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Three-dimensional nonperturbative analysis of spontaneous emission
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A three-dimensional quantum nonperturbative theory of spontaneous emission in a planar microcavity is
developed on the basis of a complete set of orthogonal standing-wave mode functions. Earlier results on the
spontaneous decay rate and far-field emission pattern which have been obtained in a perturbative fashion are
shown to be contained in our theory. Time evolution of the initially excited atomic state is considered and
comparison with perturbative results is given. It is found that though the Fabry-Perot cavity is of an open type,
vacuum-field Rabi oscillations are still possible. Conditions that are favorable for this strong coupling regime
are discussed. The near-field spontaneous-emission pattern and the transition from the near field to the far field
are investigated. For moderate mirror reflectivities, the spread in the near-field emission pattern is found to be
in good agreement with the effective mode radius concept. When the mirror reflectivity increases, however,
one has a strong coupling regime and together with it, multiple reabsorptions and reemissions of the photon
may occur, leading to a better localization of the photon around the atomic position. These considerations may
be useful in designing microlasers of the planar ty|$.050-294719)03211-4

PACS numbe(s): 42.50.Ct, 42.60-v

[. INTRODUCTION sons why such a study is desirable. First, although a one-
dimensional theory can describe adequately many aspects of
It is now understood that spontaneous emission from aspontaneous emission in a planar cavity, it is far from real-
atom is very sensitive to the mode density and mode strudstic because an important channel of photon loss, the emis-
ture of the surrounding environment in which the atom ission into oblique modes, is neglected. Besides, problems
radiating. The spontaneous-emission rate can be either iflich as spatial distribution of spontaneous emission cannot
creased or decreased as compared to its free-space value &fgaddressed. Second, though when the atom-radiation cou-
the emission pattern may become highly anisotrdfie3]. pling is weak, the_ spontaneous-emission process can be well
There are also similar effects in the spontaneous emissiofPProximated using a perturbation theory, this weak cou-
from recombining electron-hole pairs or excitons in semicon.P!iNg regime will be justified to various extents depending on

ductors, where tailoring the spontaneous emission holdgaCtorS such as the cavity length, the atomic position and

technological promise for realizing thresholdless, high-spee tomic dipole orientation. It is therefore important to clarify
: ; ow well the perturbation theory works under different cir-
modulation microlasergl,4—7.

AN i tant cl ¢ material di f i ._cumstances. Third, though it has been argued intuitively be-
AN important class of material media configurations ¢ o 4t since a planar cavity confines the field in only one
which the active optical material is embedded are the plana§patial dimension, there are no Rabi oscillatid@d], we

Fabry-Perot cavities. This type of cavity configuration hasyg|ieve that only a nonperturbative theory which takes into
attracted a great deal of attention due to simple fabricationccount properly the cavity mode structure can give an ulti-
technology and due to the fact that it lends itself relativelymate answer to this question. And as we shall show below,
easily to analytical consideratiof8—27]. Various aspects of yacuyum-field Rabi oscillations, though rather weak and frag-
the spontaneous-emission process including the spontaneoys, can still appear and may lead to important physical im-
emission rate and the spontaneous emission pattern hayfications. Fourth, while earlier works on the spontaneous-
been studied. These treatments, however, are mainly withismission pattern have been restricted to perturbative calcula-
the framework of Fermi’s golden rule and do not accommo-tions of the far field 15,16,18—21, or of the field intensity
date the strong coupling effects such as vacuum-field Rakdlong a line normal to the mirrors passing through the atom
oscillations[28] and vacuum-field Rabi splittind29]. Non-  [17], we aim here at giving a comprehensive treatment of the
perturbative multi-mode treatments have been carried outpatial emission pattern including both near and far fields
only for one-dimensional mode[23—27. and weak and strong coupling regimes. By examining the
In this paper we present a three-dimensional nonperturbarear-field pattern, we can also gain further insights into the

tive analysis of spontaneous emission in a planar cavity witltoncept of transverse quantum correlation length introduced
symmetrical two-side output coupling, based on a multimodéy De Martini et al. [30] or, equivalently, the concept of
description of the electromagnetic field. There are many reaeffective mode radius introduced by Ujihdikb,31]. Finally,

we hope that our results could be utilized for practical pur-

poses, e.g., in designing the vertical cavity surface emitting

*On leave from the Institute of Physics, National Center for Sci-lasers[32].

ences and Technology, 1 Mac Dinh Chi St., Dist. 1, Ho Chi Minh ~ The paper is organized as follows. In Sec. Il, the cavity
City, Vietnam. model and mode functions are given. We start out by calcu-
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panded in terms of orthogonal field mode functidogr)
defined by imposing periodic boundary conditionsxiny,
andz directions with periods.,, L,, andL,, respectively.
They are normalized so that

yo

fe(r)Ui(r)Uj(r)dr=5i;,
\Y

whereV=L,L,L,. The mode functions in the dielectric and
in the vacuum are denoted by, andU,, respectively, and
will be given in terms of relevant mode wave vectdrs,
=(ky,ky k1) for inside and outside the cavity and their
projections onto they planek,= (k,,ky,0) beside the mode
indexj. The mode functions are categorized into TE and TM
mode functions of even and odd symmetries in zhdirec-
tion. They are further categorized into even and odd func-
v tions in thex-y direction. The odd-y TE mode functions
(b) read[31]

FIG. 1. (a) is the single dielectric slab configuration which - - )
serves as a starting point for our derivation of the mode functions. Uy o) = a(xky—yk,)sin(k,-r)u; o(z), ()]
The symmetrical Fabry-Perot cavity with two infinitely thin and
semitransparent mirrors shown (b) is the one we actually use in Whereu; o(z) and the normalization constaatare, for odd-
our calculations. z TE modes,

lating the standing-wave mode functions for a single dielec- u$?™z) =sinky,z, (2a)
tric slab and after applying an appropriate limiting proce-

dure, reduce them to those of a Fabry-Perot cavity with two Kyl I Ky, kgl [
similar infinitely thin, semitransparent, and absorptionlessJSZTE(Z)=Sln7003k02(Z—5 +k—00575|nk02(z— 5),
mirrors. In Section lll, these mode functions are shown to 0z (2b)
reproduce exactly the same perturbative results on the

spontaneous-emission rate obtained previously by using the 5 —12
alternative traveling-wave mode functions for symmetrical 0ZTE_ 2 i @ 1-|1— @ Sinzklzl 3)
cavities[17], including the case of two perfectly reflecting VeV Kp Kiz k2, 2 '
mirrors[3,11-13. Next we derive a delay-differential equa-

tion for the time evolution of the atomic upper-state prob-and, for evere TE modes,

ability amplitude and obtain an analytic solution to it for the

particular case where the atom is at the cavity center. Tran- u?™8z) = cosky,z, (43
sient behavior of the atomic upper-state population is studied

numerically and compared with that predicted by Fermi’'s Ky, | Ky, kil |
golden rule. It is shown, in particular, that strong coupling ugZTE(z)zcos—ZcoskOZ(z— —) - —Zsin—zsinkOZ(z— —),
regime can be achieved in a one half wavelength cavity, with 2 2] ko 2 2
the atom at the antinode position and atomic dipole parallel (4b)
to the cavity mirrors, provided that there is a high enough 5 —12
cavity finesse or a large enough dipole matrix element. The ere. 2 1K Koz s‘2k1z|
spontaneous emission pattern is investigated in Sec. IV, ¢ — JeoV k_p [ k_%z 2 ®)

where the near-field and far-field patterns are calculated in

both weak and strong coupling regimes. Conclusions arghe evenx-y TE mode functions are obtained by replacing

given in Sec. V, and lengthy mathematical derivations are.; ) 1) in Ea. (1). The T™M functi
outlined in the Appendices. e?g:(ggdr_))(_gymcgjgsp arr)em a. (1). The mode functions

