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Three-dimensional nonperturbative analysis of spontaneous emission
in a Fabry-Perot microcavity

Ho Trung Dung* and Kikuo Ujihara
The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

~Received 10 December 1998; revised manuscript received 16 June 1999!

A three-dimensional quantum nonperturbative theory of spontaneous emission in a planar microcavity is
developed on the basis of a complete set of orthogonal standing-wave mode functions. Earlier results on the
spontaneous decay rate and far-field emission pattern which have been obtained in a perturbative fashion are
shown to be contained in our theory. Time evolution of the initially excited atomic state is considered and
comparison with perturbative results is given. It is found that though the Fabry-Perot cavity is of an open type,
vacuum-field Rabi oscillations are still possible. Conditions that are favorable for this strong coupling regime
are discussed. The near-field spontaneous-emission pattern and the transition from the near field to the far field
are investigated. For moderate mirror reflectivities, the spread in the near-field emission pattern is found to be
in good agreement with the effective mode radius concept. When the mirror reflectivity increases, however,
one has a strong coupling regime and together with it, multiple reabsorptions and reemissions of the photon
may occur, leading to a better localization of the photon around the atomic position. These considerations may
be useful in designing microlasers of the planar type.@S1050-2947~99!03211-4#

PACS number~s!: 42.50.Ct, 42.60.2v
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I. INTRODUCTION

It is now understood that spontaneous emission from
atom is very sensitive to the mode density and mode st
ture of the surrounding environment in which the atom
radiating. The spontaneous-emission rate can be eithe
creased or decreased as compared to its free-space valu
the emission pattern may become highly anisotropic@1–3#.
There are also similar effects in the spontaneous emis
from recombining electron-hole pairs or excitons in semic
ductors, where tailoring the spontaneous emission ho
technological promise for realizing thresholdless, high-sp
modulation microlasers@1,4–7#.

An important class of material media configurations
which the active optical material is embedded are the pla
Fabry-Perot cavities. This type of cavity configuration h
attracted a great deal of attention due to simple fabrica
technology and due to the fact that it lends itself relativ
easily to analytical considerations@8–27#. Various aspects o
the spontaneous-emission process including the spontan
emission rate and the spontaneous emission pattern
been studied. These treatments, however, are mainly w
the framework of Fermi’s golden rule and do not accomm
date the strong coupling effects such as vacuum-field R
oscillations@28# and vacuum-field Rabi splittings@29#. Non-
perturbative multi-mode treatments have been carried
only for one-dimensional models@23–27#.

In this paper we present a three-dimensional nonpertu
tive analysis of spontaneous emission in a planar cavity w
symmetrical two-side output coupling, based on a multimo
description of the electromagnetic field. There are many r
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sons why such a study is desirable. First, although a o
dimensional theory can describe adequately many aspec
spontaneous emission in a planar cavity, it is far from re
istic because an important channel of photon loss, the em
sion into oblique modes, is neglected. Besides, proble
such as spatial distribution of spontaneous emission ca
be addressed. Second, though when the atom-radiation
pling is weak, the spontaneous-emission process can be
approximated using a perturbation theory, this weak c
pling regime will be justified to various extents depending
factors such as the cavity length, the atomic position a
atomic dipole orientation. It is therefore important to clari
how well the perturbation theory works under different c
cumstances. Third, though it has been argued intuitively
fore that since a planar cavity confines the field in only o
spatial dimension, there are no Rabi oscillations@21#, we
believe that only a nonperturbative theory which takes i
account properly the cavity mode structure can give an u
mate answer to this question. And as we shall show bel
vacuum-field Rabi oscillations, though rather weak and fr
ile, can still appear and may lead to important physical i
plications. Fourth, while earlier works on the spontaneo
emission pattern have been restricted to perturbative calc
tions of the far field@15,16,18–21#, or of the field intensity
along a line normal to the mirrors passing through the at
@17#, we aim here at giving a comprehensive treatment of
spatial emission pattern including both near and far fie
and weak and strong coupling regimes. By examining
near-field pattern, we can also gain further insights into
concept of transverse quantum correlation length introdu
by De Martini et al. @30# or, equivalently, the concept o
effective mode radius introduced by Ujihara@15,31#. Finally,
we hope that our results could be utilized for practical p
poses, e.g., in designing the vertical cavity surface emitt
lasers@32#.

The paper is organized as follows. In Sec. II, the cav
model and mode functions are given. We start out by cal

-
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4068 PRA 60HO TRUNG DUNG AND KIKUO UJIHARA
lating the standing-wave mode functions for a single diel
tric slab and after applying an appropriate limiting proc
dure, reduce them to those of a Fabry-Perot cavity with t
similar infinitely thin, semitransparent, and absorptionle
mirrors. In Section III, these mode functions are shown
reproduce exactly the same perturbative results on
spontaneous-emission rate obtained previously by using
alternative traveling-wave mode functions for symmetri
cavities @17#, including the case of two perfectly reflectin
mirrors @3,11–13#. Next we derive a delay-differential equa
tion for the time evolution of the atomic upper-state pro
ability amplitude and obtain an analytic solution to it for th
particular case where the atom is at the cavity center. T
sient behavior of the atomic upper-state population is stud
numerically and compared with that predicted by Ferm
golden rule. It is shown, in particular, that strong coupli
regime can be achieved in a one half wavelength cavity, w
the atom at the antinode position and atomic dipole para
to the cavity mirrors, provided that there is a high enou
cavity finesse or a large enough dipole matrix element. T
spontaneous emission pattern is investigated in Sec.
where the near-field and far-field patterns are calculate
both weak and strong coupling regimes. Conclusions
given in Sec. V, and lengthy mathematical derivations
outlined in the Appendices.

II. CAVITY MODEL AND MODE FUNCTIONS

Let us start by considering a single nondispersive pla
dielectric slab of thicknessl and dielectric constante1, em-
bedded in a vacuum of dielectric constante0. The coordinate
system is chosen such that thez axis is normal to the dielec
tric slab surface with its origin in the middle of the slab. T
dielectric slab is assumed to have infinite extents in thexy
plane and a two-level atom with the transition frequencyvA
and dipole matrix elementm is placed inside the cavity a
rA5(0,0,zA), see Fig. 1~a!. The electromagnetic field is ex

FIG. 1. ~a! is the single dielectric slab configuration whic
serves as a starting point for our derivation of the mode functio
The symmetrical Fabry-Perot cavity with two infinitely thin an
semitransparent mirrors shown in~b! is the one we actually use in
our calculations.
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panded in terms of orthogonal field mode functionsUj (r )
defined by imposing periodic boundary conditions inx, y,
andz directions with periodsLx , Ly , andLz , respectively.
They are normalized so that

E
V
e~r !Ui~r !Uj~r !dr5d i j ,

whereV5LxLyLz . The mode functions in the dielectric an
in the vacuum are denoted byU1 andU0, respectively, and
will be given in terms of relevant mode wave vectorsk1,0
5(kx ,ky ,k1,0z) for inside and outside the cavity and the
projections onto thexy planekp5(kx ,ky,0) beside the mode
index j. The mode functions are categorized into TE and T
mode functions of even and odd symmetries in thez direc-
tion. They are further categorized into even and odd fu
tions in thex-y direction. The odd-x-y TE mode functions
read@31#

U1,0~r !5a~ x̂ky2 ŷkx!sin~kp•r !u1,0~z!, ~1!

whereu1,0(z) and the normalization constanta are, for odd-
z TE modes,

u1
ozTE~z!5sink1zz, ~2a!

u0
ozTE~z!5sin

k1zl

2
cosk0zS z2

l

2D1
k1z

k0z
cos

k1zl

2
sink0zS z2

l

2D ,

~2b!

aozTE5
2

Ae0V

1

kp

k0z

k1z
F12S 12

k0z
2

k1z
2 D sin2

k1zl

2 G21/2

, ~3!

and, for even-z TE modes,

u1
ezTE~z!5cosk1zz, ~4a!

u0
ezTE~z!5cos

k1zl

2
cosk0zS z2

l

2D2
k1z

k0z
sin

k1zl

2
sink0zS z2

l

2D ,

~4b!

aezTE5
2

Ae0V

1

kp

k0z

k1z
F12S 12

k0z
2

k1z
2 D cos2

k1zl

2 G21/2

. ~5!

