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Excess noise for coherent radiation propagating through amplifying random media
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A general theory is presented for the photodetection statistics of coherent radiation that has been amplified
by a disordered medium. The beating of the coherent radiation with the spontaneous emission increases the
noise above the shot-noise level. The excess noise is expressed in terms of the transmission and reflection
matrices of the medium, and evaluated using the methods of random-matrix theory. Intermode scattering
betweenN propagating modes increases the noise figure by up to a factdy @ one approaches the laser
threshold. Results are contrasted with those for an absorbing mef®1®50-294{©9)02411-7

PACS numbse(s): 42.50.Ar, 42.25.Bs, 42.25.Kb, 42.50.Lc

. INTRODUCTION disordered cavities, and show ti#&& N is the most probable
value. This is the generalization to multimode random media
The coherent radiation emitted by a laser has a noise speof the single-mode resulf=2 in the literature.

tral densityP equal to the time-averaged photocurrEnThis
noise is called photon shot noise, by analogy with electronic [l. FORMULATION OF THE PROBLEM

shot n0|§e.|n vacugm tub'es. If the radiation Epassed through We consider an amplifying disordered medium embedded
an amplifying mediumP increases more thanbecause of iy g waveguide that supports(w) propagating modes at
the excess noise due to spontaneous emisignFor an  frequencyw (see Fig. 1 The amplification could be due to
ideal linear amplifier, thésquaredi signal-to-noise ratié?/P ~ stimulated emission by an inverted atomic population or to
drops by a factor of 2 as one increases the gain. One says ttgiimulated Raman scatterifd]. A negative temperaturé
the amplifier has a noise figure of 2. This is a lower bound<O describes the degree of population inversion in the first
on the excess noise for a linear amplifigt. case or the density of the material excitation in the second
Most calculations of the excess noise assume that the angase[3]. A complete population inversion or vanishing den-
plification occurs in a single propagating modRecent ex-  Sity corresponds to the limif—0 from below. The minimal
amples include work by Loudon and his gro[®4].) The  hoise figure mentioned in the Introduction is reached in this
minimal noise figure of 2 refers to this case. Generalizatiofimit. The amplification rate 1, is obtained from thenega-
to amplification in a multimode waveguide is straightforwardtive) imaginary parte” of the (relative dielectric constant,
if there is no scattering between the modes. The recent inte/7a= w|€”|. Disorder causes multiple scattering with rate
est in amplifying random medig)] calls for an extension of 1/7s and(transport mean free path= crg (with c the veloc-
the theory of excess noise to include intermode scatteringty of light in the medium. We assume thats and 7, are
Here we present such an extension. both>1/w, so that scattering as well as amplification occur
Our central result is an expression for the probability dis-on length scales large compared to the wavelength. The
tribution of the photocount in terms of the transmission andvaveguide is illuminated from one end by monochromatic
reflection matrices andr of the multimode waveguid¢The  radiation(frequencyw,, mean photocurreng) in a coherent
noise powelP is determined by the variance of this distribu- State. For simplicity, we assume that the illumination is in a
tion.) Single-mode results in the literature are recovered fosingle propagating mod@abeledm,). At the other end of
scalart andr. In the absence of any incident radiation, our the waveguide, a photodetector detects the outcoming radia-
expression reduces to the known photocount distribution fotion. We assume, again for simplicity, that &l outgoing
amplified spontaneous emissifB]. We find that intermode modes are detected with equal efficieney The case of
scattering strongly increases the excess noise, resulting insingle-mode detection is considered in Appendix A.
noise figure that is much larger than 2. We denote byp(n) the probability to counin photons
We present explicit calculations for two types of geom-within a time 7. Its first twvo moments determine the mean
etries, waveguide and cavity, distinguishing between phOtOphotocurrenu_and the noise powe®, according to
detection in transmission and in reflection. We also discuss
the parallel with absorbing media. We use the method of
random-matrix theory7] to obtain the required information
on the statistical properties of the transmission and reflection
matrices of an ensemble of random media. Simple analytical — — .
results follow if the number of modeN is large (i.e., for R—— E— D”\/*
high-dimensional matricgsClose to the laser threshold, the
noise figureF exhibits large sample-to-sample fluctuations, FIG. 1. Coherent lightthick arrow is incident on an amplifying
such that the ensemble average diverges. We compute fetedium(shadeg embedded in a waveguide. The transmitted radia-
arbitraryN=2 the distributionp(F) of F in the ensemble of tion is measured by a photodetector.

