein and RofEhpointed out ~ Such as in the case of hydrogen and the present case of the
many years ago that particles should be contained within goliton where the derivation of the potent'lal is part of the
field theory and not exist as independent entities. RG2&n problem. The form_al structure _of the potential in terms of t_he
made considerable progress in implementing such a prografaréen’s function is given. It is shown that there do exist
in a gauge-invariant manner by minimally coupling a scalarspherically symmetric potentials for appropriate choices of
field to the Maxwell field. However, the soliton solutions duantum numbers. . _
yielded negative masses. Laf8i, neutral quantized particle N Sec. IV, the spherically symmetric energy-momentum
states of positive mass were found and a more complicatensor is derived. The relationship between the parameters in
model invoking up to three scalar fields coupled to the Max-the Dirac equation and the physically measured quantities is
well field was shown to be capable of modeling the knowndiscussed and the expression for the spatial spread of the
massive leptong4]. However, the particles were spinless andsollt_on is given. The vanous_constramts mcludmg_smgulanty
the view then was that a subsequent quantization of thavoidance lead to the required boundary conditions for the
theory would induce spin. problem. _

In 1991, one of the present auth¢& suggested an alter- In S_ec. V, the resul@s are prese_znted. N_ew variables of
native route to elementary particle modeling, namely as soliconvenience for numerical integration are introduced. The
tons of Dirac-Maxwell theory. Since Dirac-Maxwell theory Parameters Ieadmg to 2(_) .ground-state s_olltons are I|steq. Itis
had been so successful in describing electron spin and mafund that there is a critical range which leads to solitons
netic moment, predicting the existence of the positron andvithin the expenmentally observed upper limit to the size of.
refining the energy levels in interacting systems such as h);.he electron. Excited states are presented and the mass ratios
drogen, it seemed reasonable that this might successfully e@'e found. _ _ o
tend to a self-interacting soliton structure to model the el- [N Sec. VI, the essential achievements as well as the limi-
ementary particles themselves. Spin would already exist itations of the results are discussed. It is stressed that the
such a model via the spinor structure of the wave functionS0litons have been found without the requirement of signifi-
Shortly thereafter, such solitons were found and their propSant gravitational interaction and it is conjectured that grav-
erties studied6]. A few years later, Lis{7] independently ity Wwill be significant for Dirac-Maxwell solitons when
discovered some of the results [if]. Recently, there has €M=1 in units for whichG=c=1. In cgs units, this is
been a revival of interest in this field and in particular, the2-58<10 * esugm®. By contrast, thee/m ratio for the
issue of gravitational coupling in the Dirac-Maxwell system electron is 2.0& 10** or 5.27x 10" esugm * in cgs units.
has been consider¢d]. However, there was the misconcep-
tion that gravitation was a necessary ingredient for the cre-

ation of the soliton. _ The field equations are obtained from the Lagrangian of
In this paper, we develop the essential res_ultsa]wand quantum electrodynamid®)],
[6] and discuss the role of gravitation in soliton structure.

The experimental inputs are the respective masses of the, ., — _ - e T
electron, muon, and tau, their charge, and as a constraint theL_'hC'MMaﬂw mc g EFM Fuv—eyy Ay,
upper limit to their size, which is=10%® cm. The plan of D

II. DERIVATION OF THE EQUATIONS
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where = (1,05, 13,44)" is the Dirac spinor,y=y"° l+m+1
=(yF 05, — 5, — yk), A*=(e,A) is the electromagnetic 171 I
four-vector potential, an&#”= g*A”— 9"A* is the Maxwell

tensor. They* are 4<4 Hermitian anticommuting matrices _ l-m 1
of the unit square, 21+19 "

r,0,¢)= : 7
l{’j(:|,1/(§]) . I_m+1me ()
0_(1 0> (o ok N

k=1,2
ox O)a ’ 131

where | is the unit 2<2 matrix and theo are the Pauli )

matrices wheref="£(r), g=g(r), and the{Y{"(0,¢)}, , is the set of
orthonormal spherical harmonics defined fer0,1,..., m
=—1,—-1+1,...] and

0 1 0 —i 1 0
Ul:(l o)' "2:(i OI), crs=(0 —1)' 21+1 (1—m)! .
Y(6,¢)= ﬁ(wm)!P{“(cosa)e'm@. (8)

Variation with respect t\, and ¢, respectively, yields the |n addition,m is an integer such that j<m+1/2<j; (m
field equations +1/2)# is thez component of the total angular momentum.
Consider the spinor with=1/2, | =0, andm=0, which

implies from the above representatitf)

Amyty=1(r)2+g(r)?,

4 ap=2F(r)g(r)sin 6(—sing,cose,0)".

