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Semianalytic theory of laser-assisted resonant cold collisions
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A general formalism is derived for analytically representing the scattering properties of ultracold atoms
subject to one or more resonant photoassociation lasers. The resulting formulas cleanly separate laser intensi-
ties and detunings from overlap integrals of molecular wave functions. As a consequence, laser-induced energy
shifts and line broadenings are given in an explicit form. In the case of the initial photoassociation step, these
guantities are given more simply in terms of the relevant molecular potential curves and wave functions near
the Condon point{S1050-294{®9)02007-1

PACS numbd(s): 34.50.Rk

I. INTRODUCTION Most of these phenomena have one thing in common,
namely, theresonantexcitation of a pair of free atoms into

The interaction of lasers with atoms is a cornerstone irone or more quasibound molecular states. For the above ap-
modern atomic physics. In particular, the laser cooling explications, and for others yet unseen, we derive in this paper
periments begun over a decade ago opened up a new energygeneral formalism for resonant scattering of cold atoms in
regime in atomic collision§l]. At the sub-millikelvin tem-  a light field. Our approach will yield analytic formulas for
peratures encountered in cold atom traps, collisions areesonance line shapes that clearly separate their dependence
greatly simplified by their nearly purelg-wave character, on laser intensities and detunings from those on Franck-
yet are complicated by tiny energy scales, such as fine anGondon factordFCF’s) and related quantities. In this way
hyperfine energies and optical line widths, that are of littlethe results will be transparent and easily evaluated even
concern at higher collision energies. In addition, effects ofwhen considering the many parameters involved in a
the Wigner threshold law become particularly prominent atmultiple-laser experiment. In addition, the influence of the
these energies. These considerations have led to a rich phyafigner laws will be manifest in these formulas.
ics of ultracold atoms[2]. More recent advances have  Our approach will exploit the ideas of a quantum-defect
yielded optical techniques that can produce even microkelvimpproach to atomic scattering thedd6]. Namely, we will
temperature$3], though they have yet to achieve densitiesfirst waive the requirement that wave functions in bound
sufficiently high to produce Bose-Einstein condensation. state channels be finite in the limit of large interatomic sepa-

Lasers also make effective probes of cold atoms, as welation R. Then the same perturbative expressions for scatter-
as tools for their manipulation. Thus a number of spectroing amplitudes will apply tall channel couplings, i.e., free-
scopic studies have been performed in cold atoms, namelyound and bound-bound transitions, as well as spontaneous
atomic spectroscopy of very narrow lingH, as well as mo- emission, are handled on an equal footing. Then, in a second
lecular spectroscopy of very delicate vibrational levels thaistep, we will “close” the bound-state channels, by requiring
would not exist outside the cold trap environméhl. The that their wave functions vanish at infinite atomic separation.
latter, photoassociatioPA) spectroscopy6], yields asym-  There will then emerge simple algebraic procedures for con-
metric line shapes whose understanding requires accountirgructing the relevant scattering probabilities from Franck-
for the near-threshold behavior of atomic scattering in theCondon factors and the laser parameters. These probabilities
presence of the laser field. Line-shape formulas have beenill incorporate laser-induced broadenings and energy shifts,
suggested previously for ong?] and two-colo8] PA spec-  the latter being approximated in our theory by a type of
tra. “second-order” Franck-Condon factor.

In addition, laser light has been variously suggested as an A notable recent paper by Napolitafib7] takes up simi-
implement for catalyzing the production of cold moleculeslar resonant line-shape issues, with particular emphasis on
[9-17] or for cooling the molecules directlj13]. In these intense laser fields. It thus treats one-color photoassociation
scenarios multiple lasers must be considered, either to make great detail, including the resulting mixtures of many scat-
more favorable Franck-Condon overlgpsl0] or to serve as tering partial waves. The present treatment is complemen-
repumping ligh{13]. Other proposals have suggested laser4ary, in that the laser fields are assumed wé&hkugh they
light manipulation of the effective interatomic interactions, may be strong enough to broaden the line shayisr focus
embodied inswave scattering lengthgl4,15. These ap- has been rather on the application of multiple lasers of dif-
proaches should make an even richer array of Bose-Einstefierent colors, to emphasize the rich resonant structure of
condensates than occur naturally. multiple resonant states.

After describing the basic process in Sec. Il A, we pro-
duce in Sec. Il the mathematical derivation of our main re-
*Electronic address: bohn@murphy.colorado.edu sults, namely, Eqs(2.20, (2.21), and Egs.(2.349—(2.36.
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FIG. 1. Schematic potentials for cold collisions in the presence FIG. 2. Schematic potentials for cold collisions in the presence
of two near-resonant laser fields, illustrating the notation developedf onenear-resonant laser field, demonstrating the way our formal-
in the text forN=2. ism handles the PA process. Potentig} has been shifted down in

energy byfw,, so that the resonance lies Bt=A;, the laser's
The reader more interested in applications than in formalisnaletuning. In addition, this figure shows the artificial chanvig],
can thus skip most of Sec. Il and begin constructing scattemwhich models the spontaneous emission rate
ing matrices and line-shape formulas according to the recipes
of Secs. Ill and IV. Of particular interest are E¢8.6) and From levelb,, additional lasers can drive the atom pair
(3.7), which provide useful approximate formulas for line hetween any of a number of other bound staes.. . . by,
widths and laser-induced shifts of resonance positions for thghich may generally be either above or below the original
initial PA step. scattering energ¥. These lasers, with angular frequencies
wj, 1=2,... N, have detunings

