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The standard quantum limit to the linewidth of a laser for which the gain medium can be adiabatically
eliminated islo:K/ZK Here « is the intensity damping rate amdthe mean photon number. This contains
equal contributions from the loss and gain processes, so that simple arguments which attribute the linewidth
wholly to phase noise from spontaneous gain are wrong. | show thahstimulatedgain process actually
introduces no phase noise, so that the ultimate quantum limit to the linewidth comes from the loss alone and
is equal tol = kl4n. | investigate a number of physical gain mechanisms which attempt to achieve gain
without phase noise: a linear atom-field coupling with a finite interaction time, a nonlinear atom-field coupling,
and adiabatic photon transfer using a counterintuitive pulse sequence. The first at best reaches the standard
limit 1, the second reachés,, and the third reaches the ultimate limitlgf= 31,. [S1050-29479)03711-7

PACS numbse(s): 42.50.Ar, 42.55.Ah, 42.50.Lc, 32.80.Qk

[. INTRODUCTION medium, andk is the cavity linewidth. The inequality is an
equality only for perfectly efficient output coupling.
It is more than 40 years since Schawlow and Townes In the limit y>« the gain medium can be adiabatically
introduced the idea of an “optical masef®], now known of  eliminated, resulting in Markovian evolution for the laser
course as a laser. Probably the most famous result from thisiode. This means thd can be replaced by (the mean

paper is t'he expression for the quantum-limited laser linephoton number andl,4by , to give the standard Markov-
width, their Eq.(17), ian limit as
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Here A w is the half-width at half maximuntHWHM) of
the laser spectrum o is the HWHM of the spectrum of the For the remainder of this paper | will assume the Markovian
relevant atomic transitiorR,,, is the output power, and is  limit, and drop the adjective “Markovian” distinguishinig
the frequency of the laser. Definin=2Aw, and y  from I, when no confusion is likely to arise.

=2Aw, this expression can be rewritten Most older textbook$3—5] quote the result in Eq.1.4),
or one which reduces to it in the appropriate limit of neither

| :ﬁ_w 2 1.2 reabsorption nor thermal photons. The first two of tH&s4]
ST Pouty ' ' derive this result rigorously using a Fokker-Planck equation

and quantum Langevin equations, respectively. All three at-

where ST stands for Schawlow-Townes. The derivation otempt to explain it in terms of the noise added by the spon-
this expression assumes that reabsorption of photons by atneous contribution to th@nostly stimulateg gain of pho-
oms in the ground state of the relevant transition is neglitons from the atomic medium. Loudorn5] even
gible, and also ignores thermal photons and other extraneouscommended the argument based on the uncertainty prin-
noise sources. ciple given by Weiche[6].

To describe lasers accurately, a number of refinements The argument of Weichel is as follow@ my notation).
must be made to the Schawlow-Townes expresgidh In a laser at steady state, the ratio of spontaneous emissions

lieve, help_s to put in perspective some of the past yvork ince the total gain rate must equal the total loss katethe
guantum limits to the laser linewidth. The end result is that 3ate of spontaneous emissions is

better expression for the standard quantum limit to the laser

linewidth is _
KN

| o yPK2 T 1+n
| e 0 Y (13 1+n
2N 2Pout (y+«)?

=K, (1.5

where it is assumed thait>1. Now the reciprocal of this,
Here st stands for standafguantum limil. As explained in  At=1/«, is[6] “the average time between phase fluctuations
the Appendix| . is the bare linewidthN is the number of caused by spontaneous emissions into the mode.” Invoking
coherent excitations stored in the laser mode and its gaithe uncertainty principle
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AEAt=4/2, (1.6 Il. STANDARD LASER

) ) ) A. Jaynes-Cummings coupling
and assuming that the energy uncertainty of the mode is

AE~nA Awqg, gives The standard laser master equation results from just about

any gain medium under the appropriate conditions in which

noise due to thermal photons and photon reabsorption can be
1.7 ignored. Here | will present probably the simplest derivation
' for this master equation in the limit far above threshold. In
this model the gain is due to the coupling of the laser mode

which agrees with the Schawlow-Townes reg@d. (1.2)], with a single transition in an atom. Ignoring the other levels
. — in the atom, the interaction is governed by the usual Jaynes-
with y replaced byx and P, by «n.

Almost every step in this argument is dubious, not theCummmgs Hamiltonian
least being the starting assumption that phase diffusion is due H=iQ(ca'—o'a), (2.1
solely to the gain mechanism. This is an artifact of thinking
in terms of normally ordered operator products. That is, itwherea is the annihilation operator for the cavity mode,
results from using(implicitly in most casepthe Glauber- =|I)(u| is the lowering operator for the atom, afdis the
SudarsharP function [7-9] as a true representation of the one-photon Rabi frequency.
fluctuations in the laser mode field. The function is of Let the interaction time- be such thaE\/ﬁ<l, wheree
course no more fundamental than ®dunction [9], which _0 dnis th it itV bhot ber. Then th
is a representation based on antinormally ordered statistics. If . Tandnis the mean intracavily photon number. 1hen the
one were to use thé function as an aid to intuition, one umtary_operator exptiH 7) acting on the initially factor!zed
would find that it is the loss process that is wholly respon-St"J‘t‘aR_p@)|u><u| can be expanded to second ordekito

sible for the phase noise. Of course the rate of phase diffd'Ve the entangled state for the atom and field