II. CAVITY MODEL AND MODE FUNCTIONS

- - d
Uy o) = a| (xk,+yky)sin(k,- r)d—zulyo(z)

Let us start by considering a single nondispersive planar
dielectric slab of thicknessand dielectric constart;, em-
bedded in a vacuum of dielectric constapt The coordinate - Ekﬁcos( kp MU (2)|, (6)
system is chosen such that thaxis is normal to the dielec- ’
tric slab surface with its origin in the middle of the slab. The
dielectric slab is assumed to have infinite extents inxjre Whereu, () and the normalization constaatare, for even-
plane and a two-level atom with the transition frequengy ~ Z TM modes,
and dipole matrix elemen is placed inside the cavity at -
ra=(0,0z,), see Fig. 1a). The electromagnetic field is ex- u;” "(z) =cosky,z, (73
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Kq,l |
UE”™(z) = cos—=-cosko,| z— =
2 2
kik§ kil ( I)
— ——sin—-sinky,| z— =/, (7b)
okl 2 AT 2

—1/2

e 21 koZki{ _( B kézki‘) ok
VeoV kpko I(lzk(% %zkg 2 ’
(8
and, for oddz TM modes,
ug*™(z) =sink,,z, (93
kq,l [
uZ™(z) = sin—=—cosko,| z— =
2 2
I(1zk(2) klzI ( I )
+ cos—sinky,| z— =], 9b
kozki 2 0z 2 ( )
—-1/2
oeTh_ 2 1 koK L k2 k3 o ky,l
VeoV kpko k1zkg izkg 2 ,
(10

while the everx-y TM modes are obtained by replacing

sinky-r) in front of (d/dz)u;(z) by cosky-r) and
—cosk,-r) in front u; (z) by sink,-r). Note that the
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tivity, see Fig. 1b). Similar cavity models have also been
employed in earlier treatmenf&7].

Ill. TIME EVOLUTION OF THE ATOMIC-STATE
POPULATIONS

A. Nonperturbative solution

With the mode functions in hand, the electromagnetic
field can be quantized in a standard manner and the Hamil-
tonian which describes the atom-radiation-field system
reads, in the electric dipole and rotating-wave approxima-
tions,

A= hoala +hobiby+ S (ko' +tala),
J J
(15

with the coupling constant

. Wj
Kj:_l EUJ(rA)M .

Herea/ anda; are the creation and annihilation operators of
the field modej with mode frequencyw;, while b and

Bi (i=u,l) are the creation and annihilation operators of the
upper and lower states of the emitting two-level atom. The

atomic flopping operators are defined as-b/b, and o
=blb,. We assume that the atom is initially excited and

(16)

mode functions in Eqs(1)—(10) describe standing waves there is no phpton in th"e _radiatiqn field so that t_he system
rather than traveling waves and in these equations, we hayéave function in the Schrbnger picture can be written as

suppressed the mode indpx
It is convenient to write the normalization constantsn
terms of Fourier series

(anTE)Zze;in%t—: 1+2n§1 r"coiklznl)} (1D
4

(™ 2=g%&%ﬁ§ 1+2n§1 p/n cos(klznl)}
(13
L KocKT— K1 K (14

Kok kG

Similar expansions for odd-TE and evere TM modes are
obtained by replacingandr’ by —r and—r’, respectively.

[w(©)=Cue” Nu{o)+ 2 Cy(e L),
17
where |{0}) denotes the vacuum state of the radiation field
and|{1;}) denotes the field state where there is one photon

in modej and no photon in all other modes. The Satinger
equation yields

Cuh)=—i2 x;C(He @ient, (18)
J

Cij()=—ix} Cy(t)e'l@imeal, (19

Taking into account the fact that initiallZ;;(0)=0, Eq.
(19 can be formally integrated and put into E@8) to give

Cu(t)zf;K(t—t’)Cu(t’)dt’, (20)

In further calculations below, for simplicity, we shall where the kerneK(t—t') is defined as

make the dielectric constarj of the dielectric slab equal to

the vacuum dielectric constarg, but keep the reflectivities
in the Fourier expansiond1) and(13) finite. That is, we set

€,— €9 andk;—ko=k with r andr’ finite. We also assume

thatr=r’ and that they are independent of tkeector ori-

K(t—t')=—2 | &% (@ieat=t) (21)
J

By using Eq.(16) and the mode functions given in Sec. Il

entation. These assumptions reduce our cavity model to thaind replacing the sum over the mode inddwy an integral,
of a pair of infinitely thin mirrors with vacuum inner space; this kernel can be calculatégee Appendix Aand put in Eq.
the mirrors are lossless and have a mode independent refleg@0) to yield



4070 HO TRUNG DUNG AND KIKUO UJIHARA PRA 60

. A ” nl
Cy()== 5 Cut)+ 3, Pan(@anTICy(t—NTH(t-nT) th=t— . (27
n=1
12 This equation can be solved analyticalbee Appendix Bto
+ §n§=:0 {p2n+1[wA(nT+tr)]Cu(t_ nT_tr) yield
XH(t—nT—t)+ponil wa(NTHt)] C.t)= g [E Pt (kal)P52(Ka2l) - - - pin(kanl)
W=
X Cy(t=nT—t)H(t—nT—t)}, 22) A=0 3'ap! - -a!
. .. . L A
whereH(x) is the Heaviside unit step function; xtnmexr< _ 7Otn> H(t,), (28)
plon
Ag=—— (23)  where the inner sum is over all non-negative integgr{i
3mephc =1,2,--,n) such that

is the free-space decay rate; and la;+2a,+ - - +na,=n
n
2| | =2z, [+22z,

T=—, t, N
C Cc c

(24) and

m:a1+a2+ ‘e +an
are the round-trip travel time of a photon in the cavity, the
time for a photon to travel from the atomic position to the Note that the “method of steps” employed in Appendix B to
right mirror and back, and the time for a photon to travelsolve the delay-differential equatiq@6) is also applicable,
from the atomic position to the left mirror and back, respec-e.g., in the problem of two atoms at a fixed distance apart in
tively. The coefficientg,(x) can be eithepu] when the di- a free space, where retardation plays an important role in the
pole is oriented parallel to the mirror surfacegpgrwhen the — atom-radiation interaction procep3s].
dipole is oriented perpendicular to the mirror surfaces When the atom is off the cavity center, the general delay-
differential equation{22) has to be integrated numerically. In
order to compare our results with perturbative ones, we now

