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Bose condensate in a double-well trap: Ground state and elementary excitations
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We study the Bose-Einstein condensate in the MIT double-well trap. We calculate the ground-state density
profile of Na atoms and the Bogoliubov spectrum of the elementary excitations as a function of the strength
of the double-well barrier. In particular, we analyze the behavior of quantum-mechanical collective excitations.
Finally, we discuss the observability criteria for macroscopic quantum tunneling and macroscopic quantum
self-trapping [S1050-29479)03411-3

PACS numbgs): 03.75.Fi, 05.30.Jp, 32.80.Pj

Three years ago the Bose-Einstein condensation of alkaliwhere u is the chemical potential. This equation has the
metal vapor£’Rb, *Na, and’Li has been achieved in mag- form of a nonlinear stationary Schiimger equation.
netic harmonic traps at temperature of the order of 100 nK We study the BEC in an external potential with cylindri-
[1-3]. Theoretical studies of the Bose-Einstein condensateal symmetry, which is given by
(BEC) in harmonic traps have been performed for the ground ) )

state[4—8], collective low-energy surface excitatiof®-11], Mo, N Moy 241U exr{ —22) 3)
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— 2
and vortex statefs,12]. Ve(N=—77p"+—

In this paper we study the BEC in the MIT double-well
trap given by a harmonic anisotropic potential plus a Gausswhere p=x?+y?, z and the angled are the cylindrical
ian barrier along the axis, which models the effect of a laser coordinates. The parameter values appropriate for [R&f.
beam perpendicular to the long axis of the condensate. In th&re w,= 27X 250 Hz,w,= 27X 19 Hz, andoc=6 um. The
MIT experiment[13], the macroscopic interference of two anisotropic harmonic trap implies a cigar-shaped condensate
Bose condensates released from the double minimum potef\ = w,/w,=15/250<1), wherez is the long axis, and the
tial has been demonstrated. Such phenomenon has been th&aussian barrier of strengthy, creates a double-well poten-
retically reproduced14] by using the Gross-PitaevskiGP) tial.
equation[15]. Here, we concentrate on the ground-state We perform the numerical minimization of the GP func-
properties of the condensate and calculate the spectrum @bnal by using the steepest descent methts]. It consists
the Bogoliubov elementary excitations as a function of theof projecting onto the minimum of the functional an initial
intensity of the laser field. A comparison between our calcudtrial state by propagating it in imaginary time. At each time
lations and future experiments will clarify the accuracy of step the matrix elements entering the Hamiltonian are evalu-
the GP equation and the role of correlations in Bose conderated by means of finite-difference approximants using a grid
sates with up to % 10° particles. of 200x800 points. In our calculations we use tle

By varying the strength of the barrier one can observenarmonic-oscillator units. For®Na atoms, the harmonic
macroscopic quantum effects, like the formation of two Bosdength is a,=[#%/(mw,)]*?=4.63 um and the energy is
condensates, the collective oscillations, and the quantum tutt-w,=0.78 peV. Moreover, we use the following value for

neling[16,17. the scattering lengthag=3 nm[3]. Most of our computa-
The Gross-Pitaevskii energy functiorfdl5] of the BEC  tions have been performed fodd=5x10° atoms, a value
reads typical of the MIT experimenf13].

£ 42 oN ’s In Fig.dl we sh?w tchef ground-lstate O:er;]sity profilt; offthhe
[ 3 2 2 4 Na condensate for different values of the strength of the
N_j d r%|V\P(r)| Ve DY (N)]*+ 7|q}(r)| ' barrier. By increasing the strength, the fraction?da at-
(1) oms decreases in the central region and the Bose condensate

separates in two condensates. As shown in Table I, the con-
whereW (r) is the wave function of the condensate normal-densate slightly expands in tzedirection due to the barrier
ized to unity,Ve,(r) is the external potential of the trap, and potential at the origin. The numerically calculated density
the interatomic potential is represented by a local pseudopgrofiles are in good agreement with the phase-contrast im-
tential so thay=4m#%%as/m is the scattering amplitudea{  ages of the MIT experimei.3] and with the Thomas-Fermi
is thes-wave scattering lengthN is the number of bosons of (TF) approximation, which neglects the kinetic term in the
the condensate anoh is the atomic mass. The extremum GP equation. Due to the large number of atoms involved
condition for the energy functional gives the GP equation (N=5x10P), only near the borders of the wave function are
there small deviations from the TF approximation. Note that
the potential barrier U, can be written asU./kg
=(37uK)P/o? (um?mW), whereP is the total power of

