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Bose-Einstein condensation of a finite number of particles trapped in any-dimensional space
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Bose-Einstein condensation of an ideal Bose gas trapped in any-dimensional space is studied for the finite
particle number effects. The corrections of statistical properties due to the finite particle number effects are
obtained. We find that these corrections are more significant for the low-energy excited states which are the
focus of our interest. We also find that the asymmetry of the external potential intensifies these effects.
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Bose-Einstein condensation~BEC! was realized in ultra-
cold trapped atomic gases in 1995@1–3#. The new achieve-
ments have created a renewed interest in the theoretical s
of this phenomenon. BEC is interesting because it provi
us with a macroscopic phenomenon to study the quan
nature of matter; another exciting prospect is that it m
allow us to create an atom laser, which is expected to h
broad applications.

Theoretical studies have revealed that space dimensio
ity has significant effects on the properties of the syst
@4,5#. Moreover, there is evidence that effects of an exter
potential may be expressed as effects of a different sp
dimensionality. Furthermore, the occurrence of BEC
dimensionalities different from 3 is interesting in superflu
ity, superconductivity, electroweak phase transition, and
perfluidity in neutron stars. Therefore, it is interesting
study BEC in various space dimensionalities. In experime
the system has a finite particle numberN whose effects on
BEC are measurable. References@6,7# have investigated
these corrections, but have not discussed the conclusions
sented in this paper. We focus on a harmonic potential fo
relevance to experiments and for analytical results. Con
ering an ideal Bose gas trapped in an anisotropic harm
potential ind-dimensional space, we shall derive analytic
results for the finite-N corrections and discuss their determ
nants.

From the first principle of statistical mechanics, we ha
the Bose-Einstein distribution for a bosonic system,

n~El !5
1

e(El2m)/kT21
5(

j 51

`

zje2 jEl /kT, ~1!

wherez5 exp(m/kT) is the fugacity. In an anisotropic har
monic potential withv i as its frequency of each axis i
d-dimensional space, each particle has an energy ofEl

5( i 51
d nl ,i\v i . Summing over the energy levels, we m

obtain the total particle number
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gd21~z!S kT

\ D d21 (
i 51

d

v i

)
i 51

d

v i

, ~3!

where gn(x)5( l 51
` l 2nxl , and an approximation has bee

made by retaining the two highest-order terms inkT/\v. As
the density of states is introduced by

N2N05E
0

`

r~E!n~E!dE, ~4!

whereN0 is the ground-state population, Eq.~3! gives the
density of states

r~E!5
1

~d21!!

1

\d)
i 51

d

v i

Ed21

1
1

2~d22!!

(
i 51

d

v i

\d21)
i 51

d

v i

Ed22. ~5!

In the case of an isotropic harmonic potential with a fr
quencyv, Eqs.~3! and ~5! become

N5
z

12z
1gd~z!S kT

\v D d

1
d

2
gd21~z!S kT

\v D d21

~6!
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and

r~E!5
1

~d21!!

Ed21

~\v!d
1

d

2~d22!!

Ed22

~\v!d21
. ~7!

In fact, Eq. ~7! may be obtained by using this tradition
approach: the degeneracy of the state with energyn\v is a
problem of distributingn identical balls intod different
boxes; the combination number is

qd~E!5
~n1d21!~n1d22!•••~n11!

~d21!!

5
nd211@d~d21!/2#nd221•••

~d21!!
, ~8!

consideringE5n\v and the energy level spacing\v, a
better approximation of the density of states is theref
readily available to be Eq.~7!. By integrating the density o
states Eq.~7!, we may obtain an expression of the total pa
ticle numberN which is exactly Eq.~6!. This shows that
there is no fundamental difference between the use of
crete sums and a continuous spectrum if the density of st
is correctly approximated. We start with the method of d
crete sums, because the degeneracy of states may n
directly perceived through the senses in the case of an an
tropic harmonic potential.

Equation~5! may be written as

r~E!5
Ed21

~d21!!\d)
i 51

d

v i

S 11
d21

2

\(
i 51

d

v i

E
D . ~9!

Comparing Eq.~9! with the traditional result

r~E!5
Ed21

~d21!!\d)
i 51

d

v i

, ~10!

we find that, under a constant external potential, the cor
tion of the density of states due to finiteN is proportional to
1/E. Thus this effect is more significant for the low-ener
excited states which are the focus of our attention. The c
rection is also a function of the external potential. If t
density of states Eq.~5! is formulated as

r~E!5
Ed21

~d21!! ~\V!d
1g

Ed22

~\V!d21
, ~11!

where

V5S )
i 51

d

v i D 1/d

, ~12!

g5
1

2~d22!!

(
i 51

d

v i

S )
i 51

d

v i D 1/d , ~13!

the coefficientg may be used to express the intensity of t
finite-N correction versus the external potential. We find th
e

-

s-
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-
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t

g reaches its minimum value ofd/2(d22)! for an isotropic
harmonic potential, and the asymmetry of the external pot
tial intensifies this finite-N effect. Reference@7# also givesg
for an anisotropic harmonic potential in three-dimensio
space by means of numerical calculations and conform
our analytical result.

Compared with the usual result of transition temperatu

Tc
05

\

k F N

gd~1! )
i 51

d

v i G1/d

, ~14!

Eq. ~3! results in a transition temperature

Tc

Tc
0

512
gd21~1!

2d@gd~1!#121/d

(
i 51

d

v i

S )
i 51

d

v i D 1/d N21/d. ~15!

Equation~15! gives a decrease in the transition temperat
when the finite-N effect is taken into account. This is sen
sible for the decrease is proportional toN21/d, and vanishes
asN→`. For the transition temperature, we may obtain t
intensity of the finite-N correction versus the external pote
tial, similar to what we do for the density of states. Equati
~15! may also be used to describe the case of an isotro
harmonic potential so long asv i is substituted withv.

The condensate fraction at temperaturesT,Tc may be
derived from Eqs.~3! and ~14! to be

N0

N
512S T

Tc
0D dF 11

gd21~1!

2gd~1!

(
i 51

d

v i

kT
G . ~16!

For convenience, we discuss the fraction of excited state

Ne

N
5S T

Tc
0D dF 11

gd21~1!

2gd~1!

(
i 51

d

v i

kT
G . ~17!

Compared with the usual result of the fraction of excit
states

Ne

N
5S T

Tc
0D d

, ~18!

Eq. ~17! gives an increase of the fraction of excited sta
caused by the finite-N effect, which corresponds to the in
crease of the density of states illustrated by comparing
~5! with Eq. ~10!.
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