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Bogoliubov dispersion relation and the possibility of superfluidity for weakly interacting photons
in a two-dimensional photon fluid
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The Bogoliubov dispersion relation for the elementary excitations of the weakly interacting Bose gas is
shown to hold for the case of the weakly interacting photon (@ “photon fluid”) in a nonlinear Fabry-
Perot cavity. The chemical potential of a photon in the two-dimensional photon fluid does not vanish. The
Bogoliubov relation, which is also derived by means of a linearized fluctuation analysis in classical nonlinear
optics, implies the possibility of a new, superfluid state of light. The theory underlying an experiment in
progress to observe sound waves in the photon fluid is described, and another experiment to measure the
critical velocity of this superfluid is proposefd51050-294{®9)08411-5

PACS numbgs): 42.50.Ct, 42.65.Sf, 67.90z, 05.30.Jp

[. INTRODUCTION the effective chemical potential of a photon in the photon
fluid, and shall relate the velocity of sound in the photon
The quantum many-body problem, with its many, rich fluid to this nonvanishing chemical potential. In this way, we
manifestations in condensed matter physics, has had a longy the theoretical foundations for an experiment in progress
and illustrious history. In particular, superconductivity andto measure the sound-wave-like dispersion relation for the
superfluidity were two major discoveries in this field. Al- Photon fluid. We also propose another experiment to mea-
though at present much is well understo@dg., the BCS Sure _th_e_z critical velocity of_ this fluid, and tht_Js to test for the
theory of superconductivilythe recent experimental discov- pOSSIblllty of the superfluidity of the resulting state of the
eries of Bose-Einstein condensation in laser-cooled atom¥ht , ) . o ,
[1-4] raise new and interesting questions, such as whether Although the interaction H_amﬂtoman used in this Paper IS
the observed Bose-Einstein condensates are superfluids, %guwalent to that used earlier in four-wave squeezing, we

whether persistent currents can exist in these new states anphasae _here the many-bod_y, collective aspec_ts of the
matter. problem which result from multiple photon-photon interac-

Historicall Ki in the studv of the int . ftions. This leads to the idea of the “photon fluid.” Since the
liah 1S _orr]lca y spea mg,flnh €s lrj1 Y Oh ebm eraction ? microscopic and macroscopic analyses yield the same Bogo-
ight with matter, most of the emphasis has been on exploryj,,y gispersion relation for excitations of this fluid, it may

ing new states of matter, such as the recently observee 5rqued that there is nothing fundamentally new in the
atomic Bose-Einstein condensates. However, not as muchiicroscopic analysis given below which is not already con-
attention has been focused on exploring new states of lightgined in the macroscopic, classical nonlinear optical analy-
Of course, the invention of the laser led to the discovery of &js. However, it is the microscopic analysis which leads to
new state of light, namely the coherent state, which is a veryhe new, heuristic viewpoint of the interacting photon system
robust one. Two decades ago, squeezed states were disceé a “photon fluid,” a conception which could give rise to
ered, but these states are not as robust as the coherent stai@w ways of understanding and discovering nonlinear optical
since they are easily degraded by scattering and absorptiophenomena. Furthermore, the interesting question of the
In contrast to the laser, which involves a system far awaygquantum optical state of the light inside the cavity resulting
from equilibrium, we shall explore here states close to theérom multiple interactions between the photdns., whether
ground state of a photonic system. Hence they should bit results in a coherent, squeezed, Fock, or some other quan-
robust ones. tum state cannot be addressed by classical nonlinear optical
Here we shall study the many-body problem by studyingmethods. Thus this paper represents an attempt to formulate
the interacting many-photon systefthe “photon fluid”)  the new concept of a “photon fluid” starting from the mi-
near its ground state. In this paper we shall explore someroscopic viewpoint, and to lay the foundations for answer-
theoretical considerations which suggest the possibility of ang the question concerning the resulting quantum optical
new state of light, namely, the superfluid state. In particularstate of the light.
we shall derive the Bogoliubov dispersion relation for the
weakly interacting photon gas with repulsive photon-photon
interactions, starting both from the microscofiie., second-
guantized level, and also from the macroscopig.e., Here we reexamine one particular many-body problem,
classical-field level. Thereby we shall find an expression for the one first solved by Bogoliubo\b,6]. Suppose that one
has a zero-temperature system of bosons which are interact-
ing with each other repulsively, for example, a dilute system
*Electronic address: chiao@physics.berkeley.edu of small, bosonic hard spheres. Such a model was intended
TElectronic address: jpoyce@physics.berkeley.edu to describe superfluid helium, but in fact it did not work well

