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Comments are short papers which criticize or correct papers of other authors previously published in thePhysical Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication sc
for regular articles is followed, and page proofs are sent to authors.

Comment on ‘‘Limits of the measurability of the local quantum electromagnetic-field amplitude’’

V. Hnizdo*
Department of Physics, Schonland Research Centre for Nuclear Sciences, and Centre for Nonlinear Studies,

University of the Witwatersrand, Johannesburg 2050, South Africa
~Received 30 November 1998!

It is argued that the findings of a recent reanalysis by Compagno and Persico@Phys. Rev. A57, 1595~1998!#
of the Bohr-Rosenfeld procedure for the measurement of a single space-time-averaged component of the
electromagnetic field are incorrect when the field measurement time is shorter than that required for light to
traverse the measurement’s test body. To this end, the time-averaged ‘‘self-force’’ on the test body, assumed
for simplicity to be of a spherical shape, is evaluated in terms of a one-dimensional quadrature for the general
trajectory allowed for the test body by Compagno and Persico, and in closed form for the limiting steplike
trajectory used by Bohr and Rosenfeld.@S1050-2947~99!05611-5#

PACS number~s!: 12.20.Ds
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In a recent paper, Compagno and Persico~CP! @1# revis-
ited the famous analysis of the measurability of the elec
magnetic field by Bohr and Rosenfeld~BR! @2#. CP analyze
the BR procedure for the measurement of a single sp
time-averaged component of the electromagnetic field
treating the interaction of an extended test body with
local quantized electromagnetic field quantum mechanic
in the electric dipole approximation, which is valid for fie
measurement timest.a/c (a characterizes the linear d
mensions of the test body!. They obtain a minimum uncer
tainty in the measured field component that they claim
different from that obtained by BR and which the latter a
thors eliminated by connecting the test body to the refere
frame by a compensating spring. CP eliminate their m
mum uncertainty simply by removing from the measurem
the neutralizing body employed in the BR procedure to m
mize the test body’s field effects.

To investigate why their findings differ from the widel
accepted BR results, CP recalculate the force on the
body due to the field created by the neutralizing body and
test body itself using classical electrodynamics as the
analysis, and thus not restricting the field measurement ti
t to only t.a/c. However, CP here relax the BR assum
tion that the test body’s unpredictable displacement resul
from the initial momentum measurement stays cons
throughout the time period of the field measurement. Us
this calculation, CP confirm the results of their quantu
mechanical treatment of the problem and identify the rea
for what they believe is the difference between their res
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and those of BR in the approximation, according to CP
correct, of a constant displacement of the test body, wh
allows us to take the test body’s trajectory outside a ti
integration and recovers the BR results. CP thus draw a
reaching conclusion that a single space-time-averaged c
ponent of the electromagnetic field can be measured w
arbitrary accuracy without any use of compensating for
even when the field measurement timet,a/c; in their opin-
ion, the necessity for compensating forces of a nonelec
magnetic nature would indicate that quantum electrodyna
ics is not self-consistent as a physical theory.

Using the Fourier-transform methods of a recent work@3#,
where the geometric factors of the field commutators a
spring constants employed in the BR analysis are calcula
we evaluate here, as explicitly as is possible in general ter
the average force on a spherical test body that is due to
fields, calculated assuming classical electrodynamics, of b
the test and neutralization bodies; following CP, we call t
force the test body’s average self-force. Using this eval
tion, we show that the limiting average self-force obtain
by BR with a steplike trajectory of the test body’s consta
displacement approximates well the time-average self-fo
obtained with a trajectory that, while conforming to the co
dition that the test body’s maximum speedvmax!c, ap-
proaches sufficiently closely the BR steplike trajectory. T
provides a rigorous justification of the fact that the use o
steplike trajectory is fully consistent with the physical a
sumptions of the BR analysis, and refutes the implication
CP that such an approximation is incorrect.