Fiv = —Amy y, ¥)
ifcy d, p—mcy—ey yA,=0. ©)

If ¢ is chosen to be an energy eigenstate with en&gyd Resolving Eqs(5) and (6) into spherical coordinates gives

one chooses a static charge distribution with a four-vector 2, 5 5
potential of the form Vep=—e[f(r)°+g(r)7],

VX(VXA);=0,

AL=(op(r,0,0),Ar,0,0)), k=123,
VX(VXA)|;=0,
then Egs(2) and(3) are reduced to VX(VXA)|¢=2ef(r)g(r)sin 0
[—ifica-V+asmcP—ea-A+edp—E]y=0, (4)  Therefore, a four-vector potential of the form

A=[d(r),—Ayr,0)sing,A (r,0)cog ¢,0)]

VZ¢p=—Aamey'y, _
should be chosen where the components satisfy
VX (VXA)=4mey ay, (6) d’¢ 2d¢
oy T = 2 2
R LG (k! ©)
where aX= %X,
In  spherical coordinates, Xx(y,z)=(r sinécose, aZA(P 2 9A, cotd oA, 1 (92A(P A,
r sin 6sine,r cosé), the Dirac wave function has the struc- o2 1 or 2 90 12 22 r2sile
ture[10]
=—2ef(r)g(r)siné. (10
[—m . . . .
\/s—aY" Since the right-hand side of E¢L0) is nonzero, the theory
2l+1 can only be exact i, is nonzero. However, at this point we
l+m+1 will impose the assumption of electric field dominance and
Wg | hence the dominance @f over A or f(r) dominance over
¢(r161¢): ’ g(r)
[i=1+1/2] r /|+mem For the validity of the approximatio®=0, one radial
'"Vor—1' Vi1 component of the spinor must dominate over the other so

that
i |—L—1me+1
V2r-1 "It fg<f?+g2.
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It will be demonstrated that such objects do exist within the Z
nonlinear field. With this approximation the equations to V(F)I—T,
solve reduce to a Dirac equation coupled to a Poisson equa-
tion: which is the fundamental solution of Laplace’s equafibi]
[—ifha-V+a,mE+V(r)]y=Ey, (11 V2V = 47€5%(1), 20
V2V=—4ame?yty. (12

where 8%(r) is a three-dimensional Dirac delta function cen-

With these facts in mind, we now turn to the separation oftered at the origin. This is consistent with the far range
the stationary Dirac equatiofil) with respect to a general behawpr that we expect to find for thg self-field of the fer-
central potential and the derivation of the formyfy, fora ~ Mion since, when we compare Hg0) with Eq. (12), we see
general set of quantum numbers. that the fermion is treated as an object without structure
through the equality

IIl. SEPARATION OF THE EQUATION

yly=—3&%n).
The separation procedure follows that given in Bethe and
Salpete 10]. First one introduces quantum numbéendj; There is one additional problem that must be explored,
| is the orbital angular momentum quantum number as welhamely how to couple relatiof®) to Eqs.(17) and(18). This
as being an integer0; j is the total angular momentum will be achieved in three parts. First, we find the Green’s
quantum number and can assume just the two vdlseld2  function for Eq.(5). Second, we find an analytic form for the
andl —1/2 (but only + 1/2 for 1 =0). The forms assumed by probability densityy"y using Eq.(7). Once this equation is

the four components of are given explicitly in Eq(7). known, we can proceed to t.he third step, which is to find
The explicit form of the Dirac equatio(l1) for the four ~ V(r) by forming the convolution of the Green’s function of
components of the wave function is step one, with the probability density of step two.
_ The potentialV(r) satisfies the Poisson equatidr®?), and
r?_lﬂa+ r?_%_i Iy ﬁI—[E—V(r)—mcz] =0, (13 by assuming that the solution is sufficiently regular, this can

dz X ay c be converted to an integral equatifi?]

Iy s s | _ A2 Nt ey e !
E—(g—XﬂWwLﬁ—C[E—V(r)—mcz]zpz—O, (14) V(r)=—4me fG(r.r Y ) g(r')dr’, (21)

Ay I, Iy i whereG(r,r') is the Green’s function of the Laplacian op-

FraRrail oy %[E—V(r)+mcz]¢/;3=0, (15  erator in three dimensions,

; 1 1
Ay Yy IYy | B G(r,r')=——
E W IW‘F %[E V(r)+mc:2]¢//4—0. (16) 477|r_r/|
Therefore, by inserting the assumed wave functighsnto B S N : m M
Egs.(13)—(16) and using identities similar to EGAG), we =Y e m:E_I Yi(0,0)Y 7 (607,¢7).
find that the following two coupled equations betwdemnd -
g hold: (22

dg K With the Green’s function determined, we can turn our
ar ' Tg(r)} =0, (17 attention to the probability density. This is accomplished by
using a pair of identities for the associated Legendre
functions?

