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Semianalytic theory of laser-assisted resonant cold collisions
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A general formalism is derived for analytically representing the scattering properties of ultracold atoms
subject to one or more resonant photoassociation lasers. The resulting formulas cleanly separate laser intensi-
ties and detunings from overlap integrals of molecular wave functions. As a consequence, laser-induced energy
shifts and line broadenings are given in an explicit form. In the case of the initial photoassociation step, these
quantities are given more simply in terms of the relevant molecular potential curves and wave functions near
the Condon point.@S1050-2947~99!02007-7#

PACS number~s!: 34.50.Rk
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I. INTRODUCTION

The interaction of lasers with atoms is a cornerstone
modern atomic physics. In particular, the laser cooling
periments begun over a decade ago opened up a new en
regime in atomic collisions@1#. At the sub-millikelvin tem-
peratures encountered in cold atom traps, collisions
greatly simplified by their nearly purelys-wave character,
yet are complicated by tiny energy scales, such as fine
hyperfine energies and optical line widths, that are of lit
concern at higher collision energies. In addition, effects
the Wigner threshold law become particularly prominent
these energies. These considerations have led to a rich p
ics of ultracold atoms@2#. More recent advances hav
yielded optical techniques that can produce even microke
temperatures@3#, though they have yet to achieve densiti
sufficiently high to produce Bose-Einstein condensation.

Lasers also make effective probes of cold atoms, as w
as tools for their manipulation. Thus a number of spect
scopic studies have been performed in cold atoms, nam
atomic spectroscopy of very narrow lines@4#, as well as mo-
lecular spectroscopy of very delicate vibrational levels t
would not exist outside the cold trap environment@5#. The
latter, photoassociation~PA! spectroscopy@6#, yields asym-
metric line shapes whose understanding requires accoun
for the near-threshold behavior of atomic scattering in
presence of the laser field. Line-shape formulas have b
suggested previously for one-@7# and two-color@8# PA spec-
tra.

In addition, laser light has been variously suggested a
implement for catalyzing the production of cold molecul
@9–12# or for cooling the molecules directly@13#. In these
scenarios multiple lasers must be considered, either to m
more favorable Franck-Condon overlaps@9,10# or to serve as
repumping light@13#. Other proposals have suggested las
light manipulation of the effective interatomic interaction
embodied ins-wave scattering lengths@14,15#. These ap-
proaches should make an even richer array of Bose-Eins
condensates than occur naturally.

*Electronic address: bohn@murphy.colorado.edu
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Most of these phenomena have one thing in comm
namely, theresonantexcitation of a pair of free atoms into
one or more quasibound molecular states. For the above
plications, and for others yet unseen, we derive in this pa
a general formalism for resonant scattering of cold atoms
a light field. Our approach will yield analytic formulas fo
resonance line shapes that clearly separate their depend
on laser intensities and detunings from those on Fran
Condon factors~FCF’s! and related quantities. In this wa
the results will be transparent and easily evaluated e
when considering the many parameters involved in
multiple-laser experiment. In addition, the influence of t
Wigner laws will be manifest in these formulas.

Our approach will exploit the ideas of a quantum-defe
approach to atomic scattering theory@16#. Namely, we will
first waive the requirement that wave functions in bou
state channels be finite in the limit of large interatomic se
ration R. Then the same perturbative expressions for scat
ing amplitudes will apply toall channel couplings, i.e., free
bound and bound-bound transitions, as well as spontane
emission, are handled on an equal footing. Then, in a sec
step, we will ‘‘close’’ the bound-state channels, by requiri
that their wave functions vanish at infinite atomic separati
There will then emerge simple algebraic procedures for c
structing the relevant scattering probabilities from Fran
Condon factors and the laser parameters. These probabi
will incorporate laser-induced broadenings and energy sh
the latter being approximated in our theory by a type
‘‘second-order’’ Franck-Condon factor.

A notable recent paper by Napolitano@17# takes up simi-
lar resonant line-shape issues, with particular emphasis
intense laser fields. It thus treats one-color photoassocia
in great detail, including the resulting mixtures of many sc
tering partial waves. The present treatment is complem
tary, in that the laser fields are assumed weak~though they
may be strong enough to broaden the line shapes!. Our focus
has been rather on the application of multiple lasers of
ferent colors, to emphasize the rich resonant structure
multiple resonant states.

After describing the basic process in Sec. II A, we pr
duce in Sec. II the mathematical derivation of our main
sults, namely, Eqs.~2.20!, ~2.21!, and Eqs.~2.34!–~2.36!.
414 ©1999 The American Physical Society
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PRA 60 415SEMIANALYTIC THEORY OF LASER-ASSISTED . . .
The reader more interested in applications than in formal
can thus skip most of Sec. II and begin constructing scat
ing matrices and line-shape formulas according to the rec
of Secs. III and IV. Of particular interest are Eqs.~3.6! and
~3.7!, which provide useful approximate formulas for lin
widths and laser-induced shifts of resonance positions for
initial PA step.

II. GENERAL THEORY

A. The process

Figure 1 sketches the general process that we aim to
scribe. A pair of cold atoms approaches one another w
relative kinetic energyE ~typically ,1 mK!, guided by their
interaction potentialV0. Here we envision for simplicity a
single incident channel, for instance, a pure triplet channe
the case of collisions between stretched-state alkali ato
We will ignore fine and hyperfine structure in this pap
focusing instead on individual resonances well separa
from their neighbors, in order to emphasize the structure
the line shapes. Nevertheless, the conclusions we come t
quite general, and carry over to more advanced scatte
problems, by replacing Franck-Condon factors and the
with their multichannel counterparts.

