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An analysis of the Colle-Salvetti~CS! wave-function functional of the density as applied to the He atom
shows:~i! it is not normalized;~ii ! the corresponding Coulomb hole structure is inaccurate;~iii ! the Coulomb
hole sum rule is violated;~iv! the Coulomb component of the Kohn-Sham~KS! correlation potential is
inaccurate;~v! the KS correlation potential is erroneous;~vi! the Coulomb correlation and correlation–kinetic-
energy components of the KS correlation energy are in error. Thus, the description by this wave function of the
physics of electron correlation is inaccurate. As such the results obtained via the CS wave function and those
based on it are not well founded.@S1050-2947~99!05411-6#

PACS number~s!: 03.65.2w, 31.25.Eb, 31.15.Ew, 31.10.1z
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The Colle-Salvetti@1# ~CS! correlated-determinantal wav
function, which is a functional of the density, has be
widely employed@2# for the determination of the quantum
chemistry definition of the correlation energy of atoms a
molecules. It is an approximate parametrized form of
correlation energy expression derived via this wave functi
fitted to the exact correlation energy of the He atom, tha
in fact employed in the calculations. This empirical corre
tion energy formula has been further transformed by L
Yang, and Parr@3# ~LYP! into a pragmatic energy functiona
of the density. The LYP correlation energy functional, ha
ing been incorporated into the Gaussian code@4#, is possibly
the most extensively used@5# functional in quantum chemis
try within the context of Kohn-Sham@6# ~KS! density-
functional theory. In this paper we attend mainly to the C
wave function, which constitutes the underpinning of bo
the CS correlation energy formula as well as the LYP fu
tional, and show that it violates several fundamental phys
requirements of a wave function. It follows that results d
pending explicitly upon the wave function are poor
founded.~For other studies see Ref.@7#.! We further point
out physically meaningful results for both the quantu
chemical and KS theory definitions of the correlation ene
may be determined via a correlated-determinantal-t
wave-function functional provided these physical requi
ments are imposed. We end with a suggestion for furt
improving such correlated-determinantal-type wave fu
tions.

We perform our analysis of the CS wave function as
plied to the ground state of the He atom.~We employ super-
scripts ‘‘CS’’ simply to imply quantities which logically fol-
low from the CS wave function, even if they have not be
explicitly derived or stated in the work of CS!. For this atom,
the CS wave function is

CCS~x1 ,x2!5FHF~x1 ,x2!†12 f ~r1 ,r2 ;@r#!‡, ~1!
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where the correlation factor

f ~r1 ,r2 ;@r#!5exp~2b2r 2!@12x~R!~11r /2!#, ~2!

r5r12r2 , R5(r11r2)/2, x(R)5Apb/(11Apb), b
5q@rHF(R)#1/3, FHF(x1 ,x2) is the Hartree-Fock~HF!
theory wave function,rHF(R) the HF density,q an empirical
parameter, andx5rs with s the spin coordinate. With
GHF(r1 ,r2 ;r18 ,r28) and gHF(r1 ,r18) the HF theory spinless
two- and one-particle density matrices, and the two-parti
function b(r1 ,r2 ;r18 ,r28) defined as b(r1 ,r2 ;r18 ,r28)
52 f (r1 ,r2)2 f (r18 ,r28)1 f (r1 ,r2) f (r18 ,r28), the expressions
which may be derived from the CS wave function for th
density rCS(r1), spinless single-particle density matri
gCS(r1 ,r18), KS theory Fermi rx

CS(r1 ,r2) and Coulomb
rc

CS(r1 ,r2) hole charges are, respectively,

rCS~r1!5rHF~r1!

12E GHF~r1 ,r2 ;r1 ,r2!b~r1 ,r2 ;r1 ,r2!dr2 , ~3!

gCS~r1 ,r18!5gHF~r1 ,r18!

12E GHF~r1 ,r2 ;r18 ,r2!b~r1 ,r2 ;r18 ,r2!dr2 ,
~4!

rx
CS~r1 ,r2!52 ugHF~r1 ,r2!u2/2rHF~r ! [2 rHF~r2!/2 ,

~5!

rc
CS~r1 ,r2!52 @GHF~r1 ,r2 ;r1 ,r2!b~r1 ,r2 ;r1 ,r2!/rHF~r1!# .