T

1=>n, P=lim %(F—FZ)- 2.1

T—®

Bl

1050-2947/99/6(5)/40598)/$15.00 PRA 60 4059 ©1999 The American Physical Society



4060

[The definition ofP is equivalent toP= [*_.dtsl1(0)4I(t),
with 8l =1—1 the fluctuating part of the photocurreplt is
convenient to compute the generating functieft) for the
factorial cumulantse;, defined by

o

K; J -
F(§)=j21 .J—f:m( nzo (1+ g)“p(n)). (2.2

J

One haST: K1, ?: K2+ K1(1+ Kl)'
The outgoing radiation in mode is described by an an-

nihilation operatoraﬁ“‘(w), using the convention that modes
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W=af dt > a%f(t)a%uit), (3.2

0 n=N+1
ad'(t)=(2m) 12 J doe “a(w). (3.3

0

The generating functiof2.2) becomes

F(&)=In(:efWV:). (3.4

Expectation values of a normally ordered expression are
readily computed using the optical equivalence thedrkzh

1.2,...N are on the left-hand side of the medium and zppjication of this theorem to our problem consists in dis-

modesN+1, ..., are on the right-hand side. The vector

out

out
. ,a2N .

a®!! consists of the operato",a3", . . Similarly,

we define a vectoa™ for incoming radiation. These two sets
of operators each satisfy the bosonic commutation relation?ﬂ

[an(®).an(w")]= dmd(0—o’), (233
[an(®),am(@")]=0, (2.3b

and are related by the input-output relatigB8s3,9]
a®{w)=S(w)a"(w)+V(w)c(v). (2.4)

We have introduced the Nex 2N scattering matrixS, the
2N X 2N matrix V, and the vectoc of 2N bosonic operators.
The scattering matriXs can be decomposed into folir< N
reflection and transmission matrices,

(2.9

Reciprocity imposes the conditiot$=tT, r=r", andr’
=r'T,

The operatorg account for spontaneous emission in the
amplifying medium. They satisfy the bosonic commutations

relation(2.3), which implies that

VVi=sS-1. (2.6)
Their expectation values are
(Cr(@)ch(0)==8mdl0— )f(w,T), (27
with the Bose-Einstein function
fo,T)=[expho/kT)—1]1 (2.9

evaluated at negative temperatr¢<<0).

Ill. CALCULATION OF THE GENERATING FUNCTION

The probabilityp(n) thatn photons are counted in a time
7 is given by[10,11]

1
p(n)=m<:W”e‘W:), (3.1

where the colons denote normal ordering with respeaft
and

cretizing the frequency in infinitesimally small stepstofso
that w,=pA) and then replacing the annihilation operators
a, (wp),Cn(wp) by complex numberag, ¢, (or their com-
ex conjugates for the corresponding creation operators
The coherent state of the incident radiation corresponds to a
nonfluctuating value ofy, with |ag|*= &ym Spp, 2710/ A
(with wg=poA). The thermal state of the spontaneous emis-
sion corresponds to uncorrelated Gaussian distributions of
the real and imaginary parts of the numbeyfg, with zero
mean and variancgRec,,)%) =((Imc,p)?)=—3f(w,,T).
(Note thatf<0 for T<0. To evaluate the characteristic
function (3.4) we need to perform Gaussian averages. The
calculation is described in Appendix B.

The result takes a simple form in the long-time regime
w.m™1, wherew, is the frequency within whicls(») does
not vary appreciably. We find

F(O=Fad 5= | l1-agt(-rr -t do,

(3.9

Fexc(f):agTIO{tT[]_aff(ﬂ_rrT_ttT)]ilt}momo,
(3.6
where |- - - denotes the determinant ar{d- -}y, the

mg, My element of a matrix. In Eq3.6) the functionsf, t,
andr are to be evaluated at= wy. The integral in Eq(3.5

is the generating function for the photocount due to amplified
spontaneous emission obtained in Réf. It is independent

of the incident radiation and can be eliminated in a measure-
ment by filtering the output through a narrow frequency win-
dow aroundwg. The functionF.,{¢&) describes the excess
noise due to the beating of the coherent radiation with the
spontaneous emissidfh]. The expressio3.6) is the central
result of this paper.

