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Probing colored noise from the index of refraction of strongly driven two-level atoms
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We analyze the effects of a reservoir having a generic spectrum~colored noise! on the index of refraction of
a system of strongly driven two-level atoms~gas! probed by a weak field. We show that for high Rabi
frequencies,V, a simple analytic expression results for the susceptibility function~with respect to the probe!
whenn'V, wheren is the detuning between driving and probe fields frequencies. Several distinct features are
revealed in that function when compared to the one resulting from a reservoir with a white-noise spectrum
~atom-vacuum coupling!. We also show that the Mach-Zehnder interferometry could permit distinguishing
between the two kinds of spectra and we point out the sensitive dependence of the index of refraction of the
atomic gas onV and find a signature for the non-Markovian evolution.@S1050-2947~99!01811-9#

PACS number~s!: 42.50.Ct, 32.70.Jz, 42.50.Hz
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I. INTRODUCTION

In many quantum systems interacting with an enviro
ment the evolution of the density operator can be descri
in the framework of a master equation

idr~ t !/dt5@H,r~ t !#1E
0

t

K~ t2t8!r~ t8!dt8, ~1!

whereH is a Hamiltonian operator responsible for the intri
sic properties of the system and its interaction with appl
external fields, andK(t2t8) is a superoperator taking int
account an interaction with some infinite reservoir. An effe
tive width of the two-time kernelK(t2t8) is called memory
time; it is the mean interval of time that separates a varia
at time t8 from its derivative at a later timet, such that the
former influences significantly the latter. Frequently enou
sufficiently good results can be obtained under the simp
assumption of a zero memory time, whenK(t2t8)
}d(t2t8), leading to what is known as a Markovian evol
tion. In such a case, the spectrum of the operatorK(t) does
not depend on the frequency, representing a white noise
though any real evolution is, strictly speaking, no
Markovian, the corrections due to a finite memory time a
very small in many cases@1#.

However, there exist examples of physical systems w
a nonzero memory time or a frequency-depend
‘‘colored’’-noise spectrum lead to significant changes in t
dynamical properties of the system. Such a situation can
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place, e.g., for atoms inside high-Q electromagnetic cavi
when the discrete structure of the cavity modes becomes
sential@2#. In particular, when an atom in a cavity is strong
driven by an external radiation~the pumping field or simply
the pump! the phenomenon of dynamical supression of sp
taneous emission occurs@3–6#. Also, it was shown that if an
atom is strongly pumped at a frequency near a two-le
transition frequency and is probed by a weak field~called the
probe!, then depending on the functional form of the cavit
reservoir spectrum, the form of the atomic response func
or the absorption spectrum significantly change compar
with the Markovian case@7,8#. Yet as another instance, for
low-density atomic gas confined into a cell or a cavity w
closed ends, when the coupling between the atoms and
cell modes prevails over the vacuum-atom coupling~the
white-noise spectrum being shadowed by the colored sp
trum!, the absorption line-shape function changes from o
to two-bump shape beyond some critical temperature@9,10#.
More recently it was verified@11# that ‘‘memory’’ effects on
the atomic absorption line shape function~the imaginary part
of the susceptibility with respect to the probe! are signifi-
cantly enhanced when the atoms are strongly driven and
the colored noise leaves a signature, which is character
by a linear increase as a function of Rabi frequency of
heights of the peaks of the absorption line shape functio

In this paper we concentrate on the real part of the ato
susceptibility function,x8, which could be determined, e.g
via measuring the dispersive part of index of refraction,n8,
of a gas of strongly pumped atoms with the help of a Ma
Zehnder interferometer. We show that by analyzing the
pendence of the functionx8 on the Rabi frequencyV and the
detuning between probe and pump fieldsn one could infer
about the nature of the coupling between atoms and
colored-noise reservoir created by the cavity~or cell!. We
also show that for high values ofV ~compared to the natura
atomic decay constant of the upper level! and V'n, the
measurement of the modified atomic decay rate and the
4045 ©1999 The American Physical Society
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namic frequency shift for several values ofV and n could
permit us to determine the functional dependence of the c
reservoir spectrum on frequencies.

