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Bogoliubov dispersion relation and the possibility of superfluidity for weakly interacting photons
in a two-dimensional photon fluid

Raymond Y. Chiao* and Jack Boyce†

Department of Physics, University of California, Berkeley, California 94720-7300
~Received 3 May 1999; revised manuscript received 22 July 1999!

The Bogoliubov dispersion relation for the elementary excitations of the weakly interacting Bose gas is
shown to hold for the case of the weakly interacting photon gas~the ‘‘photon fluid’’! in a nonlinear Fabry-
Perot cavity. The chemical potential of a photon in the two-dimensional photon fluid does not vanish. The
Bogoliubov relation, which is also derived by means of a linearized fluctuation analysis in classical nonlinear
optics, implies the possibility of a new, superfluid state of light. The theory underlying an experiment in
progress to observe sound waves in the photon fluid is described, and another experiment to measure the
critical velocity of this superfluid is proposed.@S1050-2947~99!08411-5#

PACS number~s!: 42.50.Ct, 42.65.Sf, 67.90.1z, 05.30.Jp
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I. INTRODUCTION

The quantum many-body problem, with its many, ri
manifestations in condensed matter physics, has had a
and illustrious history. In particular, superconductivity a
superfluidity were two major discoveries in this field. A
though at present much is well understood~e.g., the BCS
theory of superconductivity!, the recent experimental discov
eries of Bose-Einstein condensation in laser-cooled at
@1–4# raise new and interesting questions, such as whe
the observed Bose-Einstein condensates are superfluid
whether persistent currents can exist in these new state
matter.

Historically speaking, in the study of the interaction
light with matter, most of the emphasis has been on exp
ing new states of matter, such as the recently obser
atomic Bose-Einstein condensates. However, not as m
attention has been focused on exploring new states of li
Of course, the invention of the laser led to the discovery o
new state of light, namely the coherent state, which is a v
robust one. Two decades ago, squeezed states were di
ered, but these states are not as robust as the coherent
since they are easily degraded by scattering and absorp
In contrast to the laser, which involves a system far aw
from equilibrium, we shall explore here states close to
ground state of a photonic system. Hence they should
robust ones.

Here we shall study the many-body problem by study
the interacting many-photon system~the ‘‘photon fluid’’!
near its ground state. In this paper we shall explore so
theoretical considerations which suggest the possibility o
new state of light, namely, the superfluid state. In particu
we shall derive the Bogoliubov dispersion relation for t
weakly interacting photon gas with repulsive photon-pho
interactions, starting both from the microscopic~i.e., second-
quantized! level, and also from the macroscopic~i.e.,
classical-field! level. Thereby we shall find an expression f
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the effective chemical potential of a photon in the phot
fluid, and shall relate the velocity of sound in the phot
fluid to this nonvanishing chemical potential. In this way, w
lay the theoretical foundations for an experiment in progr
to measure the sound-wave-like dispersion relation for
photon fluid. We also propose another experiment to m
sure the critical velocity of this fluid, and thus to test for th
possibility of the superfluidity of the resulting state of th
light.

Although the interaction Hamiltonian used in this paper
equivalent to that used earlier in four-wave squeezing,
emphasize here the many-body, collective aspects of
problem which result from multiple photon-photon intera
tions. This leads to the idea of the ‘‘photon fluid.’’ Since th
microscopic and macroscopic analyses yield the same Bo
liubov dispersion relation for excitations of this fluid, it ma
be argued that there is nothing fundamentally new in
microscopic analysis given below which is not already co
tained in the macroscopic, classical nonlinear optical ana
sis. However, it is the microscopic analysis which leads
the new, heuristic viewpoint of the interacting photon syst
as a ‘‘photon fluid,’’ a conception which could give rise t
new ways of understanding and discovering nonlinear opt
phenomena. Furthermore, the interesting question of
quantum optical state of the light inside the cavity resulti
from multiple interactions between the photons~i.e., whether
it results in a coherent, squeezed, Fock, or some other q
tum state! cannot be addressed by classical nonlinear opt
methods. Thus this paper represents an attempt to formu
the new concept of a ‘‘photon fluid’’ starting from the m
croscopic viewpoint, and to lay the foundations for answ
ing the question concerning the resulting quantum opt
state of the light.

