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We consider a class of states in an ensemble of two-level atoms: a mesoscopic superposition of two distinct
atomic coherent states, which can be regarded as atomic analogs of the states usually caltbagBciuat
states in quantum optics. According to the relation of the constituents, we define polar and nonpolar cat states.
The properties of these are investigated by the aid of the spherical Wigner function. We show that nonpolar cat
states generally exhibit squeezing, the measure of which depends on the separation of the components of the
cat, and also on the number of the constituent atoms. By solving the master equation for the polar cat state
embedded in an external environment, we determine the characteristic times of decoherence and dissipation,
and also the characteristic time of a new parameter, the nonclassicality of the state. This latter one is introduced
by the help of the Wigner function, which is used also to visualize the process. The dependence of the
characteristic times on the number of atoms of the cat and on the temperature of the environment shows that
the decoherence of polar cat states is surprisingly S|i84050-294{®9)01611-X]

PACS numbdis): 42.50.Fx, 42.50.Dv, 03.65.Bz

[. INTRODUCTION shall call this state the polar cat state, because the two com-
ponents are at the farthest possible distance from each other.
The question of why macroscopic superpositions are noThis state is in the totally symmetridN(+ 1)-dimensional
observable in everyday life has been raised most strikinglgubspace of the wholeM2dimensional Hilbert space, and, if
by Schralinger in his famous cat paradox. Recent experi-such states are manipulated by a resonant electromagnetic
ments[1,2], however, showed that at least mesoscopic supeifield mode with dipole interaction, then the atomic system
positions can be observed in quantum-optical systems. lwill remain in this subspace. This is the arena of the collec-
quantum optics one usually speaks of a Sdinmger-cat{SC)  tive interaction of the atoms and the electromagnetic field,
state if one has a superposition of two different coherentalled superradiandd1—-13. In this work we present results
states of a harmonic oscillator. In one of the experimghfs concerning the properties and dynamics of polar cat states
a superposition of two different coherent states was createldEq. (1)], and also of more general collective atomic states,
for an ion oscillating in a harmonic potential. In the other the generation of which have also been considered recently
one[2], two coherent states of a cavity mode were super{14,15.
posed, and the process of the decoherence between theseOur approach to discussing the properties of quantum
states was also followed by monitoring the field with reso-states like|¥go) is based mainly on the method of the
nant atoms. The unusual properties of such states have be@figner function, which is one of the possible quasiprobabil-
discussed theoretically in several publications; see, e.gity distributions. It has become a customary tool for investi-
Refs.[3-7]. gating quantum states of an electromagnetic mode oscillator,
A different type of Schrdinger-cat-like state can be cre- or an ion oscillating in an appropriate trapping fi¢l6,17).
ated in principle in a collection of two-level atoms, as first The method of the Wigner function is much less exploited,
proposed in Ref.8]; see also the more advanced schemes ifhowever, in the description of atomic states like Eq. This
Refs.[9,10]. The terminology we may use is the following: is why we first summarize the essentials of this method, and
The individual two-level atoms can be regarded as thehen turn to the determination of the Wigner function for the
“cells” of the cat, and the cat is definitely alive if all of its cat state(1) in Sec. Il. Then, in Sec. Ill, we consider more
cells are alive, i.e., they are in the-) state; and it is defi- general catlike states, which we call “nonpolar cats,” and
nitely dead if all the cells are in the ill;-) state. In the case determine their squeezing properties. Finally, in Sec. IV, we
of N atoms a prototype of a SC-like state is then write down and solve the master equation for a cat state in an
environment with finite temperature. We define and deter-
1 mine the dissipation and decoherence times of the system,
[Uso=—(+,+,....5)+|—,—,....7)), (1)  and the characteristic time when the system becomes essen-
V2 tially classical.

where each of the terms contaihpluses andN minuses. We Il WIGNER FUNCTION OF THE POLAR CAT STATE