|=2A “
= Woge——— ——,
¢ hAt n

sion would agree with that from the function, at least in R=p®|u)(u|+ e(afp®|1)(u|+H.c)
steady state where loss and gain balance.
If one asks a question about phase diffusion, the only +e%(a'pas|l)l|—3{aa' pl@|u)(u]). (2.2

objective answer will come from using the phase basis itself. ) )
This is far more difficult than using the more familiar phase- ~Say there is a detector which detects the state of the atom
space representations, but some approximate results ha\y@medlately .after it has |_nteracted with the field. If the out-
been obtained10]. These show that, at steady state, thed0ing atom is detected in the upper state, then the condi-
phase diffusion has equal contributions from the loss andioned state of the fieldthe norm of which represents the
gain process. The same result occurs from a Wigner functioRrobability of this detection results, to first order ine*,
calculation[10]. This is not surprising since symmetrically ~ ) t
ordered moments are known to closely approximate the true pu=(UlR[u)=(1-€e"A[a'])p
momgnts for the phase operator for states with well-defined —expl — €2aa’[2) pexp( — €2aa'l2),
amplitude[11].

The fact that phase diffusion comes equally from the loss 2.3
and gain processes suggests that the standard quantum limi . , .
to the laser linewidthl,y of Eq.(1.4), may not be the ultimate wltnere the superoperatol is defined for an arbitrary opera-

" R .. torsA andB by

quantum limit. The contribution from the loss mechanism is
unavoidable. A laser, at least in useful definitiddg], re- A[A]B=1{ATA,B}. (2.4)
quires a linear damping of the laser mode in order to form an
output beam. However, it may be that the standard gaitf the atom is detected in the lower stapehich happens
mechanism could be replaced by some other gain mechanisrarely), the state is
that causes less phase diffusion. The ultimate quantum limit 5
to the laser linewidth could thus be as small as one-half of pi={I|R|I)=€*Ja']p, (2.5
the standard limit. _ )

In this paper | investigate various gain mechanisms in avhere the superoperatgfis defined by
attempt to find one which causes less phase diffusion than

_ +
the standard gain mechanism. First, in Sec. Il, | review the JAIB=ABA'. (2.6
standard model for a laser, giving rise to the standard quan- ¢ s \vere all that there was to the model then the master
tum limit 5. Next, in Sec. lll, | present gain without stimu-

equation would be found simply by averaging over the two

lated emission, which produces a linewidthigi2, and dis- g its. If the entry of excited atoms into the cavity were a
cuss how this can be physically realized. In Secs. IV and Vpgigeon process with rafe< 71, the result would be
| present models which attempt to approximate gain without '

stlmulgted emission, using a n_1|cromaserll!<e mteractlo_n and p=Te2D[alp+«D[alp. 2.7
a nonlinear field-atom interaction, respectively, and discuss

their success. After a comparison of these results in Sec. VHere | have included linear logallowing the laser outpiiat
| conclude in Sec. VII by returning to a derivation of the rate «, and | am using the notation

ultimate quantum limit to the laser linewidth using an uncer-

tainty relation. DIAI=TJ[A]-AA]. (2.9
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As long asl" €< k, this master equation has a steady state. e
However it is not an appropriate steady state for the device to .
be a laser. As discussed in REf2], it is necessary to have J

n>1 for the output of the device to be coherefmt a ;
guantum-statistical senseBut in this limit, the stationary :
state of the master equati@®.7) has a photon number un-

certainty o(n) ~n. This leads to enormous low-frequency

(~ «/n) fluctuations in the intensity of the output beam. This

ruins the second-order coherence of the device. Second-order
coherence is ubiquitously recognized as a defining character-
istic of a laser above threshdl@-5,9,16, and is included in \
the formal definition of a laser given in RdfL2]. \

* State
. . AY —
B. Gain saturation N ® J Detector \\

H=iQ|(cat- ota)

~
~ . -~

-

The origin of the problem with Eq(2.7) is stimulated S~
emission. Despite the fact that it is part of the acronym
l.a.s.e.r.,, stimulated emission from an undepleted source FIG. 1. Schematic of a simple gain mechanism which repro-
(such as the source of excited atoms in the present) casduces that of a standard laser far above threshold. An atom in the
leads directly to the unwanted intensity fluctuations inherentipper state passes through the cavity, and its state is then detected.
in Eq. (2.7). This is because such stimulated emission im-If the atom remains in the upper state, the process is repeated until

plies that, forﬁ>l, the intensity gain is proportional to the it is detected in the lower state. The time for this prod@ssuding

intensity. Thus, if the intensity fluctuates above its mear{€Pelitions is assumed to be very short compared to the time be-

i ort com .
value then that fluctuation will be reinforced by an increaseVeen photon emissions from the cavity) . Once the atom is

in the gain, and if it fluctuates below the mean then the gaiﬁjetected in the lower state, a new upper-state atom is injected after

will correspondingly decrease. To avoid this, and hence ob? random waiting timer having an exponential distribution(7)

. = — .H is th i f ph inth
tain a second-order coherent output, one actually wants @;/)i(ts( ). Herep is the desired mean number of photons in the
photon gain which is aonlinearfunction of intensity. '
In most lasers, the nonlinearity of the gain as a function of — _
intensity occurs automatically as becomes very large be- A~POVe threshold G/x>1), n is typically comparable to

cause ofgain saturation This is not difficult to derive in the 2nd the gain is quite nonlinear as a function of intensity. Far

master equation approaft?]. Ignoring thermal photons and 200Ve threshold®/«>1), ns is negligible in comparison to

photon reabsorption as usual, the resulting master equatidgh and the gain rate becomes essentially independent of in-
(including output loskis tensity fluctuations. In the FATfar above thresho)dlimit

one can approximate the master equatigrd) for a laser
b=GnSD[aT](A[aT]+ ny) lp+«D[a]p. (2.9 with a saturablegain medium by the master equation

