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Bose condensate in a double-well trap: Ground state and elementary excitations
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We study the Bose-Einstein condensate in the MIT double-well trap. We calculate the ground-state density
profile of 23Na atoms and the Bogoliubov spectrum of the elementary excitations as a function of the strength
of the double-well barrier. In particular, we analyze the behavior of quantum-mechanical collective excitations.
Finally, we discuss the observability criteria for macroscopic quantum tunneling and macroscopic quantum
self-trapping.@S1050-2947~99!03411-3#
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Three years ago the Bose-Einstein condensation of alk
metal vapors87Rb, 23Na, and7Li has been achieved in mag
netic harmonic traps at temperature of the order of 100
@1–3#. Theoretical studies of the Bose-Einstein condens
~BEC! in harmonic traps have been performed for the grou
state@4–8#, collective low-energy surface excitations@9–11#,
and vortex states@6,12#.

In this paper we study the BEC in the MIT double-we
trap given by a harmonic anisotropic potential plus a Gau
ian barrier along thez axis, which models the effect of a lase
beam perpendicular to the long axis of the condensate. In
MIT experiment@13#, the macroscopic interference of tw
Bose condensates released from the double minimum po
tial has been demonstrated. Such phenomenon has been
retically reproduced@14# by using the Gross-Pitaevskii~GP!
equation @15#. Here, we concentrate on the ground-st
properties of the condensate and calculate the spectrum
the Bogoliubov elementary excitations as a function of
intensity of the laser field. A comparison between our cal
lations and future experiments will clarify the accuracy
the GP equation and the role of correlations in Bose cond
sates with up to 43106 particles.

By varying the strength of the barrier one can obse
macroscopic quantum effects, like the formation of two Bo
condensates, the collective oscillations, and the quantum
neling @16,17#.

The Gross-Pitaevskii energy functional@15# of the BEC
reads

E

N
5E d3r
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2m
u¹C~r !u21Vext~r !uC~r !u21

gN

2
uC~r !u4,

~1!

whereC(r ) is the wave function of the condensate norm
ized to unity,Vext(r ) is the external potential of the trap, an
the interatomic potential is represented by a local pseudo
tential so thatg54p\2as /m is the scattering amplitude (as
is thes-wave scattering length!. N is the number of bosons o
the condensate andm is the atomic mass. The extremu
condition for the energy functional gives the GP equation
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where m is the chemical potential. This equation has t
form of a nonlinear stationary Schro¨dinger equation.

We study the BEC in an external potential with cylindr
cal symmetry, which is given by

Vext~r !5
mvr

2

2
r21

mvz
2

2
z21U0expS 2z2

2s2 D , ~3!

where r5Ax21y2, z and the angleu are the cylindrical
coordinates. The parameter values appropriate for Ref.@13#
arevr52p3250 Hz,vz52p319 Hz, ands56 mm. The
anisotropic harmonic trap implies a cigar-shaped conden
(l5vz /vr515/250,1), wherez is the long axis, and the
Gaussian barrier of strengthU0 creates a double-well poten
tial.

We perform the numerical minimization of the GP fun
tional by using the steepest descent method@18#. It consists
of projecting onto the minimum of the functional an initia
trial state by propagating it in imaginary time. At each tim
step the matrix elements entering the Hamiltonian are ev
ated by means of finite-difference approximants using a g
of 2003800 points. In our calculations we use thez
harmonic-oscillator units. For23Na atoms, the harmonic
length is az5@\/(mvz)#1/254.63 mm and the energy is
\vz50.78 peV. Moreover, we use the following value fo
the scattering length:as53 nm @3#. Most of our computa-
tions have been performed forN553106 atoms, a value
typical of the MIT experiment@13#.

In Fig. 1 we show the ground-state density profile of t
23Na condensate for different values of the strength of
barrier. By increasing the strength, the fraction of23Na at-
oms decreases in the central region and the Bose conde
separates in two condensates. As shown in Table I, the
densate slightly expands in thez direction due to the barrie
potential at the origin. The numerically calculated dens
profiles are in good agreement with the phase-contrast
ages of the MIT experiment@13# and with the Thomas-Ferm
~TF! approximation, which neglects the kinetic term in th
GP equation. Due to the large number of atoms involv
(N553106), only near the borders of the wave function a
there small deviations from the TF approximation. Note th
the potential barrier U0 can be written as Uc /kB
5(37mK)P/s2 (mm2/mW!, whereP is the total power of
4171 ©1999 The American Physical Society
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the laser beam perpendicular to the long axis of the cond
sate ands56 mm is the beam radius@19#. The conversion
factor is 0.09 mW/(\vz), such thatU05100 ~in \vz units!
gives a laser powerP59 mW.