2
—Zﬁ—mv2+vext(r)+gN|~lf(r)|2 Y(r)=pn¥(r), (2
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0.008 T T TABLE II. Lowest elementary excitations of thg=0 BdG
spectrum for the ground state bf=5x10° >Na atoms.(™) and
(*) mean odd and evenparity, respectively. Units as in Table I.
0.006 | 1
U hol?)  heS?  he§)  hel?  hel)
. 0 1.000 1.580 2.120 2.645 3.164
3 0004 | J 100 0.939 1.596 2.022 2.640 3.004
3 200 0.799 1.624 1.886 2.711 2.916
300 0.311 1.643 1.672 2.724 2.744
0.002 - | 400 0.003 1.655 1.655 2.730 2.730
’ 500 104 1.663 1.663 2.744 2.744
%% Z10 ' 10 30 where
z axis
H 2> 19  9*\ h3g? Vor(p.2)
FIG. 1. Particle probability density in the ground state Nof eff= 5| T 2t -t -t 52t Vexdp,Z)— 1
=5x10° ?Na atoms as a function of theaxis atr =0 (symmetry 2midp”  pdp 97 2mp
plang. The curves correspond to increasing values of the strength +2gN| ¢(p,z)|2.

U, of the barrier(from 0 to 500), in units ofiw,=0.78 peV. The

laser power is given by the conversion forméfla=0.09<U, mW.  The BdG equations allow one to calculate the eigenfrequen-
Lengths are in units o&,=4.63 pum. ciesw and hence the energidsy of the elementary excita-
tions. This procedure is equivalent to the diagonalization of
the laser beam perpendicular to the long axis of the condenpe N-body Hamiltonian of the system in the Bogoliubov
sate andr=6 pm is the beam radiugl9]. The conversion  approximatior{22]. The excitations can be classified accord-
factor is 0.09 mW/t w,), such thatU,=100 (in Zw, unity ing to their parity with respect to the symmetzy- —z.
gives a laser powelP=9 mW. _ We have solved the two BdG eigenvalue equations by
Another important property of the BEC is the spectrum offnjte-difference discretization with a lattice of #@0 points
elementary excitations. To calculate the energy and wavg, the (p,2) plane. In this way, the eigenvalue problem re-
function of the elementary excitations, one must solve thgyces to the diagonalization of a 3208200 real matrix.
so-called Bogoliubov—de Genn€BdG) equationg20-22.  \ye have tested our program in simple models by comparing
The BdG equations can be obtained from the linearized timenymerical results with analytical solutions and verified that a
dependent GP equation. Namely, one can lookgfangular  40x 40 mesh already gives reliable results for the lowest part
momentum solutions of the form of the spectruni12].
(i1 at In Table Il we show theg=0 lowest elementary excita-
w(r,t)=e . tions of the Bogoliubov spectrum for the ground state of the
iq6) ot \,* i wt system. When the Gaussian barrier is switched off, one ob-
*{glp.2)+ e ulp,2)e "+ v (p,2)€ ]} serves the presence of an odd excitation at energy quite close

corresponding to small oscillations of the wave function®© fiw=1 (in units iw,). This mode is related to the oscil-

around the ground-state solutign By keeping terms linear g!gn dOLtPoetﬁgr;]tgrrn?;nr.rgacsgn?;;ﬁeﬁ?ngﬁgsgﬁeiltglgégﬁ_
in the complex functional and v, one finds the following 1S, au ! ' - v !