The even-x-y TE mode functions are obtained by replacin
sin(kp•r ) by cos(kp•r ) in Eq. ~1!. The TM mode functions
for odd-x-y modes are

U1,0~r !5aF ~ x̂kx1 ŷky!sin~kp•r !
d

dz
u1,0~z!

2 ẑkp
2cos~kp•r !u1,0~z!G , ~6!

whereu1,0(z) and the normalization constanta are, for even-
z TM modes,

u1
ezTM~z!5cosk1zz, ~7a!

s.
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u0
ezTM~z!5cos

k1zl

2
cosk0zS z2

l

2D
2

k1zk0
2

k0zk1
2
sin

k1zl

2
sink0zS z2

l

2D , ~7b!

aezTM5
2

Ae0V

1

kpk0

k0zk1
2

k1zk0
2 F12S 12

k0z
2 k1

4

k1z
2 k0

4D cos2
k1zl

2 G21/2

,

~8!

and, for odd-z TM modes,

u1
ozTM~z!5sink1zz, ~9a!

u0
ozTM~z!5sin

k1zl

2
cosk0zS z2

l

2D
1

k1zk0
2

k0zk1
2
cos

k1zl

2
sink0zS z2

l

2D , ~9b!

aozTM5
2

Ae0V

1

kpk0

k0zk1
2

k1zk0
2 F12S 12

k0z
2 k1

4

k1z
2 k0

4D sin2
k1zl

2 G21/2

,

~10!

while the even-x-y TM modes are obtained by replacin
sin(kp•r ) in front of (d/dz)u1,0(z) by cos(kp•r ) and
2cos(kp•r ) in front u1,0(z) by sin(kp•r ). Note that the
mode functions in Eqs.~1!–~10! describe standing wave
rather than traveling waves and in these equations, we h
suppressed the mode indexj.

It is convenient to write the normalization constantsa in
terms of Fourier series

~aezTE!25
4

e0V

1

kp
2

k0z

k1z
F112(

n51

`

r ncos~k1znl !G , ~11!

r 5
k1z2k0z

k1z1k0z
, ~12!

~aozTM!25
4

e0V

1

kp
2k0

2

k0zk1
2

k1zk0
2 F112(

n51

`

r 8n cos~k1znl !G ,

~13!

r 85
k0zk1

22k1zk0
2

k0zk1
21k1zk0

2
. ~14!

Similar expansions for odd-z TE and even-z TM modes are
obtained by replacingr andr 8 by 2r and2r 8, respectively.

In further calculations below, for simplicity, we sha
make the dielectric constante1 of the dielectric slab equal to
the vacuum dielectric constante0, but keep the reflectivities
in the Fourier expansions~11! and~13! finite. That is, we set
e1→e0 andk1→k0[k with r andr 8 finite. We also assume
that r 5r 8 and that they are independent of thek-vector ori-
entation. These assumptions reduce our cavity model to
of a pair of infinitely thin mirrors with vacuum inner spac
the mirrors are lossless and have a mode independent re
ve

at

ec-

tivity, see Fig. 1~b!. Similar cavity models have also bee
employed in earlier treatments@17#.

III. TIME EVOLUTION OF THE ATOMIC-STATE
POPULATIONS

A. Nonperturbative solution

With the mode functions in hand, the electromagne
field can be quantized in a standard manner and the Ha
tonian which describes the atom–radiation-field syst
reads, in the electric dipole and rotating-wave approxim
tions,

Ĥ5(
j

\v j â j
†â j1\vAb̂u

†b̂u1\(
j

~k j ŝ
†â j1k j* â j

†ŝ !,

~15!

with the coupling constant

k j52 iAv j

2\
Uj~rA!•m . ~16!

Hereâ j
† andâ j are the creation and annihilation operators

the field modej with mode frequencyv j , while b̂i
† and

b̂i ( i 5u,l ) are the creation and annihilation operators of t
upper and lower states of the emitting two-level atom. T
atomic flopping operators are defined asŝ5b̂l

†b̂u and ŝ†

5b̂u
†b̂l . We assume that the atom is initially excited a

there is no photon in the radiation field so that the syst
wave function in the Schro¨dinger picture can be written as

uc~ t !&5Cu~ t !e2 ivAtuu&u$0%&1(
j

Cl j ~ t !e2 iv j tu l &u$1 j%&,

~17!

where u$0%& denotes the vacuum state of the radiation fie
and u$1 j%& denotes the field state where there is one pho
in modej and no photon in all other modes. The Schro¨dinger
equation yields

Ċu~ t !52 i(
j

k jCl j ~ t !e2 i (v j 2vA)t, ~18!

Ċl j ~ t !52 ik j* Cu~ t !ei (v j 2vA)t. ~19!

Taking into account the fact that initiallyCl j (0)50, Eq.
~19! can be formally integrated and put into Eq.~18! to give

Ċu~ t !5E
0

t

K~ t2t8!Cu~ t8!dt8, ~20!

where the kernelK(t2t8) is defined as

K~ t2t8!52(
j

uk j u2e2(v j 2vA)(t2t8) . ~21!

By using Eq.~16! and the mode functions given in Sec.
and replacing the sum over the mode indexj by an integral,
this kernel can be calculated~see Appendix A! and put in Eq.
~20! to yield
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Ċu~ t !52
A0

2
Cu~ t !1 (

n51

`

p2n~vAnT!Cu~ t2nT!H~ t2nT!

1
1

2(
n50

`

$p2n11@vA~nT1t r!#Cu~ t2nT2t r!

3H~ t2nT2t r!1p2n11@vA~nT1t l!#

3Cu~ t2nT2t l!H~ t2nT2t l!%, ~22!

whereH(x) is the Heaviside unit step function;

A05
m2vA

3

3pe0\c3
~23!

is the free-space decay rate; and

T5
2l

c
, t r5

l 22zA

c
, t l5

l 12zA

c
~24!

are the round-trip travel time of a photon in the cavity, t
time for a photon to travel from the atomic position to t
right mirror and back, and the time for a photon to trav
from the atomic position to the left mirror and back, respe
tively. The coefficientspn(x) can be eitherpn

i when the di-
pole is oriented parallel to the mirror surfaces orpn

' when the
dipole is oriented perpendicular to the mirror surfaces

pn
i ~x!52

3A0

2
r nS 1

ix
1

1

x2 2
1

ix3Deix, ~25a!

pn
'~x!53A0~2r !nS 1

x2 2
1

ix3Deix. ~25b!