1 1 1)
- e, (258 turn to the perturbation theory.

l(x)=— 20 n( L
n 2 ix  x2 ix3

" B. Cavity modified spontaneous-emission rate and relation to
e’ (25b) earlier works

Pr(X)=3Ag(—1)" S
n 0 XZ iX3

_ _ _ ~ Perturbative results can be obtained by ignoring the unit
Clearly, any other dipole orientation can be treated as a linstep functions and replacir@,(t) on the right-hand side of

ear superposition of the above two cases. The delayeq. (22) by its initial valueC,(0)=1. Hence from the rela-
differential equatior(22) is the three-dimensional version of tionship

that obtained earlier for one-dimensional planar cav[Ss-
25]. Its first term stems from a natural decay in a free space d )
while the others describe the back action of light reflected at I'=- a|cu(t)| ' (29
the cavity walls on the atom with correct retardation times.
These reflections can also be interpreted as the effects of thge get the following expression for the cavity modified
atomic mirror images on the spontaneous emission procespontaneous-emission rate
[33—-35. As compared with the one-dimensional casgx)
now has a more complicated structure displaying-, x 2-, - ~
andx~3-terms which, as in usual dipolar radiatif®6,37, I =Ao—2ReX, pon(wanT)—Re> {ponii[@a(NT+t,)]
correspond to the dipole radiation field, the induced field, =t n=0
and the electrostatic field, respectively, due to the mirror im- +Pons il wa(NTHE) T} (30
ages. The absence of tixe *-term in Eq.(25b) is because
the mirror-image dipoles are pointing towards the originalwhere p,(x) is defined in Egs(25). It is not difficult to
atom and cannot contribute a dipole radiation term to theverify that the same result can be obtained directly from the
atom. Fermi’'s golden rule

When the atom is positioned at the cavity centef (
=0), the three series in E¢R2) can be combined leading to T )
a simpler delay-differential equation I'= 2 T| Uj(ra)- pl*8(w;—wp). 3D

: Ao S Our derivation, however, elucidates more clearly the Mar-
=— + . . ’ . .
Cu(® 5 CulV nzl PakanDCy(tn)H(tn) - (26) kovian conditions assumed for the perturbative calculation,
under which the future of the system is determined by the
with present and not its past.
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To show that previous perturbative results are containetbe obtained from Eq$32) and(33), respectively, by replac-
in our theory, it is helpful first to rewrite the normalization ing sink;l/2) in the numerators by cds(l/2). Substituting

constantsy as the mode functions with the normalization constants in the
form (32) and (33) into the Fermi’'s golden rulé€31), after
eme2. 4 1 Ko, (1+71)%—4r sirP(kyl/2) letting €, — €, ki—ko=k while keepingr=r"’ finite, and
(%75 PR k_ﬁ K1, 1—r2+4(r2—1) skl replacing the summation over the mode index by an integral

(32) as in Eq.(Al), we arrive at

4 1 koKi (L+r")2—4r'sird(ky,/2)

€0V K2K3 ky k2 1—1'2+4(r" ~2— 1) IsirPky,l
(33

(a®7™)2— r= ?foldqu C?)G(C), (34)

Similar expressions for odd-TE and evere TM modes can  where

(1+71)2=2r{sSirP[kaC(1/24+2,) ]+ Sir[kaC(1/2— z,) ]}
1-r24+4(r 1—1)"sir’(k,Cl)

clc)= , (359

. (1+1)2=2r{coskaC(l/2+25)]+ coSTkaC(1/2—24)]}
©= 1—r2+4(r 1= 1) Lsir(k,Cl)

: (35b)

i.e., in full agreement with Eq94.15—(4.17 obtained by ized using an atomic transition in the optical domain. Both
De Martini and co-workers using the traveling-wave modenonperturbativebold curve$ and perturbativeélight curves
functions[17]. For a highQ-cavity, the denominators in Egs. results are presented.
(35) can be expressed as sumssefunctions and the integral From Fig. 2 it can be seen that while the perturbative
in Eq. (34) can be performed in closed form, leading to atheory works satisfactorily for small times and for=2, it
spontaneous emission rate which is consistent with the redeviates from the nonperturbative one at larger timesgrfor
sults derived previously for a cavity with perfectly reflecting =1 andm=3. This can be easily understood taking into
mirrors [3,11,12,17,20 With these preliminary steps in account the fact that the atom-field coupling is weak at a
hand, we can now move on to numerical calculations. node positionlevenm) and is stronger at an antinode posi-
tion (odd m). We also observe that the disagreement be-
tween the perturbative and nonperturbative approaches
which occurs for odd values ah tends to vanish with an

In our numerical study, we shall assume a cos-type cavity
for which r<0 and a relatively high cavity finesse. Though 1
for completeness formulas for both cases of the dipole ori-
entations(parallel and perpendicular to the cavity waltse
given, we shall focus on the first. Since a dipole is coupled
most strongly to the electric field parallel to its direction
[39], a dipole parallel to the mirror surfaces will be coupled
preferably to the longitudinal modes and is expected to bring
out the cavity effects most pronouncedly. This is also a good
approximation for the models where the dipole moment
originates from an electron and a heavy hole in a thin semi-
conductor quantum well oriented in thg-plane, which are
of considerable practical interest].

The atomic upper state population is plotted in Fig. 2 as a
function of the dimensionless tinté(\/c) for different val-
ues of the scaled cavity length

C. Numerical results

e, |2

t/ (/o)

m= —. FIG. 2. Time evolution of the atomic upper-state population for
N2 different values of the scaled cavity length=I1/(\/2). Non-
perturbative results are represented by bold curves and perturbative
ones by light curves. The atom is placed at the cavity center and has
The atom is placed in the middle of the cavity and we haveits dipole oriented parallel to the mirror surfaces. Other parameters
takenr = —0.99, Aph/(2c) =10 3—a value that can be real- areAy\/(2c)=10"3 andr=—0.99.
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increase of the cavity length, i.e., when we move from a L N L B

well-confined space toward a free space. Another special ;

case of interest is when the cavity gap is slightly longer than

one half wavelength. At this point maximum spontaneous-

emission enhancement is achiey&®] and one might na-

ively suggest that the discrepancy between the non- .

