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Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition
of two-level atoms
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We consider a class of states in an ensemble of two-level atoms: a mesoscopic superposition of two distinct
atomic coherent states, which can be regarded as atomic analogs of the states usually called Schro¨dinger-cat
states in quantum optics. According to the relation of the constituents, we define polar and nonpolar cat states.
The properties of these are investigated by the aid of the spherical Wigner function. We show that nonpolar cat
states generally exhibit squeezing, the measure of which depends on the separation of the components of the
cat, and also on the number of the constituent atoms. By solving the master equation for the polar cat state
embedded in an external environment, we determine the characteristic times of decoherence and dissipation,
and also the characteristic time of a new parameter, the nonclassicality of the state. This latter one is introduced
by the help of the Wigner function, which is used also to visualize the process. The dependence of the
characteristic times on the number of atoms of the cat and on the temperature of the environment shows that
the decoherence of polar cat states is surprisingly slow.@S1050-2947~99!01611-X#

PACS number~s!: 42.50.Fx, 42.50.Dv, 03.65.Bz
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I. INTRODUCTION

The question of why macroscopic superpositions are
observable in everyday life has been raised most strikin
by Schrödinger in his famous cat paradox. Recent expe
ments@1,2#, however, showed that at least mesoscopic su
positions can be observed in quantum-optical systems
quantum optics one usually speaks of a Schro¨dinger-cat~SC!
state if one has a superposition of two different coher
states of a harmonic oscillator. In one of the experiments@1#
a superposition of two different coherent states was cre
for an ion oscillating in a harmonic potential. In the oth
one @2#, two coherent states of a cavity mode were sup
posed, and the process of the decoherence between
states was also followed by monitoring the field with res
nant atoms. The unusual properties of such states have
discussed theoretically in several publications; see, e
Refs.@3–7#.

A different type of Schro¨dinger-cat-like state can be cre
ated in principle in a collection of two-level atoms, as fir
proposed in Ref.@8#; see also the more advanced scheme
Refs.@9,10#. The terminology we may use is the following
The individual two-level atoms can be regarded as
‘‘cells’’ of the cat, and the cat is definitely alive if all of its
cells are alive, i.e., they are in theu1& state; and it is defi-
nitely dead if all the cells are in the ill,u2& state. In the case
of N atoms a prototype of a SC-like state is then

uCSC&5
1

&
~ u1,1,...,1&1u2,2,...,2&), ~1!

where each of the terms containN pluses andN minuses. We

*Electronic address: benedict@physx.u-szeged.hu
†Electronic address: czirjak@physx.u-szeged.hu
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shall call this state the polar cat state, because the two c
ponents are at the farthest possible distance from each o
This state is in the totally symmetric (N11)-dimensional
subspace of the whole 2N-dimensional Hilbert space, and,
such states are manipulated by a resonant electromag
field mode with dipole interaction, then the atomic syste
will remain in this subspace. This is the arena of the coll
tive interaction of the atoms and the electromagnetic fie
called superradiance@11–13#. In this work we present result
concerning the properties and dynamics of polar cat st
@Eq. ~1!#, and also of more general collective atomic stat
the generation of which have also been considered rece
@14,15#.

Our approach to discussing the properties of quant
states like uCSC& is based mainly on the method of th
Wigner function, which is one of the possible quasiprobab
ity distributions. It has become a customary tool for inves
gating quantum states of an electromagnetic mode oscilla
or an ion oscillating in an appropriate trapping field@16,17#.
The method of the Wigner function is much less exploite
however, in the description of atomic states like Eq.~1!. This
is why we first summarize the essentials of this method,
then turn to the determination of the Wigner function for t
cat state~1! in Sec. II. Then, in Sec. III, we consider mor
general catlike states, which we call ‘‘nonpolar cats,’’ a
determine their squeezing properties. Finally, in Sec. IV,
write down and solve the master equation for a cat state in
environment with finite temperature. We define and det
mine the dissipation and decoherence times of the sys
and the characteristic time when the system becomes es
tially classical.

