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Excess noise for coherent radiation propagating through amplifying random media

M. Patra and C. W. J. Beenakker
Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 27 January 1999; revised manuscript received 18 May 1999!

A general theory is presented for the photodetection statistics of coherent radiation that has been amplified
by a disordered medium. The beating of the coherent radiation with the spontaneous emission increases the
noise above the shot-noise level. The excess noise is expressed in terms of the transmission and reflection
matrices of the medium, and evaluated using the methods of random-matrix theory. Intermode scattering
betweenN propagating modes increases the noise figure by up to a factor ofN, as one approaches the laser
threshold. Results are contrasted with those for an absorbing medium.@S1050-2947~99!02411-7#

PACS number~s!: 42.50.Ar, 42.25.Bs, 42.25.Kb, 42.50.Lc
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I. INTRODUCTION

The coherent radiation emitted by a laser has a noise s

tral densityP equal to the time-averaged photocurrentĪ . This
noise is called photon shot noise, by analogy with electro
shot noise in vacuum tubes. If the radiation is passed thro

an amplifying medium,P increases more thanĪ because of
the excess noise due to spontaneous emission@1#. For an

ideal linear amplifier, the~squared! signal-to-noise ratioĪ 2/P
drops by a factor of 2 as one increases the gain. One says
the amplifier has a noise figure of 2. This is a lower bou
on the excess noise for a linear amplifier@2#.

Most calculations of the excess noise assume that the
plification occurs in a single propagating mode.~Recent ex-
amples include work by Loudon and his group@3,4#.! The
minimal noise figure of 2 refers to this case. Generalizat
to amplification in a multimode waveguide is straightforwa
if there is no scattering between the modes. The recent in
est in amplifying random media@5# calls for an extension o
the theory of excess noise to include intermode scatter
Here we present such an extension.

Our central result is an expression for the probability d
tribution of the photocount in terms of the transmission a
reflection matricest andr of the multimode waveguide.~The
noise powerP is determined by the variance of this distrib
tion.! Single-mode results in the literature are recovered
scalart and r. In the absence of any incident radiation, o
expression reduces to the known photocount distribution
amplified spontaneous emission@6#. We find that intermode
scattering strongly increases the excess noise, resulting
noise figure that is much larger than 2.

We present explicit calculations for two types of geo
etries, waveguide and cavity, distinguishing between pho
detection in transmission and in reflection. We also disc
the parallel with absorbing media. We use the method
random-matrix theory@7# to obtain the required information
on the statistical properties of the transmission and reflec
matrices of an ensemble of random media. Simple analyt
results follow if the number of modesN is large ~i.e., for
high-dimensional matrices!. Close to the laser threshold, th
noise figureF exhibits large sample-to-sample fluctuation
such that the ensemble average diverges. We compute
arbitraryN>2 the distributionp(F) of F in the ensemble of
PRA 601050-2947/99/60~5!/4059~8!/$15.00
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disordered cavities, and show thatF5N is the most probable
value. This is the generalization to multimode random me
of the single-mode resultF52 in the literature.

II. FORMULATION OF THE PROBLEM

We consider an amplifying disordered medium embedd
in a waveguide that supportsN(v) propagating modes a
frequencyv ~see Fig. 1!. The amplification could be due to
stimulated emission by an inverted atomic population or
stimulated Raman scattering@1#. A negative temperatureT
,0 describes the degree of population inversion in the fi
case or the density of the material excitation in the sec
case@3#. A complete population inversion or vanishing de
sity corresponds to the limitT→0 from below. The minimal
noise figure mentioned in the Introduction is reached in t
limit. The amplification rate 1/ta is obtained from the~nega-
tive! imaginary parte9 of the ~relative! dielectric constant,
1/ta5vue9u. Disorder causes multiple scattering with ra
1/ts and~transport! mean free pathl 5cts ~with c the veloc-
ity of light in the medium!. We assume thatts and ta are
both @1/v, so that scattering as well as amplification occ
on length scales large compared to the wavelength.
waveguide is illuminated from one end by monochroma
radiation~frequencyv0, mean photocurrentI 0) in a coherent
state. For simplicity, we assume that the illumination is in
single propagating mode~labeledm0). At the other end of
the waveguide, a photodetector detects the outcoming ra
tion. We assume, again for simplicity, that allN outgoing
modes are detected with equal efficiencya. The case of
single-mode detection is considered in Appendix A.