1
%[E—V(r)ercz]f(r)—

1
h—C[E—V(r)—mcz]g(rH—

df 1—«
m‘l‘Tf(r)}:O, (18) 1
(1= (P Y2=[(I1=m) P (I1+m)P" 1%, (23
where the new quantum numberis defined as
(1= @?) (P H2=[(1+m)uPl — (1 —m)P"]2 (24)
—-l-1 for j=I+1/2 (1=0,1,...)
k=1, for j=I—172 (1=12,...). (19 together with the definition of the spherical harmonigs
o The resulting expression for the charge density of the Dirac
These equations are valid for all spherically symmetric poJarticle is given by
tentials V(r)=V(r) and together they replace expression
(12).
At this point, the standard procedure is to specify an ex- By far range, we mean those distances much larger than the Bohr
ternal spherically symmetric potential, an example of whichradiusr>#2/me?.
is the electrostatic potential energy of the proton-electron 2Both Egs.(23) and (24) follow directly from Egs.(8.5. and
interaction. That is, simply, (8.5.3 of Abramowitz and Stegufi.3].
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2 2

+9
21+1

yly= [A=m) Y2+ (1 +m+ 1) Y]]

(25
whenj=1+1/2 and
2+92
= S [AFmE DY (= m) Y2
(26)
whenj=1-1/2.

Therefore, by using Eq$21), (22), and(25), one obtains
the expression

V(r)=—47re2f G(r,r" )y (r")p(r")dr’
o r|< |
| 2

_ 4re? E
XLF(r)2+g(r)2L( —m")| YD X

21"+1

2|+1Y| (0 (P)YI (0, () )
r)|2

+(|’+m’+1)|Y|","(0’,<p’)|2]r’2dr’ d(cosé’)de’

for the casg =1+ 1/2. Similarly, with the use of E¢26), it
can be shown that the potent(r) takes the form

EHE

I=0r_

(r)— S Y(60,0) Y0, 0")

21" +1 1 21+1

X[E(r)2+g(r )AL +m +D|YT H0',¢")|2
+(I’—m’)|Y|","(0’,go’)|2]r’2dr’d(cosa’)dgo’

for the casg =1—1/2. It is to be noted that the primed indi-
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TABLE I. The Dirac-Maxwell particle self-field potential. The
self-field potential energy for a Dirac-Maxwell particle in the
states 1=0,1, where I,(r)=/{[f(r")2+g(r")2]r""*2/r' 2dr’

+ P24+ g(r )2 e 2dr

Stategl’,m’,j’) Corresponding potentiaf(r)
[0,0,1/2,10,—1,1/2) e’l,
[1,0,1/2,]1,—1,1/2) e’lg

11,1,3/2,]0,-2,3/2)
11,0,3/2,|0,— 1,3/2)

e lo—3(3 cogs —1)l,]
e lo+32(3 cogd —1)l,]

4
=3, (= [ (174 gPrdr<e
i=1 0

Since the equations which describe the spatial evolution
of the wave function17) and (18) were derived under the
assumption that the potentidd(r), is spherically symmetric,
they are not valid for an extended Dirac particle in an arbi-
trary state of angular momentum. We have shown that there
do exist certain choices df and m where the probability
density is spherically symmetric and it is these cases in
which our primary interest lies.

We can conclude that with the spinor representation given
by Eq.(7), there are essentially three differential equations to
be solved simultaneously. Equatiofik7) and (18) specify
the spatial evolution of the wave function and Eg7) re-
flects the spatial extent of the self-field of the particle. A
strategy for solving these intrinsically nonlinear equations, as
well as a few of their interesting properties, will be explored
in the following sections.

IV. BOUNDARY CONDITIONS

From the preceding section we have found that the equa-

ces (’,m’") correspond to the angular momentum of the par+ions to be satisfied for a self-interacting fermion are Egs.
ticle, while the unprimed indices run over the complete set 0{17) and(18) and

permissible angular momentum quantum numbers. By per-
forming the angular integration of the above formulas, one 2(1

-1

can immediately conclude that both of the above integralsV2V= —4re? m( 2+9%)
vanish except whem=0 andl = .,4". This implies
that X[(k+m+1)|Y4(0,0)] 2+ (k=m)|YT(6,¢)|7],
. I’ 2n (28)
2(I’ M Y9,(60,¢)
V(r)=4me? E “ —[f(r")?