II. WIGNER FUNCTION OF THE POLAR CAT STATE

The N-atom dipole interaction with the electromagne
field is equivalent to the dynamics of a spin ofj 5N/2, and
the phase space of the atomic subsystem is the surface
4034 ©1999 The American Physical Society
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PRA 60 4035WIGNER FUNCTIONS, SQUEEZING PROPERTIES, AND . . .
sphere of radiusAj ( j 11), (\51), which is sometimes
called the Bloch sphere. This phase space and quasiprob
ity distributions corresponding to various operators acting
the (2j 11)-dimensional Hilbert space were introduced
Stratonovich@18#. Similar constructions were considered i
dependently by several authors@19–23#. Here we use the
construction and notation introduced by Agarwal@20#. Simi-
larly to the case of oscillator quasidistributions@24–27#, the
quasiprobability functions for angular momentum states
also not unique. Beyond the natural requirements that
possible quasiprobability distribution functions have to s
isfy, there is a special property, called the product rule, t
distinguishes the most natural choice among the poss
quasiprobability distributions. This rule requires that the e
pectation value of a product of two operators could be c
culated by integrating the product of the corresponding q
siprobabilities. This choice is essentially unique, and
accordance with most authors we call it the Wigner funct
for spin j . We note that the construction can be extended
include several values ofj @28,29#, and in the same spiri
Wigner functions can be defined for arbitrary Lie grou
@30#. We also note that it is possible to define joint Wign
functions for atom-field interactions, and then a fully pha
space description of atom-field dynamics can be conside
@31#. Here we restrict ourselves to the problem of angu
momentum with a fixed value ofj .

Using the procedure proposed in Ref.@20#, we briefly
summarize here the method of quasiprobability functions
the (2j 11)-dimensional Hilbert space. One first chooses
operator basis in this space; the most straightforward se
operators is the set of the spherical tensor operatorsTKQ
which transform among themselves irreducibly under the
tion of the rotation operators@32#. Their explicit expression
is

TKQ5 (
m52 j

j

~21! j 2m~2K11!1/2

3S j
2m

K
Q

j
m2QD u j ,m&^ j ,m2Qu, ~2!

where (2m
j

Q
K

m2Q
j ) is the Wigner 3j symbol. These

form a basis in the sense that any operator of the Hilb
space can be expanded in terms of them, and they fulfill
Hilbert-Schmidt orthonormality condition Tr(TKQ

† TK8Q8)
5dKK8dQQ8 .

Introducing the characteristic matrix of the density ope
tor r with respect of this operator basis as

%KQ5Tr~rTKQ
† !, ~3!

the Wigner function of the stater is defined in terms of the
spherical harmonicsYKQ(u,f):

Wr~u,f!5A2 j 11

4p (
K50

2 j

(
Q52K

K

%KQYKQ~u,f!. ~4!

The factor in front of the sum ensures normalization. W
note that in a similar way one can associate a Wigner fu
tion WA(u,f) with any operatorA, by introducing its char-
bil-
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acteristic matrix:AKQ5Tr(ATKQ
† ), and then forming the

sum as in Eq.~4!. It can be easily seen that this is a ve
similar procedure to that by which one introduces the qua
distributions of oscillator states and operators by the help
characteristic functions of the translation operator ba
D(a)5exp(aa†2a*a) @24,25#. The construction of Eq.~4!
can be shown to satisfy the product rule mentioned abo
giving the following result for the expectation value of a
operatorA:

Tr~rA!5A 4p

2 j 11 E Wr~u,f!WA~u,f!sinu du df.

~5!

For other types of quasidistributions of angular momentu
such as the analogs of the oscillatorP andQ functions, see
Ref. @20#.

Similarly to the case of the oscillator, the Wigner functio
allows one to visualize the properties of the state in quest
In the work of Dowlinget al. @33#, graphical representation
of the Wigner function of the number, coherent, a
squeezed atomic states were presented. The Wigner fun
of a cat state like Eq.~1! was considered first in Ref.@34#;
see also Ref.@35#.

The characteristic matrix of the state given by Eq.~1! can
now be calculated according to definition~3!, taking into
account that the density operator corresponding touCSC& is

rSC5
1

2
~ u j , j &^ j , j u1u j ,2 j &^ j ,2 j u1u j , j &^ j ,2 j u

1u j ,2 j &^ j , j u! ~6!

in the standard basis, withj 5N/2. The characteristic matrix
has the form

~%SC!K,Q5
A2K11

2 H S j
2 j

K
0

j
j D @11~21!K#dQ,0

1S j
2 j

K
2 j

j
2 j D @dQ,2j1~21!KdQ,22 j #J ,

~7!

and from Eq.~4! one obtains the following result for th
Wigner function:

WSC~u,f!5
1

2
AN11

4p H (
l 50

N A2l 11N!

A~N2 l !! ~N1 l 11!!

3@Yl0~u!1Yl0~p2u!#

12A~2N11!!

4p

~sinu!Ncos~Nf!