We show also that the BR average self-force for a giv
field measurement timet,a/c has a component that is th
steplike-trajectory limit of the average of what CP call t
radiation-reaction component of the self-force and which
not affected by the removal of the neutralizing body. Co

d
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trary to the conclusion of CP, this implies the need for a B
compensating spring even if the removal of the neutraliz
body would leave the ‘‘radiation-reaction’’ component as t
net self-force. This is because the time-average of
‘‘radiation-reaction’’ component for field measurement tim
t,a/c cannot be reduced arbitrarily when the test bod
trajectory is of a sufficiently steplike character—and suc
kind of trajectory is necessitated by the requirements on
type of momentum measurements that have to be perfor
on the test body.

Our starting point is expression~37! of CP, which they
obtained for the self-force on a test body that describe
trajectoryQ(t1) along a given direction, say thex direction,
during the field measurement period 0<t1<t. This self-
force is due to the fields of the test body itself and of
neutralizing body charged oppositely and occupying perm
nently the space region of the test body’s initial location, a
CP assumed in its derivation that the test body’s displa
mentQ and velocityQ̇ are such thatuQu!a anduQ̇u!c. We
assume that the test body has a constant charge densirc
and is spherical with radiusR, and we describe its spatia
region using a uniform distribution normalized to unit vo
ume,r(r )5(1/V)Q(R2r ), V5(4/3)pR3. The test body’s
self-forceF(t2) for 0<t2<t is thus given as

F~ t2!5rc
2V2E r~r 1!dr1

3E r~r 2!dr2E
0

t

dt1 Q~ t1!Axx
(1,2)~ t,r !, ~1!

where the quantityAxx
(1,2) is the distribution

Axx
(1,2)~ t,r !52S ]2

]x1]x2
2

]2

]t1]t2
D d~ t2r !

r
, ~2!

with t5t22t1 , r5r22r1, and r 5ur u. Units in which the
speed of lightc51 are used henceforth.

The quantity of our interest is the time-averaged self-fo
F̄5(1/t)*0

tdt2 F(t2), which can be written using Eq.~1! as

F̄5
rc

2V2

t E
0

t

dt1 Q~ t1! f ~ t1!, ~3!

where

f ~ t1!5E r~r 1!dr1E r~r 2!dr2E
0

t

dt2 Axx
(1,2)~ t,r !. ~4!

With the spherically symmetric distributionr(r ), only the
monopole componentAxx 0

(1,2)(t,r ) in a multipole expansion o
the distributionAxx

(1,2)(t,r ) contributes to the double spac
integral in Eq.~4!,

Axx 0
(1,2)~ t,r !52

2

3

d9~ t2r !

r
2

2

3
lim
e→0

e

~r 1e!3

d~ t2r !

r
. ~5!

Here, the second term arises from a regularization of
space derivative part in Eq.~2! by
g
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]2

]x1]x2

d~ t2r !

r
5 lim

e→0

]2

]x1]x2

d~ t2r !

r 1e
, ~6!

where the limite→0 is understood to be taken only after
two-dimensional integration; it is the only term with whic
the regularization can contribute to the multidimensional
tegral ~4! that defines the functionf (t1). To evaluate this
integral, we perform first the integration of the monopo
component~5! with respect to timet2:

Āxx 0
(1,2)~ t1 ,r !5E

0

t

dt2 Axx 0
(1,2)~ t,r !52

2

3

d8~t2t12r !

r

2
2

3
lim
e→0

e

~r 1e!3

Q~t2t12r !

r
. ~7!

Here, use was made of the fact thatd8(2t12r )50 and
Q(t11r )51 for t1.0. The functionf (t1) of Eq. ~4! is now
given by

f ~ t1!5E r~r 1!dr1E r~r 2!dr2 Āxx 0
(1,2)~ t1 ,r !, ~8!

where the double space integration can be done in clo
form using the Fourier-transform method for evaluation
folding integrals@3#:

f ~ t1!52
6

pR2E0

`

@ j 1~qR!#2$2 cos@q~t2t1!#11%dq

5
1

2R3
~x22!~222x2x2!Q~22x!2

1

R3
, ~9!

wherex5(t2t1)/R. The above momentum-space integr
involves the Fourier transform2(4p/3)$2 cos@q(t2t1)#11%
of the ‘‘folding’’ function Āxx 0