The N-atom dipole interaction with the electromagnetic
*Electronic address: benedict@physx.u-szeged.hu field is equivalent to the dynamics of a spin jef N/2, and
TElectronic address: czirjak@physx.u-szeged.hu the phase space of the atomic subsystem is the surface of a
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sphere of radiusyj(j+1), (h=1), which is sometimes acteristic matrix:Axo="Tr(ATko), and then forming the
called the Bloch sphere. This phase space and quasiprobabdum as in Eq(4). It can be easily seen that this is a very
ity distributions corresponding to various operators acting insimilar procedure to that by which one introduces the quasi-
the (2j+1)-dimensional Hilbert space were introduced by distributions of oscillator states and operators by the help of
Stratonovich[18]. Similar constructions were considered in- characteristic functions of the translation operator basis:
dependently by several authdi$9-23. Here we use the D(a)=exp(a'—a*a) [24,25. The construction of Eq4)
construction and notation introduced by Aganj20]. Simi-  can be shown to satisfy the product rule mentioned above,
larly to the case of oscillator quasidistributiof%-27, the  giving the following result for the expectation value of an
quasiprobability functions for angular momentum states argperatorA:

also not unigue. Beyond the natural requirements that the

possible quasiprobability distribution functions have to sat- 7

isfy, there is a special property, called the product rule, that Tr(pA) = /_Wf W, (8,0)WaA(0,$)sind do de.
distinguishes the most natural choice among the possible 2j+1 m '

quasiprobability distributions. This rule requires that the ex- (5)
pectation value of a product of wo operators could be Cal_For other types of quasidistributions of angular momentum
culated by integrating the product of the corresponding qua- h as th()a/panalo 2 of the oscilla@mnd 9]1 nctions. see '
siprobabilities. This choice is essentially unique, and in>uc 9 ! Q functions,
accordance with most authors we call it the Wigner functionRef' [20].

for spinj. We note that the construction can be extended toallc?vbrglgegleytg)\:ir;i;ﬁzsee t?]fethfoosecr'tlilgéoé% ttug \é\{;%;]?; fUSg;Itci)cr)]n
include several values df [28,29, and in the same spirit prop 4 :

Wigner functions can be defined for arbitrary Lie groupsln the work of Dowlinget al. [33], graphical representations

[30]. We also note that it is possible to define joint WignerOf the ngner_ function of the number, coh.erent, anq
. S . squeezed atomic states were presented. The Wigner function
functions for atom-field interactions, and then a fully phase- . : L i
- : . . f a cat state like Eq(1) was considered first in Ref34];
space description of atom-field dynamics can be con5|dereSee also Ref(35]

[31]. Here we restrict ourselves to the problem of angular The characteristic matrix of the state given by Ef).can

momentum with a fixed value gt now be calculated according to definitidB), taking into

Using the procedure proposed in RE§20], we briefly . . .
summarize here the method of quasiprobability functions inaccount that the density operator correspondingitg) is

the (2 + 1)-dimensional Hilbert space. One first chooses an

operator basis in this space; the most straightforward set of I T PR
operators is the set of the spherical tensor operafQs pSC_§(|]’J><J’J|+“'_J><J‘_J|+|J’J><J’_]|
which transform among themselves irreducibly under the ac- o

tion of the rotation operatof82]. Their explicit expression +5, =D (6)
is

in the standard basis, with=N/2. The characteristic matrix
has the form

V2K+1

_ oK K
(QSC)K,Q_T ~j 0 j[1+(—1) 10,0

i
TKszZZ_j (=1 M(2K +1)*2

oK
X -m Q m—Q |J,m><],m_Q|, (2) J K J
. . C o[B80t (=160, a1,
where (U, of 1_o) is the Wigner 3 symbol. These (_J 2] _J)[ ezt (71700 -2]
form a basis in the sense that any operator of the Hilbert 7)
space can be expanded in terms of them, and they fulfill the
Hilbert-Schmidt orthonormality condition TF(T(QTK,Q,) and from Eq.(4) one obtains the following result for the

—+

= kk Oqq - Wigner function:
Introducing the characteristic matrix of the density opera-
tor p with respect of this operator basis as 1 N+1[ N 2T+ IN!
Wsd(0,¢)= 5 \/ >
2 4w | =0 J(N=DI(N+I1+1)!
2ka=Tr(pTky), 3 =6 VIN-D )
X[Yo(0)+Y -0
the Wigner function of the state s defined in terms of the [Yio(0)+Yio(m=6)]
spherical harmonic¥xq( 6, ¢): (2N+1)! (sin#)NcogN¢)
| TN 2N - @
- 2j K
2]+1
W, (0,¢)= A 'ZO Q:E_K 2kQYka(0:#)- (4 The first term, containing the sums of two spherical harmon-
ics, corresponds to the individual states,+,...,+), and
The factor in front of the sum ensures normalization. We|—,—,...,—), while the last term arises from the interfer-