II. BOGOLIUBOV PROBLEM
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there, since the interactions between atoms in superfluid he-
lium were too strong for the theory to be valid. In order to

make the problem tractable theoretically, let us assume that k

these interactions are weak. In the case of light, the interac- A k

tions between the photons are in fact always weak, so that L

this assumption is a good one. However, these interactions k

are nonvanishing, as demonstrated by the fact that photon- Z

photon collisions mediated by atoms excited near, but off,

resonance have been experimentally obsefvédWe start

with the Bogoliubov Hamiltonian FIG. 1. A planar Fabry-Perot imposes boundary conditions

which quantize the allowed valueskof, wherezis the axis normal

H=Hgeet Hint, to the mirrors, in units ofr/L, wherelL is the separation of the

mirrors. For a plane-wave mode which propagates at a small angle
+ with respect to thez axis, there arises an effective nonrelativistic
Hiree™ E e(p)apap, () energy-momentum relation for an noninteracting, trapped 2D pho-
P ton, whose effective mass iB=#% w/c? (see text

Ho=— V(rk)al. al a.a,, upon multiplication by#s, becomes the energy-momentum
2 Kqu (K)@p+ 3q-«pg relation for the photon
. Sl s _ 2 2 2q1/2_ 2 2 /
where the operatora] anda, are creation and annihilation ~ E(P)=ClPx+py+ p;1YV%=clpg+ py+A*n?m?/L?]H?
operators, respectively, for bosons with momenfymhich A2 2 2a27102
; . . = +pi+
satisfy the Bose commutation relations CLPi+ Py e @

wherem=7nmx/Lc is the effective mass of the photon. In
the limit of small-angleor paraxial propagation, where the

] ] o small transverse momentum of the photon satisfies the in-
The first termHy.¢ in the Hamiltonian represents the en- gqyality

ergy of the free boson system, and the second telm
represents the energy of the interactions between the bosons pl:[p)z(—l— p§]1’2< p,=hk,=fAnz/L, (5)
arising from the potential energy(«). The interaction term

is equivalent to the one responsible for producing squeezede obtain from a Taylor expansion of the relativistic relation
states of light via four-wave mixing10]. It represents the a nonrelativistic energy-momentum relation for the two-
annihilation of two particles, here photons, of momepta dimensional(2D) noninteracting photons inside the Fabry-
andgq, along with the creation of two particles with momenta Perot resonator,

p+ k andg— «, in other words, a scattering process with a 5

momentum transfek between a pair of particles with initial E(p,)=mc*+p?/2m, (6)
momentap and g, along with the assignment of an energy
V() to this scattering process.

[a,al]=8yqand[a, a,]=[a},a}]=0. 2

wherem=#inw/Lc=hw/c? is the effective mass of the con-
fined photons. It is convenient to redefine the zero of energy,

so that only the effective kinetic energy,
lll. FREE-PHOTON DISPERSION RELATION INSIDE A

FABRY-PEROT RESONATOR e(p,)=p2/2m, 7

Photons with momentp andg also obey the above COM- remains. To establish the connection with the Bogoliubov

mutations relations, so that the Bogoliubov theory should Iy amiltonian. we identify the two-dimensional momentum
principle also apply to the weakly interacting photon gas.p as the mé)menturpthat appears in this Hamiltonian, and
The factore(p) represents the energy as a function of the;,* '

momentum(the dispersion relatigrfor the free, i.e., nonin- the abovee(p,) as thee(p) that appears in Eq1).

teracting, bosons. In the case of photons in a Fabry-Perot

resonator, the boundary conditions of the mirrors cause the IV. BOGOLIUBOV DISPERSION RELATION

e(p) of a photon trapped inside the resonator to correspond FOR THE PHOTON FLUID

to an energy-momentum relation which is identical to that of  Now we know that in an ideal Bose gas at absolute zero

a nonre;latlw_stm particle with an effective mag&8] of m  temperature, there exists a Bose condensate consisting of a