II. BOGOLIUBOV PROBLEM

Here we reexamine one particular many-body proble
the one first solved by Bogoliubov@5,6#. Suppose that one
has a zero-temperature system of bosons which are inte
ing with each other repulsively, for example, a dilute syst
of small, bosonic hard spheres. Such a model was inten
to describe superfluid helium, but in fact it did not work we
4114 ©1999 The American Physical Society
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PRA 60 4115BOGOLIUBOV DISPERSION RELATION AND THE . . .
there, since the interactions between atoms in superfluid
lium were too strong for the theory to be valid. In order
make the problem tractable theoretically, let us assume
these interactions are weak. In the case of light, the inte
tions between the photons are in fact always weak, so
this assumption is a good one. However, these interact
are nonvanishing, as demonstrated by the fact that pho
photon collisions mediated by atoms excited near, but
resonance have been experimentally observed@7#. We start
with the Bogoliubov Hamiltonian

H5H free1H int ,

H free5(
p

e~p!ap
†ap , ~1!

H int5
1

2 (
kpq

V~k!ap1k
† aq2k

† apaq ,

where the operatorsap
† andap are creation and annihilatio

operators, respectively, for bosons with momentump, which
satisfy the Bose commutation relations

@ap ,aq
†#5dpq and@ap ,aq#5@ap

† ,aq
†#50. ~2!

The first termH free in the Hamiltonian represents the e
ergy of the free boson system, and the second termH int
represents the energy of the interactions between the bo
arising from the potential energyV(k). The interaction term
is equivalent to the one responsible for producing squee
states of light via four-wave mixing@10#. It represents the
annihilation of two particles, here photons, of momentap
andq, along with the creation of two particles with momen
p1k andq2k, in other words, a scattering process with
momentum transferk between a pair of particles with initia
momentap and q, along with the assignment of an energ
V(k) to this scattering process.

III. FREE-PHOTON DISPERSION RELATION INSIDE A
FABRY-PEROT RESONATOR

Photons with momentap andq also obey the above com
mutations relations, so that the Bogoliubov theory should
principle also apply to the weakly interacting photon g
The factore(p) represents the energy as a function of t
momentum~the dispersion relation! for the free, i.e., nonin-
teracting, bosons. In the case of photons in a Fabry-P
resonator, the boundary conditions of the mirrors cause
e(p) of a photon trapped inside the resonator to corresp
to an energy-momentum relation which is identical to that
a nonrelativistic particle with an effective mass@7,8# of m
5\v/c2. This can be understood starting from Fig. 1.

For high-reflectivity mirrors, the vanishing of the electr
field at the reflecting surfaces of the mirrors imposes a qu
tization condition on the allowed values of thez component
of the photon wave vector,kz5np/L, wheren is an integer
and L is the distance between the mirrors. Thus the us
frequency–wavevector relation

v~k!5c@kx
21ky

21kz
2#1/2, ~3!
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upon multiplication by\, becomes the energy-momentu
relation for the photon

E~p!5c@px
21py

21pz
2#1/25c@px

21py
21\2n2p2/L2#1/2

5c@px
21py

21m2c2#1/2, ~4!

wherem5\np/Lc is the effective mass of the photon. I
the limit of small-angle~or paraxial! propagation, where the
small transverse momentum of the photon satisfies the
equality

p'5@px
21py

2#1/2!pz5\kz5\np/L, ~5!

we obtain from a Taylor expansion of the relativistic relati
a nonrelativistic energy-momentum relation for the tw
dimensional~2D! noninteracting photons inside the Fabr
Perot resonator,

E~p'!>mc21p'
2 /2m, ~6!

wherem5\np/Lc>\v/c2 is the effective mass of the con
fined photons. It is convenient to redefine the zero of ene
so that only the effective kinetic energy,

e~p'!>p'
2 /2m, ~7!

remains. To establish the connection with the Bogoliub
Hamiltonian, we identify the two-dimensional momentu
p' as the momentump that appears in this Hamiltonian, an
the abovee(p') as thee(p) that appears in Eq.~1!.