Another important property of the BEC is the spectrum
elementary excitations. To calculate the energy and w
function of the elementary excitations, one must solve
so-called Bogoliubov–de Gennes~BdG! equations@20–22#.
The BdG equations can be obtained from the linearized ti
dependent GP equation. Namely, one can look forq angular
momentum solutions of the form

C~r ,t !5e2 ~ i /\! mt

3$c~r,z!1eiqu@u~r,z!e2 ivt1v* ~r,z!eivt#%

corresponding to small oscillations of the wave functi
around the ground-state solutionc. By keeping terms linear
in the complex functionsu and v, one finds the following
BdG equations:

He f fu~r,z!1gNuc~r,z!u2v~r,z!5\vu~r,z!,
~4!

He f fv~r,z!1gNuc~r,z!u2u~r,z!52\vv~r,z!,

FIG. 1. Particle probability density in the ground state ofN
553106 23Na atoms as a function of thez axis atr 50 ~symmetry
plane!. The curves correspond to increasing values of the stren
U0 of the barrier~from 0 to 500), in units of\vz50.78 peV. The
laser power is given by the conversion formulaP50.093U0 mW.
Lengths are in units ofaz54.63 mm.

TABLE I. Ground state ofN553106 23Na atoms. Energies ar
in units of \vz50.78 peV (vz52p319 Hz!. Lengths are in units
of az54.63 mm. The laser power is given by the conversion fo
mula P50.093U0 mW.

U0 E/N m A^r2& A^z2&

0 211.142 294.909 0.989 9.145
100 221.334 303.910 0.982 9.635
200 227.467 310.705 0.986 10.011
300 230.852 315.297 0.993 10.268
400 232.855 317.952 0.997 10.417
500 234.283 319.763 0.999 10.518
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2mr2 1Vext~r,z!2m

12gNuc~r,z!u2.

The BdG equations allow one to calculate the eigenfrequ
ciesv and hence the energies\v of the elementary excita
tions. This procedure is equivalent to the diagonalization
the N-body Hamiltonian of the system in the Bogoliubo
approximation@22#. The excitations can be classified accor
ing to their parity with respect to the symmetryz→2z.

We have solved the two BdG eigenvalue equations
finite-difference discretization with a lattice of 40340 points
in the (r,z) plane. In this way, the eigenvalue problem r
duces to the diagonalization of a 320033200 real matrix.
We have tested our program in simple models by compa
numerical results with analytical solutions and verified tha
40340 mesh already gives reliable results for the lowest p
of the spectrum@12#.

In Table II we show theq50 lowest elementary excita
tions of the Bogoliubov spectrum for the ground state of
system. When the Gaussian barrier is switched off, one
serves the presence of an odd excitation at energy quite c
to \v51 ~in units \vz). This mode is related to the osci
lation of the center of mass of the condensate along thz
axis, due to the harmonic confinement. This collective os
lation is an exact eigenmode of the problem characterized
the frequencyvz , independently of the strength of the inte
action. The inclusion of the Gaussian barrier modifies
harmonic confinement along thez axis and this odd collec-
tive mode decreases by increasing the strength of the ba
~see Fig. 2!.

In cylindrical coordinates, the other collective mode
the center of mass, due to the harmonic confinement al
the radial axis, is an off-axial oscillation with angular qua
tum numberq51. Such oscillation is the lowest even mod
for q51 and in the absence of a Gaussian barrier, it is
actly equal to the radial frequencyvr (\vr5250/19
513.158, in\vz units!. One expects that this mode is on
weakly affected by the Gaussian barrier along thez axis. In
Table III are reported the first elementary excitations forq
51. The lowestq51 excitation (\v513.132) remains con-
stant and differs by less than 2.5% from the theoretical p
diction. Also when the BEC separates in two condensa
each condensate has the same off-axial (q51) collective
oscillation of the center of mass.

th

TABLE II. Lowest elementary excitations of theq50 BdG
spectrum for the ground state ofN553106 23Na atoms.(2) and
(1) mean odd and evenz parity, respectively. Units as in Table I.

U0 \v1
(2) \v2

(1) \v3
(2) \v4

(1) \v5
(2)

0 1.000 1.580 2.120 2.645 3.164
100 0.939 1.596 2.022 2.640 3.004
200 0.799 1.624 1.886 2.711 2.916
300 0.311 1.643 1.672 2.724 2.744
400 0.003 1.655 1.655 2.730 2.730
500 1024 1.663 1.663 2.744 2.744
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As shown both in Tables II and III, for large values of th
Gaussian barrier, i.e., when the BEC separates in two c
densates, we find quasidegenerate pairs of elementary
tations ~even-odd!. The lowestq50 mode and the ground
state of the GP equation constitute one of such pairs and
closer and closer as the barrier is increased. This is not
prising because in the infinite barrier limit we have two eq
and independent Bose condensates with the same en
spectrum.