N

Here G is the “small signal gain,” which is the initial gain
when the laser mode is begun in the vacuum state narsl
the saturation photon number. Although it may be written in
an unfamiliar form, this is the standard master equation for dor a laser with asaturatedgain medium. In this limit the
laser with a saturable gain medium which can be adiabatiphoton statistics of the laser mode become Poissdfikena
cally eliminated. For example, it is completely equivalent tocoherent stajeso that it is usual to consider this linii¢,5,9.
the Fokker-Planck equation derived by Louidd], except  For ease of expression | will call E(R.9) the standard laser
for the thermal noise in the damping which he included.master equation, and E(R.12) the FAT standard laser mas-
Above threshold G> k), the mean photon number is ap- ter equation.

proximately equal to

p=Gn.D[a']A[a"] *p+«Dla]p (2.12

n= (Glk—1)n. (2.10 C. FAT laser model
) ) ) ) The FAT standard laser master equation can be derived
The gain rate from this master equation varies as easily within the current context of two-level atoms passing
aat through a cavity. To make the gain independent of the pho-
Tr[aTaD[aT](A[aT]Jrns)1p]:< - > ton number, it is simply necessary to ensure thqt each atom
aa'+ng gives up exactly one quantum of energy to the field, regard-

(2.11 less of the field state. This is achieved by the following pro-

) o . cedure. If the outgoing atom is detected in the lower state,
Stimulated(and spontaneolimission is evident from the then the field has gained a photon and the process can stop. If
aaT in the numerator, but the deStabi“Zing effect of this is it is detected in the upper State' one must try again with the
offset by theaa' in the denominator, which is present be- same atom(or, more realistically, another excited atom
cause of gain saturation. Below threshol@/¢«<1), n is  This process continues until the atom is detected in the
small compared tag and the gain is approximately linear. ground state. This procedure is shown in Fig. 1.
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Say K atoms are required before th& ¢ 1)th atom is i 2./nm n+m
detected in the lower state. From Ed2.3) and (2.5, the Pnm= M Pn-1m-17Pnm| = "5 Pam

unnormalized state matrix after th& ¢ 1)th atom is n+m

~ +y(n+1)(m+1 . 2.1
=€’ T allexd —Ke?aa'/2]p ex —Ke?aa'l2]. (n+1)( ) Prcime @19

Here, as in the remainder of the paper, | have setl.
2.1 Clearly the stationary state will be of the form,

The norm of this state matrix is equal to the probability that= n.mPn- The equation of motion foP, is
this many atoms are needed. Thus the average density opera-

tor, given that an atom is finally detected in the ground state, Pn=w(Py-1=Pp)+(n+1)Ppy—nPy. (2.20

IS This has the stationary solutidh,=e #u"/n!. That is, the
o intracavity photon statistics are exactly Poissonian.
p'=2 pk. (2.14 The stationary state matrix can therefore be written
K=0
Mn
Using the fact tha? is small, the sum in Eq2.14) can pss:; e‘”m|n>(n|. (2.2

be converted to an integral by settipg= €K :

" Equivalently, it can be written

p'=Ja"] f exp(— Baa'l2)p exp(— Baa'/2)dB.
0 I AP

(2.15 Pss= fo 2ﬂ_|ae el (2.22

This can be formally evaluatdd 3] as o .
y dd3] where|a|=\/u and|a€'?) is a coherent state of amplitude

p'=Ja"A[a’] 1p. (2.16 a€'®. From eith_er expression it is easy to verify th_at the
mean number is Ta'ap.J=ux and the mean amplitude
The superoperatad[a’] ™! is well defined becausga’ isa  Tr[aps]=0.
strictly positive operatof14].
The action of the superoperatgfa’].A[a’] !is to add a E. Calculating the linewidth

photon to the system irrespective of its initial state. That is to
say, it shifts the photon number distribution upwards by 1. If
this addition of a photon is assumed to occur at Poisson?
distributed times, with a rat€ <Qen, then a Markovian
master equation for the field results. If one also include
linear damping at rate as above, and lets the gdiine rate
of photon additionbeI'= ku, then one obtains

There are many different ways of calculating the line-
width of a laser from its master equation. One way is to
covert the master equation into an approximate Fokker-
Planck equation for a quasiprobability distribution function
Such as theP, Q, or W function [16]. This is relatively
straightforward for a master equation of the form of Eq.
(2.17), despite the apparent awkwardness of the inverse su-
peroperatotd[a’] ™! [13]. However, for other master equa-

«tp=p(Ja Al = 1)p+ Dlalp tions as | will consider later in this paper, the conversion is
=uD[a"]A[a"] p+Dla]p. (2.17)  hot so simple. Therefore, | will adopt a method using the
Fock basis. The method is essentially a more rigorous ver-

From Eq.(2.195 and the identity sion of that used by Sargent, Scully, and Laidh

The linewidthl of a laser | have taken to be the full width

1:f dgexp — Baa’i2)aa’exy — gaa'l2), (2.19 at half maximum(FWHM) of the power spectrum
0