By expanding=(¢) in powers ofé we obtain the factorial
cumulants, in view of Eq(2.2). In what follows we will
consider only the contribution frork.,{£), assuming that
the contribution from the integral oves has been filtered
out as mentioned above. We find

K=Kl Xt o[t A —rr T =t ] s (3D
where againw= wq is implied. The mean photocurremt
=k, /7 and the noise poweP=(x,+ «;)/ 7 become

I =alo(t")mmy  P=1+Pexc,

(3.9
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Pexc=2aflo[t"(1=rrT=tt")t]py m,- 15 T - - ]
_ . [ = - - i ]
'lghe noise poweP exceeds the shot noideby the amount ol T— — ,,r 1
exc: “— [ — H T
The formulas above are easily adapted to a measurement ]
in reflection by making the exchange-t’, t—r’. For ex- 5[ ]
ample, the mean reflected photocurrent id i 1
= alo(r’Tr’)momO, while the excess noise is S
0 1 1 1 [l 1
peXC:2a2f|0[r/T(][_r'r'T_t't"r)r']momo_ (3.9 00 05 10 15 20 25 30

L/

V. NOISE FIGURE FIG. 2. Noise figure of an amplifying disordered waveguide

The noise figureF is defined as thésquared signal-to-  (lengthL, amplification lengtht,) measured in transmissidsolid

noise ratio at the ianlt%/PO, divided by the signal-to-noise line) and in reflectiondashed ling The curves are computed from
. ) . L. Egs.(5.)—(5.4) for a=1, f=—1, andL/I=10. The laser thresh-
ratio at the output|“/P. SincePy= 1, for coherent radiation old is atL/é,— =

A=

at the input, one ha&= (Pg+1)1,/1%, hence
(thrr Tt thte T 14 2uf lent channel approximation™ is accurate for random media
Fe —0f Moo n @ @ [13], which says that the ensemble averages are independent
(tTt)% " a(t™)m m of the mode indexny. Summing ovem,, we may therefore
o0 oo write F as the ratio of traces, so the noise figure for a mea-
surement in transmission becomes

The noise figure is independentlgf For large amplification
the second term on the right-hand side can be neglected rela-

tive to the first, and the noise figure becomes also indepen- <tr (tTrr e+ tTetTt) > 1+ 2af

dent of the detection efficiency. The minimal noise figure F=- 2 +N T

for givenr andt is reached for an ideal detectae€ 1) and =ttt a<trtit= 43

at complete population inversiori€ —1). 4.3
Since ¢ Tttt mom = i (1) mgd?

t 2— (t14)2 o _and similarly for a measurement in reflection. The brackets
+_E_k|('f Omel = (t B ingmy: ON€ hasF=—2f .for large am <...> denote the ensemble average.
plification [when the second term on the right-hand side of
Eq. (4.1) can be neglectddThe minimal noise figureF=2

at complete population inversion is reached in the absence of

reﬂection[(t*r)mok=0] and in the absence of intermode A. Amplifying disordered waveguide

scattering[(t*t)m0k=0 if k#mg]. This is realized in the As a first example, we consider a weakly amplifying,
single-mode theories of Reff3,4]. Our result(4.1) general-  strongly disordered waveguide of length(see the inset of
izes these theories to include scattering between the modqsi,g_ 2). Averages of the moments of ' and tt for this

V. APPLICATIONS

as is relevant for a random medium. system have been computed by BrouW®4] as a function
These formulas apply to detection in transmission. Folyf the number of propagating modisthe mean free path
detection in reflection one has instead and the amplification lengtl§,= D 7,, where 1f, is the
(et ety . amplification rate an@® =cl/3 is the djffusion c'onsta'nt. Itis
F—_of MoMg 1+2a assu_med that W<l1/£,<1 but the ratld_/ga_Es is arbitrary.
(r'fen2 o a(r' Tt In this regime, sample-to-sample fluctuations are small, so
0o 0 (21 2) the ensemble average is representative of a single system.
' The results for a measurement in transmission are
Again, for large amplification the second term on the right- dal s
hand side may be neglected relative to the first. The noise 1= TR (5.1

figure then becomes smallest in the absence of transmission,
when F= —2f(r'Tr'r'*r')momo(r'Tr')r;gmoz—Zf. The

minimal noise figure of 2 at complete population inversion 244l . 3 2s—cots scots—1 S