note that in a similar way one can associate a Wigner funcence term between the “living” and “dead” parts of E({)
tion W,(6,¢) with any operato@, by introducing its char- (the last two terms of the density operator
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FIG. 2. Phase-space scheme of a nonpolar cat Hate(11)]
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FIG. 1. Wigner function for a polar cat stafgq. (8)] for the i "

case ofN=5 atoms. The absolute value of the function is measured _ E J sirﬂ*m(,B/Z)cosi’m(,B/Z)
along the radius in the directioi, ), and the surface is shown in M | j+m
the light where the function is positive, and in the dark where it o .
takes on negative values. x e 1rma|j m), (10)

Figure 1 shows the polar diagram of this Wigner function . . . .
for N=5 atoms. The two bumps to the “north” and T_he superposition of two quasiclassical coherent states is
“south” correspond to the quasiclassical coherent constitud1Ven by the ket
ents, while the ripples along the equator—where the function
takes periodically positive and negative values—are the re-
sult of interference between the two kets of Efj). The |7 +| 70)

factor cosN¢) in Eq. (8) shows that the number of negative | W)= .
“wings” along the equator is equal to the number of atoms. V2(1+Re(7y|75))

11

lIl. NONPOLAR CAT STATES, AND THEIR Recently Agarwal, Puri, and Sing4] and Gerry and Grobe
SQUEEZING PROPERTIES [15] proposed methods to generate such states in a cavity, via
a dispersive interaction with the cavity mode.
Here we chooser,=tan({@/2) and 7,=—7,. Then g is
One can also construct more general SC states by takirifpe polar angle of the classical Bloch vector corresponding to
the superposition of any two atomic coherent states. Arthe atomic coherent stafe;) (3 is measured from the south
atomic coherent stat@ quasiclassical stat¢19], |7) is an  pole); see Fig. 2. This means that tikecomponent of the
eigenstate with the highest eigenvalme=j of the compo- expectation value of the dipole moment in these states is
nent of the angular momentum operator pointing in the difproportional tox (N/2)sinp, respectively, and thg compo-
rectionn: nent is zero. Any other equal weight superposition of two
atomic coherent states can be obtained from this special
(3-m)| 7y =j| 7). 9) choice by an appropriate (otation. The polar cat state of Sec.
Il corresponds to the special case when the two points are the
northern and southern poles of the Bloch sphere. If the cen-
The notationr refers to a specific parametrization of the unit ters of the two coherent states in question are not in opposite
vectorn by its stereographic projection to the complex plane.points of the sphere, then we will call their superposition
It is connected with the polar angfe and the azimuthv of ~ “nonpolar” cat states.
the directionn as r=tan(8/2)e '“. The atomic coherent The corresponding quasiprobability distribution functions
state can be expanded in terms of the eigenstapes of J,  still can be explicitly calculated. For the Wigner function of
[19]: the cat stat¢¥,,), one obtains the following expression:

A. Nonpolar cat states
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FIG. 3. Wigner functions for the stafe,,) for N=5 atoms, and for several different values @f(a) g=20°, (b) 8=45°, (c) B
=55°, and(d) B=70°. For smaller values g8 the state goes over into a single coherent state, and then it has essentially only one positive
lobe. This graphical presentation shows qualitatively thatytrmponent of the dipole moment is squeezed, the maximal value of the
squeezing in the present casé=5) is about3=43°.

N+1Z & 2K+12))!
W(0,¢)= ﬁ,ZOQ:,KW‘_]

L (— 1)y (= )3ty (—1)2 4 (—1)20
m=j  J(+m!(-m!(j+Q+m!(j—Q—m)!

X ( _ mj_Q g rjn) (sinpr2)20*M*Q(cosp/2)20- MY, (0, 4). (12)

We present polar plots of this Wigner function in Fig. 3 for ference becomes more pronounced. Wigens/2, the two
N=5 atoms and for several values Bf maxima corresponding to the individual coherent states point
For smallB values, the interference is weak and the maxi-in the x and —x directions, respectively. In this case we
mum of the Wigner function is aroun@= 0. For larger8's regain the Wigner function of the SC state of Et), rotated

the function has two maxima arourtd= + 8, and the inter- around they axis by 7/2.
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B. Squeezing properties 1
The expectation values of the dipole operatdysandJ, y
are zero in staté€ll) with r;=tan(8/2) andr,= — ;, which 0: 8
is a consequence of the mirror symmetry of this state with s 3
respect of both th&-z and they-z planes. As it is known, 0.61000 100 o
the variances of the dipole operatodg,andJ, are equal to s
each other in an atomic coherent state: §.4
(A% =(Ay)?||p=]/2. (13