~6!

The CS wave function gives a Coulomb energyUc
CS which is

the energy of interaction between the density and the C
lomb hole,

Uc
CS5 1

2 E rHF~r1!rc
CS~r1 ,r2!

ur12r2u
dr1dr2 . ~7!
4135 ©1999 The American Physical Society
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The KS theory correlation–kinetic energyTc
CS is

Tc
CS5 1

2 E dr1@¹ r1
•¹ r

18
#DgCS~r1 ,r18!ur15r

18
, ~8!

whereDgCS(r1 ,r18) is the correction term togHF(r1 ,r18) of
Eq. ~4!. The KS correlation energyEc

KS,CS5Uc
CS1Tc

CS.
We next examine the following sum rules and propert

with respect to the CS wave function.
(a) Normalization sum rule. The normalization condition

is *r(r )dr5N. Substitution of the CS density Eq.~3! leads,
as a function of the variational parameterq, to the results of
Table I. It is evident that the CS wave function is not no
malized. For large values ofq, the correlation factorf (r1 ,r2)
becomes small due to the exponential term, and the norm
ization approaches 2 being that of the HF wave funct
FHF(x1 ,x2). For these values ofq, the CS wave function is
essentially uncorrelated.

(b) Structure of the Coulomb hole. In Figs. 1 we compare
the CS and exact@8# Coulomb hole charge distributions fo
different electron positions atr50.566, 0.8, 1.0, 1.5, and 5.
a.u. The electron is assumed to be on thez-axis correspond-
ing to u50°. It is the cross section through the hole cor
sponding tou850° with respect to the electron-nucleus d
rection that is plotted. The part of the figure corresponding
r 8,0 corresponds to the structure foru5p and r 8.0. The
nucleus is at the origin.

Observe that as the electron position, indicated by an
row, is moved from inside the atom at the maximum of t
radial probability density Fig. 1~a!, through the atom Fig
1~b!, to the surface region Fig. 1~c!, the CS Coulomb hole
becomes progressively worse.~For an electron position at th
nucleus, not plotted, the CS Coulomb hole is spherica
symmetric as is the case of the exact hole.! In the classically
forbidden Fig. 1~d! and asymptotic Fig. 1~e! regions, all
similarity between the CS and exact holes vanishes.
asymptotic positions of the electron, it is derived analytica
that limr 1→`rc

CS(r1 ,r2);2rHF(r2)/2[rx
HF(r1 ,r2). Thus,

for these asymptotic positions, the CS Coulomb hole
comes the CS Fermi hole. The above remarks are reaffir
by a comparison of the CS and exact Coulomb hole cr
sections corresponding tou8545° and 90°. For electron po
sitions near the nucleus, a weak cusp@9# in the CS Coulomb
hole at the electron position is evident. However, this cus
too weak to be observed even for electron positions
which the cusp in the exact hole, Figs. 1~a!, 1~b!, and 1~c!, is
clearly visible.

TABLE I. Values of the normalization integral for the Colle
Salvetti wave function as a function of the variational parameteq
~in a.u.!.

q *rCS(r )dr

0.25 0.379 56
0.50 0.957 17
0.75 1.386 36
1.00 1.649 77
1.17 1.761 30
1.50 1.884 49
2.00 1.958 13
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(c) Coulomb hole sum rule. According to this sum rule,
the total charge of the Coulomb hole, independent of el
tron position, is zero:

E rc~r1 ,r2!dr250, ~r1 arbitrary!. ~9!

Substitution of the CS Coulomb hole into Eq.~9! leads to the
results of Table II. It is evident that the sum rule is seve
violated. Observe that for asymptotic positions of the el
tron, the total CS Coulomb hole charge approaches21, as it
must, in light of the above discussion on the asympto
structure of the CS hole.

(d) Coulomb field and potential. The Coulomb potential
@10–12# Wc(r ) is the work done to move an electron in th
field Ec(r ) of the Coulomb hole charge

Wc~r !52 È r
Ec~r 8!•dl8, ~10!

where the field

Ec~r !5E rc~r ,r 8!~r2r 8!

ur2r 8u3
dr 8. ~11!