We denote byp(n) the probability to countn photons
within a time t. Its first two moments determine the mea
photocurrentĪ and the noise powerP, according to

Ī 5
1

t
n̄, P5 lim

t→`

1

t
~n22n̄2!. ~2.1!

FIG. 1. Coherent light~thick arrow! is incident on an amplifying
medium~shaded!, embedded in a waveguide. The transmitted rad
tion is measured by a photodetector.
4059 ©1999 The American Physical Society
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@The definition ofP is equivalent toP5*2`
` dtdI (0)dI (t),

with dI 5I 2 Ī the fluctuating part of the photocurrent.# It is
convenient to compute the generating functionF(j) for the
factorial cumulantsk j , defined by

F~j!5(
j 51

`
k jj

j

j !
5 lnS (

n50

`

~11j!np~n!D . ~2.2!

One hasn̄5k1 , n25k21k1(11k1).
The outgoing radiation in moden is described by an an

nihilation operatoran
out(v), using the convention that mode

1,2, . . . ,N are on the left-hand side of the medium an
modesN11, . . . ,2N are on the right-hand side. The vecto
aout consists of the operatorsa1

out,a2
out, . . . ,a2N

out . Similarly,
we define a vectorain for incoming radiation. These two set
of operators each satisfy the bosonic commutation relatio

@an~v!,am
† ~v8!#5dnmd~v2v8!, ~2.3a!

@an~v!,am~v8!#50, ~2.3b!

and are related by the input-output relations@3,8,9#

aout~v!5S~v!ain~v!1V~v!c†~v!. ~2.4!

We have introduced the 2N32N scattering matrixS, the
2N32N matrix V, and the vectorc of 2N bosonic operators.
The scattering matrixS can be decomposed into fourN3N
reflection and transmission matrices,

S5S r 8 t8

t r D . ~2.5!

Reciprocity imposes the conditionst85t T, r 5r T, and r 8
5r 8T.

The operatorsc account for spontaneous emission in t
amplifying medium. They satisfy the bosonic commutatio
relation ~2.3!, which implies that

VV†5SS†21. ~2.6!

Their expectation values are

^cn~v!cm
† ~v8!&52dnmd~v2v8! f ~v,T!, ~2.7!

with the Bose-Einstein function

f ~v,T!5@exp~\v/kT!21#21 ~2.8!

evaluated at negative temperatureT (,0).

III. CALCULATION OF THE GENERATING FUNCTION

The probabilityp(n) thatn photons are counted in a tim
t is given by@10,11#

p~n!5
1

n!
^:Wne2W:&, ~3.1!

where the colons denote normal ordering with respect toaout,
and
s

s

W5aE
0

t

dt (
n5N11

2N

an
out†~ t !an

out~ t !, ~3.2!

an
out~ t !5~2p!21/2E

0

`

dve2 ivtan
out~v!. ~3.3!

The generating function~2.2! becomes

F~j!5 ln^:ejW:&. ~3.4!

Expectation values of a normally ordered expression
readily computed using the optical equivalence theorem@12#.
Application of this theorem to our problem consists in di
cretizing the frequency in infinitesimally small steps ofD ~so
that vp5pD) and then replacing the annihilation operato
an

in(vp),cn(vp) by complex numbersanp
in , cnp ~or their com-

plex conjugates for the corresponding creation operato!.
The coherent state of the incident radiation corresponds
nonfluctuating value ofanp

in with uanp
in u25dnm0

dpp0
2pI 0 /D

~with v05p0D). The thermal state of the spontaneous em
sion corresponds to uncorrelated Gaussian distributions
the real and imaginary parts of the numberscnp , with zero
mean and variancê(Recnp)

2&5^(Im cnp)
2&52 1

2 f (vp ,T).
~Note that f ,0 for T,0.! To evaluate the characteristi
function ~3.4! we need to perform Gaussian averages. T
calculation is described in Appendix B.

The result takes a simple form in the long-time regim
vct@1, wherevc is the frequency within whichS(v) does
not vary appreciably. We find

F~j!5Fexc~j!2
t

2pE0

`

lni12aj f ~12rr †2tt†!idv,

~3.5!