=fhwl/c®. This can be understood starting from Fig. 1. macroscopic numbeN, of particles occupying the zero-
For high-reflectivity mirrors, the vanishing of the electric momentum state. This feature should survive in the case of

field at the reflecting surfaces of the mirrors imposes a quante weakly interacting Bose gas, since as the interaction van-

tization condition on the allowed values of tagomponent  jshes, one should recover the Bose condensate state. Hence

of the photon wave vectok,=nw/L, wherenis an integer  fo|lowing Bogoliubov, we shall assume here that even in the

andL is the distance betwgen the mirrors. Thus the usuahresence of interactionbl, will remain a macroscopic num-

frequency—wavevector relation ber in the photon fluid9]. This macroscopic number will be

determined by the intensity of the incident laser beam which
w(k)=c[K;+kS+ k512, (3)  excites the Fabry-Perot cavity system, and turns out to be a
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very large number compared to unigee below. For the 1 ,

ground-state wave functiod ,(N,) with N, particles in the Him=§V(0)a$a5aoao+V(0)E ajayajao

Bose condensate in the=0 state, the zero-momentum op- P

eratorsa, and ag operating on the ground state obey the , - 1 -
relations + Ep [V(p)<’:1p<'ﬂlo<51p¢’=104r > [V(P)aga pa0ao

ao| Wo(Ng))=VNo| Wo(No— 1), +V(palalaa ]
0“0 p“—p

+2 V(k)(a), alama,
px
ad|¥o(Ng)) = VNo+ 1| ¥o(Ng+1)). 8

1 !
Since Ng>1, we shall neglect the difference between the +ap, @l apao) 2 gq V() (8.1 g BpBo)-
factors Ny +1 and {N,. Thus one can replace all occur-
rences ofay and ag by thec numbery/Ny, so that to a good
approximation[a,,aj]~0. However, the number of par- Here we have also assumed thatp)=V(—p). By thus
ticles in the system is then no longer exactly conserved, aseparating out the zero-momentum state from the sums in the
can be seen by examination of the term in the HamiltonianHamiltonian, and replacing all occurrencesagfand aj by

Ny, we find that the Hamiltoniahl’ decomposes into three

11

> V(xalal apae~NoX V(v)alal,, (9 Pams

) ) H'=Ho+H:+H,, (12
which represents the creation of a pair of particles, i.e., pho-
tons, with momentac and — « out of nothing. where
_ However, whenever the system is_ open, i._e., When_ever it 1 1
is connected to an external reservoir of particles which al- Ho=—V(0)a$agaOaO~ ~V(0)NZ, (13
lows the total particle number to fluctuate around some con- 2 2

stant average value, then the total number of particles need 1
only be conserved on the average. Formally, one standard "oy + ' + .t

- Hqi~ a,a,+ =N \% a_,a,ta_pa,),
way to compensate for the lack of exact particle number = ! 2,3 €' (P)apap 2 0% (P)(apap pp)
conservation is to use the Lagrange multiplier method and (14
subtract a chemical potential termN,, from the Hamil-
tonian (just as in statistical mechanics when one goes from

- ' t Tt
the canonical ensemble to the grand canonical ens¢mble Ho~ \/N—Oé V(r)(ap4 @paitps A, 8p)
[11]
1
' tooat
H—H'=H—uNqp, (10) +5 2 V()8 @4 pag), (15

Kpq

whereNopzzpa;gap is the total number operator andrep-  where

resents the chemical potential, i.e., the average energy for

adding a particle to the open system describedbyn the €' (p)=e(p)+NoV(0)+NoV(p) — u (16)
present context, we are considering the case of a Fabry-Perot

cavity with low, but finite, transmissivity mirrors which al- S a modified photon energy, and wheig and . are given
low photons to enter and leave the cavity, due to an inpuby

light beam coming in from the left and an output beam leav-

ing from the right. This permits a realistic physical imple- rot —

mentation of the external reservoir, since the Fabry-Perot N°+<q’0|2p 25| Vo) =N 7
cavity allows the total particle number inside the cavity to

fluctuate due to particle exchange with the beams outside thend

cavity. However, the photons remain trapped inside the cav-

ity long enough so that a thermalized condition is achieved =
after many photon-photon interactiofis., after many col- M=oN
lisions), thus allowing the formation of a photon fluid.