The work done is path-independent for spherically symm
ric atoms, and molecules of cylindrical symmetry. Furth
this potential constitutes@10# the purely Coulomb correlation
component of the KS theory ‘‘exchange-correlation’’ an
‘‘correlation’’ potentials.

In Fig. 2 we compare the CS and exact@8# Coulomb fields
and potentials. Although the CS field@Fig. 2~a!# vanishes at
the nucleus as it must, and has the correct structure near
magnitude within the atom is much larger than the ex
value. This is because the total CS Coulomb hole charge
a ~negative! finite value. Asymptotically, the CS field decay
asO(21/r 2) rather than the correct@13# O(21/r 5) structure
due to the fact that the CS Coulomb hole reduces to
Fermi hole of total charge21 for these electron positions
As expected from the structure of the CS field, the CS
tential @Fig. 2~b!#, has the correct structure near and at t
nucleus but is about five times as large within the ato
Asymtotically, the potential decays asO(21/r ) rather than
the correct@13# O(21/r 4) structure. Thus, the CS Coulom
correlation component of the local potential of KS theory
substantially in error.

(e) Kohn-Sham theory correlation potential. The KS
theory correlation potentialvc(r ) is the functional derivative
vc(r )5dEc

KS@r#/dr(r ), whereEc
KS@r# is the KS correlation

energy functional. This functional incorporates both Co
lomb correlation and correlation–kinetic effects. In Fig. 3 w
compare the self-consistently determined LYP correlat
potential @3# with the exact result@8#. ~The LYP potential
employing a density determined from an accurate wave fu
tion @14# is similar!. It is evident that the two potentials ar
quite dissimilar. The LYP functional derives from the C
functional via use of the second-order gradient expansion
the kinetic energy. For He, theexactkinetic energy is also
given by the von Weizsa¨cker expression. Hence a modifie
Lee-Yang-Parr~M-LYP! potential may be derived by replac
ing the energy density of the gradient expansion in the L
functional by the von Weizsa¨cker kinetic-energy-densitytW
5 1

8 u¹r(r )u2/r(r ). The M-LYP potential is also plotted in
Fig. 3. It is similar to the LYP plot, and therefore it too bea
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FIG. 1. The Colle-Salvetti~CS! and exact@8# Coulomb holes in
a.u. for electron positions atr50.566, 0.8, 1.0, 1.5, and 5.0 a.u. Th
energy minimized value of the parameterq51.17 is employed for
the CS wave function.
little resemblance to the exact potential. As opposed to
LYP value of Ec

KS of 20.0390 a.u., the M-LYP value is
20.035 03 a.u., the exact value being20.042 21 a.u.

(f) Kohn-Sham theory correlation energy and its comp
nents. The KS correlation energyEc

KS5Uc1Tc , whereUc

and Tc are its Coulomb correlation and correlation-kine
components, respectively. For the He atom, the exact va
@8,14# are Ec

KS520.042 21 a.u., Uc520.078 75 a.u., Tc

50.036 64 a.u. The results of a variational calculation@15#
employing the CS wave function withq treated as a varia
tional parameter are Ec

KS,CS520.043 07 a.u., Uc
CS

520.209 75 a.u., andTc
CS50.166 68 a.u. withq51.17. The

150% error ofUc
CS and the over 300% error ofTc

CS are a
consequence of the erroneous description of the physic
the CS wave function. Thus, although the correlation ene
Ec

KS,CS or the LYPEC
KS are often accurate and in that sen

pragmatic; none the less, there remains the deeper que
of whether or not the physics of the separate component
the correlation energy are described correctly.

For the Be atom, the CS wave function withq52.29
gives @16# only 3% of the KS correlation energy. A varia
tional calculation@17# with q51.31 but with the energy ex
pression determined approximately leads to 65% of corr
tion energy.

The principal reason why the CS wave function is ina
curate is that the functionx(R) in the correlation factor
f (r1 ,r2) is determined inaccurately. CS begin by assum
gCS(r1 ,r18)5gHF(r1 ,r18). This implies that the correction
term @see Eq.~4!# DgCS(r1 ,r18)50, so that@see Eq.~8!#
Tc

CS50 @18#. It further implies thatrCS(r1)5rHF(r1), so that
the correction term@see Eq.~3!#

DrCS~r1!5E GHF~r1 ,r2 ;r1 ,r2!b~r1 ,r2 ;r1 ,r2!dr250. ~12!