L . P “drg® , 2.2
it is easy to see that the master equati@rl?) is of the (w)ocfo g7 (r)coswr 2.23

required Lindblad fornj15]. This equation was first derived

in this explicit form in Ref.[13], but as noted above it is where the normalized first-order coherence function is
simply the far-above-threshold approximati@h12 to the

standard laser master equation. In this derivation it was as- gW(r)=(a'(t+na(t))ss/(a’a)ss. (2.29
sumed that the state preparation and detection are perfect. If

instead one were to allow for an imperfect atomic state delf one represents the master equati@rl?) asp=Lp, then
tector, for example, which has a probabilipg<1 to incor- ~ One can write

rectly register an atom in the ground state, then one would (1) toor

obtain the standard laser master equat@®) with satura- gr(n)=Tra'e " (aps) |/ . (2.2

tion photon numbeng=p/ €. . . .
Note that the stationary state matyxg is a mixture of

D, Stationary state coherent states, as in E.22. Sinceg®(7) is invariant

‘ y under a phase shift, E¢R.22 implies that in Eq(2.25 one

In the Fock basis the FAT standard laser master equatiocan takeps=|a){a|, with |a|?=x. Then Eq.(2.25 be-
(217 is comes
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gO(n=Tratap(n)]/x, (2.26  t=n. Then the correction term in ER.35 is of orderx /2
and can be ignored. One can thus return to the expression
wherep(t) obeys the master equatidéd.17), and [Eq. (2.33], which becomegagain ignoring corrections of
order u~1?)
p(0)=|a)(al. (2.27)
. 1
If one defines fo~— mfn. (2.37
fa()=Vnpn-1a()/a*, (228 Tne first-order coherence function is thus
then one can write 9(7) = exp — 7/4u), (2.38
g(l)(t):E fo(t). (2.29 so that the coherence time isu4(which is of orderu as
n promised. The Fourier transform of this expression is a

. . . Lorentzian with the FWHM
Clearly if one can determine the evolution f(t), one can

find g™)(t) and hence the linewidth of the laser. From Eq. 1

(2.17 one finds |= ﬂ (2.39

fnzﬂzs_ilfnil_ﬂfn_knfrwl_ an_ (2.30  This is the standard quantum lim§ of the linewidth for a

2 laser.
Defining
IIl. GAIN WITHOUT STIMULATED EMISSION
()= M (2.3)) Since “stimulated emission of radiation” is part of the
nfya(t) acronym for laser, it might be thought that stimulated emis-

btai sion is essential to produce a laser. A typical laser does rely
one obtains upon stimulated emission to ensure that it runs single mode,
2n(n—1) u 2n—1 and the stimulated emission is of course present in the stan-

fo= T e T f,. (2.32 dard laser master equati¢@.9. However, the fact that the

n— r

n gain is independent of photon number in the FAT regime of

the standard laser master equati@rl? suggests that it may
not be strictly necessary.

Of course if one were to consider a laser to be defined by
the original acronym l.a.s.e.r., then a laser without stimulated
_ 1 emission would be an oxymoron. However, the word laser is
foe——1,. (2.33 no longer considered to be an acronyt7]. Also, it is now
accepted usage to refer to a continuously out-coupled atomic
condensate as an “atom laser,” which obviously cannot be
encompassed within the original acronym. For this and other

Now from definition(2.31), r,(0)=1. Assuming that this
ratio remains unity, we expand E@.32 to leading order in
1/ to obtain

Solving this and substituting into ER.31) gives, to leading

order, reasons | have argued elsewhEt2] for a general definition
t of a laser, based on the coherence properties of the output
rn(t)wexp( — —2) ~ 1——2, (2.39 beam from the device. The gain of the device is not restricted
4n 4n to any particular mechanisrfwhich seems wise given the

_ ) ) _ ) inventiveness of laser physicist©n this basis, one can cer-
where the expansion to first order is valid for imes much,in\y conceive of a laser whose amplification does not rely

less thanu?. Since, as will be shown, the coherence time g stimulated emission.
~2/l is of orderp, it is quite safe to make this expansion | il now show that stimulated emission is indeedt
even for times long compared to the coherence time. necessary to produce a device with the same coherence prop-
Substituting this expression fop(t) into Eq.(2.32 gives  gries as a laser. Moreover, just as stimulated emission was to
the more accurate expression blame for the intensity noise in the linear amplifier, it is to
blame for the phase noise in the laser gain. In other words, in
e — |1+ n—,U«t f (2.35 a complete reversal of the laser physics folklore discussed in
n n- . o . or
4n n? Sec. |, it is thestimulatedemission,not the spontaneous
emission, which causes the phase diffusion. Eliminating
Since the initial condition is stimulated emission eliminates the amplification component
i of the phase diffusion and hence results in a narrower line-
£ (0)=e # M (2.36 W|dth than the standa_rd I(_;lser. To avoid contention, | will
" (n=1)1” ' continue to refer to gain without stimulated emission, rather

than a laser without stimulated emission.
the only significant contribution to sui2.29 comes fromn Stimulated emission is a simple consequence of the linear
such thatn— u|= Ju. Also, as noted above, one can assumecoupling of the laser field to its source, as in E2.1). That
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is to say, Hamiltoniar(2.1) is linear in the annihilation op- cally follow the Hamiltonian. Specifically, the characteristic
eratora which, for classical fields, can be replaced by the time for the photon additioif has to satisfy

number\ne'®. According to Fermi's golden rule, a transi- _

tion rate depends on the square of the Hamiltonian. Hence Qg,0>T >«kn,y, (3.5

the fundamental gain rate from a linear coupling will vary as . ) . o
n, which is the so-called stimulated emission or Bose-Where{lg is the Rabi frequency of the classical fieglis a