perturbative and perturbative results would be at its largest. &

However, our numerical results far=1.05 show that that is e

not the case. The reason lies in the emission pattern. As we

shall show in the next section, in the casenof 1.05, the

near-field emission pattern is broader and its intensity on the

z-axis is weaker than those in the casenot=1 and as a

consequence, light is emitted mostly into oblique directions

and cannot act back on the atom after being reflected. 0 500 1000 1500
What we see in Fig. 2 is clearly the weak coupling re- (/0

gime. The weak and strong coupling regimes can be distin-

guished by the relationship among the three coupling con- | e

stants: the dipole coupling constantbetween the atom and NON

the resonant cavity mode, the decay rageof this mode via L\ 5 | | i ‘ ]

. o 0.8

mirror losses, and the ratg of spontaneous emission into a LE

continuum of vacuum modes present when the cavity is j\\ 5 E 5 | :
open-sided[40,41. A weak coupling regime takes place _ 0.6 —“‘ rrrrrrrrrrr oo b

when the irreversible decay rateg and ' dominate over 2 R\ : : 5 5

the atom-cavity mode dipole interactiony., vy'>«, Ly o4 AN 1

whereas the strong coupling regime occurs when the coher- FA A
ent interaction between the atom and the cavity mode domi- I :
nates over the irreversible decay mechaniskszy.,y’. In
contrast t040,41], where the three coupling constants have
been introduced somewhat arbitrarily, without specifying the - ; — -
cavity configuration, in our case of a Fabry-Perot cavity, they 0 5 10 15 20 2 30 3B 40

are defined automatically by the mode functions, the atomic YOO

position and dipole orientation. We shall compare them di-

rectly in the next section and give here instead a qualitative FIG. 3. Time evolution of the atomic upper-state population for
argument as follows. It is physically obvious that in order todifferent values of the scaled cavity length=1/(A/2). Non-
facilitate a strong coupling regime we have to reduce theperturbatﬁve results are represgnted by bold curves and perturbative
atomic emission into the oblique directions, that is, to mini-Ones by light curves. The atom is placed at the cavity center and has
mize y'. This can be achieved to a certain extent by choostts dipole oriented parﬁlle!el to the mirror surfaces. Other parameters
ing a dipole orientation parallel to the mirror surfaces, put-2¢ (@ AoM/(2¢)=10"" and r=-0.9999 and(b) A\/(2c)

— —1 —
ting the atom at an antinode position, and narrowing the_10 andr=-0.99.

cavity gap to one half wavelength. Further we need a largeyoor visibility and are rather fragile, though. They disappear,
Ao/(2c), which means a large coherent coupling strength  fo instance, when the dipole isoriented or when the cavity

at a given transition frequen'cy, ora I'arge mirror reflectivity, length slightly increases. Several other valuesnddre also
which means a smaller cavity damping ratg, or both. A shown in Fig. 8a). Whenm=3, although no oscillations are
relationship betweer, andr can be established by expand- seen, there is still a large discrepancy between non-

ing the normalization constants in accordance with the nertyrhative and perturbative results, while whes 2, the

Mittag-Lefler theorenj25,42 two are in good agreement. Vacuum-field Rabi splittings
[44] and vacuum-field Rabi oscillatiofi45] in a Fabry-Perot
:E i cavity have been observed with two-dimensional quantum
Ve In , (36) ‘ ; o .
T \|r] well excitons embedded in planar monolithic semiconductor

structures(see[46] for more references.There are some

where T is the round trip travel time of a photon in the differences between the atomic decay process discussed here
cavity, Eq.(24). Equation(36) tells us that by changing the and the exciton decay experiments reportefdi—46. For
reflection coefficient front = —0.99 (In(1/r[)=10"2)tor  example, while the atom is coupled to all oblique modes, the
=—0.9999 (In(1/r|)=10"*-a value which is well within excitons in a two-dimensional quantum well are coupled
the reach of contemporary experimental technidd&$, we  only to those with the same in-plane wave vectors as their
reducey, by two orders of magnitude. own. The vacuum-field Rabi oscillations effects in the quan-

The case of =—0.9999 is illustrated graphically in Fig. tum well experiments have also been enhanced due to coop-
3(a) with other parameters being the same as in Fig. 2, whiclerative interactiof47]. Nevertheless, there is no doubt that
demonstrates that the strong coupling regime with reversibléne two cases are closely related and a study of one of them
spontaneous decay is achievable when 1. This is one of can shed light on the othét].
the main results of our paper. The Rabi oscillations have To facilitate the strong coupling regime, in FiglaBwe
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have chosen to take a high cavity finesse. Alternatively, g
large value ofAg\/(2c) can also be tried as is done in Fig.
3(b) with Agh/(2¢c) =101, and as is expected, vacuum-field IMkA oioat

Rabi oscillations appear fom=1. Whenm=2, there is T dmeg’ A 2 Vi-r#r?
again a good agreement between the nonperturbative and
perturbative theories, whereas whas- 1.05, some discrep-

ancy between the two can be noticed. This is due to the fact
that, as will be shown below, the emission pattern in this

case is better concentrated along thdirection than in the

case of Ap\/(2c)=102 presented in Fig. 2. Note that
though the valuedy\/(2¢)=10"1 is too high for a typical

atomic optical transition, it can be achieved using excitonsyhere
which may have a radiative lifetime of the order of a pico-
second in GaAs quantum wells or even a subpicosecond in Rin=[X3+Yy3+ (zg—za+2n1)?]*?, (433
CdS quantum well§48].

x,y,z(rB At

i R
X[ Fy.al Rm)e'kARmcu(t— T) H(t_ Rm

*rfyy Ry €4ARINC,, (t— %) H(t— %” (42

Rn=1{x3+y3+[zg+2za+(2n+1)112Y2  (43b
IV. SPONTANEOUS-EMISSION PATTERN
o _ The coefficientf, , ,(R) with R being eitherR,, or R, is
A. Observable field intensity given by, for ay-oriented dipole,

In order to calculate the observable field intensity, we

start with the quantized mode expansions for the negative y XgYg| 1 3
iti ic fi fYR)=— . + - . (44
and positive parts of the electric field operator «(R) R2 |ikaR (aR)Z 1(kaR)? (449
. . ) hw; -
EDM=[EDMT'=iX \Z D, (67 . v 1 1 3y?
f)y/(R):T 1=+ 2 3|7 p2
IKa R (kaR)* i(kaR) R
and introduce the field state (44b
yeVR?—(x5+ya)| 1 3 3
e Y(R)= — _
(440
Then in terms of and, for az-oriented dipole,
F(r,ra,t)=(0[EC(N)[ (1)), B9 pos xgVRP—(xg+yp) [ 1 .3 3
) R? KaR * (kaR)2  i(kaR)3]’
which can be interpreted as a kind of wave function for a (459
photon, the observable field intensity at a positigris )
) ) fL(R):_yBJRZ—(xéwé) + .3 3
H(rg ra =(W(OEC(rg) EC)(rg)[ih(1)) ’ R? LkaR (kaR)? i(KaR)?)’
. . (45b)
=(y(OEC(rg) EF)(rg)[ (1))
z ikaR  R2 (kaR)?  i(kaR)3
Making use of Eqs(37)—(39) and formally integrating Eq. 5 9
(19), we rewriteF(rg,r,t) in the form % 3(XI:; ys) _2]. (450
_ t i
F(rB,rA,t)zie*"”Atf dt’Cu(t’)E %Uj(rB) In Eq. (42), the “+"- and “ —"-signs are fory-oriented and
0 ]