Il. GENERAL THEORY
Ai=Epi—fi(w1F 0wy - - T wy), (2.9

A. The process

I_:lgure 1 s_ketches the general process that we aim to .d%\?here in each case a plus sign denotes absorption of a pho-
scribe. A pair of cold atoms approaches one another Wlﬂilon while a minus sign denotes emission of a photiom
relative kinetic energ¥ (typically <1 mK), guided by their clar’ity Fig. 1 depicts absorption only and séts=2). The
interaction potentiaV,. Here we envision for simplicity a laser ,inten.sitiesl- also imply radiative couplingslf.ad
single incident channel, for instance, a pure triplet channel in rad . i+l
the case of collisions between stretched-state alkali atomgnalogous t°V_01' For bound—l?ound stimulated rates we
We will ignore fine and hyperfine structure in this paper,adOIOt the Rabi-frequency notation
focusing instead on individual resonances well separated
from their neighbors, in order to emphasize the structure of _\srad -
the line shapegs. Nevertheless, the col?wclusions we come to are’ i = Viiri(Reiis (il #o ), 1=2, N=L
quite general, and carry over to more advanced scattering

problems, by replacing Franck-Condon factors and the likerpjs rate depends on the overlap integral of each bound-state
with their multichannel counterparts. wave functiongy,(R) with its successopy . 1)(R), and the

The atom pair is promoted by the first laser to a bound agiative coupling is again evaluated at the appropriate Con-
state of energ¥y,; in a potentialVy,;(R). This laser is tuned  4gp POINtRe; 1 1.
to an angular frequency,, which is detuned by an amount  £rom each bound staiethere exists the possibility of a
A1p=Ep~#iw, from the bound state. In addition, the la- spontaneous emission event that occurs with ayatevhich
ser's intensityl, gives rise to a radiative couplin¥s;’ s usually proportional to the atomic decay rates of the atoms
=(2ml1/c)"?dy(R), wheredy(R) is an R-dependent mo- involved. Such events can release enormous amounts of ki-
lecular dipole matrix elementd;(R) can be estimated, for netic energy on the scale of the trapped atoms, in which case
our purposes, from the atomic dipole matrix element; detailshey lead to trap loss. Indeed, this loss is often the experi-
are given in[18]. This radiative coupling, together with the mental signature of resonances in PA spectroscopy. Alterna-
free-bound Franck-Condon factor for this transition, genertively, a probe laser may ionize the state of interest and pro-
ates a stimulated raté;=2a[VH{R:)1%(bpilfo)l% by  duce loss[5]. Another possibility is thaty, represents the
Fermi's golden rule. Here¢y,(R) denotes the unit- rate for nonradiating molecular states to fall from the trap
normalized bound state wave function of enefglyin po-  region; this process has been suggested as a means for pro-
tential Vi1, and fo(R) denotes the energy-normalized scat-ducing ultracold moleculegl 2].
tering wave function in the incident channel, to be defined in  The full treatment of spontaneous emission during atomic
Sec. lIC. The radiative couplin\g[)aldis evaluated at the Con- collisions can be quite involvefil9]. We will bypass this
don radiusk., where the photon’s energy just makes up thecomplexity by coupling each bound stdigto an “artificial
difference between the ground- and excited-state potentialschannel,” identified by a purely repulsive potential,(R).
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The artificial potentials will account phenomenologically for the influence of the laser light, then be ejected by scattering
the flux lost by spontaneous emission or other loss process@sto artificial channela; . Our main task in this paper is to
[20]. Trap loss will then be determined in our model by therelate these scattering matrix elements to the detunings
appropriate scattering matrix elemesg,; which gives the stimulated rated” and Q;, and the spontaneous rates.
probability amplitude for the atom pair to encounter eachThe observed line shape will be given by the thermally av-
other with energyE in the incident channel, interact under eraged value of the scattering matrix element,

K(T,Al, P !'AN’Il! P ,lN,’yl, . ,’)’N)
o ” 2
= F2‘6(2|+1) Soja(EL AL, - AN Y )| ) (2.2
|
Here the brackets denote the appropriate thermal average V(R)=diad Vo(R),Va1(R), . .. Van(R),
over a distribution of relative velocities, at temperaturd,
and k= \/ZME/hZ, i.e., k is the wave number for reduced XVp1(R), ... Vpn(R)]. (2.3

massyu.
The diagonal elemen$y, of the scattering matrix will i . . . ]

also prove of relevance, for studies aimed at influencing thd this notation we incorporate a centrifugal potential,

elastic-scattering properties of cold atoms. These elemenfs | (I +1)/2uR?, into the incident channel potentid,. The

will naturally emerge along with the rest of the scatteringincident channel, together with the artificial channels, iden-
matrix in the following. tify N+1 “open” channels, in which the atoms are energeti-
cally able to proceed to infinite separatiGh The bound
channels likewise identiffN “closed” channels, in which
the atoms do not have sufficient energy to escape from one
To cast this process as a scattering problem, we find ianother. Once the lasers are switched on, these channels be-
convenient to leE denote the same total energy in every come coupled through the appropriate off-diagonal radiative
channel. We thus shift the potentid}, lower in energy by  couplingsV;** described in Sec. 11A18]. In addition, each
hwy, as illustrated in Fig. 2. In this case the detuniig  cjosed channel is coupled to its corresponding artificial chan-
represents the energy of the bound-stajerelative to the g py anR-independent coupliny®t, whose strength is
incident threshold, whereby the resonance condition beygjysted artificially to reproduce the correct spontaneous de-
comesE~A;. Likewise, we will regard each potentid|,; as cay rate, according to the golden rule:

shifted by an amounti(w;* w,- - - = w;), with the signs

chosen in accordance with E@.1). Figure 2 also illustrates .

the artificial channel potential,,(R), designed to be totally ¥yi= 2wV 2 il fai) . 2.4

repulsive and to converge at largeto a value well below

the incident threshold, so that its threshold effects will not

become significant. Just as above for the stimulated ratg, denotes an energy
In the absence of radiative coupling we take the Hamil-normalized scattering wave function, whidlg,; stands for a

tonian to be diagonal, with diagonal potential matrix of theunit-normalized bound-state wave function. Schematically,