The paper is organized as follows. In Sec. II we prese
stationary solution to the generalized master equation fo
density matrix of a two-level atom driven by a strong pum
ing field and probed by a weak monochromatic probe field
the presence of a reservoir with an arbitrary spectrum
Sec. III we present an analytical expression for the disper
part of the atomic susceptibility function for high Rabi fr
quencies under the resonant condition, and establish cha
teristic features of the non-Markovian evolution. A possib
experimental scheme and the connection between the su
tibility function and the photocurrent output of the Mac
Zehnder interferometer is discussed in Sec. IV. Finally, S
V presents our conclusions.

II. THE STATIONARY SOLUTION
OF THE GENERALIZED MASTER EQUATION

Let us specify the concrete structure of the generali
master equation~1!. An atom is modeled by a two-level sys
tem, so its density matrix is a 232 Hermitian matrix

r5W1u1&^1u1W2u2&^2u1W3u1&^2u1W4u2&^1u. ~2!

We assume a rotating wave coupling between the ato
variables and the external~pump and probe! fields, so the
HamiltonianH reads

H5
1

2
v0s01~F1e2 iv1ts11F2e2 iv2ts11H.c.!, ~3!

wherev0 is the atomic transition frequency,F1 (F2) andv1
(v2) are the coupling constant and frequency of the driv
~probe! field and we consideruF1u@uF2u. The coupling con-
stants can be expressed in terms of the vector dipole-m
element between the excited and ground atomic statesmW 12

and the electric-field strengthsEW i asFi52mW 12•EW i , i 51,2.
The reservoir is assumed being made of an infinite nu

ber of oscillator modes interacting resonantly with the driv
two-level atom~this is the most common model adopted
describe formally a reservoir although other ones were p
posed@12#!. Then, the superoperator kernelK(t2t8) can be
written as@11#

K~ t2t8!•5TrR†VSR,e2 iL 0(t2t8)@VSR,rR•#‡, ~4!

where L0•[@H0 ,•# is the Liouvillian operator,H0 is the
free ~atom plus reservoir! Hamiltonian,

VSR5E Ag~v2v0!~bv
† s21H.c.!dv ~5!

is the atom-reservoir resonant interaction term, the func
g(v2v0)5D(v2v0)uk(v2v0)u2 combines the reservoi
spectrumD(v2v0) and the coupling constantk(v2v0)
that may be frequency-dependent, andrR is the density op-
erator of the reservoir at thermal equilibrium. For more th
one reservoir interacting with an atom more terms in Eq.~5!
ll-
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should be considered in Eq.~4!. Each term has its own spec
trum and operators of one reservoir commute with the ope
tors of the other.

The solution to Eq.~1! with Hamiltonian~3! can be writ-
ten asr(t)5r0(t)1Dr(t), whereDr(t) is a small correc-
tion term to the density matrixr0(t) of the driven atom due
to the weak probe field; thus, the functionsWi(t), i
51,2,3,4, at the stationary regime read

W1~ t !5W1
`1DW1~ t !, ~6!

W2~ t !5W2
`1DW2~ t !, ~7!

W3~ t !5W̄3
`e2 iv1t1DW3~ t !, ~8!

W4~ t !5W̄4
`eiv1t1DW4~ t !, ~9!

whereW1
` (W2

`) is the unperturbed~by the probe! population

of the upper~lower! atomic level, andW̄3
` and W̄4

` are the
coherence coefficients; the terms with the prefixD corre-
spond to the corrections due to the probe. Taking into
count the first Floquet harmonics, the termsDWi(t) can be
written as@13#

DW1~ t !5dW11he2 int1h* eint, ~10!

DW2~ t !52dW12he2 int2h* eint, ~11!

DW3~ t !5e2 iv1t~dW01dW1e2 int1dW2* eint!, ~12!

DW4~ t !5DW3* ~ t !, ~13!

where n5v22v1 is the detuning of the probe from th
driving-field frequency. Inserting Eq.~2! and Eqs.~6!–~13!
into Eq. ~1! leads to a set of algebraic equations determin
the coefficientsdW1 , h, dW0 , dW1 , and dW2 . In the
special case of a zero temperature of the reservoir~this sim-
plification is quite adequate for optical transitions! and the
exact resonance between the driving field and atomic tra
tion frequency,v15v0 , these algebraic equations read

Q~n!h2 iF 1dW11 iF 1* dW252 iF 2* ~W̄3
`!* , ~14!

Q~0!dW11 iF 1* dW0* 2 iF 1dW052~ iF 2* dW1* 2 iF 2dW1!,
~15!

Z~n!dW11 i2F1* h52 iF 2* ~W1
`2W2

`!, ~16!