IV. BOGOLIUBOV DISPERSION RELATION
FOR THE PHOTON FLUID

Now we know that in an ideal Bose gas at absolute z
temperature, there exists a Bose condensate consisting
macroscopic numberN0 of particles occupying the zero
momentum state. This feature should survive in the cas
the weakly interacting Bose gas, since as the interaction v
ishes, one should recover the Bose condensate state. H
following Bogoliubov, we shall assume here that even in
presence of interactions,N0 will remain a macroscopic num
ber in the photon fluid@9#. This macroscopic number will be
determined by the intensity of the incident laser beam wh
excites the Fabry-Perot cavity system, and turns out to b

FIG. 1. A planar Fabry-Perot imposes boundary conditio
which quantize the allowed values ofkz , wherez is the axis normal
to the mirrors, in units ofp/L, whereL is the separation of the
mirrors. For a plane-wave mode which propagates at a small a
with respect to thez axis, there arises an effective nonrelativist
energy-momentum relation for an noninteracting, trapped 2D p
ton, whose effective mass ism5\v/c2 ~see text!.
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4116 PRA 60RAYMOND Y. CHIAO AND JACK BOYCE
very large number compared to unity~see below!. For the
ground-state wave functionC0(N0) with N0 particles in the
Bose condensate in thep50 state, the zero-momentum op
eratorsa0 and a0

† operating on the ground state obey t
relations

a0uC0~N0!&5AN0uC0~N021&,

a0
†uC0~N0!&5AN011uC0~N011!&. ~8!

Since N0@1, we shall neglect the difference between t
factorsAN011 andAN0. Thus one can replace all occu
rences ofa0 anda0

† by thec numberAN0, so that to a good
approximation@a0 ,a0

†#'0. However, the number of par
ticles in the system is then no longer exactly conserved
can be seen by examination of the term in the Hamiltoni

(
k

V~k!ak
†a2k

† a0a0'N0(
k

V~k!ak
†a2k

† , ~9!

which represents the creation of a pair of particles, i.e., p
tons, with momentak and2k out of nothing.

However, whenever the system is open, i.e., wheneve
is connected to an external reservoir of particles which
lows the total particle number to fluctuate around some c
stant average value, then the total number of particles n
only be conserved on the average. Formally, one stan
way to compensate for the lack of exact particle num
conservation is to use the Lagrange multiplier method
subtract a chemical potential termmNop from the Hamil-
tonian ~just as in statistical mechanics when one goes fr
the canonical ensemble to the grand canonical ensem!
@11#

H→H85H2mNop, ~10!

whereNop5(pap
†ap is the total number operator andm rep-

resents the chemical potential, i.e., the average energy
adding a particle to the open system described byH. In the
present context, we are considering the case of a Fabry-P
cavity with low, but finite, transmissivity mirrors which a
low photons to enter and leave the cavity, due to an in
light beam coming in from the left and an output beam le
ing from the right. This permits a realistic physical impl
mentation of the external reservoir, since the Fabry-Pe
cavity allows the total particle number inside the cavity
fluctuate due to particle exchange with the beams outside
cavity. However, the photons remain trapped inside the c
ity long enough so that a thermalized condition is achiev
after many photon-photon interactions~i.e., after many col-
lisions!, thus allowing the formation of a photon fluid.

It will be useful to separate out the zero-momentum co
ponents of the interaction Hamiltonian, since it will turn o
that there is a macroscopic occupation of the ze
momentum state due to Bose condensation. The prime on
sums(p8 , (pk8 , and(kpq8 in the following equation denote
sums over momenta explicitly excluding the zer
momentum state, i.e., all the running indicesp, k, q,p
1k,q2k which are not explicitly set equal to zero are no
zero:
as
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H int5
1

2
V~0!a0

†a0
†a0a01V~0!(

p
8 ap

†apa0
†a0

1(
p

8 H V~p!ap
†a0

†apa01
1

2
@V~p!ap

†a2p
† a0a0

1V~p!a0
†a0

†apa2p#J 1(
pk

8 V~k!~ap1k
† a0

†apak

1ap1k
† a2k

† apa0!1
1

2 (
kpq

8 V~k!~ap1k
† aq2k

† apaq!.

~11!

Here we have also assumed thatV(p)5V(2p). By thus
separating out the zero-momentum state from the sums in
Hamiltonian, and replacing all occurrences ofa0 anda0

† by
AN0, we find that the HamiltonianH8 decomposes into thre
parts

H85H01H11H2 , ~12!

where

H05
1

2
V~0!a0

†a0
†a0a0'

1

2
V~0!N0

2 , ~13!