Fexc~j!5ajtI 0$t
†@12aj f ~12rr †2tt†!#21t%m0m0

,
~3.6!

where i•••i denotes the determinant and$•••%m0m0
the

m0 ,m0 element of a matrix. In Eq.~3.6! the functionsf, t,
andr are to be evaluated atv5v0. The integral in Eq.~3.5!
is the generating function for the photocount due to amplifi
spontaneous emission obtained in Ref.@6#. It is independent
of the incident radiation and can be eliminated in a measu
ment by filtering the output through a narrow frequency wi
dow aroundv0. The functionFexc(j) describes the exces
noise due to the beating of the coherent radiation with
spontaneous emission@1#. The expression~3.6! is the central
result of this paper.

By expandingF(j) in powers ofj we obtain the factorial
cumulants, in view of Eq.~2.2!. In what follows we will
consider only the contribution fromFexc(j), assuming that
the contribution from the integral overv has been filtered
out as mentioned above. We find

kk5k!akt f k21I 0@ t†~12rr †2tt†!k21t#m0m0
, ~3.7!

where againv5v0 is implied. The mean photocurrentĪ
5k1 /t and the noise powerP5(k21k1)/t become

Ī 5aI 0~ t†t !m0m0
, P5 Ī 1Pexc,

~3.8!
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Pexc52a2f I 0@ t†~12rr †2tt†!t#m0m0
.

The noise powerP exceeds the shot noiseĪ by the amount
Pexc.

The formulas above are easily adapted to a measurem
in reflection by making the exchanger→t8, t→r 8. For ex-
ample, the mean reflected photocurrent isĪ
5aI 0(r 8†r 8)m0m0

, while the excess noise is

Pexc52a2f I 0@r 8†~12r 8r 8†2t8t8†!r 8#m0m0
. ~3.9!

IV. NOISE FIGURE

The noise figureF is defined as the~squared! signal-to-
noise ratio at the inputI 0

2/P0, divided by the signal-to-noise

ratio at the output,Ī 2/P. SinceP05I 0 for coherent radiation
at the input, one hasF5(Pexc1 Ī )I 0 / Ī 2, hence

F522 f
~ t†rr †t1t†tt†t !m0m0

~ t†t !m0m0

2
1

112a f

a~ t†t !m0m0

. ~4.1!

The noise figure is independent ofI 0. For large amplification
the second term on the right-hand side can be neglected
tive to the first, and the noise figure becomes also indep
dent of the detection efficiencya. The minimal noise figure
for given r andt is reached for an ideal detector (a51) and
at complete population inversion (f 521).

Since (t†rr †t1t†tt†t)m0m0
5(ku(t†r )m0ku2

1(ku(t†t)m0ku2>(t†t)m0m0

2 , one hasF>22 f for large am-

plification @when the second term on the right-hand side
Eq. ~4.1! can be neglected#. The minimal noise figureF52
at complete population inversion is reached in the absenc
reflection @(t†r )m0k50# and in the absence of intermod

scattering@(t†t)m0k50 if kÞm0#. This is realized in the
single-mode theories of Refs.@3,4#. Our result~4.1! general-
izes these theories to include scattering between the mo
as is relevant for a random medium.

These formulas apply to detection in transmission. F
detection in reflection one has instead

F522 f
~r 8†t8t8†r 81r 8†r 8r 8†r 8!m0m0

~r 8†r 8!m0m0

2
1

112a f

a~r 8†r 8!m0m0

.

~4.2!

Again, for large amplification the second term on the rig
hand side may be neglected relative to the first. The no
figure then becomes smallest in the absence of transmis
when F522 f (r 8†r 8r 8†r 8)m0m0

(r 8†r 8)m0m0

22 >22 f . The

minimal noise figure of 2 at complete population inversi
requires (r 8†r 8r 8†r 8)m0m0

5(r 8†r 8)m0m0

2 , which is possible

only in the absence of intermode scattering.
To make analytical progress in the evaluation ofF, we

will consider an ensemble of random media, with differe
realizations of the disorder. For largeN and away from the
laser threshold, the sample-to-sample fluctuations in num
tors and denominators of Eqs.~4.1! and ~4.2! are small, so
we may average them separately. Furthermore, the ‘‘equ
nt

la-
n-
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t

a-

a-

lent channel approximation’’ is accurate for random me
@13#, which says that the ensemble averages are indepen
of the mode indexm0. Summing overm0, we may therefore
write F as the ratio of traces, so the noise figure for a m
surement in transmission becomes

F522 f N
atr ~ t†rr †t1t†tt†t !s

atr t†ts2
1N

112a f

aatr t†ts
,

~4.3!

and similarly for a measurement in reflection. The brack
a•••s denote the ensemble average.