Z~0!dW01 i2F1* dW11 i2F2* h*

52Z~0!W̄3
`2 iF 1* ~W1

`2W2
`!, ~17!

Z~2n!dW2* 1 i2F1* h* 50. ~18!

We defined

Z~x![ ix2G~x!, ~19!

Q~x![2 ix1G~x!1G* ~2x!, ~20!
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G~x!5E
0

` ig~v2v0!

x1v02v1 i e
dv

5E
0

`

g~v2v0!Fpd~x1v02v!1 iPS 1

x1v02v D Gdv

'pg~x!2 iPE
2`

` g~v!

v2x
dv, ~21!

where P stands for the principal value. We consider t
g(v2v0) is nearly an even function of its argument; th
assumption is quite reasonable since the atom and rese
exchange energy resonantly. ThenG(0)5pg(0) is real up
to small corrections. We also note from the right-hand s
of the first equality in Eq.~21! that uG(x)u<uG(0)u. The
other quantities that enter Eqs.~14!–~18! are the coherence
coefficient of the unprobed system@9#,

W̄3
`5

2 iF 1* G~0!

G2~0!12uF1u2
, ~22!

and the upper energy level population,

W1
`5

uF1u2

G2~0!12uF1u2
. ~23!

The population of the lower energy level is promptly o
tained sinceW2

`512W1
` .

III. THE ATOMIC SUSCEPTIBILITY FUNCTION

The delayed induced polarization of an atom that res
after the application of an external fieldEW (t8) is

PW ~ t !5E
0

t

x~ t2t8!•EW ~ t8!dt8, ~24!

x(t2t8) being the dyadic susceptibility. For a monochr
matic field,EW (t)5EW 1e2 ivt1c.c., and Eq.~24! in the station-
ary limit becomes

PW ~ t !52 Re@e2 ivtx~v!•EW 1#. ~25!

where

x~v!5E
0

`

x~ t !e2 ivtdt ~26!

is the Fourier transform having the propertyx* (v)
5x(2v). Writing the polarization vector as an avera
value of the atomic dipole momentmW ,

PW ~ t !5^mW ~ t !&5Tr@r~ t !mW ~ t !#, ~27!

and using explicit expressions for the elements of ma
r(t) given in the preceding section we obtain

PW ~ t !52 Re@W3~ t !mW 12#. ~28!
t

oir

e

ts

x

Averaging the vectorial dipole-matrix elements over ang

mW 12mW 215
1
3 umW 12u2I (I is the unit matrix!, we obtain the scalar

susceptibility function with respect to the probe field forN
atoms per unit volume@11#,

x~n,V!52
N

3
umW 12u2dW1 /F252

Nl0
3

32p3
dW̃1~n,V!,

~29!

wherel052pc/v0 is the wavelength of the atomic trans
tion and dW̃1(n,V)[\gdW1(n,V)/F2 is the dimension-
less coherence function~it does not depend on the probe fie
and its modulus is less or of the order of unity!, which de-
pends on two frequencies: the detuning between the pu
and probe frequenciesn and the Rabi frequencyV52uF1u.
The square of the matrix dipole elementumW 12u2 is replaced by
the natural~vacuum! atomic decay constant

g5~4v0
3umW 12u2!/~3\c3!. ~30!

Solving Eqs.~14!–~18! one gets

dW̃1~n,V!

5

i ~W2
`2W1

`!FV2S 12
Z* ~2n!

Z* ~0!
D 22Q~n!Z* ~2n!G

V2@Z~n!1Z* ~2n!#22Q~n!Z~n!Z* ~2n!
,

~31!

W2
`2W1

`5
2G2~0!

2G2~0!1V2
. ~32!

The standard ~Markovian! case corresponds to th
frequency-independent functiong(v2v0)5g0 . Then,
G(x)5G(0)5pg0 , so forV50 ~no pumping! function~31!

assumes the canonical formdW̃1(n,0)5(n1 ig/2)21 pro-
vided the constantsg0 and g @Eq. ~30!# are related as fol-
lows:

g52pg0 . ~33!

For the sake of simplicity we shall express hereafter all
quantities having the dimension of frequency@like G(x), n,
V] in units of g, unless it is stated explicitly that all th
parameters are dimensional. Then, in particular,G(0)51/2
in the Markovian case.

