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It is argued that the findings of a recent reanalysis by Compagno and FAéthicn Rev. A67, 1595(1998)]
of the Bohr-Rosenfeld procedure for the measurement of a single space-time-averaged component of the
electromagnetic field are incorrect when the field measurement time is shorter than that required for light to
traverse the measurement’s test body. To this end, the time-averaged “self-force” on the test body, assumed
for simplicity to be of a spherical shape, is evaluated in terms of a one-dimensional quadrature for the general
trajectory allowed for the test body by Compagno and Persico, and in closed form for the limiting steplike
trajectory used by Bohr and Rosenfel§1050-294{@9)05611-3

PACS numbd(s): 12.20.Ds

In a recent paper, Compagno and Persic®) [1] revis- and those of BR in the approximation, according to CP in-
ited the famous analysis of the measurability of the electroeorrect, of a constant displacement of the test body, which
magnetic field by Bohr and RosenfelBR) [2]. CP analyze allows us to take the test body’s trajectory outside a time
the BR procedure for the measurement of a single spaceéntegration and recovers the BR results. CP thus draw a far-
time-averaged component of the electromagnetic field byeaching conclusion that a single space-time-averaged com-
treating the interaction of an extended test body with theponent of the electromagnetic field can be measured with
local quantized electromagnetic field quantum mechanicallyarbitrary accuracy without any use of compensating forces
in the electric dipole approximation, which is valid for field even when the field measurement timea/c; in their opin-
measurement times>a/c (a characterizes the linear di- ion, the necessity for compensating forces of a nonelectro-
mensions of the test boglyThey obtain a minimum uncer- magnetic nature would indicate that quantum electrodynam-
tainty in the measured field component that they claim idgcs is not self-consistent as a physical theory.
different from that obtained by BR and which the latter au- Using the Fourier-transform methods of a recent w@&ik
thors eliminated by connecting the test body to the referenceshere the geometric factors of the field commutators and
frame by a compensating spring. CP eliminate their mini-spring constants employed in the BR analysis are calculated,
mum uncertainty simply by removing from the measurementve evaluate here, as explicitly as is possible in general terms,
the neutralizing body employed in the BR procedure to mini-the average force on a spherical test body that is due to the
mize the test body’s field effects. fields, calculated assuming classical electrodynamics, of both

To investigate why their findings differ from the widely the test and neutralization bodies; following CP, we call this
accepted BR results, CP recalculate the force on the te$brce the test body’s average self-force. Using this evalua-
body due to the field created by the neutralizing body and th&on, we show that the limiting average self-force obtained
test body itself using classical electrodynamics as the BRyy BR with a steplike trajectory of the test body’s constant
analysis, and thus not restricting the field measurement timegisplacement approximates well the time-average self-force
7 to only 7>a/c. However, CP here relax the BR assump-obtained with a trajectory that, while conforming to the con-
tion that the test body’s unpredictable displacement resultinglition that the test body’s maximum speeq,..<c, ap-
from the initial momentum measurement stays constanproaches sufficiently closely the BR steplike trajectory. This
throughout the time period of the field measurement. Usingrovides a rigorous justification of the fact that the use of a
this calculation, CP confirm the results of their quantum-steplike trajectory is fully consistent with the physical as-
mechanical treatment of the problem and identify the reasosumptions of the BR analysis, and refutes the implication of
for what they believe is the difference between their resultsCP that such an approximation is incorrect.

We show also that the BR average self-force for a given

field measurement time<<a/c has a component that is the

*Present address: National Insitute for Occupational Safety andteplike-trajectory limit of the average of what CP call the
Health, M/S L-3030, 1095 Willowdale Road, Morgantown, WV radiation-reaction component of the self-force and which is
26505. not affected by the removal of the neutralizing body. Con-
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trary to the conclusion of CP, this implies the need for a BR #?  st-r) P S(t—r)
compensating spring even if the rem_ove}’l of the neutralizing o, T “mo xiox, THeE (6)
body would leave the “radiation-reaction” component as the e
net self-force. This is because the time-average of the
“radiation-reaction” component for field measurement timeswhere the limite—0 is understood to be taken only after a
7<alc cannot be reduced arbitrarily when the test body’stwo-dimensional integration; it is the only term with which
trajectory is of a sufficiently steplike character—and such ahe regularization can contribute to the multidimensional in-
kind of trajectory is necessitated by the requirements on thé&egral (4) that defines the functiori(t;). To evaluate this
type of momentum measurements that have to be performddtegral, we perform first the integration of the monopole
on the test body. componeni5) with respect to time,:

Our starting point is expressiof37) of CP, which they
obtained for the self-force on a test body that describes a 2 8 (r—ty—r)
trajectoryQ(t,) along a given direction, say thedirection, Xxo(tl,r)—f dt, ALA(t,r)=—  —
during the field measurement period<®,<r. This self- '
force is due to the fields of the test body itself and of a

.. . . 2 ) € @(T_tl_r)

neutralizing body charged oppositely and occupying perma- — 2 lim ) (7)
nently the space region of the test body’s initial location, and 3 o(r+e? r
CP assumed in its derivation that the test body’s displace-

mentQ and velocityQ are such thaQ|<a and|Q|<c. We  Here, use was made of the fact th&t(—t,—r)=0 and

assume that the test body has a constant charge density @(t,+r)=1 fort;>0. The functionf(t,) of Eq. (4) is now
and is spherical with radiuR, and we describe its spatial given by

region using a uniform distribution normalized to unit vol-
ume, p(r)=(1NV)O(R-r), V=(4/3)7R3. The test body’s N
self-forceF(t,) for 0<t,<r is thus given as f(tl)zf p(l’l)dl’lj p(ry)dr ALA(t,r), (8

2 _ . .
F(t2)=p VZJ p(ry)dry where the double space integration can be done in closed
form using the Fourier-transform method for evaluation of

fp(rz)dfzf dt, Q(t)ALALr), (1) folding integrals[3]:

6 o0
where the quantitA(1? is the distribution f(ty)=— — J , L@ R)1*{2 coga(7—t;)]+1}dq
a
9 @ \8(t—r)
(1.2) - _ — 1
AL (8x1axZ atlatz) G ——(x=2)(2-2x—x)0(2-x) - ©)

T 2R® R’
with t=t,—t;, r=r,—ry, andr=|r|. Units in which the )
2 2 2 ! Il where y=(7—1t;)/R. The above momentum-space integral

speed of lightt=1 are used henceforth.
The quantity of our interest is the time-averaged self-forcdVOIVes the Fourier trang‘grzr)ﬁ (47/3){2 cogq(r—t)]+1}
A

E=(1/T)fgdt2 F(t,), which can be written using Eql) as of the “folding” function A,;g(t,,r) and the Fourier trans-
form 3j1(gR)/gqR of the uniform distributionp(r); its

2y/2 evaluation was done with the help of the computing system
f dt; Q(t)f(ty), (3  MATHEMATICA [4]. Equations(3) and (9) give the average
-

self-force F in terms of a one-dimensional quadrature in-
volving the test-body’s so-far unspecified traject@yt,).
We now assume that the trajecto®(t,) is of a steplike
. character, i.e., in an initial time interval (0t) with At
f(tl):f P(fl)dMJ P(fz)dfzf dt, A(Xlx'z)(t,r). (4) <, the displacemer®(t;) goes smoothly from 0 to a value
0 Q, thenQ(t;)=Q=const forAt=t;<7—At, and in a final
interval (7— At, 7) the displacemen®(t;) returns smoothly
Wlth the Sphe”ca”y Symmetl’IC dIStI’IbUtIOp(I’) Only the from Q back to 0. As the test body’s maximum Speqﬁiax
monopole componerﬂxxo(t r) in a multipole expansion of EmaxiQ(tl)I O<t,<r must satisfy the condition/, s,

the distributionA{;(t,r) contributes to the double space ¢ the constanQ is such that Q| <v,,At<cAt, and if
integral in £q.(4), one defines the mean spezdh the initial and final intervals

2 8'(t—r) 2 e St-r) by vAt=|QJ, one also has that<c. When the duratiomt
ALt r )______ lim . (5 of the initial and final time intervals is decreased, which
r 3 o(r+ed T needs to be done in order to approach the BR steplike trajec-
tory, the constan@, while staying finite, must decrease ac-
Here, the second term arises from a regularization of theordingly for a given test body’s maximum speeg,,. The
space derivative part in Eq2) by average forcé3) can now be written as

— pC

where
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— pAV? 7—At At — pAV? at
= QJ dtlf(tl)+J dt; Q(ty)f(ty) |AF|= f dty Q(ty)f(ty)
T At 0 T 0
. 2\,2 2
peVe (At 3 At
+J77Atdt1Q(t1)f(t1) : (10) < °T fo dtl|Q(t1)||f(t1)|<p§V2vmaX$T.
To simplify their calculations, BR obtained the average (14)

self-force on the test body assuming for it a strictly steplike

trajectory Qgr(t1) = Q0O (t1)O(7—1t;), which is a limit At We find in the same way the same upper bound on
—0 of our trajectoryQ(t,). A formal substitution of the BR  the  apsolute  value of the  quantity AF;
trajectory Qgg(t;) in Eq. (3) gives the time-averaged self- —(p2V27)[7_,dt, Q(t,)f(t,). The absolute values of

f(_)rce Fgr, Obtained by BR in a different way in their analy- pqih the ratiosAEi f/EBR thus have an upper bound
Sis: ’