o lation is an exact eigenmode of the problem characterized by
BAG equations: the frequency,, independently of the strength of the inter-
HoU(p,2)+ 9N p,2)|2v(p,2) =i wU(p,2), action. The inclusion of the Gaussian barrier modifies the

harmonic confinement along tteaxis and this odd collec-

> 4) tive mode decreases by increasing the strength of the barrier
Hetv(p,2) +gN|g(p,2)|*u(p,2) = —fiwv(p,2), (see Fig. 2
In cylindrical coordinates, the other collective mode of
e center of mass, due to the harmonic confinement along
the radial axis, is an off-axial oscillation with angular quan-

TABLE I. Ground state oN=5x 10° ?Na atoms. Energies are th
in units of 2 w,=0.78 peV (,=27X19 Hz). Lengths are in units
of a,=4.63 um. The laser power is given by the conversion for-

- tum numberg=1. Such oscillation is the lowest even mode
mulaP=0.09x U, mW. . . L
for g=1 and in the absence of a Gaussian barrier, it is ex-
actly equal to the radial frequencw, (%w,=250/19
Yo E/N a Vo) NG =13.158, infiw, units). One expects tha’E this rﬁode is only
0 211.142 294.909 0.989 9.145 weakly affected by the Gaussian barrier along zteis. In
100 221.334 303.910 0.982 9.635  Table Ill are reported the first elementary excitations dor
200 227.467 310.705 0.986 10.011 =1. The lowesig=1 excitation ¢ w=13.132) remains con-
300 230.852 315.297 0.993 10.268 stant and differs by less than 2.5% from the theoretical pre-
400 232.855 317.952 0.997 10.417 diction. Also when the BEC separates in two condensates,
500 234.283 319.763 0.999 10518 €ach condensate has the same off-axgg=1) collective

oscillation of the center of mass.
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Ty . . " : TABLE IV. Parameters of the MQT for different values of the
" - scattering lengthag with al®=3 nm andr,=2x#/AE. Conden-
] sate withN=5x 10° atoms. Barrier withJ,=20 ando=1.5 um.
08t . 1 Unit of U, as in Table I.
8 "
i
2 o6l " | as/ay® A 70 (s€0 Z
so.
2 » 107t 1108.337 14.583 0.060
£ oal | 1072 133.643 13.887 0.173
e 103 1.390 13.842 none
2 " 1074 0.103 10.253 none
T o2} _ 1
a
. 7=19/1+ A, wherery=27h/AE°. But forz,<z=<1 there
0, pros 0 ™ mo is macroscopic quantum sglf—trappnﬁngS‘l‘) of the con-
barrier energy densate: even if the populations of the two wells are initially