enhancement factor. A fully quantum calculation of courseone-photon Rabi frequendyhe equivalent of the) in Eq.
gives spontaneous emission as well, and hence a gain raté1], andy is the spontaneous emission rate of the upper
proportional ton+1. Thus stimulated emission is still level of the atom. Note that these inequalities are consistent
present in the model of Sec. I, even though the overall proWwith the requirement that the gain rake (which must be
cedure illustrated in Fig. 1 leads to the addition of photons asmaller thariT ~1) be equal to the loss raten. However, for

a rate independent of the photon number in the cavity.  |argen the conditiong>> «n is much harder to satisfy than
Since stimulated emission can be traced to the presence ffe usual strong coupling conditig® « in cavity quantum
ain the coupling Hamiltonian, it can be removed by substi-gjectrodynamics. Thus it would not be possible to produce a
tuting for a a different lowering operator, one whose classi-macroscopic field from this gain mechanism with current
cal analog does not increase with That is to say, in Ed. technology.
(2.2), replace Ignoring these practical limitations, we can take the rate
" of addition of photons to the field to He= xu as before; in
lace of Eq.(2.17), one obtains
a= 3 \nln-1)(n| @y P a(2.17
p=uDle'p+Da]p. (3.6
T E’|\¢
by the Susskind-Glogow§l8] e=e'® operator As usual, time is being measured in units<of*. In the Fock
basis this becomes

e=(aa’) Y%= > |n—1)(n|. (3.2 .
n=1 Pm,n:/—L(Pn—l,m—l_pm,n)_(n+ m)pn,m/2
The new Hamiltonian would be extremely nonlinear if ex- +V(N+1)(M+1) pprgmer- 3.7
pressed as a power seriesaianda’, but it cannot be denied o _ .
that it will not exhibit any stimulated emission. This yields exactly the same equation for the diagonal ele-

Replacinga by e in Hamiltonian(2.1) presents no prob- ments(the photon r_1umber populationddence the unstimu-
lems in the rest of the derivation in Sec. Il. Moreover, it is [atéd master equatic(3.6) produces exactly the same photon
not even necessary to assume that() 7 is very small. In- number statistics as does the FAT standard laser master
stead, the result is independent &f due to the fact that ©duation(2.17). o
eet=1.1n particular, if one chooses= 77/2, the transforma- To calculate the linewidth, one can proceed as before.

tion effected on the field by one transit of the atom is semi—ﬁ)_”e finds the following equation fdf,, defined as in Sec.

unitary:
- n
|wlg)y=[1)S ). 3.3 fo=u| Vg faa—

n
+nfy g — ————f, (3.9

ar
exr{E(eTa— a'e)

2
Here is the state of the field, and po2n—1
) ==t =5 @9
S=el= EO [n+1)(n|. (3.4  Assumingr,~1 yields, as above, the self-consistent solution
1=
. - . - 1
The operatorS is semiunitary rather than unitary because fo~— S—fn. (3.10
S's=1, butSS=1-1{0)(0|. K

Surprisingly, the transformatio8 can be achieved physi-
cally using only the usual electric-dipole couplift®]. The
trick is to use a three-leveh atom and another, classical gW(r)=exp(— 7/8u), (3.11)
field [20]. Then, using a counterintuitive pulse sequence, the
atom is transferred from one lower state to the other, and onso that the linewidth is
photon is created in the cavity fielgvith the energy lost
from the classical field Like the gain process in Sec. I, this [— 1
adds precisely one photon to the field. The difference is that CAu’
it does this without entangling the state of the field and the
atom, and hence leaves the state of the field pure. The onlyhis is half the standard quantum linli of Eq. (1.4). As
approximation necessary to derive the semiunitary transforexplained in Sec. |, the standard quantum limit for the laser
mation S from this technique is that the couplings be turnedphase diffusion rate contains equal contributions from the
on and off sufficiently slowly for the total system to adiabati- gain and loss processes. The gain process considered in this

The first-order coherence function is therefore

(3.12
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section does not introduce any phase noise; the opezhtsr  well-defined intensity. That is, it is not the case tlagn)

more or less the exponentiation of the phase operator and sen. Hence the device is not necessarily a true laser in the
increases the photon number without affecting the phase disense of Ref[12].

tribution at all. Thus the phase diffusion in this model comes To ensure that the a well-defined photon number distribu-
wholly from the loss process, and the rate is half the standarglon is produced, the same technique as in Sec. Il can be

rate. used. That is, if an atom is detected still in the upper state it
is sent through again until it is detected in the lower state.
IV. FINITE ATOM-FIELD INTERACTION TIME The resulting master equation is

Section Il showed that an interaction in which the atom is _
sure to give up its quantum of energy to the fiéldm a p=
single pasgesults in a linewidth a factor of 2 smaller than
the standard limit. It was noted there that this could be _1
achieved using an adiabatic passage, but this has yet to be ={uJ(1=J,) "+ Dlal}p. (4.9
done experimentally. This suggests that it would be wortr]n the photon number basis
exploring other ways to mimic the unstimulated gain pro-
oS . . sin(e/n)sin(eJm)