H 1ttt — rt.r1\2 : . . P..= | nS| — — + _ .
reqmlres ¢"'rir'r )mom_o (r''r )momo’ Wh|ch is possible excm 31 1105 gins i s Sires Sif's
only in the absence of intermode scattering. (5.2

To make analytical progress in the evaluation/fwe
will _con_S|der an ens_emble of random media, with d|fferent|:Or a measurement in reflection, one finds
realizations of the disorder. For largéand away from the
laser threshold, the sample-to-sample fluctuations in numera-
tors and denominators of Eqgt.1) and (4.2) are small, so -

. =al .
we may average them separately. Furthermore, the “equiva- @o ' .3

1 41
—3[S cots
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_ 1—y+y* 493
. (1—7y)?

- is plotted in Fig. 3. Again, we see a strong increase~ain
i approaching the laser thresholdat 1.

: (5.9

VI. NEAR THE LASER THRESHOLD

In the preceding section we have taken the laxgkmit.
In that limit the noise figure diverges on approaching the
laser threshold. In this section we consider the vicinity of the
v laser threshold for arbitrariy.
FIG. 3. Noise figure of an amplifying disordered cavity, con- | ne scattering matri§(w) has poles in the lower half of
nected to a photodetector via Ahmode waveguide. The curve is the complex plane. With increasing amplification, the poles
the result(5.9), as a function of the dimensionless amplification rate Shift upwards. The laser threshold is reached when a pole

v. (Ideal detection efficiencyg=1, and full population inversion,
f=—1, are assumed in this plpfThe laser threshold occurs #t
=1.

202
Pexczfﬂos

1 cots

2cots— —+ ——
sins ' sir?s

scots—1 S
]. (5.4

siPs  sirf's

The noise figureF follows from F= (Pt )Io/12. It is
plotted in Fig. 2. One notices a strong increasefion ap-
proaching the laser threshold st 7.

B. Amplifying disordered cavity

Our second example is an optical cavity filled with an

amplifying random mediunisee the inset of Fig.)3 The

radiation leaves the cavity through a waveguide suppoiing
modes. The formulas for a measurement in reflection app
with t=0 because there is no transmission. The distributio

of the eigenvalues af'r is known in the largeN limit [15]
as a function of the dimensionless amplification rate

=27/N7,Aw (with Aw the spacing of the cavity modes
near frequencyng). The first two moments of this distribu-

tion are

1
N-il<trrfr>=—

: (5.5
1-vy
29y —2y+1
N-I<trrfrrfrs>=2r 7" = (5.6)
(1-y)*

The resulting photocurrent has mean and variance

— 1
=a|01_7, (57)
2
y—y -1
Poy=2a?fl gy ——. (5.8
exc oY (1_7)4

The resulting noise figure far=1 andf=—1,

reaches the real axis, say at resonance frequepgcyFor o
nearwy, the scattering matrix has the generic form

OnOm

Snm: ’ (61)

1
0— ont EiF_iIZTa

whereo, is the complex coupling constant of the resonance
to thenth mode in the waveguidd; is the decay rate, and
1/r, the amplification rate. The laser threshold isTat,
=1.

We assume that the incident radiation has frequangy
= wy,. Substitution of Eq(6.2) into Eq.(4.1) or (4.2) gives
the simple result

of3

2N
i 3= 2 [l (6.2

| Om,

for the limiting value of the noise figure on approaching the

Ii[zser threshold. The limit is the same for detection in trans-

ission and in reflection. Since the coupling comjam;ol2

to the modem, of the incident radiation can be much smaller
than the total coupling constaht, the noise figurg6.2) has
large fluctuations. We need to consider the statistical distri-
bution p(F) in the ensemble of random media. The typical
(or moda) value of 7 is the valueF, at which p(F) is
maximal. We will see that this remains finite although the
ensemble average 7> of F diverges.