2NN! J . ~8!

The first term, containing the sums of two spherical harm
ics, corresponds to the individual statesu1,1,...,1&, and
u2,2,...,2&, while the last term arises from the interfe
ence term between the ‘‘living’’ and ‘‘dead’’ parts of Eq.~1!
~the last two terms of the density operator!.
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Figure 1 shows the polar diagram of this Wigner functi
for N55 atoms. The two bumps to the ‘‘north’’ an
‘‘south’’ correspond to the quasiclassical coherent const
ents, while the ripples along the equator—where the func
takes periodically positive and negative values—are the
sult of interference between the two kets of Eq.~1!. The
factor cos(Nf) in Eq. ~8! shows that the number of negativ
‘‘wings’’ along the equator is equal to the number of atom

III. NONPOLAR CAT STATES, AND THEIR
SQUEEZING PROPERTIES

A. Nonpolar cat states

One can also construct more general SC states by ta
the superposition of any two atomic coherent states.
atomic coherent state~a quasiclassical state! @19#, ut& is an
eigenstate with the highest eigenvaluem5 j of the compo-
nent of the angular momentum operator pointing in the
rectionn:

~J–n!ut&5 j ut&. ~9!

The notationt refers to a specific parametrization of the u
vectorn by its stereographic projection to the complex plan
It is connected with the polar angleb and the azimutha of
the directionn as t5tan(b/2)e2 ia. The atomic coheren
state can be expanded in terms of the eigenstatesu j ,m& of Jz
@19#:

FIG. 1. Wigner function for a polar cat state@Eq. ~8!# for the
case ofN55 atoms. The absolute value of the function is measu
along the radius in the direction~u,f!, and the surface is shown i
the light where the function is positive, and in the dark where
takes on negative values.
-
n
e-

.

ng
n

i-

.

ut&5S 1

11utu2D j

etJ1u j ,2 j &

5 (
m52 j

j S 2 j
j 1mD 1/2 t j 1m

~11utu2! j u j ,m&

5 (
m52 j

j S 2 j
j 1mD 1/2

sinj 1m~b/2!cosj 2m~b/2!

3e2 i ( j 1m)au j ,m&. ~10!

The superposition of two quasiclassical coherent state
given by the ket

uC12&5
ut1&1ut2&

A2~11Rê t1ut2&!
. ~11!

Recently Agarwal, Puri, and Singh@14# and Gerry and Grobe
@15# proposed methods to generate such states in a cavity
a dispersive interaction with the cavity mode.

Here we chooset15tan(b/2) and t252t1 . Then b is
the polar angle of the classical Bloch vector corresponding
the atomic coherent stateut1& (b is measured from the sout
pole!; see Fig. 2. This means that thex component of the
expectation value of the dipole moment in these state
proportional to6(N/2)sinb, respectively, and they compo-
nent is zero. Any other equal weight superposition of tw
atomic coherent states can be obtained from this spe
choice by an appropriate rotation. The polar cat state of S
II corresponds to the special case when the two points are
northern and southern poles of the Bloch sphere. If the c
ters of the two coherent states in question are not in oppo
points of the sphere, then we will call their superpositi
‘‘nonpolar’’ cat states.

The corresponding quasiprobability distribution functio
still can be explicitly calculated. For the Wigner function
the cat stateuC12&, one obtains the following expression:

d

t

FIG. 2. Phase-space scheme of a nonpolar cat state@Eq. ~11!#
with t252t1 .
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W~u,f!5AN11

4p (
K50

2 j

(
Q52K

K A2K11~2 j !!

2@11~cosb!2 j #

3 (
m52 j

j
~21! j 2Q2m1~21!3 j 1m1~21!2 j1~21!2 j 2Q

A~ j 1m!! ~ j 2m!! ~ j 1Q1m!! ~ j 2Q2m!!

3S j
2m2Q

K
Q

j
mD ~sinb/2!2( j 1m)1Q~cosb/2!2( j 2m)2QYKQ~u,f!. ~12!

FIG. 3. Wigner functions for the stateuC12& for N55 atoms, and for several different values ofb: ~a! b520°, ~b! b545°, ~c! b
555°, and~d! b570°. For smaller values ofb the state goes over into a single coherent state, and then it has essentially only one p
lobe. This graphical presentation shows qualitatively that they component of the dipole moment is squeezed, the maximal value o
squeezing in the present case (N55) is aboutb543°.
or

xi
oint
e

We present polar plots of this Wigner function in Fig. 3 f
N55 atoms and for several values ofb.