It will be useful to separate out the zero-momentum com-HereEy= (W |H|¥,) is the ground-state energy Hf In the
ponents of the interaction Hamiltonian, since it will turn out approximation that there is little depletion of the Bose con-
that there is a macroscopic occupation of the zerodensate due to interactiofise., N~Ny>1), the first term of
momentum state due to Bose condensation. The prime on ttgy. (11) [i.e., Hy in Eq. (13)] dominates, so that
sumsXZ,, 3, andX,,, in the following equation denotes
sums over momenta explicity excluding the zero-
momentum state, i.e., all the running indicps «, q,p
+ k,q— k which are not explicitly set equal to zero are non-
zero: and therefore that

(18

1, 1,
Eo~ 5 N3V(0)~5N?V(0) (19
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w~NV(0)~NyV(0). (20)

This implies that the effective chemical potential of a pho-
ton, i.e., the energy for adding a photon to the photon fluid, is y
given by the number of photons in the Bose condensate
times the repulsive pairwise interaction energy between pho-
tons with zero relative momentum. It should be remarked
that the fact that the chemical potential is nonvanishing here .
makes the thermodynamics of this two-dimensional photon .7

system quite different from the usual three-dimensional, .-
Planck blackbody photon systeh2]. In the same approxi- T
mation, Eq.(16) becomes

Energy

Momentum

€' (p)~e(p)+NoV(p). (21) FIG. 2. The energy versus momentum of an elementary excita-
0 tion in the weakly interacting Bose gas, here in the present case the
This is the single-particle photon energy in the Hartree apphotgn flL_IId. The solid line represents_ the Bogoliubov dispersion
proximation. relation given by Eq(30), _for the special case tha{t(x)_:V(O_)
In the same approximation, it is also assumed thaf =const, and the dashed line represents a quadratic dispersion rela-

. . . ion for a noninteracting diffracting photon insi he Fabry-Per
>|H,|, i.e., that the interactions between the bosons are suffsonc;t; oninteracting diffracting photon inside the Fabry-Perot

ficiently weak, again so as not to deplete the Bose conden-
sate significantly. In the case of the weakly interacting pho-

ton gas inside the Fabry-Perot resonator, since the , 1 , ~
interactions between the photons are indeed weak, this as- UK_§[1+E () w(x)], 27)
sumption is a good one.
Following Bogoliubov, we now introduce the following
canonical transformation in order to diagonalize the , 1 , ~
quadratic-form Hamiltoniam ; in Eq. (14): Vims[ 1+ e (0l o(x)]. (28)
a,.=ua,t VKatK, Squaring Eq(26) and substituting from Eq€$27) and (29),

we obtain
al=ual+v.a_,. (22)

K

o(k)?=€'(k)2—N2V (k)%= e(x)*+2e(k)NoV(k),

Hereu, andv, are two realc numbers which must satisfy 29

the condition

where in the last step we have used EzZ{l).

Thus the final result is that the Hamiltoniéh in Eq. (25)
describes a collection of noninteracting simple harmonic os-
%illators, i.e., quasiparticles, or elementary excitations of the
0f)hoton fluid from its ground state. The energy-momentum

relation of these quasiparticles is obtained from EZP)
upon substitution ok(«) = x%/2m from Eq. (7),

ul—v2=1, (23)

in order to insure that the Bose commutation relations ar
preserved for the new creation and annihilation operators f
certain quasiparticlesxz ande,, i.e., that

[ac,al,]=6, .0 and[a,,a.]=[al,a’,]=0. (24
1/2

We seek a diagonal form d¢f; given by )= k*NgV (k) N K* 30

m 4m?

H1=E'

K

~ 1
w(K)( aIa’K-i- = +cons}, (25

2 which we shall call the “Bogoliubov dispersion relation.”