A. Waveguide geometry

We first consider the case of an amplifying disordered
waveguide. The total coupling constabt=3,+3, is the
sum of the coupling constait,==)_,|o,|? to the left end
of the waveguide and the coupling constar¥,
=32N . ,lon|? to the right. The assumption of equivalent
channels implies that

1 1
S <2 2>=— .

<Ur==-3x 4fN

(6.3

Since the average of Z/is finite, it is reasonable to as-
sume thatFy,~<1/7>"'=—4fN, or F,,~4N for com-
plete population inversion. The scaling withexplains why
the largeN theory of the preceding section found a divergent
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noise figure at the laser threshold. We conclude that the di- 0.10 T
vergency ofF atL/&,=# in Fig. 2 is cut off at a value of
orderN, if F is identified with the typical valué-y,. 0.08 |-
N=5
B. Cavity geometry 0.06  /
In the case of an amplifying disordered cavity, we can 0.04 - ,/'
make a more precise statement(¥). Since there is only !
. . . ! L
reflection, there is only on& =_2,’}'=1|an|2. The assumption 002 |/ MO
of equivalent channels now gives P N_15 ’
0 R i A ] 1 ] ]
2 4 6 8 10 12 14 16 18 20
<UF>=——. .
1/F 5TN (6.9 =
FIG. 4. Probability distribution of the noise figure near the laser

Following the same reasoning as in the case of the Waveiﬁreshold for an amplifying disordered cavity, computed from Eq

guide, we would conclude thafy,~<1/F/>"1=—2fN. or ying d VI, .

We will see that this is correct within a factor of 2. (6.7) for f=—1. The most probable value =N, while the av-
To computep(F) we need the distribution of the dimen-

sionless coupling constant%:an/\/f. The N complex  £quation(2.4) then has to be replaced with

numbersu, form a vectoru of length 1. According to

random-matrix theory7], the distributionp(S) of the scat-
tering matrix is invariant under unitary transformatio8s ) .
where the bosonic operatbrhas the expectation value

erage value diverges.

a®(w)=S(w)a"(w)+Q(w)b(w), (7.7)

—USU" (with U an NXN unitary matriy. It follows that
the distributionp(u) of the vectoru is invariant under rota- (bl (@)bm(@"))= Snmd(@— o) f(w,T), (7.2
tions u—Uu, hence
and the matrixQ is related toS by
(7.3

p(us, Uz, ...,uN)«5<l—§n‘, |un|2)- (6.5 QQf=1-s¢.
The formulas for (&) of Sec. Ill remain unchanged.
Ensemble averages for absorbing systems follow from the

In other words, the vecton has the same distribution as a
column of a matrix that is uniformly distributed in the uni- corresponding results for amplifying systems by substitution
Ta— — Ta. The results for an absorbing disordered wave-

tary group[16]. By integrating ouiN—1 of theu,’s we find
guide with detection in transmission are

the marginal distribution oﬂmo,
N—1 — 4al S
Up)=——(1—|u, |HN 2 6.6 S
2
for sz_an_d|u%| =1 . 5 247 " 3 2s+coths
The distribution of 7= — 2f|uy, | ~* becomes ex™ 31 1105 Sinns sint?s
N—2
=— - +— -2 . s coths—1 S
P(F) 2f(N=1)| 1 F Fe, (6.7) _ : : , (7.5
sint?'s sintf's

for N=2 andF=—2f. We have plotted(F) in Fig. 4 for . . o
complete population inversiorf € —1) and several choices Wheres=L/&; with £, the absorption length. Similarly, for

of N. It is a broad distribution, all its moments are divergent.detection in reflection one has
|

The typical value of the noise figure is the value at which 4
p(F) becomes maximal, hence _:m0 1— ﬁs coths|, (7.6)
Fuyp=—fN, N=2. (6.9
_ _ 207 1 coths
In the single-mode case, in contrast=—2f for every PechTﬂos 2 coths— Sinhs  <rroe
member of the ensembfaencep(F) = 5(F+ 2f)]. We con- sinff's
clude that the typical value of the noise figure near the laser
threshold of a disordered cavity is larger than in the single- _scoths—1 + S 1 (7.7
mode case by a factdi/2. sink®s sintfts
These formulas follow from Eq$5.1)—(5.4) upon substitu-