EBR: p(Z:VZTQKQ)’(I) ) (11 AFi,f‘ 3 Vmax At

BRLL e
FBR‘ REAL | vooT

where
24 Vimax At

T aroz—0z-nis v 7

1 (7
Al == J dt, f(ty)
7J0

1 1 where we used Eq(11) for Fgr with |Q|=vAt and the
T gR (44 k)(2—Kk)?O(2— k) — vt (12 closed-form expressiofil2) for All) . As both the speeds
K K Vmax @and v may be assumed to be independentAaf the
with k= 7/R, is a BR geometric factor for coinciding spheri- upper bound15) can be made arbitrarily small by lettint

cal space-time regions, which we evaluated here in closeR€ Sufficiently small, and thus lig.o(AF; 1/Fgr) =0. Us-
form. According to Eqs(11) and(12), the average BR self- INg this result, the limitAt—0 in Eq. (13) is simply

force for a field measurement time=2R reduces to a force

— p2V2Q/R3, which is the electrostatic force of attraction lim (F/Fgg) =1, (16)
between the test and neutralization bodies when their centers At—0

are displaced by a distan¢®|<R. Without the use of a
compensating spring, E¢L2) [together with Eq(48) of BR]
leads to a minimum uncertaintyA&,~ (A|Al)|)12 i =0 and I F.—0 [b li._o/Q)
~(hI7V)¥2 in the measured field componeg for both r " at-0 " =2 @A HiMhe—oer= ecause link_o/Q

=2R and 7<2R—which in fact agrees with the uncertainty :_"mAHP(VAt) :O] a “physical” average self-forcé .Ob'
(28) of CP, obtained by them for>2R [5]. tained with a sufficiently small but finitAt and accordingly

CP contend that the BR use of the steplike trajectorySMall but finite displacemenQ|<cAt is approximated ar-

which leads to the BR resull1), is incorrect, presumably as bitrarily closely by the BR self-forc&gg of Eq. (11):
it implies that the velocity of the test body diverges in the
vicinities of the beginning,;=0 and end= 7 of the mea-
surement period. However, with our evaluatiofi®) and

(12) of the average self-forcé and BR geometric factor

AlD it is easy to show that the BR self-force approximates e €valuate also an average fokeg, which is the time
correctly the self-force obtained with a “physical” trajectory aVerage of the forcBq(t,) defined by Eq(40) of CP as the
of a sufficiently steplike character. Dividing the average self-component of the self-forcé(t,) that is directly propor-

force (10) by the BR average self-fordd 1), we get tional to the displacemer@(_tz). CP show that thi_s _force is _
canceled by a force that arises when the neutralizing body is

AE. AF. removed temporarily for the duration of the field measure-

O __f, (13)  ment. It is not clear whether a procedure could be devised for

Fer Fgr such a removal of the neutralizing body without introducing
additional fields that affect the test body, but we shall leave

where the quantitieAF; andAF; arise from the time inter- this point aside. The average forEg can be written as
vals of durationAt at the beginning,=0 and end,= 7 of

the trajectory, respectively. We find easily an upper bound o
on the absolute value of the quantityF; using the fact that Fo=
the maximum value of the functioff(t;)| is 3/R3 for 0

<t;<7[see Eq(9)] and that|Q(t,)| <VmaAt in the initial

time interval: where

as [gdty f(t)=7A%). This means that while both

F~Fgr When At is sufficiently small. ~ (17)

E 1 J‘T*A’[
=== dty f(ty)+
Fer Al ™/ at 1

e
P f dt, Qt,)g(ty), (18)
0

T
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2 O(ty—r)
g<t2>=—f p(u)drlj plrdrys - ———