This dispersion relation is plotted in Fig. 2, in the special

wherew(«) represents the energy of a quasiparticle of mo-cas€ thatV(x)=V(0)=const. [Note that Landau’s roton
mentum «. Substituting the new creation and annihilation Minimum could in principle also be incorporated into this
operatorsa’ and a, given by Eq.(22) into Eg. (25), and theory by a suitable choice of the functional for_m\b(fx)_.]
comparing with the original form of the Hamiltonid#, in For small values ok this dispersion relation inear in

Eq. (14), we arrive at the following necessary conditions for %~ This feature, together with the fact that the operatb,
diagonalization: in Eq. (25) describes a density fluctuation in the fluid, indi-

cates that the nature of the elementary excitations here is that
1 of phonons which in the classical limit of large phonon
~ _- number leads to soundlike waves propagating inside the pho-
(1)U =75 NoV(x), (26) " ion fluid at the sound speed
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R, T R, T To derive this dispersion relation classically, we begin by
considering the planar Fabry-Perot cavity shown in Fig. 3.
Two parallel planar mirrors of reflectivitiR and transmissiv-
P E E ity T (with R+T=1, i.e., with no dissipationare normal to
inc fwd frans the z axis and separated by a distariceA laser beam trav-
eling in the+z direction is incident on the cavity, and there
£ E result five interacting light beams in the problem. The region
refl bwd o between the mirroréinside the cavity contains a nonlinear
z polarizable medium. The classical electric field obeys Max-
well’'s equations, written in wave-equation form in CGS
y units as
FIG. 3. Fields and coordinate system in the Fabry-Perot cavity. 92E 1 PE 4w 5°P
The applied fieldg;,. arises from a laser beam incident from the — +Vf - (34)
left. An atomic vapor excited to the red side of resonance by the Ky c? gt> c? at?

incident light fills the spacéhe grey aregbetween the two mirrors.

The presence of these atoms leads to a self-defocusing Kerr nonligvhereE is the (real) electric field amplitudeP is the polar-

e_arity (corregponding to repulsive photon-photon interactidns  jzation introduced in the medium, al’ﬁf is the Laplacian in

side the cavity. the transverse coordinat&sandy. This equation is supple-
mented by boundary conditions at the two mirrors.

w(k)  [NQV(0)\ Y2 [u\1? Equation(34) simplifies considerably when the following

:( m ) :( ) (3D assumptions are made.

(i) The slowly varying envelope approximation is justi-
fied, in which case we recast E(4) in terms of the field
envelopet.

(i) The frequency spacing between adjacent longitudinal

Ke=2[MNoV ()M (32 cavity modes is much greater thé the incident laser line-
] ] width, and(b) nonlinearity bandwidth, allowing us to neglect
[i.e., when the two terms of Eq30) are equal the linear  the 7 dependence of the field envelogihis is sometimes
relation between energy and momentum turns into a quasg|led theuniform fieldapproximation.
dratic one, indicating that the quasiparticles at large mo- (jji) The atomic response time is much shorter than the
menta behave essentially like nonrelativistic free particle%avity lifetime, allowing us to adiabatically eliminate the
with an energy of«?/2m. The reciprocal ofx. defines a  atomic responsé.e., the nonlinearity is fast
characteristic length scale Under these reasonable assumptions the cavity’s internal

field envelope is governed by the Lugiato-Lefever equation

Ne=27hl k= mhimvg, (33  [13], written here as

vg=lim -

k-0 K

At a transition momentunx. given by

which characterizes the distance scale over which collective JE ic
effects arising from the pairwise interaction between the pho- — = V2 tiwn,|E2E+i(Aw)E—T(E-&y), (35
tons become important. at 2k

Thus in the above analysis, we have shown that all the
approximations involved in the Bogoliubov theory should bewhere £(x,y,t) is the internal cavity field envelope ampli-
valid ones for the case of the 2D photon fluid inside a nontude,k is the longitudinal wave numbes is the laser angu-
linear Fabry-Perot cavity. Hence the Bogoliubov dispersiorar frequencyh, is the nonlinear index inside the cavity (
relation should indeed apply to this fluid; in particular, there~1+n,|&|?), Aw=w— v, is the detuning of the driving
should exist soundlike modes of propagation in the photortaser from linear cavity resonancE=cT/2L is the cavity

fluid. decay rate, andy(x,y) is a driving laser amplitude. In other
contexts, Eq(35) is called the nonlinear Schidinger (NLS)
V. CLASSICAL PICTURE OF SOUND WAVES IN A equation, or the Ginzburg-Landau equation, or the Gross-
NONLINEAR OPTICAL FLUID Pitaevskii equation. The latter two of these were introduced

as descriptions of superfluid and of Bose-Einstein-condensed

A classical nonlinear optical treatment of a Fabry-Perotsystems, with a complex order parameféer which here is
cavity which is filled with a medium with a self-defocusing jdentified with .
Kerr nonlinearity(see Fig. 3 also indicates the existence of Equation(35) has the nonlinear plane-wave solution
modes of soundlike wave propagation in the nonlinearly in-
teracting light. Such a nonlinear medium could consist of an