In order to calculate the variances in stdfiel), one can
directly use expansiofil0) and the known matrix elements of | : : : : : :
of J, andJ,, but the summations that occur are rather cum- 0 Uned 942 ity & 123 &2

bersome to evaluate. A more effective procedure is to apply
the method of generating functiof&9]. All the necessary FIG. 4. B dependence of the quantit§ in (AJy)?=j[1
expectation values in a cat state can be calculated by theS(B8,j)1/2 for several values oN=2j. S can be considered as

formula the measure of squeezing for a cat state consisting of two atomic
coherent states separated by the central angleor2 the Bloch
a\al a\P a\° sphere.
b
[(a—g) (7o) 2] % ={r 23235 ),
=9={=0
e (14) IV. DECOHERENCE AND DISSIPATION
where As we mentioned in Sec. |, there have already been real-
izable methods proposed for the experimental generation of
Xa(€, 77,5)5<7-1|e53—e7ﬂze§3+|7-2> atomic SC states in a collection of two-level atoms
. [9,10,14,1% However, such an atomic ensemble can never
(—jleln t93-gmlzglrat Os| —j) be perfectly isolated from the surrounding environment. Fur-
(147D (1+][ D] f[her, any observation Qf these sta_tes necessar'lly leads to the
_ interaction of the atomic system with a measuring apparatus.
{e~ "2+ e T+ &) (1t )} In both these cases the atomic system interacts with a system
= {(1+[ 7D (1+] 5DV (15) containing a large number of dggrees of freedor_n. A possible
and successful approach to this problg36] considers that
is the (antinormally orderedgenerating function. the static environment continuously influences the dynamics

Inserting the necessary operators, we obtain the followin@f the atomic subsystem, which, besides exchanging energy

expressions for the variances in the state given by(Et): ~ With the environment, loses the coherence of its quantum
superpositions and evolves into a classical statistical mixture.

5 (2j—1)sir’ B In this section we investigate the decoherence and dissi-
(A)7=5| 1+ T+ (cosp)d |’ (16)  pation of the atomic Schicinger-cat states embedded in an

environment with many degrees of freedom, by writing

, (2] —1)(cosB)¥ ~2sir? B down the_ master equation for the reduced density operator of
(AJy) =3 1- 1T 7] . (17)  the atomic subsystem. We provide the solution for the polar
(cosp) cat statesEq. (1)].

Comparing these results with EQL3), we see, that except
for some special cases, td¢ quadrature is squeezed while
the J, quadrature is stretched in this state. The reason of this
asymmetry lies in the fact, of course, that in superposition We couple our ensemble of two-level atoms to the envi-
(11) we have chosen states that are both centered in pointonment which is supposed to be a multimode electromag-
lying in the x-z plane. netic radiation with photon annihilation and creation opera-
One of the exceptional cases that is not squeezed, is tbrsay andal. Then the interacting system can be described
there is only one atom. As it is easily seen, jer1/2 any by the following well-known model Hamiltonian which con-
state in the two-dimensional Hilbert space is a coherent statejders dipole interaction and uses the rotating-wave approxi-
and therefore it does not show squeezing. The two othemation:
exceptions ar@=0 for anyj, because then the two coherent
states coincide, an@= /2, which is the rotated version of H =wan+ﬁZ wkalak+2 gk(al3—+ak~]+), (18)
the polar cat state. K K
Writing Eq. (17) in the form (AJy)2=j(1—S)/2, we can
define the quantityS as the measure of squeezing. Analysis
shows that ifN is large enough, then the maximum value of wherew, is the transition frequency between the two atomic
Sis 0.56 and it is achieved aroung},=1.6A/N. Figure 4  energy levelsw, denote the frequencies of the modes of the
shows the dependence 6fon B for several values oN environment, andy, are the coupling constants. If we sup-
=2j. pose the environment to be in thermal equilibrium at tem-