In this section | investigate one idea, based upon the gain  p, ,=pu Pr—1im—1—MPnm
mechanism of a micromasg21,22. This utilizes the same ’ 1—cog eyn)cog e\/m) ' '

nI 2 JE+D[a]]p 4.8

Jaynes-Cummings couplin@.l) as in Sec. Il. The differ- _ JnEDm+D
ence is that the scaled interaction tieve () 7 is not assumed (n+m)p, n/2+(N+1)(M+1) prigmrs-
to be small. This modifies the results of Sec. Il as follows. (4.10
The state of the field conditioned on the detection of an atom ) ) ]
in the lower state i$21] To f|n_d the Ime_W|dth, one proceeds as before to obtain the
following equation forf,,:
p=Jp, 4.1 _ _
p=Jp @D P \Esm(e\/n—l)sm(e\/ﬁ) N
where N —1[1-codeyn—T)cogeym] "+ K"
— Tatai
=Je'sin(eyaa')]. 4.2 2n—1
A= Jesinevaal)] “2 Fnfoa= 1. 4.12)
The field state conditioned on an atom passing through and
remaining in the upper state i21] Using the parameter
Pu=Jup, (4.3 p=e\u, (4.12
where one can continue the analysis as before, and eventually find
Ju=Jlcog evaa ). (4.4) e 1 +y«zsinz(dw) . 413
n . n- .
8u Sirf ¢

For states having a photon distribution localized aronnd

if € is such thateyn~m/2, then it would seem that the Thatis, the linewidth of the laser is found to be
action of the above superoperators could be approximated by

e (Sin(czﬁ/ﬂ))z i1
J~Je', 4.5 = 2.1\ Gnoyn) | (4.19
J.~0. (4.6) It is easy to verify that this expression has a global minimum
; 2
That is, the atom would almost certainly come out in the = lim 1 +( Slf\(tb/,u)) :i_ 4.15
lower state, having given up its quantum of energy to the b0 AM (sing)/n 2u

field. This is the same situation as for the unstimulated gain
as shown in Sec. lll. This is why a finite interaction tirae  The limit ¢—0 is the limit of short interaction times in
might be expected to lead to a linewidth below the standaravhich the original model of Sec. Il is recovered, and also the
limit. original linewidthly. That is, no linewidth narrowing is pos-
If atoms are injected at a Poissonian ratehen the total  sible using a finite interaction time in preference to an infini-
master equation is the usual micromaser master equation tesimal interaction time, despite the fact that the former can
deposit a photon in the cavity in a single pass of the atom
p={u(Jy+J—1)+Dlal}p. (4.7 with very high probability.
This line broadening is definitely not an artifact of the
Here linear damping at rate unity also has been includedassumption that the atom is always put through again if it is
This master equation has very complicated dynamics. Fodetected still in its upper state; a similar result is obtained for
some values o€ and u the stationary state does not have athe usual master micromaser equation with a single pass per
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atom[23]. The approach to calculating the linewidth used in  Physically, this Hamiltonian means that there are two pro-
Ref.[23] was similar to the one used here. A more accurateesses which can excite the atom. The first is the usual linear
estimation of the linewidth for the usual micromaser has tadipole coupling to the field. The second is a three-photon
take into account the fact that the intensity is not always welprocess, whereby a photon is virtually absorbed and re-
defined[24]. This yields some deviations from the simple emitted before finally being absorbed by the atom. The
theory of Ref[23], but still never shows any line narrowing. Hamiltonian matrix element for the second process is much
The reason that no linewidth narrowing occurs can besmaller(for u>1), which is physically reasonable, and is of
seen from the method of calculation | have employed. Whathe opposite sign. It is doubtful that such a Hamiltonian
turns out to be crucial is not to try to mimic the two terms in could be achieved simply using a two-level atom. However,

the unstimulated gaid[e'], namely, it is possible that an effective Hamiltonian of this form could
" . be achieved using a multilevel atom, and other fields. | will
Je'l;  Ale'l=1, (416 ot further discuss the feasibility of producing this Hamil-

tonian, as my chief concern is with the question of principle:
how well can the nonlinear Hamiltonigh.3) reproduce the
results of the model with unstimulated gain?

but rather to mimic the following ratio of matrix elements
involving these two terms:

(n—1[{J et n}n+1[}|n) Assuming, as in previous sections, that the atoms are ini-
. = (4.17  tially in the upper state and that any atom which exits the
(n[{Ale"][n}(n+1[}In+1) cavity still in the upper state is put through again, one can

In the unstimulated case the ratio is unity, and the differencge”ve’ following the method of Sec. I, the following master

from unity in other cases is proportional to the contributionequatlon for the cavity mode:

to the linewidth from the gain process. For the FAT standard .
laser, p=pD[a'(3—aa'/u)]A[a’(3—aa'/u)] *p+D[alp.

(5.4
(n—1l{Ja"lnyn+1[in) Win e oo _
t P : Is has the same Poissonian mixture of number states as in
(n[{A[a]jn)(n+1[}{n+1) 8n the FAT standard laser, and is amenable to the same method
Multiplying the deviation from unity by the gain constgnt ~ Of calculating the linewidth. The result is
and replacingh by the mean photon number gives 1/§u.

This is the standard contribution to the linewidth from the 3
: : |=—. (5.5
gain. For the above micromaser model, 8u
(n=1{AIMn+1}ny sirf(lp)

~1— , That is, the contribution from the gain is Z8which is half
(n{[1-J I} n+1[}n+1) 8sirf¢ the standard result and half the contribution ofidffom the
(4.19 loss(which is of course unchanggdrhis result can again be

. . . . understood from the ratio
which again explains the result in E@L.14).