. . . _ H 2

alkali-metal atomic vapor excited by a laser detuned to the E=&yexi(wnég+Aw)t] (36)
red side of resonance. In fact, it turns out that fluctuations in
the light intensity in this medium propagate with a dispersionrwhenI" is negligible (see Appendix in which case, can
relation which is identical to that given above in E80) for ~ be assumed real without loss of generality. Linearizing
the weakly interacting Bose gas. around this solution by substituting the form
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By vs=CvVAn=cy|n,|&3, (42)

which we identify as a sound-wave velocity. This velocity is
identical to the one found earlier in EB1) for the velocity

of phonons in the photon fluid, provided that one identifies
the energy density of the light inside the cavity with the
number of photons in the Bose condensate as follows:

E2=87Nohi o/ Ve ay, (42)

whereV.,,, the cavity volume, is also the quantization vol-
ume for the electromagnetic field, and provided that one

makes use of the known proportionality betweepn and
FIG. 4. Schematic of an experiment to observe the soundlikay(0) [15,16].

waves in a photon fluid which fills a nonlinear Fabry-Perot resona- |5 fact, the entire dispersion relation, EG0), found

tor. The nonlinear mediurtdenoted by the grey arp@s an alkali-  5pove classically for soundlike waves associated with fluc-
metal atomic vapor excited by a broad laser bademoted by the  ,51i0ns in the light intensity inside a resonator filled with a
broad incoming arrowtuned to the red side of resonance. The goalself-defocusing Kerr medium, is formally identical to the Bo-
is to verify the Bogoliubov dispersion relation, E80) or (40). An goliubov dispersion relation iEQBO) obtained quantum me-
electro-optic modulatofEOM) modulates the intensity of light at a chanically for the elementar'y excit,ations of the photon fluid,

radiofrequency in the MHz range, which is then injected by means

of an optical fiber tip at a single point on the entrance face of the" the approximationV(x)=V(0)=const. This is a valid

Fabry-Perot resonator. The wavelength of the resulting Sound“k@pproxmatlon, smcg the pairwise interaction pot.enyal be-
waves can be measured by scanning in the transverse direction tﬂé’een_ two phOtor_‘s is given by a tranS\_/erse 2D Pa'rW'Se spa-
tip of another optical fiber across the output face of the Fabry-Perofi@l Dirac & function, whose strength is proportional g

and by measuring the phase of the modulated pick-up signal relativel 5,16 It should be kept in mind that the phenomena of

—> EOM

to that of the EOM modulation signal. self-focusing and self-defocusing in nonlinear optics can be
viewed as arising fronpairwise interactionsbetween pho-
E=[Eptalxy,t) ]exdi(wn,€2+ Aw)t], 37) tons when the light propagation is paraxial and the Kerr non-

linearity is fast[15,16. Since in a quantum description the
light inside the resonator is composed of photons, and since
these photons as the constituent particles are weakly interact-
ing repulsively with each other through the self-defocusing
Kerr nonlinearity to form a photon fluid, this formal identi-

da ic fication is a natural one.

Ezﬂvfaﬂwnzgg(ma*). (38)

we get the following linear equation for the fluctuation am-
plitude [we have assumed thi(x,y,t)|<&]:

VI. EXPERIMENT IN PROGRESS

Here we look for a cylindrically symmetric solution ap-
propriate for the experimental geometsee Fig. 4. Substi-
tuting the trial solution

We are in the process of investigating experimentally the
existence of the soundlike propagating photon density waves
predicted above for a planar Fabry-Perot cavity containing a
self-defocusing 11,<<0) nonlinear mediuntsee Fig. 4.