B. Model

form the full potentialV+ V' =V + V'2%+ V21 takes the form
Vo 0 .- 0o Vv& o
0 Vi, O oo 0 VAo
0 Vi Ve
0 o_ Vna O VRN || 2.5
VB VI 0 o 0 vy, VA . 0
0 o vy VE' Vo
: ’ : Vidin

o o0 Vin 0 VRSN Vi
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The resulting coupled-channel ScHimger equation, in channels, i.e., requires that their wave functions vanish at

matrix form, is asymptotically largeR. In this second step, the sharp energy
2 g2 dependences that characterize resonant scattering will ap-
— Z iR +V(R)+V'(R)|F(R)=EF(R). (2.9 pear. In the context of laser-assisted cold collisions, this two-

step treatment will emphasize formally the role of laser in-
ensities and detunings in determining line shapes, while
separating the role of molecular physics embodied in the
Franck-Condon factors.
We first generate, for each channel, a pair of reference
%mctionsfi(R) and g;(R), that satisfy the single-channel
chralinger equations,

Here the off-diagonal potential matrix elements are denote
V', to be used as a perturbation Hamiltonian in the follow-
ing. In Eq.(2.6) F={F;;;} is a matrix of solutions, whose

second index’ labels the linearly independent solutions.
The wave-function components must be regular at the origi
[Fi;(0)=0] and must satisfy scattering boundary condi-

tions in the open channels: 72 o2 fi(R) fi(R)
—— —+Vi(R)| X} g. =EX{ 4 .
2u _ [ 24 ag Vi gi(R) gi(R)
Fii(R)~ ﬂ_hzki[exﬁ_'kiR)@i' (2.10
— expikiR)S;i ], R—ee (2.7) In the open channel$; andg; are defined by the following

Here k; denotes the wave number in channehamely,ki2 boundary conditions: .
=2u(E—E;)/%, whereE; denotes the threshold energy of fi(R)~Ri, R—0
channeli. The normalization coefficient in Eq2.7) is ap- 2
propriate to energy normalization; we will see below that a fi(R)~ /—l;—sir‘(kiR—li'zTIZ-i- 7)), R—o
different factor is obtained for the unit-normalized wave mhk;
functions in closed channels. These boundary conditions de- gi(R)~R7'"1 R-0

fine the scattering matris;;, in terms of energy-normalized

incoming and outgoing plane waves in the various open o 2u B
channels. Eqs(2.5—(2.7) pose a well-defined coupled- gi(R) P cogkiR=lim/2+ 7)), R—oo

channels model for laser-assisted scattefitg}. Indeed, we (2.11
will in Sec. lll compare our simple line-shape formulas with
direct numerical solutions to this problem. wherel;=0 in all artificial channels, ant}, corresponds to

As an alternative to the complex-valued scattering matrixthe partial wave of interest in the incident channel. These
we find it convenient to work with the real-valued reaction solutions alre_ady_mclude the glastlc-scattermg phase shifts
matrix K" defined by relating the long-range behavioiFof ~ #; for scattering in the potential¥;. These functions are

in the open channels to standing waves at ldge said to be “energy normalized,” as a consequence of which
24 their Wronskian becomes
Fur (R~ ZyzlsinkiRay: + coskRIGT], R Wity gy=f, 38 _dh 2w
2.9 O TNGR T aRY T A2 :

The superscript “red” orK stands for “reduced,” a notation We note here that the artificial channel potentiéience
that will become evident in the following subsection. Thewave functions are fairly arbitrary, becauséi) their elastic

reaction and scattering matrices are related through phase shifts are unobserval(i¢) loss rates to these channels
1+iKred will ultimately be replaced by phenomenological rates, and
= (2.9 (iii ) energy shifts arising from these channels are unphysical,
1—iK"ed and should be disregarded in applications of the semianalytic
. i , formulas(see Sec. Il
ie., the_y bear the same relation as exp(and tang) for a In the closed channel$; andg; are defined by a WKB-
scattering phase shifi. like boundary condition at each channel’s potential minimum
R=Ry;, as related if16]. These functions are likewise en-
C. Quantum defect treatment ergy normalized, so that they are treated on an equal footing

gvith the open-channel functions. Namelf;, satisfies f;
~R!i asR—0, while the WKB-like condition

df, /dR| 2
f;

A full discussion of quantum-defect methods as applied t
molecular physics can be found elsewhgré]; here we will
merely summarize the results we need. We note also that this
viewpoint has seen a recent revival in its application to
atomic collisions near threshol@1-23. The spirit of quan-
tum defect theoryQDT) consists of separating the physics getermines an energy-like normalization in these channels.
of channel coupling from the physics of resonances. Namelyrne jrregular functiong; is defined to be “out of phase”

it initially treats all channels, both open and closed, on anyih f; atVv,’s minimum, in analogy with the definitions in
equal footing, generating a ‘“short-rangeK matrix that (2.12):

tends to depend smoothly on energy. In our case, khis
matrix will also vary smoothly and predictably with the laser gi~— i ﬂ
parameters. In a second step, QDT “eliminates” the closed ! ki dR

ke

Nki at RZROi (213

at R=Ry; . (2.14
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f; and g; are generally both divergent @&—o; however, for all values ofR. Heref andg stand for diagonal matrices
when the total energ§ coincides with the energy of a bound consisting of the regular and irregular channel reference
state ofV,, f; vanishes at larg and becomes proportional functions, whileZ stands for a normalization matrifNote

to a bound-state wave functiaf , related tof; by thatZ is often denoted in the QDT literature; here we uge
1 gp.\ 12 to avoid confusion with our notation for laser intensitiK
= __') b, (2.15  then satisfies a first-order differential equation Rn with
™ JE initial boundary conditiorkK(0)=0, andK will tend at as-
. . , , ymptotically largeR to the correct scattering matrix [25—
and “space” normalized in the usual way, 27]. This viewpoint is often valuable in mapping the range of
o 5 R where the scattering phase shifts accumulate. It can
fo dRei(R)=1. (218 thereby shed light on the processes involved in channel cou-

pling [26,27], although we will not address this issue here.