For smallb values, the interference is weak and the ma
mum of the Wigner function is aroundu50. For largerb’s
the function has two maxima aroundu56b, and the inter-
-

ference becomes more pronounced. Whenb5p/2, the two
maxima corresponding to the individual coherent states p
in the x and 2x directions, respectively. In this case w
regain the Wigner function of the SC state of Eq.~1!, rotated
around they axis byp/2.
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B. Squeezing properties

The expectation values of the dipole operatorsJx andJy
are zero in state~11! with t15tan(b/2) andt252t1 , which
is a consequence of the mirror symmetry of this state w
respect of both thex-z and they-z planes. As it is known,
the variances of the dipole operators,Jx andJy are equal to
each other in an atomic coherent state:

~DJx!
2u ut&5~DJy!2u ut&5 j /2. ~13!

In order to calculate the variances in state~11!, one can
directly use expansion~10! and the known matrix element
of Jx andJy , but the summations that occur are rather cu
bersome to evaluate. A more effective procedure is to ap
the method of generating functions@19#. All the necessary
expectation values in a cat state can be calculated by
formula

F S ]

]j D aS ]

]h D bS ]

]z D c

XAG
j5h5z50

5^t1uJ2
a Jz

bJ1
c ut2&,

~14!

where

XA~j,h,z![^t1uejJ2ehJzezJ1ut2&

5
^2 j ue(t1* 1j)J2ehJze(t21z)J1u2 j &

$~11ut1u2!~11ut2u2!% j

5
$e2h/21eh/2~t1* 1j!~t21z!%2 j

$~11ut1u2!~11ut2u2!% j ~15!

is the ~antinormally ordered! generating function.
Inserting the necessary operators, we obtain the follow

expressions for the variances in the state given by Eq.~11!:

~DJx!
25

j

2 S 11
~2 j 21!sin2 b

11~cosb!2 j D , ~16!

~DJy!25
j

2 S 12
~2 j 21!~cosb!2 j 22 sin2 b

11~cosb!2 j D . ~17!

Comparing these results with Eq.~13!, we see, that excep
for some special cases, theJy quadrature is squeezed whi
theJx quadrature is stretched in this state. The reason of
asymmetry lies in the fact, of course, that in superposit
~11! we have chosen states that are both centered in po
lying in the x-z plane.

One of the exceptional cases that is not squeezed,
there is only one atom. As it is easily seen, forj 51/2 any
state in the two-dimensional Hilbert space is a coherent s
and therefore it does not show squeezing. The two o
exceptions areb50 for any j , because then the two cohere
states coincide, andb5p/2, which is the rotated version o
the polar cat state.

Writing Eq. ~17! in the form (DJy)
25 j (12S)/2, we can

define the quantityS as the measure of squeezing. Analy
shows that ifN is large enough, then the maximum value
S is 0.56 and it is achieved aroundbm51.6/AN. Figure 4
shows the dependence ofS on b for several values ofN
52 j .
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IV. DECOHERENCE AND DISSIPATION

As we mentioned in Sec. I, there have already been r
izable methods proposed for the experimental generatio
atomic SC states in a collection of two-level atom
@9,10,14,15#. However, such an atomic ensemble can ne
be perfectly isolated from the surrounding environment. F
ther, any observation of these states necessarily leads to
interaction of the atomic system with a measuring appara
In both these cases the atomic system interacts with a sy
containing a large number of degrees of freedom. A poss
and successful approach to this problem@36# considers that
the static environment continuously influences the dynam
of the atomic subsystem, which, besides exchanging en
with the environment, loses the coherence of its quant
superpositions and evolves into a classical statistical mixt

In this section we investigate the decoherence and d
pation of the atomic Schro¨dinger-cat states embedded in a
environment with many degrees of freedom, by writin
down the master equation for the reduced density operato
the atomic subsystem. We provide the solution for the po
cat states@Eq. ~1!#.

A. Model and solution

We couple our ensemble of two-level atoms to the en
ronment which is supposed to be a multimode electrom
netic radiation with photon annihilation and creation ope
torsak andak

† . Then the interacting system can be describ
by the following well-known model Hamiltonian which con
siders dipole interaction and uses the rotating-wave appr
mation:

H5vaJz1\(
k

vkak
†ak1(

k
gk~ak

†J21akJ1!, ~18!

whereva is the transition frequency between the two atom
energy levels,vk denote the frequencies of the modes of t
environment, andgk are the coupling constants. If we sup
pose the environment to be in thermal equilibrium at te

FIG. 4. b dependence of the quantityS in (DJy)
25 j @1

2S(b, j )#/2 for several values ofN52 j . S can be considered a
the measure of squeezing for a cat state consisting of two ato
coherent states separated by the central angle 2b on the Bloch
sphere.
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peratureT, then the time evolution of the atomic subsyste
is determined by a master equation for its reduced den
operatorr(t) @37,38#,

\2
dr~ t !

dt
52

g

2
~^n&11!