Clearly, any other dipole orientation can be treated as a
ear superposition of the above two cases. The de
differential equation~22! is the three-dimensional version o
that obtained earlier for one-dimensional planar cavities@23–
25#. Its first term stems from a natural decay in a free sp
while the others describe the back action of light reflected
the cavity walls on the atom with correct retardation tim
These reflections can also be interpreted as the effects o
atomic mirror images on the spontaneous emission pro
@33–35#. As compared with the one-dimensional case,pn(x)
now has a more complicated structure displayingx21-, x22-,
and x23-terms which, as in usual dipolar radiation@36,37#,
correspond to the dipole radiation field, the induced fie
and the electrostatic field, respectively, due to the mirror
ages. The absence of thex21-term in Eq.~25b! is because
the mirror-image dipoles are pointing towards the origin
atom and cannot contribute a dipole radiation term to
atom.

When the atom is positioned at the cavity center (zA
50), the three series in Eq.~22! can be combined leading t
a simpler delay-differential equation

Ċu~ t !52
Ao

2
Cu~ t !1 (

n51

`

pn~kAnl !Cu~ tn!H~ tn! ~26!

with
l
-

-
y-

e
t
.
he
ss

,
-

l
e

tn[t2
nl

c
. ~27!

This equation can be solved analytically~see Appendix B! to
yield

Cu~ t !5 (
n50

` F( p1
a1~kAl !p2

a2~kA2l !•••pn
an~kAnl !

a1!a2! •••an!

3tn
mexpS 2

A0

2
tnD GH~ tn!, ~28!

where the inner sum is over all non-negative integersai ( i
51,2,•••,n) such that

1a112a21•••1nan5n

and

m5a11a21•••1an .

Note that the ‘‘method of steps’’ employed in Appendix B
solve the delay-differential equation~26! is also applicable,
e.g., in the problem of two atoms at a fixed distance apar
a free space, where retardation plays an important role in
atom-radiation interaction process@38#.

When the atom is off the cavity center, the general del
differential equation~22! has to be integrated numerically. I
order to compare our results with perturbative ones, we n
turn to the perturbation theory.

B. Cavity modified spontaneous-emission rate and relation to
earlier works

Perturbative results can be obtained by ignoring the u
step functions and replacingCu(t) on the right-hand side o
Eq. ~22! by its initial valueCu(0)51. Hence from the rela-
tionship

G52
d

dt
uCu~ t !u2, ~29!

we get the following expression for the cavity modifie
spontaneous-emission rate

G5A022Re(
n51

`

p2n~vAnT!2Re(
n50

`

$p2n11@vA~nT1t r!#

1p2n11@vA~nT1t l!#%, ~30!

where pn(x) is defined in Eqs.~25!. It is not difficult to
verify that the same result can be obtained directly from
Fermi’s golden rule

G5(
j

pv j

\
uUj~rA!•mu2d~v j2vA!. ~31!

Our derivation, however, elucidates more clearly the M
kovian conditions assumed for the perturbative calculati
under which the future of the system is determined by
present and not its past.
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To show that previous perturbative results are contai
in our theory, it is helpful first to rewrite the normalizatio
constantsa as

~aezTE!25
4

e0V

1

kp
2

k0z

k1z

~11r !224r sin2~k1zl /2!

12r 214~r 2221!21sin2k1zl
,

~32!

~aozTM!25
4

e0V

1

kp
2k0

2

k0zk1
2

k1zk0
2

~11r 8!224r 8sin2~k1zl /2!

12r 8214~r 82221!21sin2k1zl
.

~33!

Similar expressions for odd-z TE and even-z TM modes can
de
.
l
a
r
g

vi
h

or

le
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ed
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en
m

s

v
l-
dbe obtained from Eqs.~32! and~33!, respectively, by replac-
ing sin(k1zl/2) in the numerators by cos(k1zl/2). Substituting
the mode functions with the normalization constants in
form ~32! and ~33! into the Fermi’s golden rule~31!, after
letting e1→e0 , k1→k0[k while keepingr 5r 8 finite, and
replacing the summation over the mode index by an integ
as in Eq.~A1!, we arrive at

G5
3A0

4 E
0

1

dC~11C2!G~C!, ~34!

where
Gi~C!5
~11r !222r $sin2@kAC~ l /21zA!#1sin2@kAC~ l /22zA!#%

12r 214~r 2121!21sin2~kACl !
, ~35a!

G'~C!5
~11r !222r $cos2@kAC~ l /21zA!#1cos2@kAC~ l /22zA!#%

12r 214~r 2121!21sin2~kACl !
, ~35b!
th

ive

r
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ters
i.e., in full agreement with Eqs.~4.15!–~4.17! obtained by
De Martini and co-workers using the traveling-wave mo
functions@17#. For a highQ-cavity, the denominators in Eqs
~35! can be expressed as sums ofd-functions and the integra
in Eq. ~34! can be performed in closed form, leading to
spontaneous emission rate which is consistent with the
sults derived previously for a cavity with perfectly reflectin
mirrors @3,11,12,17,20#. With these preliminary steps in
hand, we can now move on to numerical calculations.

C. Numerical results

In our numerical study, we shall assume a cos-type ca
for which r ,0 and a relatively high cavity finesse. Thoug
for completeness formulas for both cases of the dipole
entations~parallel and perpendicular to the cavity walls! are
given, we shall focus on the first. Since a dipole is coup
most strongly to the electric field parallel to its directio
@39#, a dipole parallel to the mirror surfaces will be coupl
preferably to the longitudinal modes and is expected to br
out the cavity effects most pronouncedly. This is also a go
approximation for the models where the dipole mom
originates from an electron and a heavy hole in a thin se
conductor quantum well oriented in thexy-plane, which are
of considerable practical interest@1#.

The atomic upper state population is plotted in Fig. 2 a
function of the dimensionless timet/(l/c) for different val-
ues of the scaled cavity length

m5
l

l/2
.

The atom is placed in the middle of the cavity and we ha
takenr 520.99, A0l/(2c)51023–a value that can be rea
e-

ty

i-

d

g
d
t
i-

a

e

ized using an atomic transition in the optical domain. Bo
nonperturbative~bold curves! and perturbative~light curves!
results are presented.

From Fig. 2 it can be seen that while the perturbat
theory works satisfactorily for small times and form52, it
deviates from the nonperturbative one at larger times fom
51 and m53. This can be easily understood taking in
account the fact that the atom-field coupling is weak a
node position~evenm) and is stronger at an antinode pos
tion ~odd m). We also observe that the disagreement
tween the perturbative and nonperturbative approac
which occurs for odd values ofm tends to vanish with an

FIG. 2. Time evolution of the atomic upper-state population
different values of the scaled cavity lengthm5 l /(l/2). Non-
perturbative results are represented by bold curves and perturb
ones by light curves. The atom is placed at the cavity center and
its dipole oriented parallel to the mirror surfaces. Other parame
areA0l/(2c)51023 and r 520.99.
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increase of the cavity length, i.e., when we move from
well-confined space toward a free space. Another spe
case of interest is when the cavity gap is slightly longer th
one half wavelength. At this point maximum spontaneo
emission enhancement is achieved@20# and one might na-
ively suggest that the discrepancy between the n
perturbative and perturbative results would be at its larg
However, our numerical results form51.05 show that that is
not the case. The reason lies in the emission pattern. As
shall show in the next section, in the case ofm51.05, the
near-field emission pattern is broader and its intensity on
z-axis is weaker than those in the case ofm51 and as a
consequence, light is emitted mostly into oblique directio
and cannot act back on the atom after being reflected.