Herew; /= v;(E)/ stands for a quantum defect, a quantity To d_erlve the dlfferent_lal equation fdf(R), we find it
that takes integer values whene&sE, coincides with a convenient to reparametrize E@.22) as
bound state of energ¥,, and interpolates smoothly be- F(R)=f(R)Z(R)—g(R)J(R). (2.23
tween these valud4.6]. , . ) ,

In terms of these reference functions thenatrix satisfies 1 HiS decomposition factor into Z and J, in analogy to

a relation analogous to E€.8): factoring a tangent into a sine and cosine, so KatlZ 1.
The gradient of- is then
FII’(R)MfI(R)ﬁll'_gI(R)KII’l (217) dF df dg dZ d\]
—=—7——J+f—=—-0g-——. .
or in matrices, dR dRZ dRJ de ng (2.24
F(R)~f(R)—g(R)K. (218 The matrice andJ are not of individual interest, since it is

their ratio that determines observable scattering properties.
We are, therefore, free to impose an additional constraint
Between these matrices, which we choose to be

nels alike.K generally has a weak energy dependence, be- fﬁ_ d_‘]E . (2.29

cause physical boundary conditions have yet to be imposed dR g dR
on the closed channels. Imposing these conditions is conven-

tionally done by partitionind< into open and closed blocks: 1 Nis procedure is well known in the theory of ordinary dif-
ferential equations as the “technique of variational param-

KOO KOC . . . e . -
< ( ) eters” [28]. With this definition, the Schidinger equation

In this last form,f andg stand for diagonal matrices, whose
diagonal elements are the regular and irregular channel fun
tions. This relation will definék for open and closed chan-

Keo  Kee (219  (2.6) for F becomes, after substituting the definiti@10) of
the reference functions,
2
Rearranging the solution®.18 so that closed-channel wave _ ﬁ_(ﬂ d_Z_ @ d_‘]
functions vanish at larg® amounts to defining a reducéd 2
matrix [24],

JRdR drar TV (RF(R)=0. (2.2

We then invert the linear systef®.25 and(2.26) to deter-

d_ —
K*9=K°—K*(tany+K°®) " 1K, (220 mine expressions for the derivatives Daind J:
whose dimension is the number of open channels. The physi-g = — 7g(R\V'(R)F(R) dJ = —7f(R)V'(R)F(R)
cal scattering matrix is then obtained from dR " dR ’
: (2.27
o 14iked
S= exp(i ﬂ)mexm 7), (22D where we have exploited the Wronskiéh12 of the chan-

nel functions. We finally insert the relatiof®.23 and(2.27)

where expi() denotes a diagonal matrix whose diagonal el-into dK/dR to obtain the equation foK:
ements are expf,) for the elastic phase shifts, . aK EZ*l—JZ*ld—ZZ*l
dR dR dR

D. Perturbative evaluation of K =— 7tV f+ 7fV gK+ 7KgV’ f— mKgV' gK.

Often in scattering calculations thé matrix is evaluated (2.29
numerically, by directly integrating the coupled-channel '
Schralinger equation for the scattering process. In this subsych expressions are already familiar in the distorted-wave
section, we instead evaluateperturbatively, in order to de-  theory of scattering29].
termine final results in an analytic way. Our treatment recasts | the limit where the radiative coupling is weak, is

K as an explicitlyR-dependent quantitk(R), which ac-  expected to remain small, since the fully coupled scattering

counts for the “running value” oK asR progresses from \yaye functions differ little from those in the absence of the

zero to . That is, we write the coupled-channel wave func-ragiation. In this case we neglect all but the first term on the

tion in a form analogous to Eq2.18), right-hand-side of Eq(2.29), yielding an expression for the
F(R)=[f(R)—g(R)K(R)]Z(R), (2.22 first-orderK matrix:
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(1) * ’ ’ 1 (9Vk V2
K :—WJO dRf(R)V'(R)f(R). (2.29 Kik:_ﬂ'vik(RCik)<; E) fo dRf(R)#(R),

(2.39
We will further assert that each eIemerﬁ(R) can be well ) _ o - _
approximated by its value near the Condon pétaj; of the where Vj, stands for either radiative or artificial coupling,

transition, whereby the off-diagonal elementskobecome  depending on whether=0 or i>0. If both channels are
closed,V' =V and the matrix elements become instead

K, = — Vrad(R )E %% llzfde(ﬁ (R)¢ (R)
kk’ TV \Rckk! 7\ 9E JE 0 k k’ .

The second-order contribution kois evaluated by insert- (2.39
ing the integrand of E¢2.29 into Eq.(2.28, and including
terms on the right-hand-side of E(.28 that are linear in
K. Again takingV’' constant, we find

Thus the only nonvanishing off-diagonal componentsKof
are Kop1, Kaipi, and Ky i1y, following the pattern of
off-diagonal elements of the potential matf.5).

Similarly, we note that elements of the second-order con-
tribution K vanish whenever the intermediate stata Eq.
(2.3)) refers to a closed channel, since we disregard contri-
butions due tog,. Comparison with the potential matrix
(2.9 then demonstrates th&t; vanishes between any two
. openchannelsi andj, as well as between channel 0 and

* , , , channelb2 (interacting viabl), between artificial channel
* fo dRA(R)T;(R) Jo dRTT(RDTW(R ))' ai and bound channdi(i + 1) (interacting viabi), and be-
tweenbi andb(i +2) [interacting viab(i +1)]. This leaves
(2.3D only the diagonal elements &f in closed channels, which
take the form

Ki(jz): - 7722; Vi/k(RCik)Vﬁj(Rij)

o R
X JO dei(R)gk(R)fo dR' f (R)f(R")

This expression describes the influence of chanoalchan-
nel j, via their mutual interaction with intermediate channel K= — 2723 [V! (Rei) T2 iﬂ
k. As a particularly important case, we note the diagonal kk T4 [Vik(Reiw)] m JE
elements oK that reflect phase shifts in channelue to its
interaction with other channels

- R
xf dR¢k<R>gi<R>f dR'F(R) $u(R').
0 0

K@= —zWZZK [Vik(Rein)]? (2.36)

o R ) , The structure oK will emerge more clearly in the examples
<, dRfi(R)g(R) . dR'f (R)fi(R'). in the next two sections.