_ i0*t —iot The soundlike mode is most simply observed by applying
alp,)=alo(Kp)e™ "+ Blo(Kp)e ' (39 two incident optical fields to the nonlinear cavity: a broad
plane wave resonant with the cavity to form the nonlinear
background fluid on top of which the soundlike mode can
propagate, and a weaker amplitude-modulated beam which is
modulated at the sound wave frequency in the radio range by
an electro-optic modulator, and injected by means of an op-
tical fiber tip at a single point on the entrance face of the
Fabry-Perot. The resulting weak time-varying perturbations
12 in the background light induce transversely propagating

, (400  waves in the photon fluid, which propagate away from the

point of injection like ripples on a pond. This soundlike

mode can be phase-sensitively detected by another fiber tip
whereQ) andK are the angular frequency and wave numberplaced at the exit face of the Fabry-Perot some transverse
respectively, of the transverse soundlike mode. distance away from the injection point, and its soundlike

For transverse wavelengths much longer than wavelength can be measured by scanning this fiber tip trans-
=\/(An)Y2 where \ is the optical wavelength andn  versely across the exit face.
=|n,|£3 is the nonlinear index shift induced by the back- The experiment employs a cavity lengthof 2 cm and
ground beam, the transverse mode propagates with the comirrors with intensity reflectivities oR=0.997, for a cavity
stant phase velocity finesse of roughly 1000. The optical nonlinearity is provided

where Jo(Kp) is the zero-order Bessel functiop,= (x>
+y?)12 s the transverse radial distance from the origin of a
fluctuation, andK is the wave number of the fluctuation, we
obtain the following dispersion relation for small-amplitude
intensity fluctuations in the light filling the cavifyi4]:

4 d

Q(K)=| c2K?|n,| €3+ .

w2
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by rubidium vapor at 80 °C, corresponding to a number denfrictionless track. This system of balls is initially motionless.
sity of 10" rubidium atoms per cubic centimeter. We use aNow set a ball at the one end of the track into motion so that
circularly polarized laser beam, detuned by around 600 MH#t collides with its nearest neighbor. The momentum transfer
to the red side of thé’Rb, F=2—F'=3 transition of the between adjacent hard spheres on this track, as they collide
D, line; using this closed transition eliminates optical pump-With one another, sets up a moving pattern of density fluc-
ing into theF=1 ground state. This 600 MHz detuning of tuations among the balls, which propagates like a sound
the laser from the atomic resonance is considerably largé¥ave from one end of the track towards the other end. Such
than the Doppler width of 340 MHz, and the residual absorp& soundlike wave carries energy and momentum with it as it
tion arising from the tails of the nearby resonance line givefropagates.

rise to a loss which is less than or comparable to the loss It may be asked why the classical nonlinear optical calcu-
arising from the mirror transmissions. This extra absorptiorfation gives the same result as the quantum many-body cal-
loss contributes to a slightly larger effective cavity loss co-culation. One answer is that one expects classical sound
efficient T, but does not otherwise alter the qualitative be-Waves to have the same dispersion relation as phonons in a
havior of the Bogoliubov dispersion relation, nor any of theguantum many-body system: there exists a classical,
other main conclusions of this paper. The above critdjia ~ Correspondence-principle limit of the quantum many-body
(iii) for the validity of Eq.(35), as well as those for the Problem, in which the collective excitatiorise., their dis-
validity of the microscopic Bogoliubov theory, should be Persion relation do not change their form in the classical
well satisfied by these experimental parameters. An intracaJimit of large phonon number. . o

ity intensity of 40 W/cm results inAn=2x10"8, for a The physical meaning of this dispersion relation is that
sound speedss=4.2x 107 cm/s and transition wavelength the lowest energy excitations of the system consist of quan-
Ac~1 mm. For this intensityN,~8x 10, so that the con- tized sound waves or phonon excitations in a superfluid,

dition for the validity of the Bogoliubov theory\y>1, is  Whose maximum critical velocity is then given by the sound
well satisfied. wave velocity. By inspection of this dispersion relation, a

single quantum of any elementary excitation cannot exist

with a velocity below that of the sound wave. Hence no
VII. DISCUSSION AND FUTURE DIRECTIONS excitation of the superfluid at zero temperature is possible at
all for any object moving with a velocity slower than that of
the sound wave velocity, according to an argument by Lan-
dau[17]. Hence the flow of the superfluid must be dissipa-
tionless below this critical velocity. Above a certain critical
velocity, dissipation due to vortex shedding is expected from
computer simulations based on the Gross-Pitaevii