V. APPLICATIONS

A. Amplifying disordered waveguide

As a first example, we consider a weakly amplifyin
strongly disordered waveguide of lengthL ~see the inset of
Fig. 2!. Averages of the moments ofrr † and tt† for this
system have been computed by Brouwer@14# as a function
of the number of propagating modesN, the mean free pathl,
and the amplification lengthja5ADta, where 1/ta is the
amplification rate andD5cl/3 is the diffusion constant. It is
assumed that 1/N! l /ja!1 but the ratioL/ja[s is arbitrary.
In this regime, sample-to-sample fluctuations are small,
the ensemble average is representative of a single syste

The results for a measurement in transmission are

Ī 5
4a l

3L
I 0

s

sin s
, ~5.1!

Pexc5
2a2l

3L
f I 0sF 3

sin s
2

2s2cot s

sin2 s
1

s cot s21

sin3 s
2

s

sin4 s
G .

~5.2!

For a measurement in reflection, one finds

Ī 5aI 0F12
4l

3L
s cot sG , ~5.3!

FIG. 2. Noise figure of an amplifying disordered wavegui
~lengthL, amplification lengthja! measured in transmission~solid
line! and in reflection~dashed line!. The curves are computed from
Eqs.~5.1!–~5.4! for a51, f 521, andL/ l 510. The laser thresh-
old is atL/ja5p.
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Pexc5
2a2l

3L
f I 0sF2cot s2

1

sin s
1

cot s

sin2 s

1
s cot s21

sin3 s
2

s

sin4 s
G . ~5.4!

The noise figureF follows from F5(Pexc1 Ī )I 0 / Ī 2. It is
plotted in Fig. 2. One notices a strong increase inF on ap-
proaching the laser threshold ats5p.

B. Amplifying disordered cavity

Our second example is an optical cavity filled with
amplifying random medium~see the inset of Fig. 3!. The
radiation leaves the cavity through a waveguide supportinN
modes. The formulas for a measurement in reflection ap
with t50 because there is no transmission. The distribut
of the eigenvalues ofr †r is known in the large-N limit @15#
as a function of the dimensionless amplification rateg
52p/NtaDv ~with Dv the spacing of the cavity mode
near frequencyv0). The first two moments of this distribu
tion are

N21atr r †r s5
1

12g
, ~5.5!

N21atr r †rr †r s5
2g222g11

~12g!4
. ~5.6!

The resulting photocurrent has mean and variance

Ī 5aI 0

1

12g
, ~5.7!

Pexc52a2f I 0g
g2g221

~12g!4
. ~5.8!

The resulting noise figure fora51 and f 521,

FIG. 3. Noise figure of an amplifying disordered cavity, co
nected to a photodetector via anN-mode waveguide. The curve i
the result~5.9!, as a function of the dimensionless amplification ra
g. ~Ideal detection efficiency,a51, and full population inversion
f 521, are assumed in this plot.! The laser threshold occurs atg
51.
ly
n

F5
12g1g21g3

~12g!2
, ~5.9!

is plotted in Fig. 3. Again, we see a strong increase ofF on
approaching the laser threshold atg51.

VI. NEAR THE LASER THRESHOLD

In the preceding section we have taken the large-N limit.
In that limit the noise figure diverges on approaching t
laser threshold. In this section we consider the vicinity of t
laser threshold for arbitraryN.

The scattering matrixS(v) has poles in the lower half o
the complex plane. With increasing amplification, the po
shift upwards. The laser threshold is reached when a p
reaches the real axis, say at resonance frequencyv th . For v
nearv th the scattering matrix has the generic form

Snm5
snsm

v2v th1
1

2
iG2 i /2ta

, ~6.1!

wheresn is the complex coupling constant of the resonan
to thenth mode in the waveguide,G is the decay rate, and
1/ta the amplification rate. The laser threshold is atGta
51.

We assume that the incident radiation has frequencyv0
5v th . Substitution of Eq.~6.1! into Eq. ~4.1! or ~4.2! gives
the simple result

F5
22 f S

usm0
u2

, S5 (
n51

2N

usnu2, ~6.2!

for the limiting value of the noise figure on approaching t
laser threshold. The limit is the same for detection in tra
mission and in reflection. Since the coupling contantusm0

u2

to the modem0 of the incident radiation can be much small
than the total coupling constantS, the noise figure~6.2! has
large fluctuations. We need to consider the statistical dis
bution p(F) in the ensemble of random media. The typic
~or modal! value of F is the valueFtyp at which p(F) is
maximal. We will see that this remains finite although t
ensemble averageaFs of F diverges.