What we see in Fig. 2 is clearly the weak coupling r
gime. The weak and strong coupling regimes can be dis
guished by the relationship among the three coupling c
stants: the dipole coupling constantk between the atom an
the resonant cavity mode, the decay rategc of this mode via
mirror losses, and the rateg8 of spontaneous emission into
continuum of vacuum modes present when the cavity
open-sided@40,41#. A weak coupling regime takes plac
when the irreversible decay ratesgc and g8 dominate over
the atom-cavity mode dipole interaction:gc , g8@k,
whereas the strong coupling regime occurs when the co
ent interaction between the atom and the cavity mode do
nates over the irreversible decay mechanisms:k@gc ,g8. In
contrast to@40,41#, where the three coupling constants ha
been introduced somewhat arbitrarily, without specifying
cavity configuration, in our case of a Fabry-Perot cavity, th
are defined automatically by the mode functions, the ato
position and dipole orientation. We shall compare them
rectly in the next section and give here instead a qualita
argument as follows. It is physically obvious that in order
facilitate a strong coupling regime we have to reduce
atomic emission into the oblique directions, that is, to mi
mize g8. This can be achieved to a certain extent by cho
ing a dipole orientation parallel to the mirror surfaces, p
ting the atom at an antinode position, and narrowing
cavity gap to one half wavelength. Further we need a la
A0l/(2c), which means a large coherent coupling strengtk
at a given transition frequency, or a large mirror reflectivi
which means a smaller cavity damping rategc , or both. A
relationship betweengc andr can be established by expan
ing the normalization constantsa in accordance with the
Mittag-Lefler theorem@25,42#

gc5
2

T
lnS 1

ur u D , ~36!

where T is the round trip travel time of a photon in th
cavity, Eq.~24!. Equation~36! tells us that by changing th
reflection coefficient fromr 520.99 „ln(1/ur u)51022

… to r
520.9999 „ln(1/ur u)51024

…–a value which is well within
the reach of contemporary experimental techniques@43#, we
reducegc by two orders of magnitude.

The case ofr 520.9999 is illustrated graphically in Fig
3~a! with other parameters being the same as in Fig. 2, wh
demonstrates that the strong coupling regime with revers
spontaneous decay is achievable whenm51. This is one of
the main results of our paper. The Rabi oscillations ha
a
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poor visibility and are rather fragile, though. They disappe
for instance, when the dipole isz-oriented or when the cavity
length slightly increases. Several other values ofm are also
shown in Fig. 3~a!. Whenm53, although no oscillations are
seen, there is still a large discrepancy between n
perturbative and perturbative results, while whenm52, the
two are in good agreement. Vacuum-field Rabi splittin
@44# and vacuum-field Rabi oscillations@45# in a Fabry-Perot
cavity have been observed with two-dimensional quant
well excitons embedded in planar monolithic semiconduc
structures~see @46# for more references.! There are some
differences between the atomic decay process discussed
and the exciton decay experiments reported in@44–46#. For
example, while the atom is coupled to all oblique modes,
excitons in a two-dimensional quantum well are coup
only to those with the same in-plane wave vectors as th
own. The vacuum-field Rabi oscillations effects in the qua
tum well experiments have also been enhanced due to c
erative interaction@47#. Nevertheless, there is no doubt th
the two cases are closely related and a study of one of t
can shed light on the other@1#.

To facilitate the strong coupling regime, in Fig. 3~a! we

FIG. 3. Time evolution of the atomic upper-state population
different values of the scaled cavity lengthm5 l /(l/2). Non-
perturbative results are represented by bold curves and perturb
ones by light curves. The atom is placed at the cavity center and
its dipole oriented parallel to the mirror surfaces. Other parame
are ~a! A0l/(2c)51023 and r 520.9999 and ~b! A0l/(2c)
51021 and r 520.99.
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have chosen to take a high cavity finesse. Alternatively
large value ofA0l/(2c) can also be tried as is done in Fi
3~b! with A0l/(2c)51021, and as is expected, vacuum-fie
Rabi oscillations appear form51. When m52, there is
again a good agreement between the nonperturbative
perturbative theories, whereas whenm51.05, some discrep
ancy between the two can be noticed. This is due to the
that, as will be shown below, the emission pattern in t
case is better concentrated along thez-direction than in the
case of A0l/(2c)51023 presented in Fig. 2. Note tha
though the valueA0l/(2c)51021 is too high for a typical
atomic optical transition, it can be achieved using excito
which may have a radiative lifetime of the order of a pic
second in GaAs quantum wells or even a subpicosecon
CdS quantum wells@48#.

IV. SPONTANEOUS-EMISSION PATTERN

A. Observable field intensity

In order to calculate the observable field intensity,
start with the quantized mode expansions for the nega
and positive parts of the electric field operator

Ê(1)~r !5@Ê(2)~r !#†5 i(
j
A\v j

2
Uj~r !â j , ~37!

and introduce the field state

ug~ t !&5(
j

Cl j ~ t !e2 iv j tu$1 j%&. ~38!

Then in terms of

F~r ,rA ,t !5^0uÊ(1)~r !ug~ t !&, ~39!

which can be interpreted as a kind of wave function fo
photon, the observable field intensity at a positionrB is

I ~rB ,rA ,t ![^c~ t !uÊ(2)~rB!Ê(1)~rB!uc~ t !&

5^g~ t !uÊ(2)~rB!Ê(1)~rB!ug~ t !&

5uF~rB ,rA ,t !u2. ~40!

Making use of Eqs.~37!–~39! and formally integrating Eq.
~19!, we rewriteF(rB ,rA ,t) in the form

F~rB ,rA ,t !5 ie2 ivAtE
0

t

dt8Cu~ t8!(
j

v j

2
Uj~rB!

3@Uj~rA!•m#e2 i (v j 2vA)(t2t8). ~41!

By inserting appropriate mode functionsUj (rB) in Eq. ~41!,
after some tedious algebra~see Appendix C!, we arrive at the
following expression for the field observed from outside t
cavity,
a

nd

ct
s

s

in

e

Fx,y,z~rB ,rA ,t !

5
imkA

3

4pe0
e2 ivAt (

n50

`

A12r 2r 2n

3F f x,y,z~Rrn!eikARrnCuS t2
Rrn

c DHS t2
Rrn

c D
6r f x,y,z~Rln!eikARlnCuS t2

Rln

c DHS t2
Rln

c D G , ~42!

where

Rrn5@xB
21yB

21~zB2zA12nl !2#1/2, ~43a!

Rln5$xB
21yB

21@zB1zA1~2n11!l #2%1/2. ~43b!

The coefficientf x,y,z(R) with R being eitherRrn or Rln is
given by, for ay-oriented dipole,

f x
y~R!52

xByB

R2 F 1

ikAR
1

3

~kAR!2
2

3

i ~kAR!3G , ~44a!

f y
y~R!5

1

ikAR S 12
yB

2

R2D 1F 1

~kAR!2
2

1

i ~kAR!3G S 12
3yB

2

R2 D ,

~44b!

f z
y~R!52

yBAR22~xB
21yB

2 !

R2 F 1

ikAR
1

3

~kAR!2
2

3

i ~kAR!3G ,

~44c!

and, for az-oriented dipole,

f x
'~R!52

xBAR22~xB
21yB

2 !