The atom pair is promoted by the first laser to a bou
state of energyEb1 in a potentialVb1(R). This laser is tuned
to an angular frequencyv1, which is detuned by an amoun
D1b5Eb12\v1 from the bound state. In addition, the la
ser’s intensity I 1 gives rise to a radiative couplingV01

rad

5(2pI 1 /c)1/2d1(R), where d1(R) is an R-dependent mo-
lecular dipole matrix element.d1(R) can be estimated, fo
our purposes, from the atomic dipole matrix element; det
are given in@18#. This radiative coupling, together with th
free-bound Franck-Condon factor for this transition, gen
ates a stimulated rateG152p@V01

rad(Rc)#2u^fb1u f 0&u2, by
Fermi’s golden rule. Herefb1(R) denotes the unit-
normalized bound state wave function of energyEb in po-
tential Vb1, and f 0(R) denotes the energy-normalized sc
tering wave function in the incident channel, to be defined
Sec. IIC. The radiative couplingV01

rad is evaluated at the Con
don radiusRc , where the photon’s energy just makes up t
difference between the ground- and excited-state potent

FIG. 1. Schematic potentials for cold collisions in the prese
of two near-resonant laser fields, illustrating the notation develo
in the text forN52.
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From levelb1, additional lasers can drive the atom pa
between any of a number of other bound states,b2 , . . . ,bN ,
which may generally be either above or below the origin
scattering energyE. These lasers, with angular frequenci
v i , i 52, . . . ,N, have detunings

D i5Ebi2\~v16v2•••6v i !, ~2.1!

where in each case a plus sign denotes absorption of a
ton, while a minus sign denotes emission of a photon~for
clarity, Fig. 1 depicts absorption only and setsN52). The
laser intensitiesI i also imply radiative couplingsVi ,i 11

rad ,
analogous toV01

rad. For bound-bound stimulated rates w
adopt the Rabi-frequency notation

\V i5Vi ,i 11
rad ~RCi,i 11!^fbiufb( i 11)&, i 52, . . . ,N21.

This rate depends on the overlap integral of each bound-s
wave functionfbi(R) with its successorfb( i 11)(R), and the
radiative coupling is again evaluated at the appropriate C
don pointRCi,i 11.

From each bound statei there exists the possibility of a
spontaneous emission event that occurs with a rateg i , which
is usually proportional to the atomic decay rates of the ato
involved. Such events can release enormous amounts o
netic energy on the scale of the trapped atoms, in which c
they lead to trap loss. Indeed, this loss is often the exp
mental signature of resonances in PA spectroscopy. Alte
tively, a probe laser may ionize the state of interest and p
duce loss@5#. Another possibility is thatg i represents the
rate for nonradiating molecular states to fall from the tr
region; this process has been suggested as a means fo
ducing ultracold molecules@12#.

The full treatment of spontaneous emission during atom
collisions can be quite involved@19#. We will bypass this
complexity by coupling each bound statebi to an ‘‘artificial
channel,’’ identified by a purely repulsive potentialVia(R).

FIG. 2. Schematic potentials for cold collisions in the presen
of onenear-resonant laser field, demonstrating the way our form
ism handles the PA process. PotentialVb1 has been shifted down in
energy by\v1, so that the resonance lies atE'D1, the laser’s
detuning. In addition, this figure shows the artificial channelVa1,
which models the spontaneous emission rateg1.
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416 PRA 60JOHN L. BOHN AND P. S. JULIENNE
The artificial potentials will account phenomenologically f
the flux lost by spontaneous emission or other loss proce
@20#. Trap loss will then be determined in our model by t
appropriate scattering matrix elementS0,ai which gives the
probability amplitude for the atom pair to encounter ea
other with energyE in the incident channel, interact unde
ra

d
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the influence of the laser light, then be ejected by scatte
into artificial channelai . Our main task in this paper is to
relate these scattering matrix elements to the detuningsD i ,
stimulated ratesG and V i , and the spontaneous ratesg i .
The observed line shape will be given by the thermally a
eraged value of the scattering matrix element,
K~T,D1 , . . . ,.DN ,I 1 , . . . ,I N ,g1 , . . . ,gN!

5K pv
k2 (

l 50

`

~2l 11!US0,ia~E,l ,D1 , . . . ,DN ,I 1 , . . . ,I N ,g1 , . . . ,gN!U2L . ~2.2!
al,

n-
ti-

one
s be-
tive

an-

de-

lly,
Here the brackets denote the appropriate thermal ave
over a distribution of relative velocitiesv, at temperatureT,
and k5A2mE/\2, i.e., k is the wave number for reduce
massm.

The diagonal elementS00 of the scattering matrix will
also prove of relevance, for studies aimed at influencing
elastic-scattering properties of cold atoms. These elem
will naturally emerge along with the rest of the scatteri
matrix in the following.

B. Model

To cast this process as a scattering problem, we fin
convenient to letE denote the same total energy in eve
channel. We thus shift the potentialVb1 lower in energy by
\v1, as illustrated in Fig. 2. In this case the detuningD1
represents the energy of the bound-stateb1 relative to the
incident threshold, whereby the resonance condition
comesE'D1. Likewise, we will regard each potentialVbi as
shifted by an amount\(v16v2•••6v i), with the signs
chosen in accordance with Eq.~2.1!. Figure 2 also illustrates
the artificial channel potentialV1a(R), designed to be totally
repulsive and to converge at largeR to a value well below
the incident threshold, so that its threshold effects will n
become significant.

In the absence of radiative coupling we take the Ham
tonian to be diagonal, with diagonal potential matrix of t
form
ge

e
ts

it

e-

t

-

V~R!5diag@V0~R!,Va1~R!, . . . ,VaN~R!,

3Vb1~R!, . . . ,VbN~R!#. ~2.3!

In this notation we incorporate a centrifugal potenti
\2l ( l 11)/2mR2, into the incident channel potentialV0. The
incident channel, together with the artificial channels, ide
tify N11 ‘‘open’’ channels, in which the atoms are energe
cally able to proceed to infinite separationR. The bound
channels likewise identifyN ‘‘closed’’ channels, in which
the atoms do not have sufficient energy to escape from
another. Once the lasers are switched on, these channel
come coupled through the appropriate off-diagonal radia
couplingsVi j

rad described in Sec. IIA@18#. In addition, each
closed channel is coupled to its corresponding artificial ch
nel by anR-independent couplingVi ,i

artif , whose strength is
adjusted artificially to reproduce the correct spontaneous
cay rate, according to the golden rule:

g i52p~Vi ,i
artif!2z^fbiu f ai& z2. ~2.4!