V. NONLINEAR ATOM-FIELD INTERACTION (n—1{Ja'(3-aa'lw)]n)(n+1[}Hn) ot
(nj{A[a"(3—aa'/u)]In)(n+1|}|n+1) 16n?
(5.6

With now a better understanding of how to reduce the
gain-induced phase diffusion, | turn to a second method for
trying to mimic unstimulated gain. As noted in Sec. lll, the
operatore” would require an infinite series to be expressed in VI. DISCUSSION
terms of powers o anda’. Any Hamiltonian containing
infinite powers of the field is unlikely to be realizable in
practice. However, nonlinear optical processes containin%}
field powers greater than unity do occur. This suggests that
is worth considering the following approximation:

The standard quantum limit to the laser linewidth is not
e ultimate quantum limit, even for the Markovian case in
hich the gain medium is eliminated from the equations of
motion of the laser mode. Hidden within the standard Mar-
kovian expression

eT:aT(aaT)*lIZIaT[ILL_i_(aaT_M)]flIZ (51)

K
|0:—_

(5.2 2n 64

That is, | wish to consider a nonlinear Jaynes-Cumming&'€ €qual contributions of/4n from the gain and loss
Hamiltonian of the form mechanisms for the laser. The latter contribution is a funda-

mental limit because linear loss is necessary for a coherent
H=i0[csa'(3—aa'/u)+(3—aa'/u)ac'], (5.3 output beam to form. However the former results from a
particular (extremely reasonabl@ssumption about the gain
which | expect to be useful when the photon number is apmechanism for laser action, that is, that it comes from a weak
proximately . linear coupling between the field and the gain medium.
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These arguments suggest that a different sort of gaidard laser linewidth as a consequence of phase diffusion due
mechanism could produce a laser with a linewidth up to 50%o0 the gain process. The results of this paper show that any
below the standard quantum limit. As | have shown abovesuch simple argument is untenable since the gain process

this ultimate Markovian limit contributes only half of the standard phase diffusion rate. To
compensate for disposing of this simple argument, | will
K conclude this paper with a not quite so simgkt much
Iult:ﬁ (6.2) more rigorouy argument deriving the ultimate Markovian

quantum limitl,; from another uncertainty principle argu-
can be achieved with a gain mechanism in which stimulatednent.
emission into the cavity mode is eliminated. This requires Instead of the energy-time relation, which is of doubtful
that the matrix element for the addition of a photon to thecontent, | will use the quadrature uncertainty relation
cavity mode be independent of the number of photons in the

mode. As discussed, this could be physically achieved with V(X)V(Y)=1, (7.1
adiabatic transfer of photons from another field using a coun-
terintuitive pulse sequence. whereX/2 andY/2 are the real and imaginary components of

| also examined two other gain mechanisms with similari-the laser mode amplitude Clearly the vacuum state is ro-
ties to the nonstimulated gain, to see if they also producedationally symmetric with
linewidth narrowing. The first, using the usual Jaynes-
Cummings Hamiltonian but with a finite interaction tirfes V(X)=V(Y)=1, (7.2
in the micromaser did not. The second, using a nonlinear

Jaynes-Cummings Hamiltonian involving three-photon as;nq this holds also for a coherent state, which is the state the
well as one-photon processes, produced a linewidth of laser mode can be assumed to bésee Eq(2.22)].

Let the mean amplitude of the coherent state be real and

| = 3k _ (6.3  positive, so thak/2= Jn andY=0. The phase variance is
8n
That is, the phase diffusion due to the gain was reduced by V($)=V arctaa} :V(_Y) - i_ (7.3
50% from the standard limit, resulting in an overall reduction X?  4n

of 25% in the linewidth. Presumably higher-order nonlinear

optical processes could more closely approach the ultimatg, 151 Now the effect of linear damping for an infinitesi-

I|m|.t. However, the difficulty in producing SL.JCh nonhnear_ mal time dt is to reduce the mean photon number of the
optical processes, and the fact that even a third-order nonlin- h t state from to n(1— xdt). Thus the ch in th
earity goes only halfway to the ultimate limit, suggests thatC?1 erent state from fo n(1-«dt). Thus the change in the
the adiabatic transfer method is a better experimental optioR ase variance Is
for probing toward the ultimate quantum limit to the laser
linewidth. rdt

The ultimate limit for the rate of phase diffusion attained dV(¢)= an (7.4
by eliminating gain noise can also be obtained, for short
times, by instead _ehmmatmg loss noIse. This can be A noiseless gain process will return the mean photon
achieved by coupling the laser output into a squeezed — ) i )
vacuum rather than a normal vacuui25,26. This only number ton without increasing the phase noise. Therefore,
works for short times because it requires a specific phasi!® Phase variance increases at least as
relation between the squeezed vacuum and the coherent field
in the laser, which will not remain valid since the laser phase Kt
continues to diffuse. It was suggested in Ref5] that it V(¢)~4_F (7.9
might be possible to produce the squeezed vacuum by driv-
ing the squeezing device with the laser itself. In this case th . e ) . .
whole squeezing device should really be considered as paz'[gr(]a linewidth is defined from the two-time correlation func-

(an internal absorber, in fgcof the laser, so tham in the
original laser cavity should no longer be used as a good
measure of the total stored excitation. Similar comments
could be made about the proposal of Ghosh and Agarwal
[27], who also misquoted the expression for the standard he Fourier transform of this expression is a Lorentzian with
quantum limit given in Ref[4] by a factor of 2 as their Eq. @ FWHM of
(18). | believe that a rigorous analysis of these proposals

would reveal no reduction below the standard quantum limit.