z-oriented dipoles, respectively, ar@,(t) is to be taken
from Egs.(22) or (28). Equations(42)—(45), together with
Eq. (40), completely determine the field intensity observed
from outside the cavity for an arbitrary space-time point and
By inserting appropriate mode functiokk(rg) in Eq. (41),  for both weak and strong coupling regimes. It can be verified
after some tedious algebfsee Appendix ¢ we arrive at the that when the observing point is on th&xis, our results are
following expression for the field observed from outside theconsistent with those given i17] for the electric field op-
cavity, erator in the Heisenberg picture.

X[Uj(ra)- ple”@imeAt=t (41
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=z75/(\/2) and start to increasg; from zg=m/2—the value
immediately at the right cavity wall. From the figure it can
be seen that as a rule, the near-field emission pattern in the
weak coupling regime consists of a single peak along the
: z-axis with some structures around it. These structures quite
X resemble the interference pattern in a Young’s double-slit
experiment, and indeed can be interpreted as resulting from
the interference of a single photon with itself, or from the
interference among the “photons” emitted by the original
atom and its mirror images. When the cavity length in-
creases, the near-field pattern tends to broaden and have a
more complicated structure, though the broadening is less
significant for oddm. In the case ofm=1.05, though the
spontaneous emission enhancement is larger than that in the
case ofm=1, the emission in the-direction—the only direc-

tion in which the reflected light can act back on the atom, is
lower, leading to a better performance of the perturbative
theory as we have already mentioned.

At a distance of about several wavelengths from the cav-
ity walls, the far-field emission pattern emerges and our re-
sults can be seen to be consistent with earlier perturbative
calculationg15,16,18—20 Namely, the far-field consists of
a single pencil-like lobe pointed along tlzeaxis whenm
=1 and is split up into a conical shape when the cavity is
slightly longer than half wavelengthm(=1.05 in our casge
Such patterns have been experimentally obserj/&s].
When the cavity gap is one wavelength< 2), the far-field
pattern is also of a conical shape, which covers a larger solid
angle and is more spread than that in the casmf1.05.
When m=3, though perturbative theory predicts a central
lobe and a conical lobglL6], the conical lobe is too weak to
be visible in the plot.

With parameters\y\/(2¢)=10"3 andr = —0.99 consid-
ered in Fig. 4, the distance from the cavity walls required for
the far-field pattern to be fully established, when translated
) o ) N _into time, is very small as compared to the atomic and cavity

FIC_;. 4. Near-field emission pattern and_ its transition to far f'elddecay times. We therefore may assume a quasi-steady state,
for different values of the scaled cavity lengttn and for i, \yhich the near and far field are related through a Fourier
AoM/(20)=10"%, r=—-0.99, andt=t/(\/c)=50. The atom is at {ransform according to the diffraction thed9]. Take, for
the cavity center with g-oriented dipole and the observing point is instance, the cases oh=1 and m=3. The diffraction
outside the cavity with coordinates,0zg). For brevity, we de- o4y telis us that the diffraction pattern of a circular aper-
notex=xg/(/2) andzg=27;/(\/2). The field intensity is inthe  yyre is a so-called Airy’s pattern with a central disk and
units of 10" *[3chka/(167€0)]. multiple rings around if49]. In our case, for a circular single
lobe to appear in the far field, there must be an equivalence
of the Airy’s pattern in the near field, and as can be seen
1. From near field to far field from F|g 4, that is indeed the case.

Another situation of interest whefy\/(2¢c)=10"1, i.e.,

hen the atomic natural decay is very fast, is presented in
Fig. 5. When the cavity gap is one half wavelengtin (
=1), the emission pattern is in overall similar to that in the
‘weak coupling regime shown in Fig. 3, except that now the
spontaneous emission pulse has a much higher intensity.
Whenm=1.05, there is however, a significant change in the
aEehavior of the far field: the emission pattern, though spreads

counling regime is depicted in Fia. 4 for different values of 2528 increases, does not split into a conical shape as in the
ping reg P 9. weak coupling regime. Whem=2 the near-field pattern

the scaled cavity Ilengtm=ll()\/2).and forthe t|me moment may become quite complicated while the far-field pattern
t=t/(\/c) =50, with the atom being at the cavity center andgtj|| can be treated as of a conical shape. Wien3, beside
with Agh/(2¢)=10"° andr=—0.99, i.e., the same as in the central lobe, we see that a weaker conical lobe is also
Fig. 2. The observation point lies within thez-plane {/s  presen{16]. Our numerical results for earlier times and the
=0). We also denote, for brevityxsg=xg/(\/2) and zg cases om=2 andm=3 in Fig. 5 demonstrate that the emis-

B. Numerical results

By near field and far field we mean the field near to anqN
far away from the cavity mirror surfaces. We shall concen-
trate, as before, on goriented dipole. Though in this case
the field intensity varies in different manners when the ob
serving point is moved along the andy-axis as can be seen
from Egs.(44), numerical calculations show that the emis-
sion pattern is almost symmetric about thaxis.

An example of spontaneous emission pattern in the we
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FIG. 6. Time evolution of the near-field emission patte?g (
=m/2) for (&) r = —0.99 andb) r = —0.9999. Other parameters are
the same as in Fig. 4.

This effective mode radius determines the distance over
which two microlasers sharing the same Fabry-Perot cavity
are correlated and is also called the transverse quantum cor-
relation lengt 30]. Such transverse quantum correlation and
effective mode radius have been observed experimentally
[30,50. The near-field pattern, clearly, can be taken as yet
another indicator of the finite effective mode volume. When
r=-—0.99, Eq.(46) yields an effective mode radius of
reft/ (N/2)~6+/m, in very good agreement with the near-field
pattern shown in Fig. 4. Thus, an excited atom enclosed in a
Fabry-Perot cavity, when looked at from outside, behaves
not as a point-like emitting source, but as an emitting spot
with finite size which is defined by Eq46), and which can

be many times larger than the wavelength.

Since the spontaneous decay is a transient process, a ques-
tion may arise about whether the near-field emission pattern
spreads in time. This question is addressed in Fig), 6
where we depict the time evolution of the near-field pattern
right at the cavity wall gg=m/2) for Ag\/(2¢c)=103, r
=-0.99, andm=1. It can be seen that the spread is not
significant, that is, the consistency between the effective
mode radius and the near-field pattern is preserved. Another
point is the dependence of the effective mode radius on the
sion pattern exhibits a more kinky behavior than in the casenirrors reflectivity. According to Eq46), r . increases with
presented in Fig. 4. The reason is that these kinks are caused increasingr|, and the use of an ideal cavity with infinite
by the arrival of the reflected radiations, each of which has dinesse leads to a single plane-wave structure for the longi-
greater impact on the atom in a fast decay process than intadinal mode, and to infinite transverse extent of that mode.