Just as above for the stimulated rate,f ai denotes an energy
normalized scattering wave function, whilefbi stands for a
unit-normalized bound-state wave function. Schematica
the full potentialV1V8[V1Vrad1Vartif takes the form
1
V0 0 ••• 0 V01

rad 0 ••• 0

0 V1a 0 ••• 0 V11
artif 0 ••• 0

A 0 V2a V22
artif

A � �

0 0 VNa 0 VNN
artif

V10
rad V11

artif 0 ••• 0 V1b V12
rad

••• 0

0 0 V22
artif V12

rad V2b

A A � A � VN21,N
rad

0 0 VNN
artif 0 VN21,N

rad VNb

2 . ~2.5!
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The resulting coupled-channel Schro¨dinger equation, in
matrix form, is

F2
\2

2m

d2

dR2 1V~R!1V8~R!GF~R!5EF~R!. ~2.6!

Here the off-diagonal potential matrix elements are deno
V8, to be used as a perturbation Hamiltonian in the follo
ing. In Eq. ~2.6! F5$Fii 8% is a matrix of solutions, whose
second indexi 8 labels the linearly independent solution
The wave-function components must be regular at the or
@Fi ,i 8(0)50# and must satisfy scattering boundary con
tions in the open channels:

Fi ,i 8~R!;A 2m

p\2ki
@exp~2 ik iR!d i i 8

2 exp~ ik iR!Sii 8#, R→` ~2.7!

Here ki denotes the wave number in channeli, namely,ki
2

52m(E2Ei)/\, whereEi denotes the threshold energy
channeli. The normalization coefficient in Eq.~2.7! is ap-
propriate to energy normalization; we will see below tha
different factor is obtained for the unit-normalized wa
functions in closed channels. These boundary conditions
fine the scattering matrixSii 8 in terms of energy-normalized
incoming and outgoing plane waves in the various op
channels. Eqs.~2.5!–~2.7! pose a well-defined coupled
channels model for laser-assisted scattering@18#. Indeed, we
will in Sec. III compare our simple line-shape formulas wi
direct numerical solutions to this problem.

As an alternative to the complex-valued scattering mat
we find it convenient to work with the real-valued reacti
matrix K red, defined by relating the long-range behavior ofF
in the open channels to standing waves at largeR:

Fii 8~R!;A 2m

p\2ki
@sinkiRd i i 81 coskiRKii 8

red
#, R→`

~2.8!

The superscript ‘‘red’’ onK stands for ‘‘reduced,’’ a notation
that will become evident in the following subsection. T
reaction and scattering matrices are related through

S5
11 iK red

12 iK red
, ~2.9!

i.e., they bear the same relation as exp(2id) and tan(d) for a
scattering phase shiftd.

C. Quantum defect treatment

A full discussion of quantum-defect methods as applied
molecular physics can be found elsewhere@16#; here we will
merely summarize the results we need. We note also that
viewpoint has seen a recent revival in its application
atomic collisions near threshold@21–23#. The spirit of quan-
tum defect theory~QDT! consists of separating the physi
of channel coupling from the physics of resonances. Nam
it initially treats all channels, both open and closed, on
equal footing, generating a ‘‘short-range’’K matrix that
tends to depend smoothly on energy. In our case, thiK
matrix will also vary smoothly and predictably with the las
parameters. In a second step, QDT ‘‘eliminates’’ the clos
d
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n

,
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channels, i.e., requires that their wave functions vanish
asymptotically largeR. In this second step, the sharp ener
dependences that characterize resonant scattering will
pear. In the context of laser-assisted cold collisions, this tw
step treatment will emphasize formally the role of laser
tensities and detunings in determining line shapes, w
separating the role of molecular physics embodied in
Franck-Condon factors.

We first generate, for each channel, a pair of refere
functions f i(R) and gi(R), that satisfy the single-channe
Schrödinger equations,

F2
\2

2m

d2

dR21Vi~R!G3H f i~R!

gi~R!J 5E3H f i~R!

gi~R!J .

~2.10!

In the open channels,f i andgi are defined by the following
boundary conditions:

f i~R!;Rl i, R→0

f i~R!;A 2m

p\2ki
sin~kiR2 l ip/21h i !, R→`

gi~R!;R2 l i21, R→0

gi~R!;2A 2m

p\2ki
cos~kiR2 l ip/21h i !, R→`

~2.11!

where l i50 in all artificial channels, andl 0 corresponds to
the partial wave of interest in the incident channel. The
solutions already include the elastic-scattering phase s
h i for scattering in the potentialsVi . These functions are
said to be ‘‘energy normalized,’’ as a consequence of wh
their Wronskian becomes

W~ f i ,gi !5 f i

dgi

dR
2

d fi

dR
gi5

2m

p\2 . ~2.12!

We note here that the artificial channel potentials~hence
wave functions! are fairly arbitrary, because:~i! their elastic
phase shifts are unobservable,~ii ! loss rates to these channe
will ultimately be replaced by phenomenological rates, a
~iii ! energy shifts arising from these channels are unphysi
and should be disregarded in applications of the semiana
formulas~see Sec. III!.

In the closed channels,f i andgi are defined by a WKB-
like boundary condition at each channel’s potential minimu
R5R0i , as related in@16#. These functions are likewise en
ergy normalized, so that they are treated on an equal foo
with the open-channel functions. Namely,f i satisfies f i
;Rl i asR→0, while the WKB-like condition

f i
2Fki

21S d fi /dR

f i
D 2G;ki at R5R0i ~2.13!

determines an energy-like normalization in these chann
The irregular functiongi is defined to be ‘‘out of phase’’
with f i at Vi ’s minimum, in analogy with the definitions in
~2.11!:

gi;2
1

ki

d f i

dR
at R5R0i . ~2.14!
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f i and gi are generally both divergent asR→`; however,
when the total energyE coincides with the energy of a boun
state ofVi , f i vanishes at largeR and becomes proportiona
to a bound-state wave functionf i , related tof i by

f i5S 1

p

]n i

]E D 1/2

f i , ~2.15!

and ‘‘space’’ normalized in the usual way,

E
0

`

dRf i
2~R!51. ~2.16!