We suggest here that the Bogoliubov form of the disper
sion relation, Eq(30) or (40), implies that the photon fluid
formed by repulsive photon-photon interactions in the non
linear cavity is actually a photosuperfluid This means that
a superfluid state of light might actually exist. Although the
exact definition of superfluidity is presently still under dis- - X - . .
cussion, especially in light of the question whether the re_szburg_—Landau or nanlinear S_clu_imgeb equation, which
cently discovered atomic Bose-Einstein condensates are Sahould give an accurate description of this system at the

perfluids or not[4], one indication of the existence of a ma\j:vroscopm Ieveﬂf18|]|. . o d irate that
photon superfluid would be that there exists a critical transi- € propose a follow-up experiment to demonstrate tha

tion from a dissipationless state of superflow, i.e., a IaminaFhe sound wave velocity, typically a few thousandths of the

flow of the photon fluid below a certain critical velocity past vacuum speed of I'gh.t’ is indeed amaximum crltlc_al velocity
an obstacle, into a turbulent state of flow, accompanied b fa fI_U|d, i.e., that th|s_ photon fluid exhibits persistent cur-
energy dissipation associated with the shedding of vonkents in accordance with the Landau argument based on the

Karman-likequantizedvortices past this obstacle, above this Bogoliubov d!s;r)lgr5|pn _(rjelanon. Slupposers slgne tl|ght at
critical velocity. (It is the generation ofjuantizedvortices SOme nonvanishing INCldence angie on a rabry--erot resona-

above this critical velocity which distinguishes the onset oftor (ie., exciting It on some off-axis mobieThls I|ght pro-
superfluid turbulence from the onset aformal hydrody- duces a uniform flow field of the photon fluid, which flows
namic turbulence inside the resonator in some transverse direction and at a
The Bogoliubov dispersion relatigplotted earlier in Fig. speed determ!ne_d by the incidence _ar_lgle. A cyI|nd_r|caI ob-
2) consists of two regimes) a linear regime, in which there stacle placed |n3|de the resonator will induce a laminar flow
is a linear relationship between the energy of the elementar f th? superﬂ_wd around the c_yllnd_e_:r, as Iong as the flow
excitation and its momentum near the origire., for low elocity remains below a certain critical velocity. However,
energy excitationscorresponding to the soundlik'e waves Orabove this critical velocity a turbulent flow will be induced,

; : ; ith the formation of a von-Karman vortex street associated
more precisely to the phonons in the photon fluid, produce&v! . .
by the collective oscillations of this fluid, in which the pho- with quantized vortices shed from the boundary of the cyl-

tons are coupled to each other by the mutually repulsivénder[lB]' The typical vortex core size is given by the light

interactions between them, ari) a quadratic regime, in wavelength divided by the square root of the nonlinear index
which there is a quadratic relation for sufficiently large trans-cn@nge. Typically the vortex core size should therefore be

verse momenta corresponding to the diffraction of the comaround a few hundred microns’ so that this nonlinear optical
ponent photons, which would dominate when the pairwisé)henomenon should be readily observable.

interactions between the photons can be neglected. A crude
one-dimensional model can give rise to an understanding of
the origin of the soundlike waves in the photon fluid: Con- We thank L.M.A. Bettencourt, D.A.R. Dalvit, I.H. Deut-
sider a system consisting of identical steel balls placed on ach, J.C. Garrison, D.H. Lee, M.W. Mitchell, J. Perez-Torres,
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APPENDIX

Q(K)=—iT+| 20E3n, T Vo |E 4% nl/Aw—1

The limit I'—=0 must be taken carefully. EquatiqB6)
assumes that the phase of the driving fi€ldhas no influ-
ence on the phase of the internal cavity fieldlas0. We
conjecture that this is justified when the phase of the driving
laser field fluctuates by large amounts rapidly over the time
scale set by the cavity ring-down tinfé™, as is the case when I'’<4Aw(w|E4?n,]—Aw). The frequency gap
when the laser linewidth is larger thdh Conversely, if we which appears neakK=0 becomes arbitrarily small ab
drive the cavity with a monochromatic laser beam in a co-—0 and we recover Eq40). We thank Professor Juan Perez
herent state whose phase remains constant over this tinferres for pointing the modified dispersion relation out to us.
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