H1'(
p

8 e8~p!ap
†ap1

1

2
N0(

p
8 V~p!~a2p

† ap
†1a2pap!,

~14!

H2'AN0(
pk

8 V~k!~ap1k
† apak1ap1k

† a2k
† ap!

1
1

2 (
kpq

8 V~k!~ap1k
† aq2k

† apaq!, ~15!

where

e8~p!5e~p!1N0V~0!1N0V~p!2m ~16!

is a modified photon energy, and whereN0 andm are given
by

N01^C0u(
p

8 ap
†apuC0&5N ~17!

and

m5
]E0

]N
. ~18!

HereE05^C0uHuC0& is the ground-state energy ofH. In the
approximation that there is little depletion of the Bose co
densate due to interactions~i.e.,N'N0@1), the first term of
Eq. ~11! @i.e., H0 in Eq. ~13!# dominates, so that

E0'
1

2
N0

2V~0!'
1

2
N2V~0! ~19!

and therefore that
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m'NV~0!'N0V~0!. ~20!

This implies that the effective chemical potential of a ph
ton, i.e., the energy for adding a photon to the photon fluid
given by the number of photons in the Bose condens
times the repulsive pairwise interaction energy between p
tons with zero relative momentum. It should be remark
that the fact that the chemical potential is nonvanishing h
makes the thermodynamics of this two-dimensional pho
system quite different from the usual three-dimension
Planck blackbody photon system@12#. In the same approxi-
mation, Eq.~16! becomes

e8~p!'e~p!1N0V~p!. ~21!

This is the single-particle photon energy in the Hartree
proximation.

In the same approximation, it is also assumed thatuH1u
@uH2u, i.e., that the interactions between the bosons are
ficiently weak, again so as not to deplete the Bose cond
sate significantly. In the case of the weakly interacting p
ton gas inside the Fabry-Perot resonator, since
interactions between the photons are indeed weak, this
sumption is a good one.

Following Bogoliubov, we now introduce the followin
canonical transformation in order to diagonalize t
quadratic-form HamiltonianH1 in Eq. ~14!:

ak5ukak1vka2k
† ,

ak
†5ukak

†1vka2k . ~22!

Here uk and vk are two realc numbers which must satisf
the condition

uk
22vk

251, ~23!

in order to insure that the Bose commutation relations
preserved for the new creation and annihilation operators
certain quasiparticles,ak

† andak , i.e., that

@ak ,ak8
†

#5dk,k8 and@ak ,ak8#5@ak
† ,ak8

†
#50. ~24!

We seek a diagonal form ofH1 given by

H15(
k

8 F ṽ~k!S ak
†ak1

1

2D1constG , ~25!

whereṽ(k) represents the energy of a quasiparticle of m
mentumk. Substituting the new creation and annihilatio
operatorsak

† and ak given by Eq.~22! into Eq. ~25!, and
comparing with the original form of the HamiltonianH1 in
Eq. ~14!, we arrive at the following necessary conditions f
diagonalization:

ṽ~k!ukvk5
1

2
N0V~k!, ~26!
-
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uk
25

1

2
@11e8~k!/ṽ~k!#, ~27!

vk
25

1

2
@211e8~k!/ṽ~k!#. ~28!

Squaring Eq.~26! and substituting from Eqs.~27! and ~28!,
we obtain

ṽ~k!25e8~k!22N0
2V~k!25e~k!212e~k!N0V~k!,

~29!

where in the last step we have used Eq.~21!.
Thus the final result is that the HamiltonianH1 in Eq. ~25!

describes a collection of noninteracting simple harmonic
cillators, i.e., quasiparticles, or elementary excitations of
photon fluid from its ground state. The energy-moment
relation of these quasiparticles is obtained from Eq.~29!
upon substitution ofe(k)5k2/2m from Eq. ~7!,

ṽ~k!5Fk2N0V~k!

m
1

k4

4m2G 1/2

, ~30!

which we shall call the ‘‘Bogoliubov dispersion relation.
This dispersion relation is plotted in Fig. 2, in the spec
case thatV(k)5V(0)5const. @Note that Landau’s roton
minimum could in principle also be incorporated into th
theory by a suitable choice of the functional form ofV(k).#