n=o 4n+1 r'=org

where we have combined the=1+1/2 cases by using the
definition of k. Since we have assumed that the potential
in Egs.(17) and(18) is spherically symmetric, this necessar-
ily restricts the choice of andm. Assume from this point on
that | and m are chosen to satisfy this criterion. Conse-
quently, Eq.(28) becomes

+g(r’)Z]r’zdr’[(x’+m’+1)<l m' +1]Y9,

X[, m + 1)+ (" —m){",m'[YI [I",m')], (27)
where the casejs=1+1/2 have been combined by the appli-
cation of the definition ofx’. Expression(27) replaces Eq.
(12). When written in this form, it is clearly seen that the
potentialV(r) is not in general spherically symmetric. Table
| lists the potential(27) for I’=0,1 and illustrates the fact Since the soliton arises as a coupling between Dirac and
that there exists spherically symmetric states Wit 0. Maxwell fields, the energf that appears in the Dirac equa-
A localized solution of this model must satisfy the field tion is not the total energy of the particle. The total energy

V2V=—e?(f?+g?). (29

equations(17) and (18) for f and g and a given energ{
where the potential is given by the expressi@®). More-
over, it is required that the total probability

can be obtained by calculating tHE) component of the
energy-momentum tensor. For our field, the Lagrangian is
given by Eq.(1), where A* is the vector potential of the
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electromagnetic field. One generates the symmetric energy-

K
momentum tensor directly from the Lagrangian in the form [A=UO)+1IF() —| g+ — G |=0, (32
[14]
4 dF —K
o 05 9 (30 (AU —1]G(X)+| g+ ——F(x)|=0, (33
9, 2
Applying Eq. (30) to Eq. (1) yields V2U+(F?+G?%) =0, (34

itc _ 1 whereV? is now the Laplacian with respect to thecoordi-
TH = T(z,lfy“a”zﬁ by'a ) — EF“"Fﬁ”gaﬁ nate. The mass of the soliton comes from the transformed
version of the total energy expressii),

e — — wy —
— 5 (Y YA + iy pA*) | = == iRCYy D apd® s hucd] (= 1 (=(dU)\?2
2 2 m=—1 )\j (F2+G?)x?dx+ —f —| x?dx|,
1 62 0 2 0 dx
—mcyy— gF“”Faﬁ—eWwAﬁgaB} (39
and the total charge is given as the integral of the charge
Further simplification gives density,
1 [d¢\? he (=
To=Eyty+ Q(W e=eJ pdV0|=?JO (F2+ G?)x?dx. (36)
This yields an expression for the total energy,, of We will show that if the charge is replaced bye, then
) the f component of the spinor greatly dominates theom-
” 1(/(de ponent. By substituting= e and choosing a value fan, the
_ 0 _ 2 ~2\p2 - kg ) ,
Eto‘_f TOdVO'_Efo (F+g7)redr+ zf ( dr) redr, value of u can be determined numerically once the spatial

(31  extent of the soliton is known. In this case, the expectation
value of the radius of the particle becomes
where dV,, is an infinitesimal volume element. This total

energy should be associated with the observed mass of the j V2U>3 dx
particle asE,;=mc®. There is still sufficient freedom re- _ hc B e’ ke
maining to set lim_,..V(r) =0 because the spinor is invari- (r)= EO()_ Eg o
ant under the transformation fV Ux<dx
V—=V+p8, E—E+
h A o2 fVZng’dx

for any real-valueg3. =—
The massm and the charges that appear in the Dirac mC
equation are not necessarily the experimentally measured
guantities, just as the charge that appears at a vertex of
Feynman graph is not the experimentally measured charge
the particle. Because of this, we will replace tmein Egs.
(17) and(18) by the symbolw. In addition, thee in Eq. (29)
will be replaced by are. The symbolsm and e will be re- " r
served for the physically observed quantities. With these J V2Ux®dx< Tep H
substitutions, we convert to a set of variables whereby Egs. 0 e 'lle
(17), (18), and (31) are independent of any physical con-

stants. The particular transformation chosen is wherer, is the classical electron radiug=e*/mec?. _
Since we know thatl has zero slope at=0 and that it

5 5 must behave ahbl/x for large argumentN is the amount of
f=9F, g=7G, r=—, E=\uc’, V=ucU, enclosed chargewe assume as a first approximation thiat

| —]
fVZszdx

aa stay within the current experimental bounds of the mean
Charge radius, this value must be less tingg, which is
<10 ¥ m in the case of an electron. Hence,

. 2
J V2Ux2dx
0

’

c
H can be represented as the electrostatic potential produced by
where 72= 3c* €242, These redefined variables have the@ sphere of radiu®, with uniform charge density. There-
following dimensions in terms of length_j: ore,
_1 0. _0. 1 —32 NI3 17r?
[=L% [\=L% [F]=L % 3.1 L <R,
Ro|2 2R3
[G]=L"%% [u]=L" uin=y (37)
— for r=Ry

This yields the transformed equations r
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With this representation, one finds that

~ 9 T1eMeRy
4 uN

(r) ,

which means that since<((r)<r,,, we can conclude that

lexp

~3.088<10°* c?/MeV

in the case of the electron.