Formula ~31! can be simplified in the case of a stron
pumping fieldV@1. One can verify that under this cond
tion, the real part of Eq.~31! attains its maximum value at
frequencyn5nm , slightly shifted from the Rabi frequency

nm5V1
3

2
G I~V!1OS 1

V D . ~34!

The subscripts (R,I ) stand for real and imaginary parts. Fo
the frequencies close tonm , the real part of the susceptibility
function changes its behavior when compared to the us
situation of a two-level atom probed without pumpin
namely, the real part acquires the Lorentzian shape,
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RedW̃1~n,V!5H 12VG~0!GR~V!F11
4~n2nm!2

9GR
2~V!

G J 21

~35!

~again up to small corrections of the order ofV21). Now one
can see that by varyingV it should be possible to determin
experimentally the real part of the functionG(V) since the
width of the Lorentzian shape isDn53GR(V). The shift of
nm from V, 3G I(V)/2, could also be determined. Thus, b
varying V it should be possible to determine the compl
function G(V).

There is, however, a delicate point. As was emphasize
@2#, in the case when the spectral functiong(v2v0) signifi-
cantly differs from the white-noise constant, this functi
depends actually not only on the frequencies but it is v
sensitive to the spatial and angular coordinates of the a
too. Due to the discrete structure of the resonance mode
the cavity, the characteristic space scale of changes ofg(v
2v0) is of the order of the wavelength corresponding to
maximal coupling between the atom and the cavity. At ea
point inside the cavity this function has distinct sha
maxima. Since we have no possibility to control the posit
of the atom with high precision, the observable effects
determined by theaveragedspectral functionḡ(v2v0),
where averaging is performed over spatial and angular c
dinates in a volume whose dimensions are much greater
the optical wavelength. Evidently, the dependence of the
eraged spectral function on its argument is rather smooth
illustrate the general results given above, we suppose an
fective spectral function

ḡ~v2v0!5g01gc@11t2~v2v0!2#21, ~36!

where the first term represents the vacuum white no
whereas the second is for the cavity modes and a Lorent
shape is assumed as is frequently done@2#, although other
functional forms are also possible depending on the type
the cavity @17#. In Eq. ~36!, t is a correlation time for the
colored reservoir variables andgc is an effective coupling
constant of the atom with the cavity-colored spectru
whereasg0 is the coupling constant with the high-frequen
‘‘white’’-vacuum modes, which do not feel the presence o
cavity; note that fort50 one gets the vacuum1cavity white
noise. An advantage of function~36! is that it permits a
simple calculation of integral~21! ~provided the lower limit
of integration is extended to2`):

G~x!5
1

2 Fg1gc

11 ixt

11~xt!2G , gc52pgc ~37!

noting thatgc could be positive or negative. With this form
of G(x), the point of maximum of RedW̃1(n,V) is

nm5V1
3gctV

4~11t2V2!
1OS 1

V D , ~38!

thus due to the non-Markovian character of the evolution;
shift unm2Vu attains its largest value, 3ugcu/8, attV51; so,
by varyingV until the shift attains its higher value, it shou
be possible to determine experimentallygc andt. It is worth
in
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noting that by disregarding termsO(1/V) in Eq. ~38!, nm
2V.0 (nm2V,0) means a positive~negative! gc . The
width of the line is

Dn5 3
2 @g1gc~11t2V2!21#, ~39!

and it shows thatgc can assume values only in the ope
interval (2g,`); thus, two different situations may happe
for an atom in a cavity (gcÞ0): ~i! For gc,0 the linewidth
Dn is always narrower than the natural linewidth (3g/2) and
it becomes broader with increasingV althoughDn,3g/2.
~ii ! For gc.0 the linewidth is always broader than 3g/2 and
it becomes narrower with increasingV. We judge that these
effects are worth being verified experimentally as discus
in the next section. The height of RedW̃1(n,V) is ~all the
frequencies,t andgc in units of g)

h[RedW̃1~V,nm ,t!5
11t2V2

3V~11gc!~11gc1t2V2!
.

~40!

If t50, or tÞ0 andgc<8 the heighth decreases monotoni
cally as 1/V as V is increased; however, fortÞ0 andgc
.8 ~depending on the geometry of a cavity, it is possible
reach the valuegc;100 @2#!, thenh increases for values o
Vt in the open interval (0.5@(gc22)2Agc(gc28)#1/2 and
0.5@(gc22)1Agc(gc28)#1/2), attaining a maximum and
afterward decreasing monotonically for values ofVt larger
than 0.5@(gc22)1Agc(gc28)#.