(a'(t)a(0))~n(e*)~ne V(D2_pe-«ten (7

1 (7'7)
VII. CONCLUSION

In Sec. |, | reproduced a simple argument purporting towhich is the ultimate quantum limit to the laser linewidth, as
use the time-energy uncertainty principle to derive the stanelaimed.



4092 H. M. WISEMAN PRA 60

ACKNOWLEDGMENTS laser then the bare linewidth,is due wholly to the output

I would like to thank D. Pope for a critical reading of this coupling, andP o= lysE. In generalPq is less than this.
paper. The work was undertaken with the support of théReducing the output coupling efficien¢gs discussed in the

Australian Research Council. preceding paragraphwill not affect E so it is the correct
parameter to use, rather thdh,,;. The doubly corrected
APPENDIX: REFINING THE SCHAWLOW-TOWNES Schawlow-Townes limit is thus
LIMIT

2.2
" lbardtw  fo ¥k

The Schawlow-Townes expression =———=< , (A5)
P ST E Pout (y+ K)?
ho 2 . . .
|ST:P—7 (A1)  where the inequality becomes an equality only for perfectly
out efficient output coupling.

was derived in the days before good optical cavities, and It 1S convenient to define the number of quanta of coher-
hence implicitly assumes that the atomic linewigtis much  ent excitation N=E/fi». For the casec>y the excitation
smaller than th€FWHM) cavity linewidth . With k<v, it  stored in the gain medium is negligible aNe=n, where the
is necessary to replacg by the bare linewidth of the laser latter represents the mephotonnumber in the cavity. If the

lhare- This is the frequency spread the output would have ifyain medium cannot be adiabatically eliminated themust
the pump were suddenly turned off and all of the energyjncjude the excitations stored coherently in the gain medium
allowed to escape. For a large class of line shapes, it can bg well. If y<k, as in the original Schawlow-Townes ex-
shown that a reasonable approximation to the bare |i”eWidtBression, these excitations in the gain medium will be the
including contributions from the atomior other gain me-  gominant ones.
dium and the cavity is The final correction which needs to be made to the
|=1— 01y -1 (A2) Schawlow-Townes I_ingwich is to.insert a_factor of The
bare~ ¥ T K Schawlow-Townes limit without this factor is appropriate to

For instance, this expression agrees with that given by Hakef laser below threshold in which the complex amplitude of

(p. 103 of Ref.[2]) for the case wher&=y. In the other the field undergoes large slow fluctuatiifisr N>1, which

(A2). The corrected Schawlow-Townes expression is thus almost eliminated2], leaving only phase fluctuations. This
increases the coherence time by a factor of 2, so that the final
ho , fo G corrected expression for the laser linewidth is
I ,ST: iutl bare (A3)

e
out (y+ k) Ibare< ho  y?k?

. . |st:_— == 5" (A6)
The second correction which must be made to the 2N 2Pout (y+ k)
Schawlow-Townes linewidth relates to its use of the output
power. Say, for argument's sake, that one has a laser with iere st stands for standafguantum limi as opposed to ST,
linewidth given by the Schawlow-Townes limit, with all of Which stands for Schawlow-Townes.
the power coming out of one mirror. Then say that the mirror  In the limit <y, which applies for many modern lasers,
is rep|aced by one of the same |’ef|ec'[ance7 but with |arget'|lnd which allows the gain medium to be adiabatically elimi-
internal absorption. Then the power loss per round trip ighated from the field equations, one obtains
identical, so the laser dynamics remain the same and the
linewidth would remain the same. But the power out would | _ Kk _ ho
be reduced because the transmittance is reduced. Therefore, O_ZH\zpoutK :
the Schawlow-Townes formula would now predict an in-
creased linewidth, which does not occur. In other words, therhis result has oftefincluding by myself12]) been quoted
actual new linewidth would béessthan the quantum limit as the Schawlow-Townes limit, despite the obvious differ-
set by the Schawlow-Townes formula. It is obviously inap-ences from Eq(A1). Here | will call it instead thestandard
propriate that a quantum limit can be surpassed by building Markovian quantum limito the laser linewidth. “Markov-
worse device. ian” refers to the fact that the equations of motion for the
The resolution to this problem with the Schawlow- |aser mode, including gain and loss, are well approximated
Townes linewidth is to eliminat®,,, from the expression by by Markovian equations. For the gain process this is a con-
recognizing that sequence of adiabatically eliminating the gain medium. For
the loss process, it is simply a consequence of assuming a
Pout (Ad) high-Q cavity. Corrections(upwardg for non-Markovian
loss (low-Q cavitieg are discussed, for example, in Ref.
. [28], but here | will always assume a high-cavity.
is anupperbound on the mean enerdy stored as coherent Obviously fory= k, the linewidth of Eq(A6) will be less
excitations in the laser system. If all of the stored coherenthan the standard Markovian quantum limit of E47). That
excitation eventually makes it into the output beam of theis a reflection of the fact that in this case the bare linewidth

(A7)

I bare
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lpareiS less thank, and also that the gain medium is an extrathey followed the commoribut, in my opinion, erroneoyis
reservoir of energycoherent with the laser moglso thatN  Practice of identifyind o as the Schawlow-Townes limit. To

is greater tham. A linewidth which, in the absence of other Me this seems to be an example of imprecise terminology
noise sources, reduces to expressids) for the standard ©obscuring an otherwise valuable contribution to fundamental

quantum limitlg was recently derived in Ref29], for a  laser physics. In this paper | always work with models in
laser with y<«. These authors claimed that this was “re- which the gain medium can be adiabatically eliminated, so

duced compared to the Schawlow-Townes limit” becausdghatly=1g.
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