(1,2)(t1 ,r ) and the Fourier trans
form 3j 1(qR)/qR of the uniform distributionr(r ); its
evaluation was done with the help of the computing syst
MATHEMATICA @4#. Equations~3! and ~9! give the average
self-force F̄ in terms of a one-dimensional quadrature i
volving the test-body’s so-far unspecified trajectoryQ(t1).
We now assume that the trajectoryQ(t1) is of a steplike
character, i.e., in an initial time interval (0,Dt) with Dt
!t, the displacementQ(t1) goes smoothly from 0 to a valu
Q, thenQ(t1)5Q5const forDt<t1<t2Dt, and in a final
interval (t2Dt,t) the displacementQ(t1) returns smoothly
from Q back to 0. As the test body’s maximum speedvmax

[maxuQ̇(t1)u, 0<t1<t must satisfy the conditionvmax
!c, the constantQ is such thatuQu,vmaxDt!cDt, and if
one defines the mean speedv̄ in the initial and final intervals
by v̄Dt5uQu, one also has thatv̄!c. When the durationDt
of the initial and final time intervals is decreased, whi
needs to be done in order to approach the BR steplike tra
tory, the constantQ, while staying finite, must decrease a
cordingly for a given test body’s maximum speedvmax. The
average force~3! can now be written as
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F̄5
rc

2V2

t FQE
Dt

t2Dt

dt1 f ~ t1!1E
0

Dt

dt1 Q~ t1! f ~ t1!

1E
t2Dt

t

dt1 Q~ t1! f ~ t1!G . ~10!

To simplify their calculations, BR obtained the avera
self-force on the test body assuming for it a strictly stepl
trajectoryQBR(t1)5QQ(t1)Q(t2t1), which is a limit Dt
→0 of our trajectoryQ(t1). A formal substitution of the BR
trajectoryQBR(t1) in Eq. ~3! gives the time-averaged sel
force F̄BR, obtained by BR in a different way in their analy
sis:

F̄BR5rc
2V2tQĀxx

(I,I) , ~11!

where

Āxx
(I,I) 5

1

t2E0

t

dt1 f ~ t1!

52
1

8R4k
~41k!~22k!2Q~22k!2

1

R4k
, ~12!

with k5t/R, is a BR geometric factor for coinciding spher
cal space-time regions, which we evaluated here in clo
form. According to Eqs.~11! and~12!, the average BR self
force for a field measurement timet>2R reduces to a force
2rc

2V2Q/R3, which is the electrostatic force of attractio
between the test and neutralization bodies when their cen
are displaced by a distanceuQu!R. Without the use of a
compensating spring, Eq.~12! @together with Eq.~48! of BR#

leads to a minimum uncertaintyD Ēx;(\uĀxx
(I,I) u)1/2

;(\/tV)1/2 in the measured field componentĒx for both t
>2R andt,2R—which in fact agrees with the uncertain
~28! of CP, obtained by them fort.2R @5#.

CP contend that the BR use of the steplike trajecto
which leads to the BR result~11!, is incorrect, presumably a
it implies that the velocity of the test body diverges in t
vicinities of the beginningt150 and endt15t of the mea-
surement period. However, with our evaluations~10! and
~12! of the average self-forceF̄ and BR geometric facto
Āxx

(I,I) , it is easy to show that the BR self-force approxima
correctly the self-force obtained with a ‘‘physical’’ trajector
of a sufficiently steplike character. Dividing the average se
force ~10! by the BR average self-force~11!, we get

F̄

F̄BR

5
1

Āxx
(I,I)t2EDt

t2Dt

dt1 f ~ t1!1
DF̄ i

F̄BR

1
DF̄ f

F̄BR

, ~13!

where the quantitiesDF̄ i andDF̄ f arise from the time inter-
vals of durationDt at the beginningt150 and endt15t of
the trajectory, respectively. We find easily an upper bou
on the absolute value of the quantityDF̄ i using the fact that
the maximum value of the functionu f (t1)u is 3/R3 for 0
<t1<t @see Eq.~9!# and thatuQ(t1)u,vmaxDt in the initial
time interval:
d

rs

,

s

-

d

uDF̄ i u5
rc

2V2

t U E
0

Dt

dt1 Q~ t1! f ~ t1!U
<

rc
2V2

t E
0

Dt

dt1uQ~ t1!uu f ~ t1!u,rc
2V2vmax

3

R3

Dt2

t
.