FIG. 5. Near-field emission pattern and its transition to far field
for different values of the scaled cavity lengtm and for
AgN/(2¢)=10"1, r=-0.99, andt=25. The atom is at the cavity
center with ay-oriented dipole and the observing point is outside
the cavity with coordinateszf,0,zg). For brevity, we denote?g
=xg/(\/2) andzg=2zg/(\/2). The field intensity is in the units of
10 5[3ctki/(16m%€)].

slower one. In particular, forr=—0.9999, we have .~ 60/m, i.e., a
spread in the near-field pattern ten times larger than that for
2. Effective mode radius and near-field pattern r=-—0.99 is expected. Numerical results presented in Fig.

, ) i . 6(b) where the time evolution of the near field for
The Fabry-Perot cavity has a peculiar feature that in Sp't%\o)\/(ZC) =103, r=—-0.9999, andn=1 is plotted, how-

of its infinite lateral extent, the cavity mode volume is finite

: ; . ever, show that the spread is almost the same as in the case
with an effective mode radiud5,31]

of r=-0.99. This can be explained as follows. In deriving
Eq. (46), a weak coupling regime has been assumed in which

once the photon is emitted, it will smear over the transverse
- mIN]r| (46) extension of the mode. An increase in the mirrors reflectiv-
“Ng(1-r?)

ity, however, as we have shown in Section Ill, may give rise
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to a strong coupling regime, in which the initially emitted emitted light on the atom after successive reflections at the
photon can be repeatedly re-absorbed and re-emitted. Thesavity walls. Such retarded interaction is absent in a non-
multiple re-absorptions and re-emissions, in turn, result in gerturbative theory which is based on a single-mode descrip-
good localization of the photon near the atomic position.tion of the electromagnetic field. Further, analytic solution to
Since the transverse mode size identifies the minimum transhe delay-differential equation has been obtained for the spe-
verse size required for a microcavity laser of planar typegjal case when the atom is positioned at the cavity center.
even if the pumped region is smaller, the fact that the transtps solution and the original delay-differential equation
verse mode size does not increase with an increasing mirrgyaye peen used to investigate numerically the time behavior
reflectivity as much as Eq46) predicts may be beneficial in ot the atomic state populations. Our results are then com-
designing optical integrgted Systems in which very small SiZl?Jared with perturbative ones. We have found that even
of a single component is desiralg]. _ though the Fabry-Perot cavity has space confinement in only
Now let us come back to the direct comparison of theyne girection, strong coupling regime and together with it
three coupling constanis, y., and y’. Recall that we are  50,ym field Rabi oscillations are still possible. Conditions
!nterested in the'case where the ato'm is at t.he cavity centef, o able for this strong coupling regime include a half
its dipole isy-oriented and the cavity gap is of one half . elength cavity, a dipole placed at an antinode position
wavelength (n=1). Hence it is reasonable to assume thatyhq griented parallel to the mirror surfaces, a high enough
[1,20 cavity finesse or a large enough dipole matrix element.
47) Next, we have derived a general expression for the field
intensity observed from outside the cavity which holds for an

To estimatex, we assume that the emission occurs into the?Pitrary space-time point and atom-radiation coupling
effective volume of the longitudinal cavity mod¥.q strength and used it to study numerically the spontaneous-

=I7rr§ff and that the emission rate in the cavity is of the €Mission pattern in both weak and strong coupling regimes.

same order as the free-space f@®e]. Then we can replace The far-field pattern in the_ weak poupllng regime has b(_aen
shown to be consistent with previously known perturbative

’y’<A0.

Uj(ra) in Bq. (16) by 2/ eoVeq to have results. We have found that for a moderate value of the mir-
6rc3A. | 12 ror reflection coefficient, the broadening in the near-field pat-
TC Ao

(49 tern is in good agreement with the concept of effective mode
radius. As the mirror reflectivity increases, however, because
of the strong-coupling the photon is better localized than is

We shall takex=10 %m. (i) r=-0.99 and Ap\/(2c) predicted by the effective mode concept. We suggest that

=10"3. Egs.(36) and (46)—(48) give usy.~10s 1, y'  this can be verified experimentally using the same setup as,

<10"s7 !, andk~10"?s™1. Sincexk~ vy, we have a weak e.g., in[44] where time-resolved vacuum Rabi oscillations
coupling regime as is seen in Fig. @) r=—0.9999 and have been observed.

Ap\/(2c)=10"3. Egs. (36) and (46)—(48) lead to vy, The planar cavity used in our treatment is an idealized

~1097! y'<10"s71 andx~102s7L ie., k>1y.,y'.  cavity with lossless and infinitely thin mirrors which have

This means a strong coupling regime, in agreement with th&avelength and incident angle independent reflectivity.

numerical results presented in FigaB (i) r=—0.99 and Lossless and highly reflecting mirrors used in reality are

Ao\/(2c)=10"1. Hence we have y.~10%s ! 4 Bragg mirrors made by stacking pairs of dielectric layers,

<108s7%, and k~103s7%, i.e., kx>y.,y’ and a strong oOne with high index of refraction and another with low index

coupling regime follows, in agreement with Fig(bB It is  of refraction. Such mirrors have finite thickness and non-
worth noting that we have used the form@) to evaluate  uniform reflectivity. Nevertheless, it is reasonable to assume

r o in all three estimations above. If we use a reduced effecthat qualitatively, effects predicted by an ideal-cavity theory

tive mode radius consistent with our results on the near-fielavill persist under realistic and appropriate conditions. In

pattern, the relationship>y,,y’ in cased(ii) and(iii) will  fact, many of them have actually been observed. For ex-
be improved even further. ample, the existence of an effective mode radius has been

experimentally verified in the weak coupling regime by in-
vestigating interatom quantum correlations established be-
tween two equal localized sets of excited dye molecules
We have used a three-dimensional nonperturbative agplaced in two spots in the microcavif0] and by studying
proach to study spontaneous emission in a Fabry-Perot cathe probability distributions in the intensity of two pulsed
ity based on a complete set of orthogonal standing-wavelanar microcavity dye lasers, one with single-mode opera-
mode functions. In the weak coupling regime where Fermi'sion and another with multimode operatidg0] and the
golden rule holds, it has been shown that these mode funsracuum-field Rabi oscillations and vacuum-field Rabi split-
tions reproduce exactly the same spontaneous-emission rateg have been observed with exciton-photon interaction in
as that derived using traveling-wave modes. We have obsemiconductor microcavitigg¢4—46, as we have mentioned
tained a general delay-differential equation for the probabil-earlier. The assumption on the infinitely far extension of the
ity amplitude of the initially excited state, which can be em-mirrors in thexy plane is not severe. If the transverse size of
ployed to study the effects of the cavity length, cavity the cavity is larger than the effective mode radius, which can
mirrors reflectivity, atomic position and dipole orientation, be calculated using E¢46) in the weak coupling regime or
etc., on the spontaneous decay process. The delay termsastimated through the near-field pattern in the strong cou-
this equation can be associated with the back action of thpling regime, we expect that the main physical results of this