VII. ABSORBING MEDIA . .
tion of s—is.
The general theory of Sec. Il can also be applied to an For an absorbing disordered cavity, we fifslibstituting
v——v in Egs.(5.7) and(5.9)]

absorbing medium, in equilibrium at temperatufe>0.
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FIG. 5. Excess noise powex,,.for an absorbingsolid line, left
axis) and amplifying disordered waveguidgashed line, right axjs
respectively, in units of?l|f|1,/L. The top panel is for detection
in transmission, the bottom panel for detection in reflection.

— 1

=a|01+y, (78)
) 'y2+ y+1
PeXCZZa f|0’yw, (7.9)

with y the dimensionless absorption rate.

FIG. 7. Schematic diagram of detection of radiation propagating
through a slab. Single-mode detection occurs when the area of the
photodetector becomes less tHRfIN.

larger absorption rates the excess noise power decreases be-

causel becomes too small for appreciable beating with the
spontaneous emission.

VIIl. CONCLUSION

In summary, we have studied the photodetection statistics
of coherent radiation that has been transmitted or reflected by
an amplifying or absorbing random medium. The cumulant
generating functior-(¢) is the sum of two terms. The first
term is the contribution from spontaneous emission obtained
in Ref.[6]. The second ternfr,. is the excess noise due to
beating of the coherent radiation with the spontaneous emis-
sion. Equation(3.6) relatesF . to the transmission and re-
flection matrices of the medium.

In the applications of our general result for the cumulant
generating function, we have concentrated on the second cu-
mulant, which gives the spectral densRy,. of the excess
noise. We have found th&,,.increases monotonically with
increasing amplification rate, while it has a maximum as a
function of absorption rate in certain geometries.

In amplifying systems we studied how the noise figire
increases on approaching the laser threshold. Near the laser
threshold the noise figure shows large sample-to-sample

Since typicallyf<1 in absorbing systems, the noise fig- f,ctyations, such that its statistical distribution in an en-

ure F is dominated by shot noisé&~1,/I. Instead ofF we
therefore plot the excess noise powkl.in Figs. 5 and 6. In
contrast to the monotonic increase Bf,. with 1/7, in am-

semble of random media has divergent first and higher mo-
ments. The most probable value &fis of the order of the
numberN of propagating modes in the medium, independent

plifying systems, the absorbing systems show a maximum imf material parameters such as the mean free path. It would
Pexc for certain geometries. The maximum occurs neatbe of interest to observe this universal limit in random lasers.
L/é,=2 for the disordered waveguide with detection in

transmission, and near=1 for the disordered cavity. For

04 ———r—T—————7—— 100

0.3 ! 80
. 60
5 02 ;
& | 40

0.1 / 20

0 /,. 1 1 1 0
0 1 2 3 4
v

FIG. 6. Excess noise poweér,,.for an absorbingsolid line, left
axis) and amplifying disordered cavitidashed line, right axjsin
units of &?[f|l,.
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APPENDIX A: SINGLE-MODE DETECTION

We have assumed throughout this paper thaNathodes
propagating through the waveguide are detected at either the
left or the right end. At the opposite extreme one can con-
sider the case of single-mode detection. This is particularly
relevant in a slab geometry, where the cross-sectional area of
the photodetector is much less than the area of the random
medium(see Fig. 7. The number of detected modes is then
much smaller than the number of modBk propagating
through the medium. The limit of single-mode detection is
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reached when the photodetector covers an area comparable ‘W=a""Aa"+cBcf+a"C’ct+cca", (B4)
to the area of one speckle or smaller.

Single-mode detection of thermal radiation was considwith the definitions
ered in Ref[6]. Denoting the detected mode by the inagx

CYA T . ’
the mean photocurrent was found to be Anpirpr = Z:J dt[ST(wp)PS(wpr)]nnre'A(p_p I3
0
— *Jw
I therma™ JO Ejtherma(w)u (A1) alE [ . ,
Bnp,n,p,:ﬁf AtV (wp) PV(wpr) Jqn et PPL,
. 0
Jtherma(w):af(ﬂ_rrT_ttT)nonor (A2) Ny (B5)
o T .
. _ T Al(p— !
and the noise power C”p'”'p'_ﬁfo AtV (@) PS(@p) T € (P=p")t,
“do , .
Ptherma|: J;) Ejtherma(w)' (A3) alr?p: Al/Zalr?(wp), Cnp: Al/ZCn(wp).