Heren i /p5n i(E)/p stands for a quantum defect, a quant
that takes integer values wheneverE5En coincides with a
bound state of energyEn , and interpolates smoothly be
tween these values@16#.

In terms of these reference functions theK matrix satisfies
a relation analogous to Eq.~2.8!:

Fii 8~R!; f i~R!d i i 82gi~R!Kii 8 , ~2.17!

or in matrices,

F~R!; f ~R!2g~R!K. ~2.18!

In this last form,f andg stand for diagonal matrices, whos
diagonal elements are the regular and irregular channel f
tions. This relation will defineK for open and closed chan
nels alike.K generally has a weak energy dependence,
cause physical boundary conditions have yet to be impo
on the closed channels. Imposing these conditions is con
tionally done by partitioningK into open and closed blocks

K5S Koo Koc

Kco KccD . ~2.19!

Rearranging the solutions~2.18! so that closed-channel wav
functions vanish at largeR amounts to defining a reducedK
matrix @24#,

K red5Koo2Koc~ tann1Kcc!21Kco, ~2.20!

whose dimension is the number of open channels. The ph
cal scattering matrix is then obtained from

S5 exp~ ih!
11 iK red

12 iK red
exp~ ih!, ~2.21!

where exp(ih) denotes a diagonal matrix whose diagonal
ements are exp(ihi) for the elastic phase shiftsh i .

D. Perturbative evaluation of K

Often in scattering calculations theK matrix is evaluated
numerically, by directly integrating the coupled-chann
Schrödinger equation for the scattering process. In this s
section, we instead evaluateK perturbatively, in order to de
termine final results in an analytic way. Our treatment reca
K as an explicitlyR-dependent quantityK(R), which ac-
counts for the ‘‘running value’’ ofK as R progresses from
zero to` . That is, we write the coupled-channel wave fun
tion in a form analogous to Eq.~2.18!,

F~R!5@ f ~R!2g~R!K~R!#Z~R!, ~2.22!
c-

e-
ed
n-

si-

-

l
-

ts

-

for all values ofR. Heref andg stand for diagonal matrice
consisting of the regular and irregular channel refere
functions, whileZ stands for a normalization matrix.~Note
thatZ is often denotedI in the QDT literature; here we useZ
to avoid confusion with our notation for laser intensity.! K
then satisfies a first-order differential equation inR, with
initial boundary conditionK(0)50, andK will tend at as-
ymptotically largeR to the correct scatteringK matrix @25–
27#. This viewpoint is often valuable in mapping the range
R where the scattering phase shifts accumulate. It
thereby shed light on the processes involved in channel c
pling @26,27#, although we will not address this issue here

To derive the differential equation forK(R), we find it
convenient to reparametrize Eq.~2.22! as

F~R!5 f ~R!Z~R!2g~R!J~R!. ~2.23!

This decomposition factorsK into Z and J, in analogy to
factoring a tangent into a sine and cosine, so thatK5JZ21.
The gradient ofF is then

dF

dR
5

d f

dR
Z2

dg

dR
J1 f

dZ

dR
2g

dJ

dR
. ~2.24!

The matricesZ andJ are not of individual interest, since it i
their ratio that determines observable scattering proper
We are, therefore, free to impose an additional constr
between these matrices, which we choose to be

f
dZ

dR
2g

dJ

dR
[0. ~2.25!

This procedure is well known in the theory of ordinary d
ferential equations as the ‘‘technique of variational para
eters’’ @28#. With this definition, the Schro¨dinger equation
~2.6! for F becomes, after substituting the definition~2.10! of
the reference functions,

2
\2

2m S d f

dR

dZ

dR
2

dg

dR

dJ

dRD1V8~R!F~R!50. ~2.26!

We then invert the linear system~2.25! and ~2.26! to deter-
mine expressions for the derivatives ofZ andJ:

dZ

dR
52pg~R!V8~R!F~R!,

dJ

dR
52p f ~R!V8~R!F~R!,

~2.27!

where we have exploited the Wronskian~2.12! of the chan-
nel functions. We finally insert the relations~2.23! and~2.27!
into dK/dR to obtain the equation forK:

dK

dR
5

dJ

dR
Z212JZ21

dZ

dR
Z21

52p f V8 f 1p f V8gK1pKgV8 f 2pKgV8gK.

~2.28!

Such expressions are already familiar in the distorted-w
theory of scattering@29#.

In the limit where the radiative coupling is weak,K is
expected to remain small, since the fully coupled scatter
wave functions differ little from those in the absence of t
radiation. In this case we neglect all but the first term on
right-hand-side of Eq.~2.28!, yielding an expression for the
first-orderK matrix:
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K (1)52pE
0

`

dR f~R!V8~R! f ~R!. ~2.29!

We will further assert that each elementVi j8 (R) can be well
approximated by its value near the Condon pointRCi j of the
transition, whereby the off-diagonal elements ofK become

Ki j 52pVi j8 ~RCi j !E
0

`

dR fi~R! f j~R!. ~2.30!

The second-order contribution toK is evaluated by insert
ing the integrand of Eq.~2.29! into Eq.~2.28!, and including
terms on the right-hand-side of Eq.~2.28! that are linear in
K. Again takingV8 constant, we find

Ki j
(2)52p2(

k
Vik8 ~RCik!Vk j8 ~RCk j!

3S E
0

`

dR fi~R!gk~R!E
0

R

dR8 f k~R8! f j~R8!

1E
0

`

dRgk~R! f j~R!E
0

R

dR8 f i~R8! f k~R8! D .

~2.31!

This expression describes the influence of channeli on chan-
nel j, via their mutual interaction with intermediate chann
k. As a particularly important case, we note the diago
elements ofK that reflect phase shifts in channeli due to its
interaction with other channelsk:

Kii
(2)522p2(

k
@Vik8 ~RCik!#

2

3E
0

`

dR fi~R!gk~R!E
0

R

dR8 f k~R8! f i~R8!.

~2.32!

As we will see below, this shift is responsible for the app
ent energy shift of the resonances in closed channelsi due to
their interaction with the open channelsk. Note that this
energy shift is proportional to laser intensity.