For small values ofk this dispersion relation islinear in
k. This feature, together with the fact that the operatorak

†ak

in Eq. ~25! describes a density fluctuation in the fluid, ind
cates that the nature of the elementary excitations here is
of phonons, which in the classical limit of large phono
number leads to soundlike waves propagating inside the p
ton fluid at the sound speed

FIG. 2. The energy versus momentum of an elementary exc
tion in the weakly interacting Bose gas, here in the present case
photon fluid. The solid line represents the Bogoliubov dispers
relation given by Eq.~30!, for the special case thatV(k)5V(0)
5const, and the dashed line represents a quadratic dispersion
tion for a noninteracting diffracting photon inside the Fabry-Pe
resonator.
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vs5 lim
k→0

ṽ~k!

k
5S N0V~0!

m D 1/2

5S m

mD 1/2

. ~31!

At a transition momentumkc given by

kc52@mN0V~kc!#
1/2 ~32!

@i.e., when the two terms of Eq.~30! are equal#, the linear
relation between energy and momentum turns into a q
dratic one, indicating that the quasiparticles at large m
menta behave essentially like nonrelativistic free partic
with an energy ofk2/2m. The reciprocal ofkc defines a
characteristic length scale

lc[2p\/kc5p\/mvs , ~33!

which characterizes the distance scale over which collec
effects arising from the pairwise interaction between the p
tons become important.

Thus in the above analysis, we have shown that all
approximations involved in the Bogoliubov theory should
valid ones for the case of the 2D photon fluid inside a n
linear Fabry-Perot cavity. Hence the Bogoliubov dispers
relation should indeed apply to this fluid; in particular, the
should exist soundlike modes of propagation in the pho
fluid.

V. CLASSICAL PICTURE OF SOUND WAVES IN A
NONLINEAR OPTICAL FLUID

A classical nonlinear optical treatment of a Fabry-Pe
cavity which is filled with a medium with a self-defocusin
Kerr nonlinearity~see Fig. 3! also indicates the existence o
modes of soundlike wave propagation in the nonlinearly
teracting light. Such a nonlinear medium could consist of
alkali-metal atomic vapor excited by a laser detuned to
red side of resonance. In fact, it turns out that fluctuation
the light intensity in this medium propagate with a dispers
relation which is identical to that given above in Eq.~30! for
the weakly interacting Bose gas.

FIG. 3. Fields and coordinate system in the Fabry-Perot cav
The applied fieldEinc arises from a laser beam incident from th
left. An atomic vapor excited to the red side of resonance by
incident light fills the space~the grey area! between the two mirrors
The presence of these atoms leads to a self-defocusing Kerr no
earity ~corresponding to repulsive photon-photon interactions! in-
side the cavity.
a-
-
s
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-
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-
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n
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e
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To derive this dispersion relation classically, we begin
considering the planar Fabry-Perot cavity shown in Fig.
Two parallel planar mirrors of reflectivityR and transmissiv-
ity T ~with R1T51, i.e., with no dissipation! are normal to
the z axis and separated by a distanceL. A laser beam trav-
eling in the1z direction is incident on the cavity, and ther
result five interacting light beams in the problem. The reg
between the mirrors~inside the cavity! contains a nonlinear
polarizable medium. The classical electric field obeys Ma
well’s equations, written in wave-equation form in CG
units as

]2E

]z2
1¹'

2 E2
1

c2

]2E

]t2
5

4p

c2

]2P

]t2
, ~34!

whereE is the ~real! electric field amplitude,P is the polar-
ization introduced in the medium, and¹'

2 is the Laplacian in
the transverse coordinatesx and y. This equation is supple
mented by boundary conditions at the two mirrors.

Equation~34! simplifies considerably when the followin
assumptions are made.

~i! The slowly varying envelope approximation is jus
fied, in which case we recast Eq.~34! in terms of the field
envelopeE.

~ii ! The frequency spacing between adjacent longitudi
cavity modes is much greater than~a! the incident laser line-
width, and~b! nonlinearity bandwidth, allowing us to neglec
the z dependence of the field envelope~this is sometimes
called theuniform fieldapproximation!.

~iii ! The atomic response time is much shorter than
cavity lifetime, allowing us to adiabatically eliminate th
atomic response~i.e., the nonlinearity is fast!.