A. Model and solution



PRA 60 WIGNER FUNCTIONS, SQUEEZING PROPERTIES, AN .. 4039

peratureT, then the time evolution of the atomic subsystem={exd#%w,/(ksT)]—1} ! is the mean number of photons in
is determined by a master equation for its reduced densitshe environment ang=[g(w,)o(w,)]? denotes the damp-

operatorp(t) [37,38, ing rate, wherer is the mode density of the environment.
q Equation(19) can be obtained also in a somewhat differ-
2 p(t) __7 ent context, as described in RER9]. Then one assumes the
h T 5 ((n)+1)

atomic subsystem to be placed in a resonant cavity with low-
y quality mirrors, causing the damping of the cavity mode at a
X[ILd_p(D)+p(1)ILI_—2T_p(1)I,]— §<n> rate k. Under certain reasonable assumptions one can obtain
Eq. (19) with y=29g(w,)? k.
X[I_Iip()+p()I_I,—2J.p()I_], (19 From Eqg.(19) one can easily deduce the following equa-
tions for the matrix elements of the density operaigy (t)
which involves the usual Born-Markov approximation and is=(j,m|p(t)|],!):
written in  the interaction picture. Here (n)

dpm,l(t)
dt

== %{(n}[Zj(j +D)-mm+1) =11+ D]+ ((M+D[2j(j+1)—m(m=1)=1(I=1) ]} pm,(t)

+ MG+ D —mm=DIG+1) — 11— 1)]pm-1y-12(D)
M+ DV G+ —mm+ DG+ =10+ D) Ipme 1y 42(1)- (20

Thus the time evolution of a particular density-matrix ele- 1
ment is coupled only to the two neighboring elements in the p-1i(O=7exd —j(2(n)+1)t]. (23
corresponding diagonal f@gn)>0, and only to the neighbor
with larger index at zero temperature.

In the case of a polar cat stateonsisting ofN=2]j at-
oms, the elements of the density matrix have zero initial

As expected, the stationary solution of E&J1) is the
Boltzmann distribution of the stationary valugg n:

values exceptfop_; _;.pjj.p-j,; andpj,,j(zp’ij’j). This

implies that the density-matrix elements, except for those in__ hog l-exgd—fwy/(ksT)]

the main diagonal and fgr_; ; andp; _;, remain identically pm,m:exf{ —(m+j) KeT | 1—exf — (2] + Dhiwa/(kaT)]
zero for any time. Setting=1 (i.e., the time unit is 1y) the _

equations for the elements in the main diagonal of the den- [(n)/((n)+1)]m*]

sity matrix are the following: - (ny+1){1—-[(nY/((n)+1)]F* T (24)

Approximate analytical time-dependent solutions of &1)
dpmm(t) — M+ 1) —m(m+1)] can be found especially for the case of superradiance, when

dt pj j(0)=1 in Refs[40,41]; see also Re{.13] and references
. therein. For the initial conditions corresponding to the polar
+((M+ D (J+1)=m(m=1) [} pmm(t) cat state, the time-dependent solution of equati(i at
M +1)—m(m=1)]pm-1m-1(D) zero temperature{(1)=0) can be obtained by the following
mesm recursive integration:
HUM+D(+1)—m(m+1)]}
X 1), 21 1
Pm+1,m+1( ) ( ) pj,j(t): Eexp(—th),
with the initial valuespy, m(t=0)=3(Sm;+ om,—;) [cf. Eq. (25)
(1)]. The dynamics op _; ; is governed by the particularly 1 .
simple equation Pm.m(t) =exp(—bpyt) < 2 Om,—j+ bm+ljo exp(byt”)
dp—j (1) : X (t’)dt’), —j=m<j
+2_1(2<n>+1)p,j’j(t), (22) Pm+1m+1 J J

where b,=j(j+1)—m(m—1). These equations show
immediately yielding the following solution with the initial rather explicitly, how does the initial excitation cascade
valuep_j j(0)=1/2 corresponding to the polar cat state:  down to the zero temperature stationary state.
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(a): N=5, <n>=0, r=1.27 (b): N=5, <n>=1, r=2.48 (c): N=5, <n>=10, r=3.06
1 1
0.8 0.8
0.6 0.6