To turn these results into a useful formula we exploit t
fact that we are describing resonant scattering to make a
further approximations. First, in any closed-channelk we
note that the phase shiftnk;np near resonance, so that th
tangent in Eq.~2.20! can be approximated as

tannk;
]nk

]E
~E2Dk!. ~2.33!

The second approximation involves the closed-channel w
function. Namely, near the resonance conditionE;Dk this
wave function is very well described by the regular chan
function f k , with essentially no admixture of the irregula
function gk . Moreover, the regular function can in this ci
cumstance be represented by the space-normalized w
function fk defined in Eq.~2.15!.

Based on these approximations, the contributions toK
arising from the first-order termK (1) are as follows. Matrix
elements between one open and one closed channel be
l
l

-

w

ve

l

ve

me

Kik52pVik8 ~RCik!S 1

p

]nk

]E D 1/2E
0

`

dR fi~R!fk~R!,

~2.34!

where Vik8 stands for either radiative or artificial coupling
depending on whetheri 50 or i .0. If both channels are
closed,V85Vrad, and the matrix elements become instead

Kkk852pVkk8
rad

~RCkk8!
1

p S ]nk

]E

]nk8
]E D 1/2E

0

`

dRfk~R!fk8~R!.

~2.35!

Thus the only nonvanishing off-diagonal components ofK
are K0,b1 , Kai,bi , and Kbi,b( i 11) , following the pattern of
off-diagonal elements of the potential matrix~2.5!.

Similarly, we note that elements of the second-order c
tribution K (2) vanish whenever the intermediate statek in Eq.
~2.31! refers to a closed channel, since we disregard con
butions due togk . Comparison with the potential matri
~2.5! then demonstrates thatKi j vanishes between any tw
open channelsi and j, as well as between channel 0 an
channelb2 ~interacting viab1), between artificial channe
ai and bound channelb( i 11) ~interacting viabi), and be-
tweenbi andb( i 12) @interacting viab( i 11)]. This leaves
only the diagonal elements ofK in closed channels, which
take the form

Kkk522p2(
i

@Vik8 ~RCik!#
2S 1

p

]nk

]E D
3E

0

`

dRfk~R!gi~R!E
0

R

dR8 f i~R8!fk~R8!.

~2.36!

The structure ofK will emerge more clearly in the example
in the next two sections.

III. SINGLE-LASER LINE-SHAPE FORMULAS

In this section and the next we will present examples
the formalism of the last section, showing explicitly how
transform the approximateK-matrix formulas~2.34!–~2.36!
into useful expressions for the relevant scattering matrix
ements. In this section we describe the action of a sin
laser, emphasizing the role of laser intensity in broaden
and shifting the resonance features.

Within our model, this analysis entails a three-chan
scattering problem, requiring a single bound-state chan
Vb(R) and a single artificial channel potentialVa(R), along
with the incident channel potentialV0(R). With this notation
the K matrix reads

K5S 0 0 K0b

0 0 Kab

Kb0 Kba Kbb
D . ~3.1!

We reiterate that this expression follows from our seco
order ~in V8) approximation; in general, all elements ofK
will be nonzero. In this context, the zero elements ofK re-
flect the fact that the open channels are not directly coup
but interact only through their mutual couplings to the inte
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mediate bound state.K is thus already partitioned into ope
and closed portions as in Eq.~2.19!. Carrying out the reduc-
tion ~2.20! then yields the reducedK matrix,

K red5
21

tannb1Kbb
S K0bKb0 K0bKba

KabKb0 KabKbaD . ~3.2!

When the expressions forK, Eqs. ~2.34! and ~2.36! are
inserted here, the final expression forK red ensues:

K red5
21

2@E2~D1E1!#S G AgG

AgG g D . ~3.3!

Here g @see Eq.~2.4!# stands for the spontaneous emissi
loss rate, which can be determined empirically from the m
lecular radiative lifetime. Moreover,

G52p~V0b
rad!2U E

0

`

dR f0~R!fb~R!U2

~3.4!

denotes the intensity-dependent stimulated absorpt
emission rate generated by the laser.~Here and in the follow-
ing we will suppress the explicit notationRC , evaluation at
the Condon point being assumed.! The energy shift of the
effective resonance position due to the laser is

E1522p~V0b
rad!2E

0

`

dRfb~R!g0~R!E
0

R

dR8 f 0~R8!fb~R8!.

~3.5!

Evaluating the Franck-Condon factor in Eq.~3.4! is famil-
iar, but evaluating the ‘‘second-order’’ FCF in Eq.~3.5! is
less so. To compute it, it is generally necessary to tabu
the values of the inner integrand while computing the fir
order FCF. Alternatively, in some cases we can apply a
tionary phase approximation to estimate these integrals.
procedure is particularly useful for describing the initial ph
toassociation step; it is detailed in the Appendix, yielding
approximations,

G52p~V0b
rad!2S ]E

]n D u f 0~RC!u2

DC
, ~3.6!

E15p~V0b
rad!2S ]E

]n D f 0~RC!g0~RC!

DC
, ~3.7!

where the open-channel wave functionsf 0 andg0 are evalu-
ated at the Condon pointRC , and

DC[
]Vb

]R U
RC

. ~3.8!

The reflection approximation expressions~3.6! and~3.7! thus
depend on properties of wave functions and potential cur
along with the level density of vibrational levels in potent
Vb , which an be approximated as

]E

]n
'

En112En21

2
. ~3.9!

Moreover, this approximation makes the threshold beha
of these quantities manifestly apparent. In thek→0 limit, the
definitions~2.11! imply G;k andE1; const.
-

n/

te
-
a-
is

-
e

s,

r

In general, within the close-coupled theory presented h
there are additional apparent shifts arising from coupling
the open artificial channels. These shifts are unphysical a
facts of treating spontaneous emission channels in exa
the same way as open scattering channels, and shoul
neglected in applications of our semianalytic formula
Equation~3.5!, since it is applied to the physical scatterin
channel, yields the physical, laser-induced line shift.