(2.32 Ill. SINGLE-LASER LINE-SHAPE FORMULAS

As we will see below, this shift is responsible for the appar- In this section and the next we will present examples of
ent energy shift of the resonances in closed charirdtle to  the formalism of the last section, showing explicitly how to
their interaction with the open channefts Note that this transform the approximati-matrix formulas(2.34—(2.36)
energy shift is proportional to laser intensity. into useful expressions for the relevant scattering matrix el-
To turn these results into a useful formula we exploit theements. In this section we describe the action of a single
fact that we are describing resonant scattering to make a feyaser, emphasizing the role of laser intensity in broadening
further approximations. First, in any closed-chankelve  and shifting the resonance features.
note that the phase shif{~n= near resonance, so that the  Within our model, this analysis entails a three-channel

tangent in Eq(2.20 can be approximated as scattering problem, requiring a single bound-state channel
o Vp(R) and a single artificial channel potentid)(R), along
tany,~ E(E—Ak). (2.33  with the incident channel potenti¥ly(R). With this notation
the K matrix reads
The second approximation involves the closed-channel wave 0 0 Ko
function. Namely, near the resonance conditiorr Ay this k=| O 0 Ky 3.2)
wave function is very well described by the regular channel Koo Koa Kpp '

function f, ., with essentially no admixture of the irregular
function g,. Moreover, the regular function can in this cir-
cumstance be represented by the space-normalized waVee reiterate that this expression follows from our second-
function ¢, defined in Eq.(2.15. order (in V') approximation; in general, all elements kf
Based on these approximations, the contributiondto will be nonzero. In this context, the zero elementsKofe-
arising from the first-order terrK(*) are as follows. Matrix  flect the fact that the open channels are not directly coupled,
elements between one open and one closed channel becolmgt interact only through their mutual couplings to the inter-
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mediate bound stat& is thus already partitioned into open 100
and closed portions as in E.19. Carrying out the reduc- r
tion (2.20 then yields the reduceld matrix, 50 T
; -1 KobKpo  KobKpa 00'
read_—_ .
T tanvy+ Kpp | Kaobo  KapKpa | (3.2 i

When the expressions fd€, Egs.(2.34 and (2.36 are
inserted here, the final expression %9 ensues:

Energy (MHz)
(4]
(=
T

-10.0

-1 r VoI | El .
K red— (3.3 ] RS o hd
2[E-(A+Ep]\ VI v |- : TR
200 n 1 1 1 1 1 n 1 2 1 2 1
. i 00 5.0 100 15.0 20.0 25.0 30.0
Here y [see Eq.(2.4)] stands for the spontaneous emission Scattering Energy (MHz)
loss rate, which can be determined empirically from the mo-
lecular radiative lifetime. Moreover, FIG. 3. The laser-induced widti'j and energy shiftE;) pa-
© 2 rameters for PA in lithium, as described in the text, for a PA laser
I'= ZW(VB% 2 f dRf(R)¢,(R) (3.9 intensity of 500 W/crh and detuningA =20 MHz. Note the varia-
0 tions of these guantities with collision energy, which give the line-

) ) . _ shape(3.11) non-Lorentzian features. Also plotted, as dots, are the
denotes the intensity-dependent stimulated absorptionésyits of the reflection approximation, as described in the text.
emission rate generated by the lagetere and in the follow-

ing we will suppress the explicit notatidRc, evaluation at In general, within the close-coupled theory presented here
the Condon point being assumedhe energy shift of the there are additional apparent shifts arising from coupling to
effective resonance position due to the laser is the open artificial channels. These shifts are unphysical arti-

o R facts of treating spontaneous emission channels in exactly
Ei=—27(Vgp zf de’b(R)gO(R)f dR'fo(R")¢p(R").  the same way as open scattering channels, and should be
0 0 neglected in applications of our semianalytic formulas.

39 Equation(3.5), since it is applied to the physical scattering
Evaluating the Franck-Condon factor in E8.4) is famil- channel,_ylelds the physical, _Iaser-mduced line shift.
iar, but evaluating the “second-order” FCF in E(8.5) is Equation (3.3 represents in a compact way all the rel-

less so. To compute it, it is generally necessary to tabulatgVant scattering information. From it, we can extract the
the values of the inner integrand while computing the first-Scattering matrix using Ed2.21). The inelastic part is

order FCF. Alternatively, in some cases we can apply a sta- ) ) . vyl
tionary phase approximation to estimate these integrals. This Soa= —1 exfli(no+ na)JE_ (At Ey ) +i(y+T)2’
procedure is particularly useful for describing the initial pho- (3.10
toassociation step; it is detailed in the Appendix, yielding the
approximations, whereby the trap loss probability becomes
IE\[fo(Re)|? I
I'=27(Vgy)? %)D— (3.9 | Soal?= 7 (3.11
C 2 ’y+ F
[E-(A+E) ]+ 5
rad 2| 9E | fo(Re)9o(Re)
E1:7T(V0b - D—a (37) .
an c We have thus reproduced the line shapg7ilh and extended
it by accounting for the energy shit; and broadened width

where the open-channel wave functid@gsandg, are evalu-

. v+T.
ated at the Condon poiritc, and The inelastic-scattering probability in E¢3.11) is for-
A mally a Lorentzian, but in the low-energy regime both the
DC:ﬁ . . 38 width I' and the energy shifE; have explicit threshold
C

variations. Figure 3 illustrates this dependence, using as an
example PA to they=64 vibrational level of theb32g ex-
cited state of lithium. This level has been observed in PA
SSpectroscopy at Rice Universitg0]; for reference purposes,
we note that it is detunee 56 cm ! from the atomic reso-
nance, and has a Condon pointRg= 35 a.u. The detuning