R2 F 1

ikAR
1

3

~kAR!2
2

3

i ~kAR!3G ,

~45a!

f y
'~R!52

yBAR22~xB
21yB

2 !

R2 F 1

ikAR
1

3

~kAR!2
2

3

i ~kAR!3G ,

~45b!

f z
'~R!5

1

ikAR

xB
21yB

2

R2
1F 1

~kAR!2
2

1

i ~kAR!3G
3F3~xB

21yB
2 !

R2
22G . ~45c!

In Eq. ~42!, the ‘‘1’’- and ‘‘ 2 ’’-signs are fory-oriented and
z-oriented dipoles, respectively, andCu(t) is to be taken
from Eqs.~22! or ~28!. Equations~42!–~45!, together with
Eq. ~40!, completely determine the field intensity observ
from outside the cavity for an arbitrary space-time point a
for both weak and strong coupling regimes. It can be verifi
that when the observing point is on thez-axis, our results are
consistent with those given in@17# for the electric field op-
erator in the Heisenberg picture.
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B. Numerical results

1. From near field to far field

By near field and far field we mean the field near to a
far away from the cavity mirror surfaces. We shall conce
trate, as before, on ay-oriented dipole. Though in this cas
the field intensity varies in different manners when the o
serving point is moved along thex- andy-axis as can be see
from Eqs.~44!, numerical calculations show that the em
sion pattern is almost symmetric about thez-axis.

An example of spontaneous emission pattern in the w
coupling regime is depicted in Fig. 4 for different values
the scaled cavity lengthm5 l /(l/2) and for the time momen
t̄[t/(l/c)550, with the atom being at the cavity center a
with A0l/(2c)51023 and r 520.99, i.e., the same as i
Fig. 2. The observation point lies within thexz-plane (yB

50). We also denote, for brevity,x̄B[xB /(l/2) and z̄B

FIG. 4. Near-field emission pattern and its transition to far fi
for different values of the scaled cavity lengthm and for

A0l/(2c)51023, r 520.99, andt̄[t/(l/c)550. The atom is at
the cavity center with ay-oriented dipole and the observing point
outside the cavity with coordinates (xB,0,zB). For brevity, we de-

notex̄B[xB /(l/2) andz̄B[zB /(l/2). The field intensityI is in the
units of 1025@3c\kA

4 /(16p2e0)#.
d
-

-

k
f

[zB /(l/2) and start to increasez̄B from z̄B5m/2–the value
immediately at the right cavity wall. From the figure it ca
be seen that as a rule, the near-field emission pattern in
weak coupling regime consists of a single peak along
z-axis with some structures around it. These structures q
resemble the interference pattern in a Young’s double-
experiment, and indeed can be interpreted as resulting f
the interference of a single photon with itself, or from th
interference among the ‘‘photons’’ emitted by the origin
atom and its mirror images. When the cavity length
creases, the near-field pattern tends to broaden and ha
more complicated structure, though the broadening is
significant for oddm. In the case ofm51.05, though the
spontaneous emission enhancement is larger than that in
case ofm51, the emission in thez-direction–the only direc-
tion in which the reflected light can act back on the atom
lower, leading to a better performance of the perturbat
theory as we have already mentioned.

At a distance of about several wavelengths from the c
ity walls, the far-field emission pattern emerges and our
sults can be seen to be consistent with earlier perturba
calculations@15,16,18–20#. Namely, the far-field consists o
a single pencil-like lobe pointed along thez-axis whenm
51 and is split up into a conical shape when the cavity
slightly longer than half wavelength (m51.05 in our case!.
Such patterns have been experimentally observed@18#.
When the cavity gap is one wavelength (m52), the far-field
pattern is also of a conical shape, which covers a larger s
angle and is more spread than that in the case ofm51.05.
When m53, though perturbative theory predicts a cent
lobe and a conical lobe@16#, the conical lobe is too weak to
be visible in the plot.

With parametersA0l/(2c)51023 andr 520.99 consid-
ered in Fig. 4, the distance from the cavity walls required
the far-field pattern to be fully established, when transla
into time, is very small as compared to the atomic and cav
decay times. We therefore may assume a quasi-steady s
in which the near and far field are related through a Fou
transform according to the diffraction theory@49#. Take, for
instance, the cases ofm51 and m53. The diffraction
theory tells us that the diffraction pattern of a circular ap
ture is a so-called Airy’s pattern with a central disk a
multiple rings around it@49#. In our case, for a circular single
lobe to appear in the far field, there must be an equivale
of the Airy’s pattern in the near field, and as can be se
from Fig. 4, that is indeed the case.

Another situation of interest whenA0l/(2c)51021, i.e.,
when the atomic natural decay is very fast, is presented
Fig. 5. When the cavity gap is one half wavelength (m
51), the emission pattern is in overall similar to that in t
weak coupling regime shown in Fig. 3, except that now
spontaneous emission pulse has a much higher inten
Whenm51.05, there is however, a significant change in t
behavior of the far field: the emission pattern, though spre
aszB increases, does not split into a conical shape as in
weak coupling regime. Whenm52 the near-field pattern
may become quite complicated while the far-field patte
still can be treated as of a conical shape. Whenm53, beside
the central lobe, we see that a weaker conical lobe is a
present@16#. Our numerical results for earlier times and th
cases ofm52 andm53 in Fig. 5 demonstrate that the emi
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sion pattern exhibits a more kinky behavior than in the c
presented in Fig. 4. The reason is that these kinks are ca
by the arrival of the reflected radiations, each of which ha
greater impact on the atom in a fast decay process than
slower one.

2. Effective mode radius and near-field pattern

The Fabry-Perot cavity has a peculiar feature that in s
of its infinite lateral extent, the cavity mode volume is fini
with an effective mode radius@15,31#

r eff5A p llur u
8~12r 2!

. ~46!

FIG. 5. Near-field emission pattern and its transition to far fi
for different values of the scaled cavity lengthm and for

A0l/(2c)51021, r 520.99, andt̄ 525. The atom is at the cavity
center with ay-oriented dipole and the observing point is outsi

the cavity with coordinates (zB,0,zB). For brevity, we denotez̄B

[xB /(l/2) andz̄B[zB /(l/2). The field intensityI is in the units of
1025@3c\kA

4/(16p2e0)#.
e
ed
a
a

te

This effective mode radius determines the distance o
which two microlasers sharing the same Fabry-Perot ca
are correlated and is also called the transverse quantum
relation length@30#. Such transverse quantum correlation a
effective mode radius have been observed experimen
@30,50#. The near-field pattern, clearly, can be taken as
another indicator of the finite effective mode volume. Wh
r 520.99, Eq. ~46! yields an effective mode radius o
r eff /(l/2);6Am, in very good agreement with the near-fie
pattern shown in Fig. 4. Thus, an excited atom enclosed
Fabry-Perot cavity, when looked at from outside, beha
not as a point-like emitting source, but as an emitting s
with finite size which is defined by Eq.~46!, and which can
be many times larger than the wavelength.