In Figs. 1–4 we plotted RedW̃1(n) for n>20 ~this func-
tion is antisymmetric with respect ton). The numbers at
each curve correspond toV and we consideredt50 ~Fig. 1!
andt50.01~Figs. 2 and 3!. In Fig. 1 for high Rabi frequen-
cies (V>60) andgc515, RedW̃1(n) has the maxima a
n'V, and their heights decrease as 1/V. For t50.01 and
gc515, RedW̃1(n) suffers a drastic change~see Fig. 2!;
contrary to the behavior fort50, now the maxima are lo-
cated atnm , shifted to the right fromV, and the peaks
decrease, pass through a minimum, then increase a
monotonically and the linewidths decrease. Fort50.01 and

FIG. 1. The function RedW1 , Eq. 35, versusn andgc515 in
units of g for t50. The numbers at each curve stand for the R
frequency in units ofg.
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gc520.5 ~Fig. 3! the lines are much more narrow than
the previous cases and even narrower than in the case o
atom interacting with vacuum modes only,gc50; however,
the heights of the peaks decrease monotonically with
creasingV.

In order to compare the shapes of the curves for Mark
ian (gc50) and non-Markovian evolutions (gcÞ0,
t50.01), but the sameV, we picked the curves labeled a
100 in Figs. 2 and 3 and plotted them in Fig. 4, in a zoom
of the abcissa coordinate. The solid line is forgc50; the
others are fort50.01 and the small~large! dashed lines
correspond togc520.5 (gc515). A finite t and gc,0
(gc.0) modifies the shape of the solid curve in three
pects:~a! a shift of the point of maximum to the left~right!
of n5V, ~b! a narrowing~broadening! of the widthDn ~al-
though it is wider the largerV is! and ~c! a decrease~in-
crease! in the height of the curve.

IV. A POSSIBLE EXPERIMENTAL SCHEME

We have established that the space-averaged spe
function of the colored vacuum in a cavity can be determin
from the real part of the averaged atomic susceptibil
x̄5x̄81 i x̄9, with respect to the probe field, provided th
pumping is strong enough. In turn, the averaged suscept
ity can be easily recovered from the real and imaginary p

FIG. 3. The same as Fig. 1, forgc520.5 andt50.01.

FIG. 2. The same as Fig. 1, fort50.01.
the
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ts

of the index of refraction,n5n81 in9, of a gas inside the
cavity, due to the known formula

4px̄85~n8!2212~n9!2. ~41!

The index of refraction can be measured, e.g., with the aid
a balanced two-port Mach-Zehnder interferometer@14#. The
devised experimental setup can be seen in Fig. 5. Beaa
emerges through the cell where its original intensity is
tenuated due to the atomic absorption; besides, it acquir
supplementary phase due to the index of refraction of
gas. The phase shifter compensates the spurious phase
troduced by the beam splitters, effects of the faces of
‘‘empty’’ cell, etc., such that the difference in photocurren
j c and j d be zero. For typical lasers the phase fluctuatio
can be neglected because the phase angle diffuses away
its initial values at a rate inversely proportional to the me
number of laser photons@15#. Also, atomic-collision effects
can be neglected since we consider a low density gas@15#,
and Doppler broadening can be substantially reduced q
below radiation linewidth by working at mK temperatures

FIG. 4. The function RedW1 , Eq. ~35!, versusn in units ofg,
V5100; gc50 ~solid line!, t50.01 andgc520.5 ~small dashes!,
andt50.01 andgc515 ~large dashes!.

FIG. 5. Mach-Zehnder interferometric scheme: a probe be
interferes with itself after being splitted~1 and 4 are 50:50 beam
splitters, 2 and 3 are perfect reflectors!; beama goes through a cell
~closed optical cavity! filled with a two-level atoms gas at densityN
getting out asa8 while beamb passes through a phase shifter b
coming beamb8. Beamsc andd are collected at the photocurren
detectorsDc andDd and the current~or photocount! differencej is
measured.
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by using experimental techniques of laser beams as repo
in @16# for compensation of the atomic recoil.