K=

2
Vefwa

V. CONCLUSIONS
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work will not be affected in any substantial way.

Another potentially useful property of spontaneous emis-
sion in a microcavity is the spectral line narrowing. Due to a
reduction of the number of allowed photon modes, light can
have a spectrum much narrower than that in the ordinary
free-space emission. The spectrum of spontaneous emission
in a one-dimensional monolayer optical cavity has been cal-
culated in[27], and the formalism developed there can be
adapted easily to our case. Work on the spectral properties of
spontaneous emission in a Fabry-Perot microcavity is in
progress and the results will be reported elsewhere.
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APPENDIX A: EVALUATION OF THE KERNEL  K(t—t")

In order to evaluate the kern&(t—t"), Eq. (21), we
replace the summation over the mode ingldy an integral
overk, 6, and¢ as
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© ck®
—ic(k—ka)(t—t")
fo dkzﬁe

4u” .
XEO—V(COSZ(;H-SII’IZQS cog0)

142> r2"cogk cos(6)2nl)
n=1

o)

+ > 12" Hcogk cos(6)((2n+1)1 +22,)]

+cog k cos(9)((2n+ 1)I—22A)]}). (A3)

2
moC * —ic(k— —t
iy = K IGe—ic(k—ka)(t—t")
) 2772ﬁeofo dkice

[

1
x| =+ > r?g(k2nl)
3 n=1

> r2 Y (gik[(2n+ 1)l +2z4]}

n=0

J’_

+o{k[(2n+ 1)1 =2z,1}) |, (A4)
V T w2 o
> - Wj d¢f dasinef dk k2, (A1)
' ¢ 0 0 0 where
where X denotes the sum over the mode categories. The _ _
components of th&-vector are sinXx cosx sinx
P g(x)= X + 2 3 (A5)
ke=ksingcosg, ky=ksingsing, (A2) The integral ovek can now be performed, e.g., as
k,=ksing, k,=kcos# w i
p z f dkk39—i0(k—kA)<t—t’)Smk2n|
0 k2nl

with @ being the angle betwednand thez-axis and¢ being
the angle betweeik, and thex-axis. Note that the upper
limits of integrations over and ¢ are w/2 and m, respec- =
tively, because we are using standing-wave mode functions
rather than traveling-wave mode functions.

Let us consider first the case of a dipole oriented parallel
to the cavity mirror surfaces. To be definite, let it be a
y-oriented dipole. Using Eq$21), (16), (A1), and the mode
functions given in Section II, the sum over the categories of
modes yields(only evenx-y modes contribute since sky

Ta)=0)

V T 2 )
K(t—t ):_(ZT):SJO d(ﬁfo désing

jwdk K 1[ —ic(k—ka)(t—t"—2nl/c) gikp2nl
2nl 2i

— g ic(k—ka)(t=t’ +2n1/c) g ikn2ni]

- ay

_ eficy(tft’+2n|/c)e7ikA2nI]

(KatYy)?

7|cy(t t— 2n|/c)e|kA2nI
- 2nl 2[

2
A 8(t—t'—2nl/c)elka2n!

|02nl

—8(t—t"+2nl/c)e ka2n'], (AB)

® ck ,
xf dk KR e ek k()3 1Y (1) - 2
0 2h c

V T 72
—§J dd)f désing
)7 Jo 0

where in going from the first equation to the second we have
set k—kp)—Yy and replaced the lower limit of the integral
—ka by —, as is usually done in a standard Weisskopf-
Wigner theory. We have further retained the dependence on
y only in the exponential by assuming that the time variation
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of C,(t) is slow as compared to the atomic oscillations at the C,()=1 for O<t<l/c
optical frequency. Similar approximation has also been used ! ’
in [23—25,38. Other terms on the right hand side of £E44)

can be dealt with in the same manner and we finally have Cy(t)y=1+pyt, for l/c<t=<2l/c,
o0 2
3w , ~ ot
K(t=t')=Ao| (t—t')+ 3 > r2"h(2nl) Cu()=1+psty+pi5 +Paty for 2l/c<t<3l/c,
n=1 :
3% o OO SOOI - B
+anof {h(2n+1)I+22,] Cu(t)=1+Pity+ Pl 5+ Pato+ Pi g+ 2PaP2 5y
+psts for 3l/c<t=4llc,
+h[(2n+1)I=22z:]} |, (A7)
2 3 2
- RO - ST - SRSV ¢
where Cu(t)=1+ Pity P15y p2t2+p1§+2p1p2§+ Pats
t4 t3 t2 t2
1 - . sale gmr fa m o T4 oo la
h(x) =5 [8(t—t' =x/c)g~ — 5(t—t' +x/c)e *#] + P17y 3P1P2 5+ 2P1Pa 5 P25,
A
_ _ +pat, for 4l/c<t<5l/c,
+ SL8(t—t —x/c)e~+ s(t—t’ +x/c)e*¥]
(kaXx)
(B3)
_ [S(t—t’ —x/c)e'kax From Egs.(B3), it can be deduced that the solution of the
i(kax)® delay-differential equatiofB2) is of the form
+ 8(t—t" +x/c)e kax], (A8) .
~ B m! ~ara,  ~a K
andA, is the free-space spontaneous decay rate given in Eq. Cun(t)_go Z a;la,! - -a! PP Py m'
(23). Substituting EqstA7) and(A8) in Eq. (20), we obtain
readily the delay-differential equatiof22). The case when for nl/cst<(n+1)l/c (n=0,1,2...),
the dipole is oriented perpendicular to the cavity mirror sur- (B4)

faces can be dealt with in the same way as outlined above.
where the inner sum is over non-negative integef@

APPENDIX B: PROOF OF EQ. (28) =1,2,...Kk) such that
By introducing the notation la,+2a,+ - - - +kac=k, (B5)
- Ao - Ag nl and
Cu)=Cytyexpg 5t],  Pa=pn(kanhexg - -/, . 6
m=a;+a,+---+ay.
(Bl) 1 2 k
. o To prove that Eq(B4) is indeed a solution of EqB2), we
equation(26) can be simplified further differentiate both sides of it and use the recurrence formula
. c m! 3 (m—1)!
Cu()= 2 PuCulty)H(ty). (82) Aoy al (@ Dlal - ag
(m—1)!