@This condition and the Coulomb hole sum rule of Eq.~9! are
equivalent.# CS determine the functionx(R) by satisfying
Eq. ~12! approximately. They first replaceGHF(r1 ,r2 ;r1 ,r2)
by GHF(r1 ,r1 ;r1 ,r1) thereby eliminating it from the equa
tion. In the resulting quadratic equation forx(R), thex2(R)
term is dropped@17#, andx(R) determined from the linea
equation. Thisx(R) is then further approximated by the ex
pression given below Eq.~2!. Thus, the CS wave function
does not satisfy Eq.~12! as demonstrated by Table I. Nor
the Coulomb hole sum rule satisfied. Nor is the assump
that gCS(r1 ,r18)5gHF(r1 ,r18) valid.

A Taylor expansion keeping only the first term is the
made by CS for the energyUc

CS @see Eq.~7!#. With the final
approximate form for the functionx(R) substituted into this

TABLE II. Values of the Colle-Salvetti Coulomb hole integra
at various electron positionsr1 from the nucleus~in a.u.!.

r1 *rc
CS(r1 ,r2)dr2

0.000 20.1746
0.566 20.1745
0.800 20.1742
1.000 20.1725
1.500 20.1704
5.000 20.5751

15.000 20.9998
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expression, a Coulomb energy formula, based on the re
ing equation, is developed with parameters adjusted to m
the quantum-chemical correlation energy of the He ato
The LYP and M-LYP correlation energy functionals a
based on this formula.

In conclusion, we have analyzed the CS wave-funct
functional of the density as applied to the ground state of
He atom. We note that this wave function is~i! not normal-
ized; ~ii ! the structure of the Coulomb hole obtained from
is inaccurate, and for asymptotic electron positions it redu
erroneously to the KS theory Fermi hole;~iii ! the CS Cou-
lomb hole violates throughout space the sum rule on
charge distribution;~iv! it leads to a structure for the Cou
lomb correlation component of the KS theory correlation p
tential that is incorrect in magnitude;~v! the CS-KS theory
correlation potential determined from the LYP function
and one obtained from a modified LYP functional valid f

FIG. 2. Colle-Salvetti~CS! and exact@8# Coulomb fields and
potentials in a.u. The energy minimized value of the parameteq
51.17 is employed for the CS wave function.
l
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the He atom bear little resemblance to the exact result,
~vi! it gives highly inaccurate values for the Coulomb corr
lation and correlation–kinetic-energy components of the
correlation energy. Thus the physics of Coulomb correlatio
is poorly described by the CS wave function. We conte
that results obtained via the wave function must be regar
with skepticism.

Finally, we note that an accurate wave-function function
of the density of correlated determinantal form may be o
tained by determining the functionx(R) such that the con-
dition of Eq. ~12! is exactly satisfied for each electron pos
tion r1 . The sum rule on the Coulomb hole charge wou
simultaneously be satisfied. The orbitals of the Slater de
minant part of the wave function which gives rise to t
density may be improved beyond the Pauli-correlated le
via the quantal description@10,11# of KS theory. In this man-
ner, Coulomb correlation and correlation–kinetic effec
separately derived via the correlated-determinantal wa
function can be incorporated into the local effective pote
tial, the resulting potential, orbitals, and thereby the wa
function functional being determined self-consistently. Th
work is in progress.
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FIG. 3. The Lee-Yang-Parr~LYP!, the modified M-LYP, and
exact@8# KS theory correlation potentials in a.u.
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@18# Since the CS empirical formula has been fit to the exact
atom correlation energy, it incorporates part of t
correlation–kinetic energy, as does the LYP functional t
follows from it. However, aseparationinto the Coulomb cor-
relation and correlation–kinetic components is not made
e

t

n

either case. As is evident from Eqs.~7! and~8! such a separa-
tion is inherently possible. Furthermore, the Slater determin
reference state need not be Hartree-Fock, but could be b
on orbitals that incorporate correlations beyond those of
Pauli exclusion principle. This would lead to an equation sim
lar to Eq. ~12! but based on orbitals that deliver the exa
density@2 f #.