- . =

_L(Z—E)(2—2§—§2)®(2—§)—i (19
" 4R3 R3’

cancellation of the forc&q, then the limiting forceF ogg)

must also be canceled, and a BR steplike trajectory would
result in a net average self-forégrgr) Of Eq. (23), which,
without a compensating spring, would lead to a minimum
uncertainty A&~ (#/7R%)Y42—7/R)®(2—7/R) in the
measured field component. The absence of a neutralizing
body would result, in the limit of a steplike trajectory, again
in a time-averaged self-force that is independent of the de-
tails of the space-time course of the measurement procedure

with é=t,/R. Here, the space integration is done simply byand, for a field measurement timec 2R, the effect of which

using the resuli9) of the space integration in E@8) on

would have to be compensated by a BR spring when it is

noting that the monopole component of the regularized funceesired to measure the field to arbitrary accuracy. We note

tion —lim,_o(9%/9x,9%5)[O(t,—r)/(r+€)] can be ex-
pressed in terms of the functiod’2(t,,r) as

1 5l(t2_r) 2| € H(tz_r)

m
3 r 3o (r+e)s r

1 € O(t,—r)
= Aedrtenlim s (@)
and that the contribution of the term (2/3)lim,_ o[ €/(r
+€)3]0(r—t;—r)/r in Eq. (7) to the functionf(t,) of Eq.
(9) is — 1/R3.

According to Eq.(19), the functiong(t,) is related in a
simple way to the functiori(t,), and thus on the strength of
the same argument as that leading to @), but using the
function g(t,) instead of the functiori(t,), it follows that

— 1 3piv?
Fo~Foer=— 5Fen— ——g— °
2 2R®
when At is sufficiently small, (21

whereEQ(BR)=(inZQ/r)fgdtz g(t,) is the average force

Fo obtained with the steplike trajectoryQgg(ty)
=Q0O(t,)O(7—t,). Following CP, we now define an aver-
age forceFrr=F —Fq, which is the time average of what
CP call the “radiation-reaction” componerfgzg(t,) [see
Eq. (40) of CP] of the self-forceF(t,). Using Egs(17) and
(21), it is seen easily that

_ 3[—  pivAQ
Fre~(Far— FQ(BR))_ FBR"'?

EERR(BR) when At is sufficiently small. (22)

This means that the BR limiting self-forcEBR has a

“radiation-reaction” componenfgggr), given according
to Egs.(11), (12), and(22) by

2Q

FRR(BR)= (4+K)(2—k)20(2— k), (23

where x=17/R. The average ‘“radiation-reaction” force
Frr(sr) Vanishes only for field measurement times 2R.

here that no use of any neutralizing body, instead of its pos-
sibly problematic temporary removal, would simply subtract

from the average self- forcd?BR of Eq. (11) the force
—p2V2QIR® of electrostatic attraction to the neutralizing
body, resulting in a limiting average self-force that differs

only by a factor of 2/3 from the average self-fof€gggr) Of
Eq. (23) that is obtained with the temporary removal.

The steplike character of the test body’s trajectory in the
BR analysis is necessitated by the demands on the type of
momentum measurements that have to be performed on the
test body at the beginning and end of the field measurement
period (07). These momentum measurements are required
for the determination of the momentum transfer along the
given direction from the field to the test body, and are each
allowed to have only a duratioAt<r. As BR have shown,
the latter requirement is necessary in order to be able to
neglect the radiation reaction on an extended test body dur-
ing the time of the momentum measurement. Thus the mo-
mentum measurements are required to be of the ideal repeat-
able type, i.e., for a given precision, of arbitrarily short
duration while at the same time not altering the momentum
of the measured object. BR found in the course of their
analysis a procedure for such repeatable momentum mea-
surements; a similar procedure was found by Aharonov and
Bohm independently some 30 years Idi@(7]. A repeatable
momentum measurement of accuraqy, and duratiomt at
the beginning of the field measurement periodr) Gtill re-
sults in an unpredictable displacemédptof the test body
such thafQ|=#/Ap,, occurring within the initial time in-
terval (0At). The requirements thaQ|<a and|Q|<cAt
will be satisfied by having the mass of the test body suffi-
ciently great, and this specification will also guarantee that
the test body can be considered to be essentially at rest in the
interval (At,7—At) in which it acquires momentum from
the measured fielfB].

The test body’s trajectory is thus necessarily of a steplike

character, and so the “radiation-reaction” componEpg of
its self-force can be approximated by the limiting “radiation-

reaction” force Frr(gr), Which is not affected by the re-
moval of the neutralizing body. The removal or the absence
of the neutralizing body would not open the possibility of an
arbitrarily accurate measurement of a single field component,
averaged over a time<2R, without a compensating spring.

The author gratefully acknowledges correspondence with
F. Persico, whose searching questions helped the author to
find correct expressions for some algebraic results used in

Now, if the removal of the neutralizing body results in the the present Comment.
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