Since the spontaneous decay is a transient process, a
tion may arise about whether the near-field emission pat
spreads in time. This question is addressed in Fig. 6~a!,
where we depict the time evolution of the near-field patte
right at the cavity wall (z̄B5m/2) for A0l/(2c)51023, r
520.99, andm51. It can be seen that the spread is n
significant, that is, the consistency between the effec
mode radius and the near-field pattern is preserved. Ano
point is the dependence of the effective mode radius on
mirrors reflectivity. According to Eq.~46!, r eff increases with
an increasingur u, and the use of an ideal cavity with infinit
finesse leads to a single plane-wave structure for the lo
tudinal mode, and to infinite transverse extent of that mo
In particular, forr 520.9999, we haver eff;60Am, i.e., a
spread in the near-field pattern ten times larger than that
r 520.99 is expected. Numerical results presented in F
6~b! where the time evolution of the near field fo
A0l/(2c)51023, r 520.9999, andm51 is plotted, how-
ever, show that the spread is almost the same as in the
of r 520.99. This can be explained as follows. In derivin
Eq. ~46!, a weak coupling regime has been assumed in wh
once the photon is emitted, it will smear over the transve
extension of the mode. An increase in the mirrors reflec
ity, however, as we have shown in Section III, may give r

FIG. 6. Time evolution of the near-field emission pattern (z̄B

5m/2) for ~a! r 520.99 and~b! r 520.9999. Other parameters ar
the same as in Fig. 4.
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to a strong coupling regime, in which the initially emitte
photon can be repeatedly re-absorbed and re-emitted. T
multiple re-absorptions and re-emissions, in turn, result i
good localization of the photon near the atomic positio
Since the transverse mode size identifies the minimum tr
verse size required for a microcavity laser of planar ty
even if the pumped region is smaller, the fact that the tra
verse mode size does not increase with an increasing m
reflectivity as much as Eq.~46! predicts may be beneficial in
designing optical integrated systems in which very small s
of a single component is desirable@1#.

Now let us come back to the direct comparison of t
three coupling constantsk, gc , andg8. Recall that we are
interested in the case where the atom is at the cavity ce
its dipole is y-oriented and the cavity gap is of one ha
wavelength (m51). Hence it is reasonable to assume th
@1,20#

g8!A0 . ~47!

To estimatek, we assume that the emission occurs into
effective volume of the longitudinal cavity modeVeff

5 lpr eff
2 and that the emission rate in the cavity is of t

same order as the free-space rate@20#. Then we can replace
Uj (rA) in Eq. ~16! by 2/Ae0Veff to have

k5S 6pc3A0

VeffvA
2 D 1/2

. ~48!

We shall takel51026m. ~i! r 520.99 and A0l/(2c)
51023. Eqs. ~36! and ~46!–~48! give usgc;1012s21, g8
!1011s21, andk;1012s21. Sincek;gc , we have a weak
coupling regime as is seen in Fig. 2.~ii ! r 520.9999 and
A0l/(2c)51023. Eqs. ~36! and ~46!–~48! lead to gc
;1010s21, g8!1011s21, andk;1012s21, i.e., k@gc ,g8.
This means a strong coupling regime, in agreement with
numerical results presented in Fig. 3~a!. ~iii ! r 520.99 and
A0l/(2c)51021. Hence we have gc;1012s21, g8
!1013s21, and k;1013s21, i.e., k@gc ,g8 and a strong
coupling regime follows, in agreement with Fig. 3~b!. It is
worth noting that we have used the formula~46! to evaluate
r eff in all three estimations above. If we use a reduced eff
tive mode radius consistent with our results on the near-fi
pattern, the relationshipk@gc ,g8 in cases~ii ! and ~iii ! will
be improved even further.

V. CONCLUSIONS

We have used a three-dimensional nonperturbative
proach to study spontaneous emission in a Fabry-Perot
ity based on a complete set of orthogonal standing-w
mode functions. In the weak coupling regime where Ferm
golden rule holds, it has been shown that these mode fu
tions reproduce exactly the same spontaneous-emission
as that derived using traveling-wave modes. We have
tained a general delay-differential equation for the proba
ity amplitude of the initially excited state, which can be em
ployed to study the effects of the cavity length, cav
mirrors reflectivity, atomic position and dipole orientatio
etc., on the spontaneous decay process. The delay term
this equation can be associated with the back action of
se
a
.
s-
e
s-
or

e

er,

t

e

e

c-
ld

p-
v-
e
s
c-
ate
b-
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in
e

emitted light on the atom after successive reflections at
cavity walls. Such retarded interaction is absent in a n
perturbative theory which is based on a single-mode desc
tion of the electromagnetic field. Further, analytic solution
the delay-differential equation has been obtained for the s
cial case when the atom is positioned at the cavity cen
This solution and the original delay-differential equatio
have been used to investigate numerically the time beha
of the atomic state populations. Our results are then co
pared with perturbative ones. We have found that ev
though the Fabry-Perot cavity has space confinement in o
one direction, strong coupling regime and together with
vacuum-field Rabi oscillations are still possible. Conditio
favorable for this strong coupling regime include a h
wavelength cavity, a dipole placed at an antinode posit
and oriented parallel to the mirror surfaces, a high enou
cavity finesse or a large enough dipole matrix element.

Next, we have derived a general expression for the fi
intensity observed from outside the cavity which holds for
arbitrary space-time point and atom-radiation coupli
strength and used it to study numerically the spontaneo
emission pattern in both weak and strong coupling regim
The far-field pattern in the weak coupling regime has be
shown to be consistent with previously known perturbat
results. We have found that for a moderate value of the m
ror reflection coefficient, the broadening in the near-field p
tern is in good agreement with the concept of effective mo
radius. As the mirror reflectivity increases, however, beca
of the strong-coupling the photon is better localized than
predicted by the effective mode concept. We suggest
this can be verified experimentally using the same setup
e.g., in @44# where time-resolved vacuum Rabi oscillatio
have been observed.

The planar cavity used in our treatment is an idealiz
cavity with lossless and infinitely thin mirrors which hav
wavelength and incident angle independent reflectiv
Lossless and highly reflecting mirrors used in reality a
Bragg mirrors made by stacking pairs of dielectric laye
one with high index of refraction and another with low inde
of refraction. Such mirrors have finite thickness and no
uniform reflectivity. Nevertheless, it is reasonable to assu
that qualitatively, effects predicted by an ideal-cavity theo
will persist under realistic and appropriate conditions.
fact, many of them have actually been observed. For
ample, the existence of an effective mode radius has b
experimentally verified in the weak coupling regime by i
vestigating interatom quantum correlations established
tween two equal localized sets of excited dye molecu
placed in two spots in the microcavity@30# and by studying
the probability distributions in the intensity of two pulse
planar microcavity dye lasers, one with single-mode ope
tion and another with multimode operation@50# and the
vacuum-field Rabi oscillations and vacuum-field Rabi sp
ting have been observed with exciton-photon interaction
semiconductor microcavities@44–46#, as we have mentioned
earlier. The assumption on the infinitely far extension of t
mirrors in thexy plane is not severe. If the transverse size
the cavity is larger than the effective mode radius, which c
be calculated using Eq.~46! in the weak coupling regime o
estimated through the near-field pattern in the strong c
pling regime, we expect that the main physical results of t
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work will not be affected in any substantial way.
Another potentially useful property of spontaneous em

sion in a microcavity is the spectral line narrowing. Due to
reduction of the number of allowed photon modes, light c
have a spectrum much narrower than that in the ordin
free-space emission. The spectrum of spontaneous emis
in a one-dimensional monolayer optical cavity has been
culated in@27#, and the formalism developed there can
adapted easily to our case. Work on the spectral propertie
spontaneous emission in a Fabry-Perot microcavity is
progress and the results will be reported elsewhere.
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APPENDIX A: EVALUATION OF THE KERNEL K„t2t8…

In order to evaluate the kernelK(t2t8), Eq. ~21!, we
replace the summation over the mode indexj by an integral
over k, u, andf as

(
j

→(
c

V

~2p!3E
0

p

dfE
0

p/2

du sinuE
0

`

dk k2, ~A1!

where (c denotes the sum over the mode categories.
components of thek-vector are

kx5k sinu cosf, ky5k sinu sinf,
~A2!

kp5k sinu, kz5k cosu

with u being the angle betweenk and thez-axis andf being
the angle betweenkp and thex-axis. Note that the uppe
limits of integrations overu and f are p/2 andp, respec-
tively, because we are using standing-wave mode funct
rather than traveling-wave mode functions.