Let Ry be defined as the effective range of the non-
Coulombic behavior of the potential energy so that for
>Ry, U(X)~N/x. SinceU is a solution to a Poisson equa-
tion with a negative definite charge density(0) must be
larger thanU (R,). This can be quickly verified by consider-
ing the opposite. U(0)<U(Ry), then there exists sonre
€ (0,Ry) such thalU’(r)=0. Therefore, integrating E¢34)
from O tor, one obtains

r
rZU’(r)=0=—J (F2+G?)x?dx,
0

which is clearly a contradiction.
To determine the initial values df and G, one simply
eliminates eithe= or G from Egs. (32) and (33), say F,

which leads to a second-order equation for the other, namel);l,”e'

G"+PG'+QG=0,

where bothP andQ are functions olJ, U’, «, \, andx. To
avoid a singularity in the potentidl(x), it must be both

F. 1. COOPERSTOCK PRA 60

V. RESULTS

In the search for numerical solutions, it was specified that
x=—1 and\=1 giving the set of differential equations

dG
T ~[27UOOIF (),

dF

2
ax ;F(x)+ U(X)G(x),

ViU=-F2-G2

To find a soliton, the values &f(0),G(0) are specified and

a search is made for the value dff(0) whereby
lim,_..xF(x)=0 and lim_,.,xG(x)=0. Only values of
G(0)>0 are considered because the equations are symmet-
ric under the transformatioB— -G, F——F, U—U.Ina
neighborhood of a ground-state soliton, the radial probability
density is numerically seen to have a single well-defined
minimum value forx>0. The choice ofkx=—1 gives the
initial condition F(0)=0.

The choice ofA =1 is simply a numerical convenience.
Outside the neighborhood of a soliton it is expected that the
potential will behave adJ(x)~A+B/x for large x. The
value of X should have been chosen so that the asymptotic
behavior of the potential (x) is purely Coulombic in na-
By defining a shifted potentialU(x)=U(x)
—limy_ . U(X), this value of A must satisfy I-U(x)=A
—U(x). Therefore, after a soliton is found the value)ofs
given ash=1-lim,_,., U(X). In addition, the starting value
of U(x) is given byU(0)=U(0)+x—1.

Using the redefined value of, the observed charge and

bounded and have zero slope in a neighborhood of the origirnass of the particle are compared to the values used in the

Moreover, bothF andG are bounded in this same neighbor-
hood. From this, it is easy to verify that

0 k=-—1

F(0)={ arbitrary «=+1 (39
0 VY other k,
arbitrary k=-1

G(0)= 0 k=+1 (39
0 V other «.

Furthermore, by examining the indicial equation, it can be

shown that no fractional powers exist in a power series so
lution of eitherF or G about the originx=0.
Summarizing the boundary conditions

UX)<U(0)<ow, xe[0s0),

u’(0)=0,

together with the condition§38) and (39). For the casec
=—1, the initial values olU, G, and the energy are de-
termined by the requirement that the wave functinand
hence both+ and G, vanish exponentially ag— .

Lagrangian by using the expressiof86) and (35), respec-
tively. By defining

P:f (F2+G?)x? dx, ;v:f (F2+G?)x*dx,
0 0

E=\ +1Jw Y)* 2d
AP ) Lax) XA
the charge ratia/e is given as
e_ﬁc P
e @ a

where « is the fine-structure constant. The mass ration
=P?/a& and the expectation value for the radius of the soli-
ton is

f(f2+gz)r3dr 5 f(F2+GZ)x3dx

(=r———————
f(f2+g2)r2dr e f (F2+ G?)x%dx

re(

EX
7?.

Me
m
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TABLE Il. Numerical parameters for a set of various ground-  TABLE Ill. Corresponding observable quantities for a set of
state particles. For each particle, the valuesgf) is selected and various ground-state particles. The valgesand Ar are measured
one searches for the value 0f0)+\ that gives a bounded solu- in meters and are computed from a soliton defineck e 0,X;a,-
tion. The physical parameters are computed from the solution deFor this calculation it is assumed that=m, .
fined onx e[ 0Xmad- G*(0)=0.4273589430.