0!
0 0.250.50.75 1 1.25 1.5

FIG. 5. Plots of the density matrix elements, n(t), m=—j,—j+1,...,j (solid lineg andp_; j(t) (dashed lingvs time (the time unit
is 1/y). Plots are given foN=5 atomg (a), (b), (c)], andN =50 atomd(d), (e), and(f)], for (n)=0 (zero temperatujd (a) and(d)], (n)=1
[(b) and(e)], and(n)=10[(c) and(f)]. A solid line corresponding to a particulap, ,, can be identified as follows: Ife), asm increases,
the corresponding, ,, reaches its maximal value earlier; () and(c), the stationary values of thg, ,'s follow the Boltzmann distribu-
tion; see Eq(24). In (d), (e), and(f) the p, ,,’s follow each other along the axis labeled The dotted linegstarting from 1 at=0) show
the normalized energy of the atomic subsystemE(t)/(—jfw,); see EQ.(27). r =tgiss/tgec IS the ratio of the characteristic time of
dissipation to the characteristic time of decoherence.

For nonzero temperaturegn)>0) we have solved equa- p_; _;j(<)=1 as given by Egs(25). At nonzero tempera-
tions(21) numerically. We are going to analyze the solutionstures (n)>0) the time evolution of the, »(t)’s is more
in Sec. IVB. complicated because of the coupling to both neighbors; cf.
Eq. (20).
B. Characteristic times More information can be extracted from the time evolu-
tion of thep, m(t)’s by calculating the energy of the atomic

Figure 5 shows the time evolution of the relevant density-Subsystem as the function of time:

matrix elementspp, n(t), m=—j,—j+1,...j (solid lineg
and p_; ;(t) (dashed ling in the case of initial polar cat

states consisting of 5 and 50 atoms, fo)=0, 1, and 10. E(t)=(wad,)(t)

The actual value op_; ;(t) characterizes the coherence of

the corresponding state, sinpe;; andp; _; (=p*; ;) are =waTrp(t) I7]

the only nonzero matrix elements outside the main diagonal. i

Their exponential decajcf. Eq. (23)] is the decoherence, _

shown by the dashed lines in the plots of Fig. 5. Thus it is _hwam;j MPm,m(t)- @7
reasonable to define the characteristic time of the decoher-

ence by

The process of dissipatiofe., the change of the energy of
the atomic subsystem in timean be very easily followed by
o= 2 26) studying E(t). This function, normalized to the zero tem-
dec N(2{n)+1)’ perature stationary energy and shifted to vary from 1 to its
stationary value: + E(t)/(—jhw,), is shown in the plots of
implying p_; j(tged =p—j,j(0)/e. Fig. 5 by the dotted lines. Since its asymptotic behavior is
In contrast to the simple time dependenceof j(t), the  exponential-like, it is reasonable to define the characteristic
dynamics of the main diagonal elemeptsg ,(t) depend on time of dissipatiort . by requiring
the actual value ofn) and N rather sensitively. The zero
temperature cases, Figgaband 5d), clearly show the ini-
tial excitation, contained ip; ;(0)=1/2, cascading down to |E(tgisd — E()|=|E(0)—E()|/e. (28
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In order to ensure thd&(t) achieves its stationary value with
a good accuracy in the plots of Fig. 5, we have set the time
range to % It is seen that the value of=t s/t gec grows 10°
with both the temperature and the number of atoms. A more
detailed analysis of this question follows later in this section.

The initial state of the process, the polar cat state, has
sharply nonclassical features. On the other hand, at nonzer
temperature the final stationary state of the present model i10™*
a thermal state, which is classical in its natu#t zero tem-
perature the stationary state is also nonclassical, since it i
the statdj,—j).) It is natural to ask, when does the transi-
tion from the nonclassical to the classical stage occur? Wha
is a good measure of nonclassicality reflecting the change 0107
nonclassical nature of the corresponding state?

The spherical Wigner functiof) provides a good answer
to both these questions. Quantum states are generally consi
ered essentially nonclassical if the corresponding Wigner
function takes on also negative values. Therefore, to answel 0™’
the second question, for the measure of the degree of non
classicality we propose to use the quantity=1—(l,
—1.)/(1,+1_), wherel, is the integral of the Wigner
function over those domains where it is positive whileis
the absolute value of the integral of the Wigner function over?!
the domains where it is negative. Since the integral of the
Wigner function over the sphere is 1, —1_=1, thusv
=21_/(21 _+1), and itis easy to see thaky<<1. Accord-
ing to this definition, the larger the value of the more
nonclassical the state, and for all classical states onevhas *°
=0 1 10 100 1000