Equation ~3.3! represents in a compact way all the re
evant scattering information. From it, we can extract t
scattering matrix using Eq.~2.21!. The inelastic part is

S0a52 i exp@ i ~h01ha!#
AgG

E2~Db1E1!1 i ~g1G!/2
,

~3.10!

whereby the trap loss probability becomes

uS0au25
gG

@E2~D1E1!#21S g1G

2 D 2 . ~3.11!

We have thus reproduced the line shape in@7#, and extended
it by accounting for the energy shiftE1 and broadened width
g1G.

The inelastic-scattering probability in Eq.~3.11! is for-
mally a Lorentzian, but in the low-energy regime both t
width G and the energy shiftE1 have explicit threshold
variations. Figure 3 illustrates this dependence, using as
example PA to thev564 vibrational level of theb3Sg ex-
cited state of lithium. This level has been observed in
spectroscopy at Rice University@30#; for reference purposes
we note that it is detuned;56 cm21 from the atomic reso-
nance, and has a Condon point atRC535 a.u. The detuning
from the molecular bound state is here taken asD520 MHz.
The upper curve of Fig. 3 shows the laser-induced line wi
G, computed from Eq. ~3.4!, for laser intensity I
5500 W/cm2. At this intensity G becomes comparable t
the spontaneous emission linewidth of 12 MHz@31#, at
which point the transition begins to saturate. Also,G drops to

FIG. 3. The laser-induced width (G) and energy shift (E1) pa-
rameters for PA in lithium, as described in the text, for a PA la
intensity of 500 W/cm2 and detuningD520 MHz. Note the varia-
tions of these quantities with collision energy, which give the lin
shape~3.11! non-Lorentzian features. Also plotted, as dots, are
results of the reflection approximation, as described in the text
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zero in proportion toE1/2, owing to the energy dependenc
of the Franck-Condon factor in Eq.~3.4!. As this dropoff
occurs on an energy scale comparable tog, it must be in-
cluded in any PA line-shape analysis, as has been em
sized@7,32#.

The lower curve in Fig. 3 shows the energy shift para
eter E1 computed from Eq.~3.5!, for the same intensity
500 W/cm2. This shift is also comparable tog, implying that
laser-induced shifts become significant for laser fields n
and beyond saturation. Note also thatE1 is negative, imply-
ing that the shift is always in the direction of red detunin

This negative shift will be generic in near-threshold res
nant scattering, for the following reason. In the Fano the
of a bound state coupled to a continuum, the energy shi
given formally by a principal part integral@33#,

E1
Fano5PE dE8

V~E8!2

E2E8
. ~3.12!

HereV(E8) represents essentially the density of continu
states at energyE8. For E near the unperturbed resonan
position, the integrand in Eq.~3.12! is positive whenE8
,E and negative whenE8.E. The positive slope ofV(E8)
versusE8 near threshold ensures that the negative part of
integrand will contribute more strongly, and Eq.~3.12! will
be negative. Another way of saying this is that the continu
levels will try to ‘‘repel’’ the unperturbed bound state, b
since there is ‘‘more continuum’’ on the high-energy sid
the net shift must be to lower energy, i.e., toward thresho
~In passing, we remark that Eq.~3.5! is a convenient way of
computingE1 on the energy shell, instead of performing t
difficult energy integral~3.12! @20#.!

The results of the reflection approximation, Eqs.~3.6! and
~3.7! are also plotted, as points, in Fig. 3. The agreement
the width G is excellent, as has been noted in@34#. The
approximation also works quite well for the energy sh
reproducing its value to within a few percent. We have th
generated a simple approximate means for determining
laser-induced shifts, which should be of use in saturat
studies of the PA process. Moreover, as noted above,
reflection approximation explains the threshold dependen
G;E1/2 andE1; const.

The action of laser intensities on the actual scatter
probabilitiesuS0au2 is shown in Figure 4. As the transitio
saturates, we see the characteristic broadening and red
of the line shape. In this figure the points represent a
numerical solution to the coupled-channels problem set u
Sec. II B, while the continuous lines were computed us
our simple line-shape formula~3.11! @35#. The simplified
formulas are quite adequate, showing slight deviation fr
the close-coupling solution only at the highest intens
1000 W/cm2, well above saturation. Figure 5 translates the
scattering probabilities into observable line shapes, by th
mally averaginguS0au2 according to Eq.~2.2!, and assuming
a temperature of 1 mK. We have plotted these rates ver
2D, rather than versusD, to place red detuning to the lef
Note the asymmetric line shape, with a long tail toward r
detuning, as has been previously noted@7#. For fixeddetun-
ing, scattering probability diminishes at high enough inte
sity ~Fig. 4!, as the apparent resonance position moves ef
tively below threshold. Varying the detuning, however, c
a-
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restore the resonance to positive scattering energies, whe
the thermally averaged signal gets larger at greater inten
~Fig. 5!. The laser must be detuned farther to the red to do
at higher intensities.

We can also derive from our reducedK matrix the elastic
scattering matrix element,

S005 exp~2ih0!

E2~D1E1!2 i S G2g

2 D
E2~D1E1!1 i S G1g

2 D . ~3.13!

From this scattering matrix element we can extract
complex-valued phase shift viaS005 exp(2id), with d5l

FIG. 4. Scattering probabilitiesuS0au2 for PA in lithium, for
various laser intensities and a fixed detuning ofD520 MHz. The
points denote numerical solutions to a quantum close-coup
problem, while the continuous curves were calculated from the li
shape formula~3.11!. The semianalytic formula seems adequate
predicting the broadened and shifted line as the laser inten
grows.

FIG. 5. Thermally averaged trap loss rates, according to
~2.2!, versus laser detuning, assuming a temperature of 1 mK.
four laser intensities are the same as in Fig. 4. The abscissa p
2D rather thanD, to place red laser detuning to the left. The effec
of broadening and laser-induced redshifts are clearly visible.
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1im, whose imaginary part accounts for the flux lost into t
artificial channel. This, in turn, gives us a complex-valu
scattering length,

asc52
1

k
~l1 im!, ~3.14!

where k5A2mE/\2 stands for the incident wave numbe
evaluated in the limit of smallE. In the present model, an
assuming tand'd, we arrive at an expression for the lase
dependent scattering length,

Re~asc!'asc~nat!2
1

k

1

2
G@E2~D1E1!#

@E2~D1E1# !22
G22g2

4

,

~3.15!