A. Waveguide geometry

We first consider the case of an amplifying disorder
waveguide. The total coupling constantS5S l1S r is the
sum of the coupling constantS l5(n51

N usnu2 to the left end
of the waveguide and the coupling constantS r

5(n5N11
2N usnu2 to the right. The assumption of equivale

channels implies that

a1/Fs52
1

2 f N
aS l /Ss52

1

4 f N
. ~6.3!

Since the average of 1/F is finite, it is reasonable to as
sume thatFtyp'a1/Fs21524 f N, or Ftyp'4N for com-
plete population inversion. The scaling withN explains why
the large-N theory of the preceding section found a diverge
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noise figure at the laser threshold. We conclude that the
vergency ofF at L/ja5p in Fig. 2 is cut off at a value of
orderN, if F is identified with the typical valueFtyp .

B. Cavity geometry

In the case of an amplifying disordered cavity, we c
make a more precise statement onp(F). Since there is only
reflection, there is only oneS5(n51

N usnu2. The assumption
of equivalent channels now gives

a1/Fs52
1

2 f N
. ~6.4!

Following the same reasoning as in the case of the wa
guide, we would conclude thatFtyp'a1/Fs21522 f N.
We will see that this is correct within a factor of 2.

To computep(F) we need the distribution of the dimen
sionless coupling constantsun5sn /AS. The N complex
numbersun form a vector uW of length 1. According to
random-matrix theory@7#, the distributionp(S) of the scat-
tering matrix is invariant under unitary transformationsS
→USUT ~with U an N3N unitary matrix!. It follows that
the distributionp(uW ) of the vectoruW is invariant under rota-
tions uW→UuW , hence

p~u1 ,u2 , . . . ,uN!}dS 12(
n

uunu2D . ~6.5!

In other words, the vectoruW has the same distribution as
column of a matrix that is uniformly distributed in the un
tary group@16#. By integrating outN21 of theun’s we find
the marginal distribution ofum0

,

p~um0
!5

N21

p
~12uum0

u2!N22, ~6.6!

for N>2 anduum0
u2<1.

The distribution ofF522 f uum0
u22 becomes

p~F!522 f ~N21!S 11
2 f

F D N22

F 22, ~6.7!

for N>2 andF>22 f . We have plottedp(F) in Fig. 4 for
complete population inversion (f 521) and several choice
of N. It is a broad distribution, all its moments are diverge
The typical value of the noise figure is the value at wh
p(F) becomes maximal, hence

Ftyp52 f N, N>2. ~6.8!

In the single-mode case, in contrast,F522 f for every
member of the ensemble@hencep(F)5d(F12 f )#. We con-
clude that the typical value of the noise figure near the la
threshold of a disordered cavity is larger than in the sing
mode case by a factorN/2.

VII. ABSORBING MEDIA

The general theory of Sec. II can also be applied to
absorbing medium, in equilibrium at temperatureT.0.
i-

e-

.

er
-

n

Equation~2.4! then has to be replaced with

aout~v!5S~v!ain~v!1Q~v!b~v!, ~7.1!

where the bosonic operatorb has the expectation value

^bn
†~v!bm~v8!&5dnmd~v2v8! f ~v,T!, ~7.2!

and the matrixQ is related toS by

QQ†512SS†. ~7.3!

The formulas forF(j) of Sec. III remain unchanged.
Ensemble averages for absorbing systems follow from

corresponding results for amplifying systems by substitut
ta→2ta . The results for an absorbing disordered wav
guide with detection in transmission are

Ī 5
4a l

3L
I 0

s

sinh s
, ~7.4!

Pexc5
2a2l

3L
f I 0sF 3

sinh s
2

2s1coth s

sinh2s

2
s coth s21

sinh3 s
1

s

sinh4 s
G , ~7.5!

wheres5L/ja with ja the absorption length. Similarly, fo
detection in reflection one has

Ī 5aI 0F12
4l

3L
s coth sG , ~7.6!

Pexc5
2a2l

3L
f I 0sF2 coths2

1

sinh s
2

coth s

sinh2s

2
s coth s21

sinh3 s
1

s

sinh4 s
G . ~7.7!