3@J1J2r~ t !1r~ t !J1J222J2r~ t !J1#2
g

2
^n&

3@J2J1r~ t !1r~ t !J2J122J1r~ t !J2#, ~19!

which involves the usual Born-Markov approximation and
written in the interaction picture. Here ^n&
le
th
r

ia

e

l

ty
5$exp@\va /(kBT)#21%21 is the mean number of photons i
the environment andg5@g(va)s(va)#2 denotes the damp
ing rate, wheres is the mode density of the environment.

Equation~19! can be obtained also in a somewhat diffe
ent context, as described in Ref.@39#. Then one assumes th
atomic subsystem to be placed in a resonant cavity with lo
quality mirrors, causing the damping of the cavity mode a
ratek. Under certain reasonable assumptions one can ob
Eq. ~19! with g52g(va)2/k.

From Eq.~19! one can easily deduce the following equ
tions for the matrix elements of the density operatorrm,l(t)
[^ j ,mur(t)u j ,l &:
drm,l~ t !

dt
52

g

2
$^n&@2 j ~ j 11!2m~m11!2 l ~ l 11!#1~^n&11!@2 j ~ j 11!2m~m21!2 l ~ l 21!#%rm,l~ t !

1 g^n&A@ j ~ j 11!2m~m21!#@ j ~ j 11!2 l ~ l 21!#rm21,l 21~ t !

1g~^n&11!A@ j ~ j 11!2m~m11!#@ j ~ j 11!2 l ~ l 11!#rm11,l 11~ t !. ~20!
hen

lar

de
Thus the time evolution of a particular density-matrix e
ment is coupled only to the two neighboring elements in
corresponding diagonal for^n&.0, and only to the neighbo
with larger index at zero temperature.

In the case of a polar cat state~consisting ofN52 j at-
oms!, the elements of the density matrix have zero init
values except forr2 j ,2 j ,r j , j ,r2 j , j andr j ,2 j (5r2 j , j* ). This
implies that the density-matrix elements, except for those
the main diagonal and forr2 j , j andr j ,2 j , remain identically
zero for any time. Settingg51 ~i.e., the time unit is 1/g) the
equations for the elements in the main diagonal of the d
sity matrix are the following:

drm,m~ t !

dt
52$^n&@ j ~ j 11!2m~m11!#

1~^n&11!@ j ~ j 11!2m~m21!#%rm,m~ t !

1^n&@ j ~ j 11!2m~m21!#rm21,m21~ t !

1$~^n&11!@ j ~ j 11!2m~m11!#%

3rm11,m11~ t !, ~21!

with the initial valuesrm,m(t50)5 1
2(dm, j1dm,2 j ) @cf. Eq.

~1!#. The dynamics ofr2 j , j is governed by the particularly
simple equation

dr2 j , j~ t !

dt
52 j ~2^n&11!r2 j , j~ t !, ~22!

immediately yielding the following solution with the initia
valuer2 j , j (0)51/2 corresponding to the polar cat state:
-
e

l

in

n-

r2 j , j~ t !5
1

2
exp@2 j ~2^n&11!t#. ~23!

As expected, the stationary solution of Eq.~21! is the
Boltzmann distribution of the stationary valuesr̄m,m :

r̄m,m5expS 2~m1 j !
\va

kBT D 12exp@2\va /~kBT!#

12exp@2~2 j 11!\va /~kBT!#

5
@^n&/~^n&11!#m1 j

~^n&11!$12@^n&/~^n&11!#2 j 11%
. ~24!

Approximate analytical time-dependent solutions of Eq.~21!
can be found especially for the case of superradiance, w
r j , j (0)51 in Refs.@40,41#; see also Ref.@13# and references
therein. For the initial conditions corresponding to the po
cat state, the time-dependent solution of equations~21! at
zero temperature (^n&50) can be obtained by the following
recursive integration:

r j , j~ t !5
1

2
exp~22 j t !,

~25!

rm,m~ t !5exp~2bmt !S 1

2
dm,2 j1bm11E

0

t

exp~bmt8!