Let us consider first the case of a dipole oriented para
to the cavity mirror surfaces. To be definite, let it be
y-oriented dipole. Using Eqs.~21!, ~16!, ~A1!, and the mode
functions given in Section II, the sum over the categories
modes yields„only even-x-y modes contribute since sin(kp
•rA)50…

K~ t2t8!52
V

~2p!3E
0

p

dfE
0

p/2

du sinu

3E
0

`

dk k2
ck

2\
e2 ic(k2kA)(t2t8)(

c
uU~rA!•mu2

52
V

~2p!3E
0

p

dfE
0

p/2

du sinu
-

n
ry
ion
l-

of
n

e
l
s

e

ns

l

f

E
0

`

dk
ck3

2\
e2 ic(k2kA)(t2t8)

3
4m2

e0V
~cos2f1sin2f cos2u!

3S 112(
n51

`

r 2ncos„k cos~u!2nl…

1 (
n50

`

r 2n11$cos@k cos~u!„~2n11!l 12zA…#

1cos@k cos~u!„~2n11!l 22zA…#% D . ~A3!

After taking the integration over the angle variables we g

K~ t2t8!52
m2c

2p2\e0
E

0

`

dk k3e2 ic(k2kA)(t2t8)

3S 1

3
1 (

n51

`

r 2ng~k2nl !

1
1

2 (
n50

`

r 2n11
„g$k@~2n11!l 12zA#%

1g$k@~2n11!l 22zA#%…D , ~A4!

where

g~x!5
sinx

x
1

cosx

x2 2
sinx

x3 . ~A5!

The integral overk can now be performed, e.g., as

E
0

`

dk k3e2 ic(k2kA)(t2t8)
sink2nl

k2nl

5E
0

`

dk
k2

2nl

1

2i
@e2 ic(k2kA)(t2t822nl/c)eikA2nl

2e2 ic(k2kA)(t2t812nl/c)e2 ikA2nl#

5E
2`

`

dy
~kA1y!2

2nl

1

2i
@e2 icy(t2t822nl/c)eikA2nl

2e2 icy(t2t812nl/c)e2 ikA2nl#

5
pkA

2

ic2nl
@d~ t2t822nl/c!eikA2nl

2d~ t2t812nl/c!e2 ikA2nl#, ~A6!

where in going from the first equation to the second we h
set (k2kA)→y and replaced the lower limit of the integra
2kA by 2`, as is usually done in a standard Weissko
Wigner theory. We have further retained the dependence
y only in the exponential by assuming that the time variat
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of Cu(t) is slow as compared to the atomic oscillations at
optical frequency. Similar approximation has also been u
in @23–25,38#. Other terms on the right hand side of Eq.~A4!
can be dealt with in the same manner and we finally hav

K~ t2t8!5A0S d~ t2t8!1
3

2 (
n51

`

r 2nh~2nl !

1
3

4 (
n50

`

r 2n11$h@~2n11!l 12zA#

1h@~2n11!l 22zA#% D , ~A7!

where

h~x!5
1

ikAx
@d~ t2t82x/c!eikAx2d~ t2t81x/c!e2 ikAx#

1
1

~kAx!2
@d~ t2t82x/c!eikAx1d~ t2t81x/c!e2 ikAx#

2
1

i ~kAx!3
@d~ t2t82x/c!eikAx

1d~ t2t81x/c!e2 ikAx#, ~A8!

andA0 is the free-space spontaneous decay rate given in
~23!. Substituting Eqs.~A7! and~A8! in Eq. ~20!, we obtain
readily the delay-differential equation~22!. The case when
the dipole is oriented perpendicular to the cavity mirror s
faces can be dealt with in the same way as outlined abo

APPENDIX B: PROOF OF EQ. „28…

By introducing the notation

C̃u~ t ![Cu~ t !expS A0

2
t D , p̃n[pn~kAnl !expS A0

2

nl

c D ,

~B1!

equation~26! can be simplified further

C8 u~ t !5 (
n51

`

p̃nC̃u~ tn!H~ tn!. ~B2!

For timest< l /c, Eq. ~B2! becomes an ordinary differentia
equation which can be integrated easily. Once the solu
for t< l /c is known, we can integrate the equation forl /c
<t<2l /c, and so on~for a discussion on the nature of th
delay-differential equations, see@51#.! The results of severa
first steps are, with the initial condition ofC̃u(0)51,
e
d

q.

-
.

n

C̃u~ t !51 for 0<t< l /c,

C̃u~ t !511 p̃1t1 for l /c<t<2l /c,

C̃u~ t !511 p̃1t11 p̃1
2

t2
2

2!
1 p̃2t2 for 2l /c<t<3l /c,

C̃u~ t !511 p̃1t11 p̃1
2

t2
2

2!
1 p̃2t21 p̃1

3
t3
3

3!
12p̃1p̃2

t3
2

2!

1 p̃3t3 for 3l /c<t<4l /c,

C̃u~ t !511 p̃1t11 p̃1
2

t2
2

2!
1 p̃2t21 p̃1

3
t3
3

3!
12p̃1p̃2

t3
2

2!
1 p̃3t3

1 p̃1
4

t4
4

4!
13p̃1

2p̃2

t4
3

3!
12p̃1p̃3

t4
2

2!
1 p̃2

2
t4
2

2!

1 p̃4t4 for 4l /c<t<5l /c,

. . . . ~B3!

From Eqs.~B3!, it can be deduced that the solution of th
delay-differential equation~B2! is of the form

C̃un~ t !5 (
k50

n S ( m!

a1!a2! •••ak!
p̃1

a1p̃2
a2
••• p̃k

ak
tk
m

m! D
for nl/c<t<~n11!l /c ~n50,1,2, . . . !,

~B4!

where the inner sum is over non-negative integersai( i
51,2, . . . ,k) such that

1a112a21•••1kak5k, ~B5!

and

m5a11a21•••1ak . ~B6!

To prove that Eq.~B4! is indeed a solution of Eq.~B2!, we
differentiate both sides of it and use the recurrence form

m!

a1!a2! •••ak!
5

~m21!!

~a121!!a2! •••ak!

1
~m21!!

a1! ~a221!!a3! •••ak!
1 . . .

1
~m21!!

a1!a2! •••ak21! ~ak21!!
~B7!

to obtain
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C8 un~ t !5 (
k51

n

p̃1F( ~m21!!