The amplitudes of beamsc and d are given in terms of
amplitudes of those ofa andb,

c5Aheix0b1 iA12he2 ik0L(12n)a, ~42!

d5Ahe2 ik0L(12n)a1 iA12heix0b, ~43!

whereh is the transmitivity coefficient of the beam splitte
x0 is a phase introduced by a phase shifter,k0 is the free-
space wave number,L is the length of the driven-atoms ga
crossed by the probe, andn is the~complex! index of refrac-
tion in that region. Thus, in the presence of atoms driven
a strong field, the difference in photocurrentd j 0[ j d2 j c
}^c1c&2^d1d&, ~for x050) is

d j 0[ j d2 j c5 j inck sin~Df!, ~44!

where j c and j d are the photocurrents detected at portsc and
d; j inc is the photocurrent associated to the probe with
cell or interferometer.

k5exp~22pn9L/lp!, ~45!

Df52p~n821!L/lp , ~46!

are, respectively, the attenuation factor and the phase di
ence between beamsc and d, lp is the wavelength of the
probe, andn8 andn9 are the real and imaginary parts of th
index of refraction. Introducing a phasex05p/2 in beamb8,
the photocurrent difference becomes shifted by this sa
phase, such that

d j p/25 j inck cos~Df!. ~47!

Squaring and summing the difference in photocurrents~44!
and ~47! and then dividing the result by the squared pho
current j inc one gets the square of the attenuation factok
from whichn9 can be obtained. Thus, it becomes possible
isolate the pure oscillatory part of the photocurrent, sin(Df),
related to n8. For 2pux8u!1 one can write Df

'Nl0
2L RedW̃1(n,V); then for appropriate values ofl0 ,

L, andN, such that (Df)!1, it could be possible to extrac
the phase differenceDf from the photocurrent, thus the re
part of the index of refraction would be obtained imme
ately. For gc>10 and 20<V<220 one verifies thath
;1025, which is an upper limit for RedW̃1(n,V).

For instance, one could consider the 852-nm line of
6S1/2→6P3/2 transition in Cs atoms with natural widthg
53.33107 s21. EquationI /V25I s /g2 @18# relates the in-
tensity of the driving field to the Rabi frequency, whereI s
ed

y

t

r-

e

-

o

e

5(2p2/3)(\c/l3)g is the saturation intensity andI s
51023 W/cm2 for that transition. Thus in order to attai
V/g'100, the intensity of the driving field should be of th
order of 10 W/cm2; a laser beam focused on a small regi
within the cell could permit attaining such high values f
the Rabi frequency.

V. DISCUSSION AND CONCLUSIONS

Here we discussed the effects of the cavity modes o
driven atom by analyzing the dispersive part of the susc
tibility with respect to a probe field, much weaker than t
driving one. We considered that the cavity modes particip
with a colored spectrum additionaly to the white-noise sp
trum of the vacuum. We showed that for high values of t
Rabi frequencyV ~measured in units of the natural line
width! and for detuningsn'V the function x8 takes a
Lorentzian shape with width, shift, and height depending
V. Thus, by varying the values ofV these quantities could
be determined from the experiment. We discussed a poss
experiment based on the Mach-Zender interferometry,
measurement of the index of refraction of the driven ato
gas in the cell cavity could permit us to infer about the nat
of the cavity colored-noise spectrum; however, we do
exclude the possibility of a better scheme of measuremen
is worth commenting about the role of the Rabi frequency
the peculiar behavior of enhancing the effects oft; qualita-
tively, it can be understood by looking at the reservoir fr
quency spectrum in the dressed-atom formalism@19#: At on
resonance (Dv50), the driving field splits the atomic
transition frequency fromv0 to v06V; thus, assuming the
instance of spectrum ~36! one gets g(Vt)5g0
1gc /@11(Vt)2#. FortÞ0 it is possible to reduce the effec
of gc around the shifted transition frequency by increas
the Rabi frequency; thus by diminishing the influence of t
cavity modes on the atom, the modified linewidth shou
approach the natural one, verifying a narrowing~broadening!
of the linewidth for gc.0 (gc,0). The driven atom pre-
senting a lower sensitivity to the cavity modes at the n
transition frequencies,v06V, is reflected by the probe tha
responds showing sharper and higher peaks with increa
V when gc.8 with a new damping constantg→g
1gc /(11t2V2). For small driving fields the line shapes o
Figs. 1–3 are replaced by the usual dispersionlike sha
around the origin. In conclusion, we showed that by stron
driving two-level atoms and using the above-described in
ferometric setup, the effects of the cavity could be put
relief and the functionG(n) could be estimated from exper
ment.
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