Im~asc!5
1

k

1
4 Gg

@E2~D1E1!#22
G21g2

4

, ~3.16!

whereasc(nat) is the unperturbed scattering length. Note t
G;k, so thatasc is well defined in the limit of vanishingk.
These expressions have already been discussed in@15#,
where they are used to expressing the feasibility of alter
scattering lengths in this way. Similar expressions, includ
the shift, have also appeared in@14#.
t

g
g

IV. TWO-LASER LINE SHAPES

In this section we derive the scattering matrix for a co
sion in the presence of two independently tunable las
This example is a little more complicated than the sing
laser case, and should provide suitable instruction for c
structing similar scattering matrices in more elaborate c
texts. In this case we will have five channels: 0, as usu
stands for the incident channel, anda1 anda2 are the artifi-
cial channels into which bound-state channelsb1 andb2 de-
cay, respectively. The pattern of off-diagonal coupling due
radiative and artificial couplings is given, analogously to E
~3.1!, by

K5S 0 0 0 K0,b1 0

0 0 0 Ka1,b1 0

0 0 0 0 Ka2,b2

K0,b1 Ka1,b1 0 Kb1,b1 Kb1,b2

0 0 Ka2,b2 Kb1,b2 Kb2,b2

D .

~4.1!

We proceed, as before, to construct from this matrix
reducedK matrix,
lowing

ns
K red5
21

~Kb1,b11 tannb1!~Kb2,b21 tannb2!2Kb1,b2
2

3S K0,b1~Kb2,b21 tannb2!K0,b1 K0,b1~Kb2,b21 tannb2!Ka1,b1 2K0,b1Kb1,b2Ka2,b2

Ka1,b1~Kb2,b21 tannb2!K0,b1 Ka1,b1~Kb2,b21 tannb2!Ka1,b1 2Ka1,b1Kb1,b2Ka2,b2

2Ka2,b2Kb1,b2K0,b1 2Ka2,b2Kb2,b1Kb1,a1 Ka2,b2~Kb1,b11 tannb1!Ka2,b2
D . ~4.2!

Again, in complete analogy with what we did in the single-laser case, we identify free-bound couplings with the fol
rates:

G52p~V0,b1
rad !2U E

0

`

dR f0~R!fb1~R!U2

~4.3!

for the initial stimulated process to bound levelb1, and

g i52p~Vbi,ai
artif !2U E

0

`

dR fai~R!fbi~R!U2

~4.4!

for spontaneous emission from either bound-statei. In addition, we have this time to identify the Rabi frequency for transitio
between the two bound states, through

\V5UVb1,b2
rad E

0

`

dRfb1~R!fb2~R!U. ~4.5!

Then, making the approximation~2.33! for the energy dependence of the quantum defects, we write the reducedK matrix in
terms of observables through
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K red5
21/2

„E2~D11E1!…„E2~D21E2!…2~\V!23S G@E2~D21E2!# Ag1G@E2~D21E2!# 2Ag2G\V

Ag1G@E2~D21E2!# g1@E2~D21E2!# 2Ag1g2\V

2Ag2G\V 2Ag1g2\V g2@E2~D11E1!#
D .

~4.6!
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Here again there are energy shifts that arise from the
teraction of closed channels with open ones. The relev
shift for us isE1, which is generated by the connection
bound stateb1 with the incident continuum:

E1522p~V0,b1
rad !2E

0

`

dRfb1~R!g0~R!

3E
0

R

dR8 f 0~R8!fb1~R8!. ~4.7!

As above, this expression deliberately neglects the influe
of the continuum channela1, which we regard as unphysica
The expression forE2, which arises from the coupling o
bound stateb2 with the artificial channela2, is likewise ar-
tificial, and should be neglected in applications of the tw
color results in this section.

The physical scattering results are summarized in the s
tering amplitudesS0,0, S0,a1, andS0,a2. After some algebra
the recipe~2.21! yields

S0,a15
2 iAg1G~E2D21 ig2/2!

d~E,G,g1 ,g2 ,D1 ,D2 ,E1!
, ~4.8!

S0,a25
iAg2G\V

d~E,G,g1 ,g2 ,D1 ,D2 ,E1!
, ~4.9!

S0,05
n~E,G,g1 ,g2 ,D1 ,D2 ,E1!

d~E,G,g1 ,g2 ,D1 ,D2 ,E1!
,

n~E,G,g1 ,g2 ,D1 ,D2 ,E1!5$@E2~D11E1!#~E2D2!

2~\V!22g2~g12G!/4%

1 i $~g12G!~E2D2!/2

1g2@E2~D11E1!#/2%,

~4.10!

with resonance denominator

d~E,G,g1 ,g2 ,D1 ,D2 ,E1!5$@E2~D11E1!#~E2D2!

2~\V!22g2~g11G!/4%

1 i $~g11G!~E2D2!/2

1g2@E2~D11E1!#/2%.

~4.11!

Squaring the amplitudes~4.8!–~4.10! yields the probabili-
ties for various outcomes of the laser-assisted scattering
cess. The relatively simple algebraic forms of the result
expressions prove convenient for designing experime
aimed at producing a desired outcome. These issues
been described in@8# and extended in@12#.
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V. CONCLUSIONS

We have derived a straightforward algebraic proced
for deriving line-shape formulas in the context of lase
assisted cold collisions. These formulas are specialized to
case of near-resonant laser transitions. The basic inputs
sist of Franck-Condon factors between the states involved
well as ‘‘second-order’’ Franck-Condon factors, e.g., Eq
~2.36! that give explicit formulas for the energy shifts ass
ciated with high laser power. These quantities, together w
the detunings and intensities of the lasers, fit into sim
manipulations of small matrices to yield scattering probab
ties, leading to thermally averaged line shapes. Moreover
the initial PA step, these quantities can be estimated us
the simple reflection formula results~3.6! and~3.7!, without
explicitly performing a Franck-Condon integral at all. Th
one- and two-color examples presented here are illustra
of the general procedure, which should prove useful in c
texts yet to be envisioned.
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APPENDIX: REFLECTION FORMULA

The reflection approximation, as developed in Ref.@36#
and extended to cold atoms in@34#, can in some cases cir
cumvent the need to evaluate Franck-Condon-type integ
such as in Eqs.~3.4! and~3.5!. In this appendix we reproduc
Ref. @34#’s derivation for photoassociation linewidths, an
extend it to describe also intensity-dependent line shifts.
will focus on the special case of the initial photoassociat
step, from the incident continuum channel to the vibratio
bound state in potentialVb .