An interesting aspect of BEC in double-well traps is t
possibility to detect the macroscopic quantum tunnel
~MQT!. The MQT has been recently investigated by Sme
et al. @16,23#. They have found that the time-dependent b
havior of the condensate in the tunneling energy range
be described by the two-mode equations

ż52A12z2sinf, ḟ5Lz1
z

A12z2
cosf, ~5!

wherez5(N12N2)/N is the fractional population imbalanc
of the condensate in the two wells,f5f12f2 is the rela-
tive phase ~which can be initially zero!, and L
54Eint/DE0. Eint is the interaction energy of the conde
sate andDE0 is the kinetic1potential energy splitting be
tween the ground state and the quasidegenerate odd firs
cited state of the GP equation. For a fixedL (L.2), there
exists a criticalzc52AL21/L such that for 0,z!zc there
are Josephson-like oscillations of the condensate with pe

FIG. 2. Lowest elementary excitation\v1
(2) with q50 vs bar-

rier energyU0 for N553106 23Na atoms. Units as in Fig. 1.

TABLE III. Lowest elementary excitations of theq51 BdG
spectrum for the ground state ofN553106 23Na atoms.(1) and
(2) mean even and oddz parity, respectively. Units as in Table I.

U0 \v1
(1) \v2

(2) \v3
(1) \v4

(2)

0 13.132 13.165 13.214 13.278
100 13.132 13.158 13.218 13.260
200 13.132 13.145 13.222 13.236
300 13.132 13.133 13.225 13.225
400 13.132 13.132 13.226 13.226
500 13.132 13.132 13.227 13.227
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t5t0 /A11L, wheret052p\/DE0. But for zc,z<1 there
is macroscopic quantum self-trapping~MQST! of the con-
densate: even if the populations of the two wells are initia
set in an asymmetric state (zÞ0) they maintain the origina
population imbalance without transferring particles throu
the barrier as expected for a free Bose gas. This two-m
approximation seems quite reliable. In fact, we have co
pared the predictions of the two-mode equations with
numerical solutions of the one-dimensional~1D! time-
dependent GP equation in different regimes, finding a v
good agreement~relative difference in the period of th
Josephson-like oscillations less than 1%. By using the
time-dependent GP equation, we have studied the dynam
of the condensate also outside the tunneling region,
when the chemical potential is higher than the Gaussian
rier and the two-mode equations do not hold. In such a c
starting, for example, with the condensate in one well, it do
not oscillate nor remain self-trapped but instead spreads
the two wells.

By solving the stationary GP equation in the MIT doubl
well trap with 23Na, we find that the parameterL is larger
than 104 also when few particles are present. Neverthele
we can control the dynamics of the condensate by reduc
the scattering lengthas and the thicknesss of the laser
beam. In Table IV it is shown that, as expected, the para
eter L scales linearly withas . This is an important point
because recently it was confirmed experimentally that i
now possible to control the two-body scattering length
placing atoms in an external field@24#. This fact opens the
way to a direct observation of a macroscopic quantum t
neling of thousands of atoms through a potential barrier.

Note also that the geometry and the dimensions of the
play an important role. In fact, if the condensate is less cig
shaped~greaterl5vz /vr! the system has a lower chemic
potential and weaker Gaussian barriers are requested to
the tunneling regime. Moreover, because the strength of
nonlinear self-interaction scales asas /az , by increasing the
dimensions of the trap we reduce the effect of the nonline
ity thereby favoring quantum tunneling.

In conclusion, we have shown that one can observe in
esting macroscopic quantum-mechanical effects by study
the Bose-Einstein condensate in a double-well trap. We h
accurately reproduced the formation of two Bose cond
sates observed by phase-contrast images at the MIT ex
ment @13#. Moreover, by using the Bogoliubov–de Genn
equations, we have analyzed the behavior of elementary
citations as a function of the strength of the double-well b
rier. In particular, we have identified two collective excit
tions that have a different fate by increasing the strength

TABLE IV. Parameters of the MQT for different values of th
scattering lengthas with as

Na53 nm andt052p\/DE0. Conden-
sate withN553103 atoms. Barrier withU0520 ands51.5 mm.
Unit of U0 as in Table I.

as /as
Na L t0 ~sec! zc

1021 1108.337 14.583 0.060
1022 133.643 13.887 0.173
1023 1.390 13.842 none
1024 0.103 10.253 none
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the barrier: an oddq50 mode that asymptotically goes t
zero and an evenq51 mode that remains constant also wh
the BEC separates in two condensates. We hope that
calculations will stimulate new, precise measurements of
excitation spectrum in this system in order to assess the
lidity of the theoretical framework adopted in the theoretic
analysis. We have also considered the macroscopic quan
tunneling. Our calculations suggest that, in the tunneling
gion and with 23Na atoms, one sees only the macrosco
quantum self-trapping~MQST! of the condensate also whe
an
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a small laser-sheet thickness is applied. We have shown
to get outside the MQST regime it is necessary to stron
reduce the scattering length or to increase the dimension
the trap. Note that at nonzero temperature, BEC deple
and thermal fluctuations will slightly modify the paramete
of the tunneling and will dampen the coherent oscillation
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