These formulas follow from Eqs.~5.1!–~5.4! upon substitu-
tion of s→ is.

For an absorbing disordered cavity, we find@substituting
g→2g in Eqs.~5.7! and ~5.8!#

FIG. 4. Probability distribution of the noise figure near the las
threshold for an amplifying disordered cavity, computed from E
~6.7! for f 521. The most probable value isF5N, while the av-
erage value diverges.
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Ī 5aI 0

1

11g
, ~7.8!

Pexc52a2f I 0g
g21g11

~11g!4
, ~7.9!

with g the dimensionless absorption rate.
Since typicallyf !1 in absorbing systems, the noise fi

ureF is dominated by shot noise,F'I 0 / Ī . Instead ofF we
therefore plot the excess noise powerPexc in Figs. 5 and 6. In
contrast to the monotonic increase ofPexc with 1/ta in am-
plifying systems, the absorbing systems show a maximum
Pexc for certain geometries. The maximum occurs ne
L/ja52 for the disordered waveguide with detection
transmission, and nearg51 for the disordered cavity. Fo

FIG. 5. Excess noise powerPexc for an absorbing~solid line, left
axis! and amplifying disordered waveguide~dashed line, right axis!,
respectively, in units ofa2l u f uI 0 /L. The top panel is for detection
in transmission, the bottom panel for detection in reflection.

FIG. 6. Excess noise powerPexc for an absorbing~solid line, left
axis! and amplifying disordered cavity~dashed line, right axis!, in
units of a2u f uI 0.
in
r

larger absorption rates the excess noise power decrease
causeĪ becomes too small for appreciable beating with t
spontaneous emission.

VIII. CONCLUSION

In summary, we have studied the photodetection statis
of coherent radiation that has been transmitted or reflecte
an amplifying or absorbing random medium. The cumula
generating functionF(j) is the sum of two terms. The firs
term is the contribution from spontaneous emission obtai
in Ref. @6#. The second termFexc is the excess noise due t
beating of the coherent radiation with the spontaneous em
sion. Equation~3.6! relatesFexc to the transmission and re
flection matrices of the medium.

In the applications of our general result for the cumula
generating function, we have concentrated on the second
mulant, which gives the spectral densityPexc of the excess
noise. We have found thatPexc increases monotonically with
increasing amplification rate, while it has a maximum as
function of absorption rate in certain geometries.

In amplifying systems we studied how the noise figureF
increases on approaching the laser threshold. Near the
threshold the noise figure shows large sample-to-sam
fluctuations, such that its statistical distribution in an e
semble of random media has divergent first and higher m
ments. The most probable value ofF is of the order of the
numberN of propagating modes in the medium, independ
of material parameters such as the mean free path. It wo
be of interest to observe this universal limit in random lase
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APPENDIX A: SINGLE-MODE DETECTION

We have assumed throughout this paper that allN modes
propagating through the waveguide are detected at eithe
left or the right end. At the opposite extreme one can c
sider the case of single-mode detection. This is particula
relevant in a slab geometry, where the cross-sectional are
the photodetector is much less than the area of the ran
medium~see Fig. 7!. The number of detected modes is th
much smaller than the number of modesN propagating
through the medium. The limit of single-mode detection

FIG. 7. Schematic diagram of detection of radiation propagat
through a slab. Single-mode detection occurs when the area o
photodetector becomes less thanR2/N.
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reached when the photodetector covers an area compa
to the area of one speckle or smaller.

Single-mode detection of thermal radiation was cons
ered in Ref.@6#. Denoting the detected mode by the indexn0,
the mean photocurrent was found to be

Ī thermal5E
0

`dv

2p
j thermal~v!, ~A1!

j thermal~v!5a f ~12rr †2tt†!n0n0
, ~A2!

and the noise power

Pthermal5E
0

`dv

2p
j thermal
2 ~v!. ~A3!

In this case of single-mode detection the noise power c
tains no information beyond what is contained in the pho
current.

The same holds for the excess noise considered in
paper. The mean transmitted photocurrent in a narrow
quency interval aroundv0 is given by

Ī 5aI 0utn0m0
u2, ~A4!

and the excess noise

Pexc52 Ī j thermal~v0! ~A5!

is simply the product of the mean transmitted photocurr
and thermal current density. Noise measurements in sin
mode detection are thus not nearly as interesting as in m
mode detection, since the latter give information on the s
tering properties that is not contained in the me
photocurrent.