We begin by casting the incident-channel wave funct
f 0 and its irregular counterpart, into a phase-amplitude fo
after Milne @37#,

f 0~R!5A 2m

p\2a0~R!sinb0~R!,

g0~R!52A 2m

p\2a0~R!cosb0~R!. ~A1!

Note the minus sign in the definition ofg0, which is purely a
convention, but which formally affects the result~A24! be-
low. This is an exact representation of these wave functio
provideda0 andb0 satisfy

S d2

dR2 1k0
2~R! Da05

1

a0
3 , a0

2 db0

dR
51, ~A2!
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with local wave number

k0~R!5A2m

\2 @E2V0~R!#. ~A3!

The bound-state wave functionfb is likewise described as

fb~R!5A]E

]n
f b~R!, ~A4!

f b~R!5A 2m

p\2ab~R!sinbb~R!, ~A5!

with ab andbb satisfying equations similar to Eq.~A2!. In
terms of these Milne functions, the expression for the lin
width becomes

G52p~V0b
rad!2S ]E

]n D S 2m

p\2D uI 0bu2, ~A6!

in terms of the integral

I 0b[E
0

`

dRa0~R!ab~R!sinb0~R!sinbb~R! ~A7!

'
1

2E0

`

dRa0~R!ab~R!cos~b02bb!, ~A8!

where we have neglected rapidly oscillating cos(b01bb)
terms in comparison to cos(b02bb) terms. Note that Eq
~2.15!’s factor ]E/](n/p) is replaced here by]E/]n, the
actual density of vibrational levels.

The basic idea of the reflection approximation is th
rapid oscillations of the integrand in Eq.~A7! keep contribu-
tions to the integral near zero except whenR is near the
Condon point,RC , which is the point of stationary phase.
the field-dressed picture described in Sec. IIB,RC is the ra-
dius at which the potentialsV0 andVb cross. We, therefore
expand the phase differenceb02bb nearR'RC :

b02bb'b01b1~R2RC!1
b2

2
~R2RC!21•••. ~A9!

To evaluate the expansion coefficients, it helps to think
terms of WKB approximations to the phases, namely,

bb'E
RC

R

dR8kb~R8!2
p

4
. ~A10!

We then find@34#

b0'b0~RC!1
p

4
, ~A11!

b1'
1

a0
2 U

RC

2kbU
RC

'0, ~A12!

b2'
]k0

]R U
RC

2
]kb

]R U
RC

'
m

\2kb

]Vb

]R U
RC

. ~A13!

Approximation~A12! asserts that the radial kinetic energy
each channel is nearly the same atR5RC , while approxi-
mation ~A13! notes that]V0 /]R is vanishingly small com-
pared to]Vb /]R near the Condon point. We further defin
-

t

n

b2'
mDC

\2kb
, DC[

]Vb

]R U
RC

. ~A14!

Our integral~A8! then becomes

I 0b'
1

2E0

`

dRa0~R!ab~R!cosS b01
b2

2
~R2RC!2D .

~A15!

This integrand is strongly peaked aroundR5RC , meaning
we can further approximate

I 0b'
1

2
a0~RC!ab~RC!A2p

b2
cos~b01p/4!, ~A16!

where we have used

E
0

`

dx cos~x2!5E
0

`

dx sin~x2!5
1

2
Ap

2
. ~A17!

Inserting Eqs.~A11! and~A13! for b0 andb2, and using the
WKB expressionab51/Akb, Eq. ~A16! yields for the line-
width,

G52p~V0b
rad!2S ]E

]n D u f 0~RC!u2

DC
. ~A18!

As has been noted before, photoassociation line strength
a direct probe of the ground-state wave function’s magnitu
near the Condon point, and can thus be used to estim
scattering lengths@38#.

There remains only to estimate the energy shift~3.5!. In
the language developed above, this quantity reads

E1522p~V0b
rad!2S ]E

]n D S 2m

p\2D 2

I 0b
(2) , ~A19!

in terms of the ‘‘second-order’’ integral,

I 0b
(2)5E

0

`

dRab~R!sinbb~R!~21!a0~R!cosb0~R!

3E
0

R

dR8a0~R8!sinb0~R8!ab~R8!sinbb~R8!.

~A20!

Again neglecting rapidly oscillating phases, this integral b
comes

I 0b
(2)'

1

4E0

`

dRab~R!a0~R!sinS b01
b2

2
~R2RC!2D

3E
0

R

dR8a0~R8!ab~R8!cosS b01
b2

2
~R82RC!2D ,

~A21!

in terms of the phase expansions defined above.
Now, the ‘‘inner’’ integrand in Eq.~A21! represents es

sentially a delta function inR, whereby theR8 integration
yields a step function. The integral then simplifies to
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I 0b
(2)'

1

4
a0~RC!ab~RC!A2p

b2
cos~b01p/4!

3E
RC

`

ab~R!a0~R!sinS b01
b2

2
~R2RC!2D .

~A22!

Performing the integration a second time~note the different
lower limit!, the integral simplifies to
ev

e

ne

y

ys

M

c

e

I 0b
(2)'

1

8 S 2p

b2
Dab~RC!2a0~RC!2 cos~b01p/4!sin~b01p/4!.

~A23!

Again making the appropriate substitutions produces the
nal result:

E1'p~V0b
rad!2S ]E

]n D f 0~RC!g0~RC!

DC
. ~A24!
s.

g

G.

s.
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