3rm11,m11~ t8!dt8D , 2 j <m, j

where bm5 j ( j 11)2m(m21). These equations show
rather explicitly, how does the initial excitation casca
down to the zero temperature stationary state.
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FIG. 5. Plots of the density matrix elementsrm,m(t), m52 j ,2 j 11,...,j ~solid lines! andr2 j , j (t) ~dashed line! vs time~the time unit
is 1/g). Plots are given forN55 atoms@~a!, ~b!, ~c!#, andN550 atoms@~d!, ~e!, and~f!#, for ^n&50 ~zero temperature! @~a! and~d!#, ^n&51
@~b! and~e!#, and^n&510 @~c! and~f!#. A solid line corresponding to a particularrm,m can be identified as follows: In~a!, asm increases,
the correspondingrm,m reaches its maximal value earlier; in~b! and~c!, the stationary values of therm,m’s follow the Boltzmann distribu-
tion; see Eq.~24!. In ~d!, ~e!, and~f! therm,m’s follow each other along the axis labeledm. The dotted lines~starting from 1 att50) show
the normalized energy of the atomic subsystem 11E(t)/(2 j \va); see Eq.~27!. r 5tdiss/tdec is the ratio of the characteristic time o
dissipation to the characteristic time of decoherence.
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For nonzero temperatures (^n&.0) we have solved equa
tions ~21! numerically. We are going to analyze the solutio
in Sec. IV B.

B. Characteristic times

Figure 5 shows the time evolution of the relevant dens
matrix elementsrm,m(t), m52 j ,2 j 11,...,j ~solid lines!
and r2 j , j (t) ~dashed line!, in the case of initial polar ca
states consisting of 5 and 50 atoms, for^n&50, 1, and 10.
The actual value ofr2 j , j (t) characterizes the coherence
the corresponding state, sincer2 j , j and r j ,2 j (5r2 j , j* ) are
the only nonzero matrix elements outside the main diago
Their exponential decay@cf. Eq. ~23!# is the decoherence
shown by the dashed lines in the plots of Fig. 5. Thus i
reasonable to define the characteristic time of the deco
ence by

tdec5
2

N~2^n&11!
, ~26!

implying r2 j , j (tdec)5r2 j , j (0)/e.
In contrast to the simple time dependence ofr2 j , j (t), the

dynamics of the main diagonal elementsrm,m(t) depend on
the actual value of̂ n& and N rather sensitively. The zero
temperature cases, Figs. 5~a! and 5~d!, clearly show the ini-
tial excitation, contained inr j , j (0)51/2, cascading down to
-

l.

s
r-

r2 j ,2 j (`)51 as given by Eqs.~25!. At nonzero tempera-
tures (̂ n&.0) the time evolution of therm,m(t)’s is more
complicated because of the coupling to both neighbors;
Eq. ~20!.

More information can be extracted from the time evo
tion of therm,m(t)’s by calculating the energy of the atom
subsystem as the function of time:

E~ t ![^vaJz&~ t !

5vaTr@r~ t ! Jz#

5\va (
m52 j

j

mrm,m~ t !. ~27!

The process of dissipation~i.e., the change of the energy o
the atomic subsystem in time! can be very easily followed by
studying E(t). This function, normalized to the zero tem
perature stationary energy and shifted to vary from 1 to
stationary value: 11E(t)/(2 j \va), is shown in the plots of
Fig. 5 by the dotted lines. Since its asymptotic behavior
exponential-like, it is reasonable to define the characteri
time of dissipationtdiss by requiring

uE~ tdiss!2E~`!u5uE~0!2E~`!u/e. ~28!
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In order to ensure thatE(t) achieves its stationary value wit
a good accuracy in the plots of Fig. 5, we have set the t
range to 5tdiss. It is seen that the value ofr 5tdiss/tdec grows
with both the temperature and the number of atoms. A m
detailed analysis of this question follows later in this secti

The initial state of the process, the polar cat state,
sharply nonclassical features. On the other hand, at non
temperature the final stationary state of the present mod
a thermal state, which is classical in its nature.~At zero tem-
perature the stationary state is also nonclassical, since
the stateu j ,2 j &.) It is natural to ask, when does the tran
tion from the nonclassical to the classical stage occur? W
is a good measure of nonclassicality reflecting the chang
nonclassical nature of the corresponding state?