Number of atoms

Regarding the first question, namely, for how long the
state of the atomic system is nonclassical, we introduce a FIG. 6. Plots of the characteristic times of decoherertgg)(
third kind of characteristic time,y. We definet, to be the  (solid line), dissipation {4s) (dashed ling and nonclassicality
time instant when the corresponding spherical Wigner func{tn) (dotted ling vs the number of atoms on a log-log scale. The
tion becomes non_negative everywhere on the Spherepi.e.’uppermost solid and dashed lines are(f(l))’=0 (there is no plOt for
becomes 0. We will return to this question in connectiontna @t zero temperature, since the state stays nonclassiedl: for

with the time evolution of the Wigner function, which we all times), while the subsequent groups of the three kinds of lines,
will present in Sec. IV C in more detail. ' one under the other, are fon)=1, 10, and 100, respectively.

Based on the information provided by the three kinds of ven to vary considerably with increasing beyond the
characteristic times, here we consider the dependence of e y y y

process on the number of atoms and on the temperature [jaximum oftyiss mentioned above. Thus the process of de-
Fig. 6 we plottye, (dashed ling ty, (solid line), andt,g " coherence is extremely slow in the case of a polar cat state

(dotted ling as functions of the number of constituent atomsWhICh is coupled to the environment by an interaction lead-

of the polar catN, for several temperatures, on a log-log "9 o the master equatiol9).
scale P ' P ' 9199 " “gimilar effects have already been reported for other physi-

. . . cal systems earligd7-51. In a recent work Braun, Braun,
It is seen that the characteristic time of decoherdpgés . . .
. . ¢ and Haakd52] investigated the decoherence of an atomic
inversely proportional to the number of atorttee straight

solid lines in Fig. §, according to definitior26). Compared SC statelry) +|7) based on Eq(19) for zero temperafure.

to this, the characteristic time of nonclassicaliyy de- By evaluating a certain quantity characterizing the decoher-

creases less rapidly with increasing number of atoms. Th&Ce rate at thénitial time, and applying a semiclassical

characteristic time of dissipatioly first slightly increases ptr;)t((:e esd\lljvritehforiulltle :Lrge(jé;g%é%rguggsvéhgéxg atomic SC
at nonzero temperature, then it achieves a maximum whicR 7172 ~ '

depends okin), and finally it decreases nearly inversely pro- cor%lijtriolr?lt?:l:t?éihlige feOS!::] tgzt iit:?:tie’ fglggi\tlzefr?&mge
portional to the number of atoms. The valuestgf; at dif- : P 9.

ferent temperatures seem to converge slowly beyond a cei?éuitr'log ?;gr‘ﬁer:taﬁg: S%ugtt;gr;%rnttzeo}’ggg ?,Cﬁ(e:?essthghey
tain number of atoms. g ’

However it seems rather surprising that the ragig/tye initial stage of the decoherence is analyzed for the case of

is not as large as such a quantity is usually expected to pe"o temperature.

[36,42—48: in the case oN=1000 it is 4.04 fokn)=0, and _ _

it is still just around 350 for(n)=100. (Note that(n) C. Wigner functions

=100 would correspond to a temperature of 250 K in the We illustrate now the process of decoherence and dissi-
case of typical experimenfg].) The ratiotyss/tgecSEEMS NOt  pation using the spherical Wigner functigd). In order to

0—4

-5
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FIG. 7. Polar plots of the temporal change of the Wigner function representing the decoherence and dissipation of the initial polar cat
state(1), composed of five atoms and shown in Fig. 1, at zero temperature. The dynamics of the corresponding density-matrix elements is
shown in Fig. %a). The time instantgin units of 1//) are(a) 0.1, (b) 0.2, (c) 0.4 (=t4e9, (d) 0.506 (=tgsd, (e) 0.8, and(f) 2.5.