JE Eny1—Ena from the molecular bound state is here taker\&s20 MHz.

on 2 : B9 The upper curve of Fig. 3 shows the laser-induced line width

I', computed from Eq.(3.4), for laser intensity I

Moreover, this approximation makes the threshold behaviore=500 W/cnt. At this intensity" becomes comparable to
of these quantities manifestly apparent. InkheO limit, the ~ the spontaneous emission linewidth of 12 MIH1], at
definitions(2.11 imply I'~k andE;~ const. which point the transition begins to saturate. AlEadrops to

The reflection approximation expressidBst) and(3.7) thus
depend on properties of wave functions and potential curve
along with the level density of vibrational levels in potential
Vy,, which an be approximated as
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zero in proportion tcEY2, owing to the energy dependence 09

——1=50 Wiem’
of the Franck-Condon factor in E¢3.4). As this dropoff 0s L e 2 — I =200 W/em’
occurs on an energy scale comparableytdt must be in- - S L= 500 W/em’
cluded in any PA line-shape analysis, as has been emphe,_ orr v
sized[7,32]. 06

» e 1= 1000 W/em’

The lower curve in Fig. 3 shows the energy shift param-
eter E; computed from Eq.(3.5), for the same intensity
500 W/cnft. This shift is also comparable ta implying that
laser-induced shifts become significant for laser fields neai
and beyond saturation. Note also tlatis negative, imply-
ing that the shift is always in the direction of red detuning. 02

This negative shift will be generic in near-threshold reso- ¢}
nant scattering, for the following reason. In the Fano theory
of a bound state coupled to a continuum, the energy shift is 00
given formally by a principal part integraB3],

0.5
0.4

0.3

Scattering Probability

Scattering Energy E (MHz)
"2 . . -
EFano_p dE’V(E ) (3.12 FIG. 4. Scattering probabilitiefSy,|* for PA in lithium, for
1 E—E' : various laser intensities and a fixed detuningAcf 20 MHz. The

points denote numerical solutions to a quantum close-coupling

HereV(E') represents essentially the density of Continuumpmblem’ while the continuous curves were calculated from the line-
) shape formuld3.11). The semianalytic formula seems adequate for

Stat,e_s at energE : ForE near the L'mperttlufbed reson"’l"lcepredicting the broadened and shifted line as the laser intensity
position, the integrand in Eq3.12 is positive whenE’ grows.
<E and negative whek&'>E. The positive slope oY/ (E’)
versusE’ near threshold ensures that the negative part of the . . .
integrand will contribute more strongly, and E8.12 will restore the resonance to positive scattering energles,_whereby
be negative. Another way of saying this is that the continuu T:Ie th; r?ﬁg%aas\;errg]%i? Eéggglu%ztj flg:'?heerr ?(t) ?rrliit:(; 'tgtzgss'tg
levels will try to “repel” the unperturbed bound state, but t%: h. intensiti
since there is “more continuum® on the high-energy side, * V\Ilge Sgr:na?snsldlgﬁi/e from our reduc&dmatrix the elastic
the net shift must be to lower energy, i.e., toward threshold. ) o el
(In passing, we remark that E¢B.5) is a convenient way of scattering matrix element,
computingE; on the energy shell, instead of performing the

difficult energy integral3.12) [20].) E—(A+ EQ—i(u)

The results of the reflection approximation, E(&6) and . 2
(3.7) are also plotted, as points, in Fig. 3. The agreement for Soo= €xp(2i 7o) T+y (3.13
the width T is excellent, as has been noted [B4]. The E-(A+E)+i| ——
approximation also works quite well for the energy shift,

reproducing its value to within a few percent. We have thus

generated a simple approximate means for determining therom this scattering matrix element we can extract a

laser-induced shifts, which should be of use in saturatiorcomplex-valued phase shift viS,= exp(45), with =X\

studies of the PA process. Moreover, as noted above, the

reflection approximation explains the threshold dependencies ,, _

I'~EY2 andE;~ const. i
The action of laser intensities on the actual scattering

10 A
probabilities|S,,|? is shown in Figure 4. As the transition [

—~ /
) | H
=

saturates, we see the characteristic broadening and red shig =50 Wiem® I

. . . . X o 2 ; 1
of the line shape. In this figure the points represent a fulls | - =200 W/em
numerical solution to the coupled-channels problem setup ir> [ o =500 W/em® / A

R . . . S | / R
Sec. 11 B, while the continuous lines were computed using 5, oer [=1000 Wem® ¢/ b

our simple line-shape formulé3.11) [35]. The simplified 2 [ S

" / : -

formulas are quite adequate, showing slight deviation fr0m§ 04r IS

the close-coupling solution only at the highest intensity, & [ %

1000 W/cn?, well above saturation. Figure 5 translates these™ o2 Red S Blue
scattering probabilities into observable line shapes, by ther- i ' :

mally averaging Sy,|? according to Eq(2.2), and assuming 00 = o = e E— —
a temperature of 1 mK. We have plotted these rates versus )

— A, rather than versua, to place red detuning to the left. Laser Detuning, -A (MHz)