~14!

We find in the same way the same upper bound
the absolute value of the quantity DF̄ f

5(rc
2V2/t)*t2Dt

t dt1 Q(t1) f (t1). The absolute values o

both the ratiosDF̄ i , f /F̄BR thus have an upper bound

UDF̄ i , f

F̄BR
U,

3

tR3uĀxx
(I,I) u

vmax

v̄

Dt

t

5
24

~41k!~22k!2Q~22k!18

vmax

v̄

Dt

t
, ~15!

where we used Eq.~11! for F̄BR with uQu5 v̄Dt and the
closed-form expression~12! for Āxx

(I,I) . As both the speeds

vmax and v̄ may be assumed to be independent ofDt, the
upper bound~15! can be made arbitrarily small by lettingDt

be sufficiently small, and thus limDt→0(DF̄ i , f /F̄BR)50. Us-
ing this result, the limitDt→0 in Eq. ~13! is simply

lim
Dt→0

~ F̄/F̄BR! 51, ~16!

as *0
tdt1 f (t1)5t2Āxx

(I,I) . This means that while both

limDt→0 F̄50 and limDt→0 F̄BR50 @because limDt→0uQu
5 limDt→0( v̄Dt)50#, a ‘‘physical’’ average self-forceF̄ ob-
tained with a sufficiently small but finiteDt and accordingly
small but finite displacementuQu!cDt is approximated ar-
bitrarily closely by the BR self-forceF̄BR of Eq. ~11!:

F̄'F̄BR when Dt is sufficiently small. ~17!

We evaluate also an average forceF̄Q , which is the time
average of the forceFQ(t2) defined by Eq.~40! of CP as the
component of the self-forceF(t2) that is directly propor-
tional to the displacementQ(t2). CP show that this force is
canceled by a force that arises when the neutralizing bod
removed temporarily for the duration of the field measu
ment. It is not clear whether a procedure could be devised
such a removal of the neutralizing body without introduci
additional fields that affect the test body, but we shall lea
this point aside. The average forceF̄Q can be written as

F̄Q5
rc

2V2

t E
0

t

dt2 Q~ t2!g~ t2!, ~18!

where
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g~ t2!52E r~r 1!dr1E r~r 2!dr2

]2

]x1]x2

Q~ t22r !

r

52
1

2
f ~t2t2!2

3

2R3

5
1

4R3
~22j!~222j2j2!Q~22j!2

1

R3
, ~19!

with j5t2 /R. Here, the space integration is done simply
using the result~9! of the space integration in Eq.~8! on
noting that the monopole component of the regularized fu
tion 2 lime→0(]2/]x1]x2)@Q(t22r )/(r 1e)# can be ex-
pressed in terms of the functionĀxx 0

(1,2)(t1 ,r ) as

1

3

d8~ t22r !

r
2

2

3
lim
e→0

e

~r 1e!3

Q~ t22r !

r

52
1

2
Āxx 0

(1,2)~t2t2 ,r !2 lim
e→0

e

~r 1e!3

Q~ t22r !

r
, ~20!

and that the contribution of the term2(2/3)lime→0@e/(r
1e)3#Q(t2t12r )/r in Eq. ~7! to the functionf (t1) of Eq.
~9! is 21/R3.