Under these reasonable assumptions the cavity’s inte
field envelope is governed by the Lugiato-Lefever equat
@13#, written here as

]E
]t

5
ic

2k
¹'

2 E1 ivn2uEu2E1 i ~Dv!E2G~E2Ed!, ~35!

whereE(x,y,t) is the internal cavity field envelope ampl
tude,k is the longitudinal wave number,v is the laser angu-
lar frequency,n2 is the nonlinear index inside the cavity (n
'11n2uEu2), Dv5v2vcav is the detuning of the driving
laser from linear cavity resonance,G5cT/2L is the cavity
decay rate, andEd(x,y) is a driving laser amplitude. In othe
contexts, Eq.~35! is called the nonlinear Schro¨dinger~NLS!
equation, or the Ginzburg-Landau equation, or the Gro
Pitaevskii equation. The latter two of these were introduc
as descriptions of superfluid and of Bose-Einstein-conden
systems, with a complex order parameterC, which here is
identified withE.

Equation~35! has the nonlinear plane-wave solution

E5E0 exp@ i ~vn2E 0
21Dv!t# ~36!

when G is negligible~see Appendix!, in which caseE0 can
be assumed real without loss of generality. Linearizi
around this solution by substituting the form

y.

e

in-
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E5@E01a~x,y,t !#exp@ i ~vn2E 0
21Dv!t#, ~37!

we get the following linear equation for the fluctuation am
plitude @we have assumed thatua(x,y,t)u!E0]:

]a

]t
5

ic

2k
¹'

2 a1 ivn2E 0
2~a1a* !. ~38!

Here we look for a cylindrically symmetric solution ap
propriate for the experimental geometry~see Fig. 4!. Substi-
tuting the trial solution

a~r,t !5aJ0~Kr!eiV* t1bJ0~Kr!e2 iVt, ~39!

where J0(Kr) is the zero-order Bessel function,r5(x2

1y2)1/2 is the transverse radial distance from the origin o
fluctuation, andK is the wave number of the fluctuation, w
obtain the following dispersion relation for small-amplitud
intensity fluctuations in the light filling the cavity@14#:

V~K !5Fc2K2un2uE 0
21

c4K4

4v2 G 1/2

, ~40!

whereV andK are the angular frequency and wave numb
respectively, of the transverse soundlike mode.

For transverse wavelengths much longer thanLc
[l/(Dn)1/2, where l is the optical wavelength andDn
5un2uE 0

2 is the nonlinear index shift induced by the bac
ground beam, the transverse mode propagates with the
stant phase velocity

FIG. 4. Schematic of an experiment to observe the sound
waves in a photon fluid which fills a nonlinear Fabry-Perot reso
tor. The nonlinear medium~denoted by the grey area! is an alkali-
metal atomic vapor excited by a broad laser beam~denoted by the
broad incoming arrow! tuned to the red side of resonance. The g
is to verify the Bogoliubov dispersion relation, Eq.~30! or ~40!. An
electro-optic modulator~EOM! modulates the intensity of light at
radiofrequency in the MHz range, which is then injected by me
of an optical fiber tip at a single point on the entrance face of
Fabry-Perot resonator. The wavelength of the resulting sound
waves can be measured by scanning in the transverse directio
tip of another optical fiber across the output face of the Fabry-Pe
and by measuring the phase of the modulated pick-up signal rela
to that of the EOM modulation signal.
r,

n-

vs5cADn5cAun2uE 0
2, ~41!

which we identify as a sound-wave velocity. This velocity
identical to the one found earlier in Eq.~31! for the velocity
of phonons in the photon fluid, provided that one identifi
the energy density of the light inside the cavity with th
number of photons in the Bose condensate as follows:

E 0
258pN0\v/Vcav, ~42!

whereVcav, the cavity volume, is also the quantization vo
ume for the electromagnetic field, and provided that o
makes use of the known proportionality betweenn2 and
V(0) @15,16#.