i ele ulm (r) Ar
¢ v \ Ximax 1 1.000 —1.000<10° —6.61x10°8 2.31x10°8
3.864<10°° 4.887985X 10 ® —0.99999712 8342.9 2 1371 -1371x10° -351x10°% 1.22x10°8
1.0<10°8  9.212204%10°% —0.99999457 6103.6 3 1374 —1.374<10' —3.51x10°10 1.22¢10710
1.0x10°° 9.212284% 10 * —0.99945701 688.37 4 2955 -—20955<100 —7.53x10°' 2.63<10° %
1.0x10°*  4.276098% 10 % —0.99748078 330.61 5 6346 —6.462<x100 —1.60x10 " 5.61x10 *?
1.0x10°% 1.985076% 10 2 —0.98833078 158.92 6 107.6 —1.135x10° —5.30x10 % 1.87x10 *?
5.0<10% 5.806375% 102 —0.96604870 81.570 7 1347 —1479%10¢ —3.21x10 % 1.14x10°1?
1.0x10°2  9.219698% 10 2 —0.94634242 77.061 8 2221 -—-2.991x10* —-9.07x10 ¥ 3.31x10 ¥
50<102 2.699268%10 ' —0.84654287 50.139 9 2713 —4504<10° —4.64x10 % 1.73x10 =
1.0x10°1  4.288421%10°! —0.76093227 38.686 10 3262 —8.687x10? —1.87x10 ¥ 7.23x10
10 2.0x10°! 6.813413x10°! —0.63095887 33.509 11 359.7 —1.838x10° —7.51x10° 4 2.99x10 1
11  3.0<10°' 8.931588% 10! —0.52683528 23.495 12 383.6 —9.658<10° —1.27x10° % 5.16x10° !5
12 4.0x10°¢ 1.082139% 10° —0.43716613 26.964 13 385.6 —1.538<10° —7.89x10°1 3.21x10° 15
13 4.1x10°¢ 1.100106x 10°  —0.42878460 27.544 14 387.6 —3.666<x10° —3.28<10°15 1.34x10°15
14  4.2x10°¢ 1.117926k 10°  —0.42049493 26.049 15 389.0 +2.360<102 +505<10 23 2.06x10 2
15 G*(0) 1.130948%10° —0.41445154 24.146 16 3895 +1.032x10° +1.15x10° 15 4.71x10°16
16 43101 1.135603% 10°  —0.41229414 24.382 17 401.8 +3.998<10° +2.79x10° % 1.16x10 4
17 5.0<10°! 1.255704410° —0.35715757 24.156 18 416.4 +1.818<10° +5.68<10 ¥ 2.39x10 4
18 6.0<10°¢ 1.4178526¢10° —0.28421512 22.584 19 454.8 +6.800<107 +1.21x10 ¥ 5.35x10
19 1.0x 10 1.991367x10°  —0.03776277 20.438 20 498.7 +3.305<10? +1.78x10 13 8.59x10 1
20 2.0x10° 3151976 10°  +0.42244841 18.125

mentally determined upper limit for the electron radius of

Both of the quantities® and X’ are positive. However, =10 **m. o
depending upon the value &f £ could be positive, negative, _ These equations also exhibit excited states. fitieex-
or even zero if the electromagnetic and “bare mass” termgited state of our field is characterized through the functions
in the energy exactly cancel. A negative valuedawill give ~ Fn(X), Gn(X), and U,(x), for which the G, component
an unphysical negative value for the observed radiys ~ Crosses the abscissat+1 times while theF, component
Because of this ambiguity, both the value @f and the Crosses in times. Once the ground-state solution is found,
particle widthAr = \{r2)—(r)2 are presented. Tables Il and the value ofu can be determined through E(36). The
Il respectively, list the numerical parameters and the ob correspondingith excited sFate is that excited state with the
served properties of a number of ground-state particles foung@me observed charge ratide, as the ground state. There-
wherem was taken to be the observed mass of the electrofP'€, in this interpretation of the theory, the ratio of the mass
M. of the nt.h excited state to the ground state is given by the
Figure 1 illustrates the radial behavior Bfand G for the =~ €XPression
casee=e (i=1). Itis to be noted that fox>0, F is much -
larger thanG and, as a consequendeG<F?+ G2. In fact,
G is so small that it resembles a straight line alongxlagis.
This supports the argument that the four-vector potential car °-8]
be reasonably approximated with only a radédl compo-
nent.

The characteristics of a typical soliton with e is illus-
trated with the choice&/e=454.8 (=19). In this case the
potential plays a much more dominant role in holding the = ©-47
particle together than in the cage=e. However, since in
this case the approximation BIG<F?+ G? is violated, one o 2l
would have to solve the full modgEgs. (9) and (10)] to
properly analyze this situation. This would be a far more
complicated problem. Figure 2 illustrates the radial compo- 0
nents of this spinor and it shows that the magnitud&a$
now comparable to the magnitudeef Table 11l also shows FIG. 1. F and G components of the wave function for the case
that the choice ofe=389., u=2.360<10"m, (i=15) e/e=1. Shown here is the radial dependence offhend G com-
yields a soliton with an expectation value for the radius ofponents of the soliton. Note th& is much smaller tharr. G is
5.05< 1023 m. This size is well within the present experi- barely discernible above theaxis.