set in an asymmetric stateg£ 0) they maintain the original
FIG. 2. Lowest elementary excitatidiw{~) with g=0 vs bar- populatipn imbalance without transferring particl_es through
rier energyU,, for N=5x 10° 2Na atoms. Units as in Fig. 1. the bar_rler as expected fpr a fr'ee Bose gas. This two-mode
approximation seems quite reliable. In fact, we have com-
As shown both in Tables Il and 11, for large values of the Pared the predictions of the two-mode equations with the
Gaussian barrier, i.e., when the BEC separates in two cofiumerical solutions of the one-dimension@lD) time-
densates, we find quasidegenerate pairs of elementary exélépendent GP equation in different regimes, finding a very
tations (even-odd. The lowestq=0 mode and the ground 900d agreementrelative difference in the period of the
state of the GP equation constitute one of such pairs and gdpSephson-like oscillations less than 1%. By using the 1D
closer and closer as the barrier is increased. This is not suime-dependent GP equation, we have studied the dynamics
prising because in the infinite barrier limit we have two equal®f the condensate also outside the tunneling region, i.e.,
and independent Bose condensates with the same ener§en the chemical potential is higher than the Gaussian bar-
spectrum. rier and the two-mode equations do not hold. In such a case,
An interesting aspect of BEC in double-well traps is theStarting, for example, with the condensate in one well, it does
possibility to detect the macroscopic quantum tunneling?ot oscillate nor remain self-trapped but instead spreads over
(MQT). The MQT has been recently investigated by Smerzin€ two wells. . o
et al. [16,23. They have found that the time-dependent be- By solving the stationary GP equation in the MIT double-
havior of the condensate in the tunneling energy range cafell trap with ?Na, we find that the paramete is larger
be described by the two-mode equations than 10 also when few particles are present. Nevertheless,
we can control the dynamics of the condensate by reducing
the scattering lengtlag and the thicknessr of the laser
5COSP, (5 beam. In Table IV it is shown that, as expected, the param-
eter A scales linearly withag. This is an important point
because recently it was confirmed experimentally that it is
now possible to control the two-body scattering length by
placing atoms in an external fie[@4]. This fact opens the
way to a direct observation of a macroscopic quantum tun-
neling of thousands of atoms through a potential barrier.
Note also that the geometry and the dimensions of the trap
eﬁ)(l'ay an important role. In fact, if the condensate is less cigar-
shapedgreater\ = w,/w,) the system has a lower chemical
otential and weaker Gaussian barriers are requested to enter
e tunneling regime. Moreover, because the strength of the
nonlinear self-interaction scales as/a,, by increasing the
dimensions of the trap we reduce the effect of the nonlinear-
ity thereby favoring quantum tunneling.
In conclusion, we have shown that one can observe inter-

z=—\1-Z%sing, Pp=Az+ -
-z

wherez=(N;—N,)/N is the fractional population imbalance
of the condensate in the two wellg$= ¢, — ¢, is the rela-
tive phase (which can be initially zerp and A
=4EM/AE®. E is the interaction energy of the conden-
sate andAE? is the kinetictpotential energy splitting be-
tween the ground state and the quasidegenerate odd first
cited state of the GP equation. For a fix&d(A>2), there
exists a criticalz,=2+A —1/A such that for 6<z<z. there
are Josephson-like oscillations of the condensate with perio,

TABLE Ill. Lowest elementary excitations of the=1 BdG
spectrum for the ground state bf=5x 10° ?Na atoms.(*) and
(=) mean even and odzlparity, respectively. Units as in Table I.

Uo (" hws?) ol ol esting macroscqpic quantum-mechanical effects by studying
the Bose-Einstein condensate in a double-well trap. We have
0 13.132 13.165 13.214 13.278  accurately reproduced the formation of two Bose conden-
100 13.132 13.158 13.218 13.260  sates observed by phase-contrast images at the MIT experi-
200 13.132 13.145 13.222 13.236  ment[13]. Moreover, by using the Bogoliubov—de Gennes
300 13.132 13.133 13.225 13.225 equations, we have analyzed the behavior of elementary ex-
400 13.132 13.132 13.226 13.226 cCitations as a function of the strength of the double-well bar-
500 13.132 13.132 13.227 13.227 rier. In particular, we have identified two collective excita-

tions that have a different fate by increasing the strength of
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the barrier: an oddj=0 mode that asymptotically goes to a small laser-sheet thickness is applied. We have shown that
zero and an eveg=1 mode that remains constant also whento get outside the MQST regime it is necessary to strongly
the BEC separates in two condensates. We hope that outduce the scattering length or to increase the dimensions of
calculations will stimulate new, precise measurements of theéhe trap. Note that at nonzero temperature, BEC depletion
excitation spectrum in this system in order to assess the vamnd thermal fluctuations will slightly modify the parameters

lidity of the theoretical framework adopted in the theoreticalof the tunneling and will dampen the coherent oscillations.
analysis. We have also considered the macroscopic quantum

tunneling. Our calculations suggest that, in the tunneling re- This work has been supported by INFM under the Re-

gion and with 2Na atoms, one sees only the macroscopicsearCh Advanced Proje@®RA) on “Bose-Einstein Conden-

quantum self-trappingMQST) of the condensate also when sation.”
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