In fact, the entire dispersion relation, Eq.~40!, found
above classically for soundlike waves associated with fl
tuations in the light intensity inside a resonator filled with
self-defocusing Kerr medium, is formally identical to the B
goliubov dispersion relation, Eq.~30!, obtained quantum me
chanically for the elementary excitations of the photon flu
in the approximationV(k)5V(0)5const. This is a valid
approximation, since the pairwise interaction potential b
tween two photons is given by a transverse 2D pairwise s
tial Dirac d function, whose strength is proportional ton2
@15,16#. It should be kept in mind that the phenomena
self-focusing and self-defocusing in nonlinear optics can
viewed as arising frompairwise interactionsbetween pho-
tons when the light propagation is paraxial and the Kerr n
linearity is fast@15,16#. Since in a quantum description th
light inside the resonator is composed of photons, and s
these photons as the constituent particles are weakly inte
ing repulsively with each other through the self-defocus
Kerr nonlinearity to form a photon fluid, this formal ident
fication is a natural one.

VI. EXPERIMENT IN PROGRESS

We are in the process of investigating experimentally
existence of the soundlike propagating photon density wa
predicted above for a planar Fabry-Perot cavity containin
self-defocusing (n2,0) nonlinear medium~see Fig. 4!.

The soundlike mode is most simply observed by apply
two incident optical fields to the nonlinear cavity: a bro
plane wave resonant with the cavity to form the nonline
background fluid on top of which the soundlike mode c
propagate, and a weaker amplitude-modulated beam whic
modulated at the sound wave frequency in the radio range
an electro-optic modulator, and injected by means of an
tical fiber tip at a single point on the entrance face of t
Fabry-Perot. The resulting weak time-varying perturbatio
in the background light induce transversely propagat
waves in the photon fluid, which propagate away from t
point of injection like ripples on a pond. This soundlik
mode can be phase-sensitively detected by another fibe
placed at the exit face of the Fabry-Perot some transv
distance away from the injection point, and its soundli
wavelength can be measured by scanning this fiber tip tra
versely across the exit face.

The experiment employs a cavity lengthL of 2 cm and
mirrors with intensity reflectivities ofR50.997, for a cavity
finesse of roughly 1000. The optical nonlinearity is provid
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by rubidium vapor at 80 °C, corresponding to a number d
sity of 1012 rubidium atoms per cubic centimeter. We use
circularly polarized laser beam, detuned by around 600 M
to the red side of the87Rb, F52→F853 transition of the
D2 line; using this closed transition eliminates optical pum
ing into theF51 ground state. This 600 MHz detuning o
the laser from the atomic resonance is considerably la
than the Doppler width of 340 MHz, and the residual abso
tion arising from the tails of the nearby resonance line gi
rise to a loss which is less than or comparable to the
arising from the mirror transmissions. This extra absorpt
loss contributes to a slightly larger effective cavity loss c
efficient G, but does not otherwise alter the qualitative b
havior of the Bogoliubov dispersion relation, nor any of t
other main conclusions of this paper. The above criteria~i!–
~iii ! for the validity of Eq. ~35!, as well as those for the
validity of the microscopic Bogoliubov theory, should b
well satisfied by these experimental parameters. An intrac
ity intensity of 40 W/cm2 results in Dn5231026, for a
sound speedvs54.23107 cm/s and transition wavelengt
Lc'1 mm. For this intensity,N0'831011, so that the con-
dition for the validity of the Bogoliubov theory,N0@1, is
well satisfied.

VII. DISCUSSION AND FUTURE DIRECTIONS

We suggest here that the Bogoliubov form of the disp
sion relation, Eq.~30! or ~40!, implies that the photon fluid
formed by repulsive photon-photon interactions in the n
linear cavity is actually a photonsuperfluid. This means that
a superfluid state of light might actually exist. Although t
exact definition of superfluidity is presently still under di
cussion, especially in light of the question whether the
cently discovered atomic Bose-Einstein condensates are
perfluids or not@4#, one indication of the existence of
photon superfluid would be that there exists a critical tran
tion from a dissipationless state of superflow, i.e., a lami
flow of the photon fluid below a certain critical velocity pa
an obstacle, into a turbulent state of flow, accompanied
energy dissipation associated with the shedding of v
Karman-likequantizedvortices past this obstacle, above th
critical velocity. ~It is the generation ofquantizedvortices
above this critical velocity which distinguishes the onset
superfluid turbulence from the onset ofnormal hydrody-
namic turbulence.!