Note the asymmetric line shape, with a long tail toward red F|G. 5. Thermally averaged trap loss rates, according to Eq.
detuning, as has been previously nofél For fixeddetun-  (2.2), versus laser detuning, assuming a temperature of 1 mK. The
ing, scattering probability diminishes at high enough inten-<four laser intensities are the same as in Fig. 4. The abscissa plots
sity (Fig. 4), as the apparent resonance position moves effec~ A rather tham, to place red laser detuning to the left. The effects
tively below threshold. Varying the detuning, however, canof broadening and laser-induced redshifts are clearly visible.
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+iu, whose imaginary part accounts for the flux lost into the IV. TWO-LASER LINE SHAPES
artificial channel. This, in turn, gives us a complex-valued
scattering length, In this section we derive the scattering matrix for a colli-
1 . sion in the presence of two independently tunable lasers.
=~ (N Fiw), (3.149  This example is a little more complicated than the single-
laser case, and should provide suitable instruction for con-
where k= \2uE/#? stands for the incident wave number, structing similar scattering matrices in more elaborate con-
evaluated in the limit of smalE. In the present model, and texts. In this case we will have five channels: 0, as usual,
assuming tafi~ 8§, we arrive at an expression for the laser- stands for the incident channel, aad anda, are the artifi-

dependent scattering length, cial channels into which bound-state chanr®lsandb, de-
1 cay, respectively. The pattern of off-diagonal coupling due to
STIE-(A+Ey)] radiative and artificial couplings is given, analogously to Eq.
Reag)~ag{nah — — 7, (3.1, by
Kk Irs—v
[E-(A+Eq])? - —
(315) 0 0 0 KO,bl 0
1 %l—w Y 0 0 0 Kal,bl 0
Im(asa:F 1‘*2+ 2 (316) K = 0 0 0 0 Ka2,b2

— 2_
[E-(A+Ey] Kopt Kaipr 0 Kpipr Kpipo

. . 0 0 K K K
whereag(nat) is the unperturbed scattering length. Note that azp2  hb1bz  Trb2b2

I'~k, so thata is well defined in the limit of vanishing. 4.7
These expressions have already been discussefdih

where they are used to expressing the feasibility of altering

scattering lengths in this way. Similar expressions, including We proceed, as before, to construct from this matrix the

the shift, have also appeared[it4]. reducedK matrix,
Kred: -1
(Kpip1+ tanwy;) (Kpopo + tanvy) —Kiy
Kop1(Kpzpz+ tanvpa)Kopr  Kopa(Kpzpz+ tanvyz)Karps —Kop1Kp1p2Kazp2
w | Karpi(Kozpot t@Nvha)Kopr  Kaipi(Kpzpo - taNhe)Kagpy ~Ka1p1Kp1poKazp2 . (4.2
—Kazp2Kp1p2Kop1 —Kazp2Kp2p1Kp1a1 Kazp2(Kprp1t tanvy:)Kazpo

Again, in complete analogy with what we did in the single-laser case, we identify free-bound couplings with the following
rates:

2

I'=2m(Vgp)® f dRfo(R) ¢pa(R) 43
' 0
for the initial stimulated process to bound le¥rl and
yi=2m(Viia)® fo dR(R) ¢ui(R) 4.4

for spontaneous emission from either bound-stalte addition, we have this time to identify the Rabi frequency for transitions
between the two bound states, through

hQ:‘Vﬁsz:d R¢b1(R)¢b2(R)‘- (4.5

Then, making the approximatidi2.33 for the energy dependence of the quantum defects, we write the relucedrix in
terms of observables through
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o FE—=(Ay+Ey)] VYl [E—(Az+Ey)] —Vyl'hQ
K red— — — — >X \/F[E—(AZ-F E)] y1[E—(A2+Ey)] —Vy172h Q)
(E-— (A1 +ED)E—(Az+Ey)—(RQ)
—VyI' Q) — VY172 Q) Y2l E—(A1+Ey)]

(4.6

Here again there are energy shifts that arise from the in- V. CONCLUSIONS
teraction of closed channels with open ones. The relevant
shift for us isE;, which is generated by the connection of

bound statdb1 with the incident continuum:

We have derived a straightforward algebraic procedure
for deriving line-shape formulas in the context of laser-
assisted cold collisions. These formulas are specialized to the
case of near-resonant laser transitions. The basic inputs con-
sist of Franck-Condon factors between the states involved, as
well as “second-order” Franck-Condon factors, e.g., Eqgs.
(2.36 that give explicit formulas for the energy shifts asso-
ciated with high laser power. These quantities, together with
the detunings and intensities of the lasers, fit into simple
As above, this expression deliberately neglects the influenc@anipulations of small matrices to yield scattering probabili-
of the continuum channel;, which we regard as unphysical. ties, leading to thermally averaged line shapes. Moreover, for
The expression f0E21 which arises from the Coup"ng of the initial PA Step, these quantities can be estimated USing
bound stateb, with the artificial channeh,, is likewise ar-  the simple reflection formula resul(8.6) and(3.7), without
tificial, and should be neglected in applications of the two-explicitly performing a Franck-Condon integral at all. The

Ei=- 27T(V{fgl)2f:d Rep1(R)go(R)

R
% | AR (R (R, @7
0

color results in this section.

one- and two-color examples presented here are illustrative

The physical scattering results are summarized in the sca@f the general procedure, which should prove useful in con-

tering amplitudesSy g, Spa1, and Sy 4. After some algebra,

the recipe(2.21) yields

= , 4.8

SO,al 5(E1F!711721A11A2!E1) ( )
iVy,I'hQ)

72 (4.9

2022~ SET 71,7200, 05,Ep)

:n(E1F1711y21A1 1A21El)
O S(ET, y1,72,01,45,E1)’

N(E,I', y1,v2,41,42,E1) ={[E= (A1 +E))](E—-Ay)
—(hQ)?= yo(y1— )4}
+i{(y1—T)(E-Ay)/2
+ v E—(A1+Ey)]/2},

(4.10

with resonance denominator
O(E, L', y1,72,81,82,E1) ={[E— (A1 +E1) J(E—Ay)
—(hQ)?=yy(y,+T)/4
+i{(y1+T)(E—A,)/2
+y[E-(A1+Ey) ]2}
(4.1
Squaring the amplitudgg.8)—(4.10 yields the probabili-

texts yet to be envisioned.
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APPENDIX: REFLECTION FORMULA

The reflection approximation, as developed in R&B]
and extended to cold atoms [B4], can in some cases cir-
cumvent the need to evaluate Franck-Condon-type integrals
such as in Eq93.4) and(3.5). In this appendix we reproduce
Ref. [34]'s derivation for photoassociation linewidths, and
extend it to describe also intensity-dependent line shifts. We
will focus on the special case of the initial photoassociation
step, from the incident continuum channel to the vibrational
bound state in potential, .