G (arb. units)

2000 3000

x

4000 5000 6000
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n=0 n=1 n=2
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FIG. 2. F andG components of the wave function for the case logyo (%)

e/le=454.8. Shown here is the radial dependence ofRtend G
components of the soliton. The magnitudesFoind G are now
comparable in contrast to the case wheree.

FIG. 4. Dependence of the mass ratio as a function of the charge
ratio. Shown is the dependence of the mass ratim as a function
of the charge ratice/e for the ground-state and first two excited-

- 1 (=/dU.\2 state solitons. For each class of particles, there is a maximum
)\nJ (Fﬁ+ Gﬁ)xzdx+ —J’ <_”) x2d x charge ratio beyond which no solitons were found.
m, w/mg 0 2)o | dx
mg  w/m, N x(F2+GZ)x2dx+ } * d_U : 24x ' mum charge ratio we were unable to find any solutions such
0 2)o \ dx that lim,_,., xF(x)—0 or lim,_ ., xG(x)—0. This necessar-

ily restricts the definition of the mass ratio defined above.
Figure 3 shows the radial probability density of the first threeFigure 4 also illustrates the fact that at moderate charge ra-
states for the cas&(0)=1. Each of these solitons has a tios, the electromagnetic field does not contain an appre-
different value ofe/e. ciable amount of the particle energy resulting in the behavior

Figure 4 illustrates the behavior of the mass rgtibm, as | u/m|=¢le.

a function of the charge ratie'e for the ground state and the ~ The mass ratios of the first and second excited states with
first two excited states. For each class of particles there is gespect to the ground-state solutions are shown in Fig. 5.
charge ratio where the electromagnetic and bare mass confhis ratio is only defined up to a maximum value éefe
ponents of the energy balance make0. At this value of since beyond/e=550 a ground state fails to exist. For ex-
ele, the mass ratipu/m—oo. At charge ratios less than this cited states, this maximum admissible charge ratio increases.
critical value, the mass ratio is negative whereas charge rarhis implies that for a fixed value @f/e, there may not exist
tios above this critical value result in a positive value ofa ground-state solution, but there will be arbitrarily many
w/m. There is numerical evidence that each class of particlesxcited states. As is readily apparent from Fig. 5, the only
has an upper bound for the charge ratio. Above this maxiappreciable mass splitting occurs for large charge ratios.

100

22 |t (z))? (arb. units)
= o

o

—10+4

FIG. 5. Mass ratios of the first and second excited states with
respect to the ground state. There are essentially two regions of
5 . . :

r (fm) interest. For moderate charge ratios, the valuengfmg=1 with
the mass ratio of the excited state=2 slightly larger than for the

FIG. 3. Excited states of the theory. This figure shows the radiah=1 state. Beyond the point where the ground-state mass ratio
probability density of the first three particle state in the ca¢e) becomes unbounded, the mass ratios begin to split. In this region,
=1. These particles have different charge rati¢s. There exist the |m,/my| ratio exceeds thém,/mg| ratio. In this region, the
excited states beyond the ones illustrated. approximationFG<F?+ G? is no longer valid.
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However, it is precisely for large charge ratios where ourfynction of the formf (r)Y"( 6, ¢) with respect to, y, andz,

approximation thaFG<F?+G? breaks down. one finds a coupled pair of first-order ordinary equations for
f(r) andg(r).

VI. CONCLUDING REMARKS For example, in order to calculate
We have seen that spherically symmetric Dirac-Maxwell P
solitons can be constructed and with a charge and mass to E[f(r)Y["(a,go)],

model the electron successfully. However, it should be noted
that the higher-energy excited states of this form did not,,
yield the large mass separations of the muon and tau relative
to the electron in this model. The search thus far has been
restricted to spherical solitons. It is conceivable that a relax- coséP|"(cosh) =
ation of this restriction or some other change in conditions

would increase the mass splitting. In any event, we have +(I+m)P" ,(cosb)], (A4)
shown that Dirac-Maxwell solitons exist and are capable of

modeling an electron where the charge-to-mass ratio is the d 1
observed= 107! in units in whichG=c=1. Furthermore, we sin s P"(cos#) =srrgLd=
have found a charge-to-mass ratio that simultaneously yields

the observed charge and mass of the electron as well as ex- —(I4+21)(I+m)P" ;(cosh)],
hibiting a degreee of compactification that is well within the

current experimental upper limit. Finstet al. [8] have con-

sidered Einstein-Dirac-Maxwel[EDM) solitons and con- \ynich can both be verified through the use of Rodrigues’
cluded that it is the interaction with gravitation which is ¢y 1a

responsible for the existence of bound states. However, we

e first require the identities

1
T 1[(I —m+1)P/", ;(cosh)

m+1)P[", ;(cosh)