The spherical Wigner function~4! provides a good answe
to both these questions. Quantum states are generally co
ered essentially nonclassical if the corresponding Wig
function takes on also negative values. Therefore, to ans
the second question, for the measure of the degree of
classicality we propose to use the quantityn512(I 1

2I 2)/(I 11I 2), where I 1 is the integral of the Wigner
function over those domains where it is positive whileI 2 is
the absolute value of the integral of the Wigner function o
the domains where it is negative. Since the integral of
Wigner function over the sphere is 1,I 12I 251, thus n
52I 2 /(2I 211), and it is easy to see that 0<n,1. Accord-
ing to this definition, the larger the value ofn, the more
nonclassical the state, and for all classical states one hn
50.

Regarding the first question, namely, for how long t
state of the atomic system is nonclassical, we introduc
third kind of characteristic timetncl . We definetncl to be the
time instant when the corresponding spherical Wigner fu
tion becomes non-negative everywhere on the sphere, i.n
becomes 0. We will return to this question in connecti
with the time evolution of the Wigner function, which w
will present in Sec. IV C in more detail.

Based on the information provided by the three kinds
characteristic times, here we consider the dependence o
process on the number of atoms and on the temperatur
Fig. 6 we plot tdiss ~dashed line!, tdec ~solid line!, and tncl
~dotted line! as functions of the number of constituent atom
of the polar catN, for several temperatures, on a log-lo
scale.

It is seen that the characteristic time of decoherencetdec is
inversely proportional to the number of atoms~the straight
solid lines in Fig. 6!, according to definition~26!. Compared
to this, the characteristic time of nonclassicalitytncl de-
creases less rapidly with increasing number of atoms.
characteristic time of dissipationtdiss first slightly increases
at nonzero temperature, then it achieves a maximum wh
depends on̂n&, and finally it decreases nearly inversely pr
portional to the number of atoms. The values oftdiss at dif-
ferent temperatures seem to converge slowly beyond a
tain number of atoms.

However it seems rather surprising that the ratiotdiss/tdec
is not as large as such a quantity is usually expected to
@36,42–46#: in the case ofN51000 it is 4.04 for̂ n&50, and
it is still just around 350 for^n&5100. ~Note that ^n&
5100 would correspond to a temperature of 250 K in
case of typical experiments@2#.! The ratiotdiss/tdecseems not
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even to vary considerably with increasingN beyond the
maximum oftdiss mentioned above. Thus the process of d
coherence is extremely slow in the case of a polar cat s
which is coupled to the environment by an interaction lea
ing to the master equation~19!.

Similar effects have already been reported for other ph
cal systems earlier@47–51#. In a recent work Braun, Braun
and Haake@52# investigated the decoherence of an atom
SC stateut1&1ut2& based on Eq.~19! for zero temperature
By evaluating a certain quantity characterizing the decoh
ence rate at theinitial time, and applying a semiclassica
procedure for finite times, they concluded that for atomic
states witht1t2* 51 the decoherence slows down.

Our initial state, the polar cat state, fulfills the form
condition. The results presented in Fig. 6 derive from
solution of the master equation for the whole process. T
are in agreement with the statements of Ref.@52#, where the
initial stage of the decoherence is analyzed for the cas
zero temperature.

C. Wigner functions

We illustrate now the process of decoherence and di
pation using the spherical Wigner function~4!. In order to

FIG. 6. Plots of the characteristic times of decoherence (tdec)
~solid line!, dissipation (tdiss) ~dashed line!, and nonclassicality
(tncl) ~dotted line! vs the number of atoms on a log-log scale. T
uppermost solid and dashed lines are for^n&50 ~there is no plot for
tncl at zero temperature, since the state stays nonclassical:n.0 for
all times!, while the subsequent groups of the three kinds of lin
one under the other, are for^n&51, 10, and 100, respectively.
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FIG. 7. Polar plots of the temporal change of the Wigner function representing the decoherence and dissipation of the initial
state~1!, composed of five atoms and shown in Fig. 1, at zero temperature. The dynamics of the corresponding density-matrix ele
shown in Fig. 5~a!. The time instants~in units of 1/g) are ~a! 0.1, ~b! 0.2, ~c! 0.4 (5tdec), ~d! 0.506 (5tdiss), ~e! 0.8, and~f! 2.5.
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obtain its time dependence we have to calculate first
characteristic matrix%K,Q(t)5Tr@r(t)TK,Q

† # from the matrix
elementsrm,l(t) according to

%K,Q~ t !5A2K11

3 (
m52 j

j

~21! j 2mS j
2m

K
Q

j
m2QD rm,m2Q~ t !.

~29!