For timest<l/c, Eq.(B2) becomes an ordinary differential
equation which can be integrated easily. Once the solution a!(az—1)tag!---a/!
for t<I/c is known, we can integrate the equation féc (m—1)!
<t<2l/c, and so on(for a discussion on the nature of the
delay-differential equations, s¢B1].) The results of several

first steps are, with the initial condition @U(O)zl, to obtain

alay - -a_q1!(a—1)! (B7)
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n m—1
~ ~ (m_l)' ~a171~a2 ak tk
Cun(t)_k:]_ P1 E (al_l)!az!"‘ak!pl p2 pk (m_l)'
n [ m-1 1
~ (m—1)! ~aTa,—1  Tay t
+k§=:2 pZ_E al(a—1)1---ag Pt P2 P T
m—1 1
n '5 (m—1)! Ealﬁaz' ) "F")ak—l ty
En T agtay! - (a— 1)1t 2 ko (m=—1)!
n-1 m
~ m! ~ g~ ~a bt
= .t marpar o Hag
P12 2 ajla,! .. adPt P P
n-2 m
~ m! —a~a,  ~a, k42
+p2k§=: 2 ajla,! - ~ak!p11p22' P
+Pa
:Bléu(n—l)(tl)+526u(n—2)(t2)+ e +5n’éu0(tn)- (BS)

The lower limit of the outer sum in, for instance, the first term in the first equation, is 1 because this term will appear only if
a;=1, see Eq(B7), which in turn meang&=1 in accordance with E4B5). In going from the second equation to the last we
have again made use of the soluti@¥). The last equation is nothing else rather than @%) and our proof is completed.

The piecewise solutiofB4) can be combined and transformed usiBg) to arrive at the solutiori28).

APPENDIX C: PROOF OF EQS. (42)—(45)

Let us consider first the case ofyaoriented dipole. By replacing the sum over the modes in(E#). by an integral as in
Eqg. (A1) we obtain

iV _ t w ml2 w ck '
3e*"”“tfdvcu<t'>f d¢f desinaf dk i@ e IS U(rg) [U(ra) - o]
(27) 0 0 0 0 2 c

F(rB!rAat):

v/ _ ; . 2 = ck® N
= (ZW’;E,e*'wAtfodt’Cu(t’)fo d¢f0 olesinef0 dk—-e etk )|x008(kp-rs)kxky

X

d
— (a®7"52sink,,zAUS* "H(zg) — (@®*TH2c0sk,ZAUS  H Z5) — (™) %k y,sin klZzAd—Z us?™(z)
Z

B

d
+(a®™)%ky,cosky,za ——ug ™M(2)

7540 +y cogkp- rs){ (a®?T52kZsink, ,zoUS T zg)
Zg
d
+ (a5 2kZcosky,Zaug () + (™) 2KZ( —Ky,)Sinky,za a0 us?™(z)
Zg

d .
+(a®™)2kZky,c08K1,Zp 5 uy™(2)| | +zsin(ky: rg)kikykel — (a®™)Zsinky,zaug’™(zg)

Z

+ (amM)2cosklzzAungM(zB)]]. (C1

Next we rewriteu$*'(z), Eq. (2b), as
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I Ki,— Koz . I I

+klz§}+ klz+k025| Koz -5 _klzz

e 1 (] e Mol !

= k_oz—ﬁz SN Ko,| Z E + 125 +r SIN Ko,| Z E

with r defined as in Eq12). Clearly, similar expressions hold for otheg(z). After carrying out the same limiting procedure
as discussed below E¢L4), we get

sin koZ( z— >

ugE 2) = /& K12+ Koz

Koz 2Ky ko,
I
- klzz

} (C2

iV . t = ck® (72 ™ 4
F(rg,ra,t)= “e—'wAff dt’Cu(t’)f dkTe"C(k‘kA)(“‘)f desinaf dp—
0 0

(2m)* 0 o €V

x cog K- g)Sin ¢ COS¢h
X (—sirte) ZO V1—rZr2{cogk,(za—2zg—2n1)]+r coikz(zA+zB+(2n+1)|)]}+§/cos(kp-rB)
X (coZ ¢+ sirf ¢ cos 6) Zo V1-r2r2"cogk,(za—zg—2n1)]+r cogk,(za+zg+ (2n+ 1))}

+2zsin(k,- rB)sin¢sin0c05020 VI=r2r2Ysifk,(za—zg—2n1)]+r1 sifK,(za+ zg+ (2n+ 1)) ]} |.

(C3
Let's examine, for instance, thecomponent. It contains the integrals over the angle variables
w2 T
Z= f désin af d¢ cog k- I'g)(COS b+ sinf p cos f)cog ¢ cosb), (CH
0 0
wherec can be eithec, or ¢,
c,=k(zg—z5+2nl), (C59
ci=K[zg+zp+(2n+1)I]. (C5b
The integration overp can be dealt with as follows
f do cos{kp-rB)zf d¢ cogk sinf cosgpxgt+ksinfdsing yg)
0 0
= f d¢ cogdsindsin(d+ )]
0
T+
zf d¢ cogdsindsing)
v
zf d¢ cogdsinfsing)
0
=mdo(dsing), (Co)
whereJy(x) is a Bessel functiof52] and
X
d=kyx5+ya, tanw:y—B. (C7)
B

Here, we have made use of the fact that the integrand is a periodic function with persmlthat the integral limits can be
shifted by an arbitrary amount, which i&in our case. Similarly, we find

fowddwos(kp'rB)c032¢=7rcos(2¢)J2(d sing). (C8)
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Substituting(C6) and(C8) in Eq. (C4) gives

a (72

Z=> . désing[(1+cog0)Jy(d sin )+ (1—cogd)cog 24)J,(d sin#)]cog ¢ cosh)

/2
= désing
0

. sing . . .
Jo(dsing)— TJl(d sin ) + (cog ) (sirt6)J,(d sin §)

cogc cos#)

2

= désing
0

N2

a
\[E\/c €0SAJ _q15(C cosh)

. siné . . .
Jo(dsing)— TJl(d sin @)+ (cog ) (sinf8)J,(d sin )

1 1 d?
——-JuakR) ——J3KR) + cogyy ——-J5,( kR)

(kR) N (kR)3/2 (kR)SIZ
| sinkR y3| [coskR sinkR 3y3
=1ar kR 1—§ + W_W 1—¥ . (Cg)

Here in deriving the second equation we have used the recurrence formula for the Bessel fli62tioRse integral in the
third equation has been performed using the second Sonine’s fofBg]laFinally, in going from the forth equation to the
fifth, we have rewritten the Bessel functions of half-integer order in terms of elementary furf@®jn$he distanceér stands
for R,, if c=c, andR, if c=c,, see Eqs(43) and(C5).

Now by inserting Eqs(C9) in (C3) and performing the integration ovkiin the same way as in E¢A6), we arrive at Egs.
(42), (43), and(44b) for F(rg,r,t). Other components and the case af@iented dipole can be treated in the same manner.
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