(A5)

see here that bound states exist with negligible gravitational (—1)m gl+m
interaction. While thee/m ratio at which significant gravita- PMu)= | (1—,u2)m’2ﬂ(,u2—1)'.
tional coupling sets in is yet to be determined for EDM soli- 21! du

tons, it is our conjecture that this will be so at the same level m . m . .
that was found earlier in the case of minimally coupled scala¥VMting Yi"(¢,¢) as a function ofP" by using Eq.(8) gives
interaction[4], namely fore/m=1. The known fundamental the relationship

charged particles of nature, on the other hand, have enor- TS '
mouse/m ratios. i[f(r)Ym(e 0)]= / ( _m)'eim
9z L 470 (I+m)!

APPENDIX: DERIVATIVES OF f(r)Y["(0,¢) df

. . - : X | cosé P["(cosh) -

In the Dirac wave equation, all of the derivatives are with I ) dr

respect to Cartesian coordinates. We can change to a spheri- q ¢
cal polar representation via the transformation —sing——P"(cosh) _}
de r|’

X=Tr sin6é cosy,
By substituting Eqs(A4) and (A5) in the above, collecting
y=rsinfdsineg, terms, and applying the definition of"(8,¢) once again,
one obtains the simplification
Z=T CcOsé.

1%
By applying the chain rule, it is trivial to show that this 5[f(r)Y,’“(0,<p)]
changes the first-order partial derivatives via

- [—m+21)(I+m+1) df |
d d cosfcosyp 49 Sin J — ( m -
—=sinf cosp— + ¢ i - \/ (21+1)(21+3) Yiia(6,0) r I’f

X ar r 960 rsind %’
(A1) . (I=m)(1+m) Yo (o )df+|+1f
J bei d +cosesincp 7, cose J -+ TR ldr T )
gy Snosnes r 30 rsing dg’ (AB)
A2
(A2) Similar relationships fov/dx=idldy can be found in Bethe
J J sing o and Salpetet but there is a very elegant way to derive these
97 =COS!9E— T 90 (A3) operators by applying the Wigner-Eckart theorem.
If the functions¢; (j=1,...,4) from expression(7) are

substituted into Eq9413)—(16), and if one uses the formulas 3See formulagA38) and (A39), respectively, in Bethe and Sal-
given in Bethe and Salpet¢iO] for the derivatives of a peter[10].
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First, we evaluate the matrix elemgt 0| V|l 0) of the [+1

df | ,
gradient operator, which is an example of a vector operator. (I’ 0|V,|l 0)= —— |84
Specifically, Jer+n@i+3)ldr 7
I df 1+1 )
+ —+ flol_,.
a 1(a 9 J@l-1)21+1)ldr 1
Voza—, Vi=%F— ﬁi'a_ )
z V2 y Now, we are at a point where we can use the Wigner-Eckart

theorem. By inspection, the general matrix element is given

Since by
/ |
(I m'[v,[I m>=(—1)"‘”"(_ , )<|’||V||l>
Vof(r)YP= - & g—l—f} # cT
T a2+ Hdrr ( ol ')
A =m' m
) | o0 [df+|+1 =(=1" %(I’ 0[Voll 0).
Jer-n@+n Tldr (0 0 o)

After evaluating the 3-j symbols, one can quickly verify
for the special case of EqA6), where m=0, we have the following equations:

J FY™ _ (I—m+1)(|—i—m+1)Y 0 df If N (I=m)(14+m) vm (g df+l+1
OV l=N"Gr G e g Ny o) g )
(A7)
J \/(I+m+1)(|+m+2) df |
. . m — m+1 _
(9X+I(9y}[f(r)Yl(0,(P)] (2|+1)(2|+3) |+1(0(P) dr rf
(I=m—=21)(I—m) m+l df 1+1
- \/ 2i—1y2i+1) 0o gt =T (A8)
d \/(I—m+1)(|—m+2) df |1
Z m — m-—1 —
x }[f(”Y (6.0)]= @+n@i+3 gl
(I+m—=21)(1+m) m 1 I+1
+ [
\/ 2I—1y(2i+1) -1 ‘P) - (A9)
Linear combinations of Eq$A8) and (A9) yield the derivatives with respect toandy.
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