~a121!!a2! •••ak!
p̃1

a121p̃2
a2
••• p̃k

ak
tk
m21

~m21!! G
1 (

k52

n

p̃2F( ~m21!!

a1! ~a221!! •••ak!
p̃1

a1p̃2
a221

••• p̃k
ak

tk
m21

~m21!! G
A

1 (
k5n

n

p̃kF( ~m21!!

a1!a2! •••~ak21!!
p̃1

a1p̃2
a2
••• p̃k

ak21 tk
m21

~m21!! G
5 p̃1(

k50

n21 S ( m!

a1!a2! . . . ak!
p̃1

a1p̃2
a2
••• p̃k

ak
tk11
m

m! D
1 p̃2(

k50

n22 S ( m!

a1!a2! •••ak!
p̃1

a1p̃2
a2
••• p̃k

ak
tk12
m

m! D
A

1 p̃n

5 p̃1C̃u(n21)~ t1!1 p̃2C̃u(n22)~ t2!1•••1 p̃nC̃u0~ tn!. ~B8!

The lower limit of the outer sum in, for instance, the first term in the first equation, is 1 because this term will appear
a1>1, see Eq.~B7!, which in turn meansk>1 in accordance with Eq.~B5!. In going from the second equation to the last w
have again made use of the solution~B4!. The last equation is nothing else rather than Eq.~B2! and our proof is completed
The piecewise solution~B4! can be combined and transformed using~B1! to arrive at the solution~28!.

APPENDIX C: PROOF OF EQS. „42…–„45…

Let us consider first the case of ay-oriented dipole. By replacing the sum over the modes in Eq.~41! by an integral as in
Eq. ~A1! we obtain

F~rB ,rA ,t !5
iV

~2p!3e2 ivAtE
0

t

dt8Cu~ t8!E
0

p

dfE
0

p/2

du sinuE
0

`

dk k2
ck

2
e2 ic(k2kA)(t2t8)(

c
U~rB!@U~rA!•m#

5
iVm

~2p!3e2 ivAtE
0

t

dt8Cu~ t8!E
0

p

dfE
0

p/2

du sinuE
0

`

dk
ck3

2
e2 ic(k2kA)(t2t8)H x̂ cos~kp•rB!kxky

3F2~aozTE!2sink1zzAu0
ozTE~zB!2~aezTE!2cosk1zzAu0

ezTE~zB!2~aezTM!2k1zsink1zzA

d

dz
u0

ezTM~z!U
zB

1~aozTM!2k1zcosk1zzA

d

dz
u0

ozTM~z!U
zB

G1 ŷ cos~kp•rB!F ~aozTE!2kx
2sink1zzAu0

ozTE~zB!

1~aezTE!2kx
2cosk1zzAu0

ezTE~zB!1~aezTM!2ky
2~2k1z!sink1zzA

d

dz
u0

ezTM~z!U
zB

1~aozTM!2ky
2k1zcosk1zzA

d

dz
u0

ozTM~z!U
zB

G1 ẑsin~kp•rB!kp
2kyk1z@2~aezTM!2sink1zzAu0

ezTM~zB!

1~aozTM!2cosk1zzAu0
ozTM~zB!#J . ~C1!

Next we rewriteu0
ozTE(z), Eq. ~2b!, as
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u0
ozTE~z!5Ak1z

k0z

k1z1k0z

2Ak1zk0z
H sinFk0zS z2

l

2D1k1z

l

2G1
k1z2k0z

k1z1k0z
sinFk0zS z2

l

2D2k1z

l

2G J
5Ak1z

k0z

1

A12r 2 H sinFk0zS z2
l

2D1k1z

l

2G1r sinFk0zS z2
l

2D2k1z

l

2G J ~C2!

with r defined as in Eq.~12!. Clearly, similar expressions hold for otheru0(z). After carrying out the same limiting procedur
as discussed below Eq.~14!, we get

F~rB ,rA ,t !5
iVm

~2p!3e2 ivAtE
0

t

dt8Cu~ t8!E
0

`

dk
ck3

2
e2 ic(k2kA)(t2t8)E

0

p/2

du sinuE
0

p

df
4

e0VS x̂ cos~kp•rB!sinf cosf

3~2sin2u! (
n50

`

A12r 2r 2n$cos@kz~zA2zB22nl !#1r cos@kz„zA1zB1~2n11!l …#%1 ŷ cos~kp•rB!

3~cos2f1sin2f cos2u! (
n50

`

A12r 2r 2n$cos@kz~zA2zB22nl !#1r cos@kz„zA1zB1~2n11!l …#%

1 ẑsin~kp•rB!sinf sinu cosu (
n50

`

A12r 2r 2n$sin@kz~zA2zB22nl !#1r sin@kz„zA1zB1~2n11!l …#% D .

~C3!

Let’s examine, for instance, they-component. It contains the integrals over the angle variables

Z5E
0

p/2

du sinuE
0

p

df cos~kp•rB!~cos2f1sin2f cos2u!cos~c cosu!, ~C4!

wherec can be eithercr or cl

cr5k~zB2zA12nl !, ~C5a!

cl5k@zB1zA1~2n11!l #. ~C5b!

The integration overf can be dealt with as follows

E
0

p

df cos~kp•rB!5E
0

p

df cos~k sinu cosfxB1k sinu sinf yB!

5E
0

p

df cos@d sinu sin~f1c!#

5E
c

p1c

df cos~d sinu sinf!

5E
0

p

df cos~d sinu sinf!

5pJ0~d sinu!, ~C6!

whereJ0(x) is a Bessel function@52# and

d5kAxB
21yB

2, tanc5
xB

yB
. ~C7!

Here, we have made use of the fact that the integrand is a periodic function with periodp, so that the integral limits can b
shifted by an arbitrary amount, which isc in our case. Similarly, we find

E
0

p

df cos~kp•rB!cos 2f5p cos~2c!J2~d sinu!. ~C8!
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Substituting~C6! and ~C8! in Eq. ~C4! gives

Z5
p

2E0

p/2

du sinu@~11cos2u!J0~d sinu!1~12cos2u!cos~2c!J2~d sinu!#cos~c cosu!

5pE
0

p/2

du sinuFJ0~d sinu!2
sinu

d
J1~d sinu!1~cos2c!~sin2u!J2~d sinu!Gcos~c cosu!

5pE
0

p/2

du sinuFJ0~d sinu!2
sinu

d
J1~d sinu!1~cos2c!~sin2u!J2~d sinu!GAp

2
Ac cosuJ21/2~c cosu!

5Ap3

2 F 1

~kR!1/2
J1/2~kR!2

1

~kR!3/2
J3/2~kR!1cos2c

d2

~kR!5/2
J5/2~kR!G

5pH sinkR

kR S 12
yB

2

R2D 1FcoskR

~kR!2 2
sinkR

~kR!3G S 12
3yB

2

R2 D J . ~C9!

Here in deriving the second equation we have used the recurrence formula for the Bessel functions@52#. The integral in the
third equation has been performed using the second Sonine’s formula@52#. Finally, in going from the forth equation to th
fifth, we have rewritten the Bessel functions of half-integer order in terms of elementary functions@52#. The distanceR stands
for Rrn if c5cr andRln if c5cl , see Eqs.~43! and ~C5!.

Now by inserting Eqs.~C9! in ~C3! and performing the integration overk in the same way as in Eq.~A6!, we arrive at Eqs.
~42!, ~43!, and~44b! for Fy(rB ,rA ,t). Other components and the case of az-oriented dipole can be treated in the same mann
es
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