obtain its time dependence we have to calculate first the In Figs. 7 and 8 the following main characteristics of the
characteristic matrigK’Q(t)=Tr[p(t)TL’Q] from the matrix ~ process can be identified. The decoherence is shown by the

elementsp, | (t) according to decreasing and finally disappearing ripples along the equator.
The vanishing of the nonclassicality, i.e., the decrease of the
Qo= V2K+1 pararr_leten/, can pe easily recognized as the decrease_ of the
_ negative(dark) wings. At nonzero temperature they disap-
! o K j pear exactly at,, as shown in Fig. ). The dissipation is
Xm;j (—1) -m Q m-Q Pm,m-o(t). represented by the approach of the initial upper and lower

bumps to each other. At zero temperat(ffeg. 7) the upper
(299  bump disappears and goes over to the lower one. This sta-

tionary shape of the Wigner function corresponds to the low-
From Eq.(29) it can be seen that onlg, o (K=0,1,..,N)  est coherent statg,—j) [33]. For (n)=10, when the sta-
andQN‘N=(—1)N(gN,_N)* are nonzero. This fadvhich is  tionary energy is close to the initial energy, not only does the
due to the initial conditions specified by the polar cat $tate upper bump move downward but the lower one also lifts
ensures that the azimuthal dependence of the sphericapward. The stationary Wigner function has nearly a spheri-
Wigner function is determined only by the real part of thecal symmetry, although its center is not in the origin.
spherical harmonicYy y(6,¢) which is proportional to In agreement with Fig. 6, the plots of Figs. 7 and 8 show
cos(N¢). Therefore the Wigner function keeps its initial azi- that the time scales of the decoherence and of the dissipation
muthal symmetry during the whole process. Further, sincare very close to each other in the case of five atoms; for zero
onn(t)=(— 1)ij,_j(t), the azimuthal modulation of the temperature they are practically the same. Then the spherical
spherical Wigner function explicitly shows the degree of theWigner function exhibits considerable azimuthal modulation
coherence of the actual state. (ripples also att ;.

Figures 7 and 8 show the polar plots of the spherical We may come back finally to the question of finding the
Wigner function transforming its shape in time{ay=0 and  characteristic time of nonclassicalityy. According to the
(n)=10, respectively. The initial state is a polar cat made ofarguments given after Eq29), it is sufficient to study the
N=5 atoms and its Wigner function is shown in Fig. 1.  Wigner function within a¢ range of length z/N, e.g., 0



PRA 60

WIGNER FUNCTIONS, SQUEEZING PROPERTIES, AN ..

SN
WS
I“‘\/} )
X f
’O <

=

&

11775
7
o

77
1

>

2>

>
=

7

TR
SN

0y,
i

7%

s
79
it

772
(/7
7

7

/i
I]

77777

77

Vi

4/

/Iil/(‘ll

7,

)
i,
i 1]

Vi

y 2

1l

\?,)\\\‘
\/,// )

./

A

i

=

liini
X/
\j

)

<R

555

ot
S5o%
5o

T

i
.I‘gi

LI
R

2

%2
R
S

S

A
st
8%
S

e
S

RIS

|
1
Ty
T
SR
_—

AN

S

N

W
N

SN

N

N

N

N

4043

FIG. 8. Polar plots of the temporal change of the Wigner function representing the decoherence and dissipation of the initial polar cat
state(1), composed of five atoms and shown in Fig. 1, foj=10. The dynamics of the corresponding density matrix elements is shown
in Fig. 5(c). The time instantgin units of 1fy) are(a) 0.01,(b) 0.019 (=t4e9, (c) 0.031 (=t,), (d) 0.045,(e) 0.058 (=t49, and(f) 0.25.

teristic times of decoherence, dissipation, and nonclassicality

<¢=<27/N, because it is invariant with respect of rotationsin an external environment, we have determined the charac-

by ¢=k(2#/N), (k=1,2,...,N), i.e., it hasCy symmetry

at all times. Therefore the spherical Wigner function of aof an initial polar cat state. We have shown how these de-
polar cat state, while subject to dissipation and decoherencpgend on the number of the microscopic elements the cat con-

always has its minimum value gt= w/N. Thus in order to
calculatet,, it is sufficient to follow the time evolution of
the sectionW(6,¢=w/N). Further, in connection with the
calculation of the measure of nonclassicalityt is sufficient
to consider the above mentionefirange when evaluating

the integrald , andl_ .

V. CONCLUSIONS
We have considered a class of states in an ensemble
two-level atoms, a superposition of two distinct atomic co-a suggestive way.
herent states which are called atomic Sclimger-cat states.
According to the relative positions of the constituents, we

have defined polar and nonpolar cat states. We have investi- ]
gated their properties based on the spherical Wigner func- The authors thank L. D&, T. Geszti, F. Haake, J. Jan-

tion, which has been proven to be a convenient tool to invesszky, and W. P. Schleich for enlightening discussions on the

tigate the quantum interference effects.
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