From Eq.~29! it can be seen that only%K,0 (K50,1,...,N)
and%N,N5(21)N(%N,2N)* are nonzero. This fact~which is
due to the initial conditions specified by the polar cat sta!
ensures that the azimuthal dependence of the sphe
Wigner function is determined only by the real part of t
spherical harmonicYN,N(u,f) which is proportional to
cos(Nf). Therefore the Wigner function keeps its initial az
muthal symmetry during the whole process. Further, si
%N,N(t)5(21)Nr j ,2 j (t), the azimuthal modulation of the
spherical Wigner function explicitly shows the degree of t
coherence of the actual state.

Figures 7 and 8 show the polar plots of the spheri
Wigner function transforming its shape in time at^n&50 and
^n&510, respectively. The initial state is a polar cat made
N55 atoms and its Wigner function is shown in Fig. 1.
e

al

e

l

f

In Figs. 7 and 8 the following main characteristics of t
process can be identified. The decoherence is shown by
decreasing and finally disappearing ripples along the equa
The vanishing of the nonclassicality, i.e., the decrease of
parametern, can be easily recognized as the decrease of
negative~dark! wings. At nonzero temperature they disa
pear exactly attncl , as shown in Fig. 8~c!. The dissipation is
represented by the approach of the initial upper and lo
bumps to each other. At zero temperature~Fig. 7! the upper
bump disappears and goes over to the lower one. This
tionary shape of the Wigner function corresponds to the lo
est coherent stateu j ,2 j & @33#. For ^n&510, when the sta-
tionary energy is close to the initial energy, not only does
upper bump move downward but the lower one also l
upward. The stationary Wigner function has nearly a sph
cal symmetry, although its center is not in the origin.

In agreement with Fig. 6, the plots of Figs. 7 and 8 sh
that the time scales of the decoherence and of the dissipa
are very close to each other in the case of five atoms; for z
temperature they are practically the same. Then the sphe
Wigner function exhibits considerable azimuthal modulati
~ripples! also attdiss.

We may come back finally to the question of finding t
characteristic time of nonclassicalitytncl . According to the
arguments given after Eq.~29!, it is sufficient to study the
Wigner function within af range of length 2p/N, e.g., 0
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FIG. 8. Polar plots of the temporal change of the Wigner function representing the decoherence and dissipation of the initial
state~1!, composed of five atoms and shown in Fig. 1, for^n&510. The dynamics of the corresponding density matrix elements is sh
in Fig. 5~c!. The time instants~in units of 1/g) are~a! 0.01,~b! 0.019 (5tdec), ~c! 0.031 (5tncl), ~d! 0.045,~e! 0.058 (5tdiss), and~f! 0.25.
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<f<2p/N, because it is invariant with respect of rotatio
by f5k( 2p/N), (k51,2,. . . ,N), i.e., it hasCN symmetry
at all times. Therefore the spherical Wigner function of
polar cat state, while subject to dissipation and decohere
always has its minimum value atf5p/N. Thus in order to
calculatetncl , it is sufficient to follow the time evolution of
the sectionW(u,f5p/N). Further, in connection with the
calculation of the measure of nonclassicalityn, it is sufficient
to consider the above mentionedf range when evaluating
the integralsI 1 and I 2 .

V. CONCLUSIONS

We have considered a class of states in an ensemb
two-level atoms, a superposition of two distinct atomic c
herent states which are called atomic Schro¨dinger-cat states
According to the relative positions of the constituents,
have defined polar and nonpolar cat states. We have inv
gated their properties based on the spherical Wigner fu
tion, which has been proven to be a convenient tool to inv
tigate the quantum interference effects.

We have shown that nonpolar cat states generally exh
squeezing, for which we have introduced the measureS. The
squeezing depends on the separation of the componen
the cat and on the number of the atoms the cat is consis
of. By solving the master equation of this system embed
e,

of
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e
ti-
c-
s-

it

of
ng
d

in an external environment, we have determined the cha
teristic times of decoherence, dissipation, and nonclassic
of an initial polar cat state. We have shown how these
pend on the number of the microscopic elements the cat c
sists of, and on the temperature of the environment. O
results show that the decoherence of the polar cat sta
surprisingly slow:tdiss/tdec is less than a half of an order o
magnitude for zero temperature, making these states po
tially significant in several areas of quantum physics, e
experimental studies of decoherence, quantum compu
and cryptography. We have visualized the process, gove
by the interaction with the external environment, using t
spherical Wigner function. Its transformation in time reflec
the characteristics of the behavior of the atomic subsystem
a suggestive way.
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