APPENDIX B: DERIVATION OF EQ. „3.6…

To evaluate the Gaussian averages that lead to Eq.~3.6!, it
is convenient to use a matrix notation. We replace the s
mation in Eq.~3.2! by a multiplication of the vectoraout with
the projectionPaout, where the projection matrixP has zero
elements exceptPnn51, N11<n<2N. We thus write

W5aE
0

t

dtaout†~ t !Paout~ t !. ~B1!

Insertion of Eqs.~2.4! and ~3.3! gives

W5
a

2pE0

t

dtE
0

`

dvE
0

`

dv8@ain†~v!S†~v!1c~v!V†~v!#

3P @S~v8!ain~v8!1V~v8!c†~v8!#ei (v2v8)t. ~B2!

As explained in Sec. III, we discretise the frequency asvp
5pD, p51,2,3, . . . . The integral over frequency is the
replaced with a summation,

E
0

`

dvg~v!→D (
p51

`

g~vp!. ~B3!

We write Eq.~B2! as a matrix multiplication,
ble

-

n-
-

is
e-

t
le-
ti-
t-
n

-

jW5ain†Aain1cBc†1ain†C†c†1cCain, ~B4!

with the definitions

Anp,n8p85
aDj

2p E
0

t

dt@S†~vp!PS~vp8!#nn8e
iD(p2p8)t,

Bnp,n8p85
aDj

2p E
0

t

dt@V†~vp!PV~vp8!#nn8e
iD(p2p8)t,

~B5!

Cnp,n8p85
aDj

2p E
0

t

dt@V†~vp!PS~vp8!#nn8e
iD(p2p8)t,

anp
in 5D1/2an

in~vp!, cnp5D1/2cn~vp!.

We now apply the optical equivalence theorem@12#, as
discussed in Sec. III. The operatorsanp

in are replaced by con
stant numbersdnm0

dpp0
(2pI 0 /D)1/2. The operatorscnp are

replaced by independent Gaussian variables, such tha
expectation value~3.4! takes the form of a Gaussian integra

^:ejW:&5E d$cnp%expFjW1(
np

ucnpu2/ f ~vp ,T!G
5E d$cnp%exp@ain* Aain2cMc*

1ain* C†c* 1cCain#, ~B6!

where we have defined

Mnp,n8p852Bnp,n8p82
dnn8dpp8

f ~vp!
. ~B7!

We eliminate the cross terms ofain andc in Eq. ~B6! by
the substitution

c8* 5c* 2M 21Cain, ~B8!

leading to

^:ejW:&5exp@ain* ~A1C†M 21C!ain#

3E d$cnp8 %exp~2c8Mc8* !. ~B9!

The integral is proportional to the determinant ofM 21, giv-
ing the generating function

F~j!5const2 lniM i1ain* ~A1C†M 21C!ain

5const2 lniM i1
2pI 0

D
~A1C†M 21C!m0p0 ,m0p0

.

~B10!

The additive constant follows fromF(0)50. The term
2 lniMi is the contribution from amplified spontaneou
emission calculated in Ref.@6#. The term proportional toI 0 is
the excess noise of the coherent radiation, termedFexc in
Sec. III.

Equation~B10! can be simplified in the long-time regime
vct@1. We may then setD52p/t and use
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E
0

t

eiD(p2p8)tdt5tdpp8 . ~B11!

The matrices defined in Eq.~B5! thus become diagonal in th
frequency index,

Anp,n8p85
aDtj

2p
@S†~vp!PS~vp!#nn8dpp8 , ~B12!

and similarly forB andC. We then find

~A1C†M 21C!np,n8p8

5
ajDt

2p
~S†P@11aj f VV†P#21S!nn8dpp8 , ~B13!
f-

ys
wheref, S, andV are evaluated atv5vp . Substitution into
Eq. ~B10! gives the result~3.6! for Fexc(j).

Simplification of Eq.~B10! is also possible in the short
time regime, whenVct!1, with Vc the frequency range
over whichSS† differs appreciably from the unit matrix. Th
generating function then is

Fexc~j!5ajtI 0F t†~v0!S 12
ajt

2p E
0

`

dv f ~v,T!

3@12r ~v!r †~v!2t~v!t†~v!# D 21

t~v0!G
m0m0

.

~B14!
-
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