According to Eq.~19!, the functiong(t2) is related in a
simple way to the functionf (t1), and thus on the strength o
the same argument as that leading to Eq.~17!, but using the
function g(t2) instead of the functionf (t1), it follows that

F̄Q'F̄Q(BR)52
1

2
F̄BR2

3rc
2V2Q

2R3

when Dt is sufficiently small, ~21!

where F̄Q(BR)5(rc
2V2Q/t)*0

tdt2 g(t2) is the average force

F̄Q obtained with the steplike trajectoryQBR(t2)
5QQ(t2)Q(t2t2). Following CP, we now define an ave
age forceF̄RR5F̄2F̄Q , which is the time average of wha
CP call the ‘‘radiation-reaction’’ componentFRR(t2) @see
Eq. ~40! of CP# of the self-forceF(t2). Using Eqs.~17! and
~21!, it is seen easily that

F̄RR'~ F̄BR2F̄Q(BR)!5
3

2 S F̄BR1
rc

2V2Q

R3 D
[F̄RR(BR) when Dt is sufficiently small. ~22!

This means that the BR limiting self-forceF̄BR has a
‘‘radiation-reaction’’ componentF̄RR(BR), given according
to Eqs.~11!, ~12!, and~22! by

F̄RR(BR)52
3rc

2V2Q

16R3
~41k!~22k!2Q~22k!, ~23!

where k5t/R. The average ‘‘radiation-reaction’’ force
F̄RR(BR) vanishes only for field measurement timest>2R.
Now, if the removal of the neutralizing body results in th
-

cancellation of the forceF̄Q , then the limiting forceF̄Q(BR)

must also be canceled, and a BR steplike trajectory wo
result in a net average self-forceF̄RR(BR) of Eq. ~23!, which,
without a compensating spring, would lead to a minimu
uncertainty D Ēx;(\/tR3)1/2(22t/R)Q(22t/R) in the
measured field component. The absence of a neutrali
body would result, in the limit of a steplike trajectory, aga
in a time-averaged self-force that is independent of the
tails of the space-time course of the measurement proce
and, for a field measurement timet,2R, the effect of which
would have to be compensated by a BR spring when i
desired to measure the field to arbitrary accuracy. We n
here that no use of any neutralizing body, instead of its p
sibly problematic temporary removal, would simply subtra
from the average self-forceF̄BR of Eq. ~11! the force
2rc

2V2Q/R3 of electrostatic attraction to the neutralizin
body, resulting in a limiting average self-force that diffe
only by a factor of 2/3 from the average self-forceF̄RR(BR) of
Eq. ~23! that is obtained with the temporary removal.

The steplike character of the test body’s trajectory in
BR analysis is necessitated by the demands on the typ
momentum measurements that have to be performed on
test body at the beginning and end of the field measurem
period (0,t). These momentum measurements are requ
for the determination of the momentum transfer along
given direction from the field to the test body, and are ea
allowed to have only a durationDt!t. As BR have shown,
the latter requirement is necessary in order to be able
neglect the radiation reaction on an extended test body
ing the time of the momentum measurement. Thus the m
mentum measurements are required to be of the ideal rep
able type, i.e., for a given precision, of arbitrarily sho
duration while at the same time not altering the moment
of the measured object. BR found in the course of th
analysis a procedure for such repeatable momentum m
surements; a similar procedure was found by Aharonov
Bohm independently some 30 years later@6,7#. A repeatable
momentum measurement of accuracyDpx and durationDt at
the beginning of the field measurement period (0,t) still re-
sults in an unpredictable displacementQ of the test body
such thatuQu)\/Dpx , occurring within the initial time in-
terval (0,Dt). The requirements thatuQu!a and uQu!cDt
will be satisfied by having the mass of the test body su
ciently great, and this specification will also guarantee t
the test body can be considered to be essentially at rest in
interval (Dt,t2Dt) in which it acquires momentum from
the measured field@8#.

The test body’s trajectory is thus necessarily of a step
character, and so the ‘‘radiation-reaction’’ componentF̄RR of
its self-force can be approximated by the limiting ‘‘radiatio
reaction’’ force F̄RR(BR), which is not affected by the re
moval of the neutralizing body. The removal or the absen
of the neutralizing body would not open the possibility of
arbitrarily accurate measurement of a single field compon
averaged over a timet,2R, without a compensating spring

The author gratefully acknowledges correspondence w
F. Persico, whose searching questions helped the auth
find correct expressions for some algebraic results use
the present Comment.
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