We begin by casting the incident-channel wave function
fo and its irregular counterpart, into a phase-amplitude form,
after Milne [37],

[2pm .
fo(R)= mao(R)Smﬂo(R),
[2u
go(R)=— WGO(R)COS,BO(R)-

Note the minus sign in the definition gf, which is purely a
convention, but which formally affects the res(#24) be-

(A1)

ties for various outcomes of the laser-assisted scattering préew. This is an exact representation of these wave functions,
cess. The relatively simple algebraic forms of the resultingprovided ay and 3, satisfy

expressions prove convenient for designing experiments
aimed at producing a desired outcome. These issues have

been described i8] and extended in12].

2dBO

2
(d—Rz‘l‘kg(R))ao:;g, aoﬁzly (AZ)
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with local wave number uD¢ MV
by~-7—, De=—35| . (A14)
2,LL h kb (9R R
ko(R)=\/ 52 [E=Vo(R)]. (A3) c
) o ) ) Our integral(A8) then becomes
The bound-state wave functiaf, is likewise described as L 0
JE | ~—f dRag(R)a Rcos(b +—2(R—R)2).
Su(R)= /Efb(R), Ad) oo~ | dRag(R)ay(R)cog bo+ = (R—Re
(A15)
2u .
fo(R) = \/ —2an(R)sinBy(R), (A5)  This integrand is strongly peaked arouRe=R., meaning
Th .
we can further approximate
with ay, and By, satisfying equations similar to EgA2). In 1 >
terms of these Milne functions, the expression for the line- |0b~§ao(Rc)ab(Rc) \ /b—cos{b0+ wl4), (Al16)
width becomes 2
JE\ [ 2u
=2 Bﬁz(ﬁ) (m)“odzl (AB) where we have used
“d 2~ | “dxsi 2—1\/E AL7
in terms of the integral o X COgX") = 0 xsinx9) =5\ 7. (Al7)

lop= JO dRag(R)ap(R)sinBo(R)sinBp(R) (A7) |nserting Eqs(A11) and(A13) for b, andb,, and using the
WKB expressionay, = 1/\ky,, Eq. (A16) yields for the line-

1 (> .
5| aRacRaRIcos B ), ag) WD
’ aE)lfo<Rc>|2
o (A18)

_ rad 2 ~ —
F 27T(V0b ([?n DC

where we have neglected rapidly oscillating ¢s{3,)

terms in comparison to cq8{—pB,) terms. Note that Eq.

(2.19's factor 9E/d(vl ) is replaced here byE/on, the  As has been noted before, photoassociation line strengths are

actual density of vibrational levels. a direct probe of the ground-state wave function’s magnitude
The basic idea of the reflection approximation is thatnear the Condon point, and can thus be used to estimate

rapid oscillations of the integrand in EGA7) keep contribu-  scattering length§38].

tions to the integral near zero except whBnis near the There remains only to estimate the energy st8ff). In

Condon pointRc, which is the point of stationary phase. In the language developed above, this quantity reads

the field-dressed picture described in Sec. IR, is the ra- JE\ [ 2u

dius at which the potentialg, andV,, cross. We, therefore, Ei=—-2m(V& 2<%) (—

2
— 1$2), (A19)
expand the phase differeng®— 8, nearR~R¢:

b2 H “ _ Mo
Bo— Bp~bo+Dbi(R—Re) + ?(R— Ro)2+---. (Ag) 1N terms of the “second-order” integral,

@_ [~ i _
To evaluate the expansion coefficients, it helps to think in | ob fo dRay(R)sinBu(R)(— 1) ao(R)c0sBo(R)

terms of WKB approximations to the phases, namely,

R
,Bb%f:dR’kb(R’)—%. (AL0) xfo dR’ ap(R’)sinBy(R’) ap(R’)sinBy(R").

‘ (A20)
We then find[34]

Again neglecting rapidly oscillating phases, this integral be-

bo~Bo(Re) + g (A11)  comes
1 1)~ lfwdRab(R)ao(R)sin( bo+ %(R— RC)Z)
bﬁ; —kp| =0, (A12) 4], 2
R fodR'a (R')a (R’)cos(b 222 pg )2)
b~ 20 % LB N A o T ° 2 <)
R 21

Approximation(A12) asserts that the radial kinetic energy in in terms of the phase expansions defined above.

each channel is nearly the sameRst R, while approxi- Now, the “inner” integrand in Eq.A21) represents es-
mation (A13) notes thatyV,/JR is vanishingly small com- sentially a delta function iR, whereby theR’ integration
pared todV,/JdR near the Condon point. We further define yields a step function. The integral then simplifies to
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1 2 1(27 ]
|2~ 790(Re)ap(Re) \ /b—cos( bo-+ 7/4) |2~ 5 ( b—) ap(Re)?ag(Re)? cog by+ 7/4)sin(by+ m/4).
2 2
b (A23)
><J’ ab(R)ao(R)sin( bo+ —(R— RC)Z). _ _ _ - _
Re 2 Again making the appropriate substitutions produces the fi-
(A22) nal result:
Performing the integration a second tirreote the different Ei~m(VE 2(&)%_ (A24)
lower limit), the integral simplifies to an Dc
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