In this case of single-mode detection the noise power con- We now apply the optical equivalence theoréb®], as

tains no information beyond what is contained in the photodiscussed in Sec. Ill. The operata®, are replaced by con-
current. stant numbersénmoéppo(zmOIA)”Z. The operators,, are

The same holds for the excess noise considered in thigplaced by independent Gaussian variables, such that the
paper. The mean transmitted photocurrent in a narrow freexpectation valué3.4) takes the form of a Gaussian integral,
guency interval around, is given by

_ C AW + 2

1= aloftymg 2 (Ad) (:etW:) fd{cnp}exp{gw nEp |Cnpl?/ f(@p,T)
and the excess noise i~ in .
= | d{cpptexga™ Aa"-cMc
Pexc=2I jtherma( wo) (A5)

is simply the product of the mean transmitted photocurrent )
and thermal current density. Noise measurements in singlé¥here we have defined
mode detection are thus not nearly as interesting as in multi-

+a™ CTc* +ccdm, (B6)

mode detection, since the latter give information on the scat- Mo o =—Byo v ,_5nn’5pp'_ (B7)
tering properties that is not contained in the mean P P f(wp)
photocurrent.

We eliminate the cross terms af” andc in Eq. (B6) by

APPENDIX B: DERIVATION OF EQ. (3.6) the substitution
. . Ik — -lc g

To evaluate the Gaussian averages that lead t¢358), it ¢'*=c*-M"Ca", (B8)
is convenient to use a matrix notation. We replace the SUMY_ ding to
mation in Eq.(3.2) by a multiplication of the vectoa® with 9
the projectionPa®, where the projection matri® has zero ey =exg a™ (A+CTM1C)al"]
elements excepP,,=1, N+ 1=n=<2N. We thus write

r xfd c/ texp—c'Mc'*). (B9)
W=a f dta®ut(t) PacUit). (B1) (Cnpt
0
The integral is proportional to the determinant\f !, giv-
Insertion of Eqs(2.4) and(3.3) gives ing the generating function

L S i F(&)=const-In|M|[|+a™ (A+C'™M 1C)a"
W= dtf dwf do'[a"(0)S'(0) +c(@)Vi(@)] (£)=const-In|M]+a™( )a
0 0 0

2l
_ o = const-IN[M[|+ == (A+C"™ “1C) o0 mepy:
XP[S(w")a"(w")+ V(') (w)]e@ It (B2) A
o . _ (B10)
As explained in Sec. Ill, we discretise the frequencywgs
=pA, p=1,23... . Theintegral over frequency is then The additive constant follows fronF(0)=0. The term
replaced with a summation, —In|M|| is the contribution from amplified spontaneous

" emission calculated in Rdf6]. The term proportional tb, is
* the excess noise of the coherent radiation, terfggd in
fo dwg(w)ﬂApzl 9(wp). (B3 go & ed
Equation(B10) can be simplified in the long-time regime,
We write Eq.(B2) as a matrix multiplication, w.=1. We may then seh=27/7 and use
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T iA(p—p))t wheref, S andV are evaluated ab=w,. Substitution into
JO € dt=75pp - (B11)  Eq.(B10) gives the resul3.6) for Fe,{£).
Simplification of Eq.(B10) is also possible in the short-
The matrices defined in EB5) thus become diagonal in the time regime, whenf).7<1, with (. the frequency range
frequency index, over whichSS differs appreciably from the unit matrix. The
generating function then is

aATé +
Anp,n'p’:?[S (wp)Ps(wp)]nn’épp/ ,  (B12)

Fexm:afrlo{t*(wo)(ﬂ— 57wt
and similarly forB andC. We then find mJo

-1

(A+CM1C) 0y ><[1—r(w)rT(w)—t(w)tT(w)]) t(wo)} :
BT Shpr 14 VIR 1S) B13 e
_W( P+ aé P] ) pp’ ( ) (B14)
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