The Bogoliubov dispersion relation~plotted earlier in Fig.
2! consists of two regimes:~i! a linear regime, in which there
is a linear relationship between the energy of the elemen
excitation and its momentum near the origin~i.e., for low
energy excitations! corresponding to the soundlike waves,
more precisely to the phonons in the photon fluid, produ
by the collective oscillations of this fluid, in which the pho
tons are coupled to each other by the mutually repuls
interactions between them, and~ii ! a quadratic regime, in
which there is a quadratic relation for sufficiently large tran
verse momenta corresponding to the diffraction of the co
ponent photons, which would dominate when the pairw
interactions between the photons can be neglected. A c
one-dimensional model can give rise to an understandin
the origin of the soundlike waves in the photon fluid: Co
sider a system consisting of identical steel balls placed o
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frictionless track. This system of balls is initially motionles
Now set a ball at the one end of the track into motion so t
it collides with its nearest neighbor. The momentum trans
between adjacent hard spheres on this track, as they co
with one another, sets up a moving pattern of density fl
tuations among the balls, which propagates like a so
wave from one end of the track towards the other end. S
a soundlike wave carries energy and momentum with it a
propagates.

It may be asked why the classical nonlinear optical cal
lation gives the same result as the quantum many-body
culation. One answer is that one expects classical so
waves to have the same dispersion relation as phonons
quantum many-body system: there exists a classi
correspondence-principle limit of the quantum many-bo
problem, in which the collective excitations~i.e., their dis-
persion relation! do not change their form in the classic
limit of large phonon number.

The physical meaning of this dispersion relation is th
the lowest energy excitations of the system consist of qu
tized sound waves or phonon excitations in a superflu
whose maximum critical velocity is then given by the sou
wave velocity. By inspection of this dispersion relation,
single quantum of any elementary excitation cannot e
with a velocity below that of the sound wave. Hence
excitation of the superfluid at zero temperature is possibl
all for any object moving with a velocity slower than that
the sound wave velocity, according to an argument by L
dau @17#. Hence the flow of the superfluid must be dissip
tionless below this critical velocity. Above a certain critic
velocity, dissipation due to vortex shedding is expected fr
computer simulations based on the Gross-Pitaevskii~or
Ginzburg-Landau or nonlinear Schro¨dinger! equation, which
should give an accurate description of this system at
macroscopic level@18#.

We propose a follow-up experiment to demonstrate t
the sound wave velocity, typically a few thousandths of t
vacuum speed of light, is indeed a maximum critical veloc
of a fluid, i.e., that this photon fluid exhibits persistent cu
rents in accordance with the Landau argument based on
Bogoliubov dispersion relation. Suppose we shine light
some nonvanishing incidence angle on a Fabry-Perot res
tor ~i.e., exciting it on some off-axis mode!. This light pro-
duces a uniform flow field of the photon fluid, which flow
inside the resonator in some transverse direction and
speed determined by the incidence angle. A cylindrical
stacle placed inside the resonator will induce a laminar fl
of the superfluid around the cylinder, as long as the fl
velocity remains below a certain critical velocity. Howeve
above this critical velocity a turbulent flow will be induced
with the formation of a von-Karman vortex street associa
with quantized vortices shed from the boundary of the c
inder @18#. The typical vortex core size is given by the ligh
wavelength divided by the square root of the nonlinear ind
change. Typically the vortex core size should therefore
around a few hundred microns, so that this nonlinear opt
phenomenon should be readily observable.
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APPENDIX

The limit G→0 must be taken carefully. Equation~36!
assumes that the phase of the driving fieldEd has no influ-
ence on the phase of the internal cavity field, asG→0. We
conjecture that this is justified when the phase of the driv
laser field fluctuates by large amounts rapidly over the ti
scale set by the cavity ring-down timeG21, as is the case
when the laser linewidth is larger thanG. Conversely, if we
drive the cavity with a monochromatic laser beam in a
herent state whose phase remains constant over this
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scale, the assumption leading to Eq.~36! is invalid, and we
have shown that the dispersion relation, Eq.~40!, is modified
to become

V~K !52 iG1F2vE 0
2un2uGAvuE du2un2u/Dv21

1c2K2un2uE 0
21

c4K4

4v2 G 1/2

~A1!

when G2!4Dv(vuE du2un2u2Dv). The frequency gap
which appears nearK50 becomes arbitrarily small asG
→0 and we recover Eq.~40!. We thank Professor Juan Pere
Torres for pointing the modified dispersion relation out to u
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