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Floquet theory of intracavity laser frequency modulation

S. Longhi and P. Laporta
Istituto Nazionale di Fisica per la Materia, Dipartimento di Fisica del Politecnico di Milano and CEQSE-CNR,

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
~Received 17 March 1999; revised manuscript received 10 June 1999!

The theory of laser oscillation with an intracavity sinusoidal modulation of the optical frequency is revisited
and analyzed in the framework of general principles governing the properties of time-dependent periodic
systems. It is shown that the two traditional and complementary descriptions of frequency modulation~FM!
laser oscillation and pulsed FM mode-locking@S.E. Harris and O.P. McDuff, IEEE J. Quantum Electron.
QE-1, 245 ~1965!; D.J. Kuizenga and A.E. Siegman,ibid. QE-6, 694 ~1970!# can be unified by means of a
more general approach based on a Floquet analysis of the laser equations in presence of a periodic phase
perturbation. Starting from a spatially extended model of intracavity laser frequency modulation for a homo-
geneously broadened two-level ring laser, the relevant Floquet modes and corresponding Floquet exponents
governing the stability properties of the nonlasing state are derived as solutions of a nonlinear eigenvalue
problem. Resonance phenomena, which occur when the modulation frequency is made close to an integer
multiple of the cavity axial mode separation, explain the onset of FM laser oscillation and the transition to the
pulsed FM mode locking closer to the synchronous modulation. In particular, the transition from FM laser
oscillation to the pulsed FM mode locking is shown to be sharp and due to a crossing of the threshold curves
of two distinct Floquet modes. The role of cavity dispersion on the transition is also investigated.
@S1050-2947~99!06610-X#

PACS number~s!: 42.60.Fc, 42.55.Ah
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I. INTRODUCTION

Intracavity modulation of the phase~or frequency! of the
electromagnetic field in optical cavities and lasers is kno
to profoundly affect the properties of the emitted light
different fashions, and a wide variety of effects, sometim
unpredictable at first sight, have been investigated both th
retically and experimentally in different contexts. Amon
others, these include the generation of highly coherent
quency modulated signals in lasers@1–4#, laser frequency
switching@5#, ultrashort pulse generation@6–8#, and genera-
tion of squeezed states of light~see, e.g., Refs.@9,10#, and
references therein!. In case of a periodic~sinusoidal! phase
perturbation, resonance phenomena are known to ap
whenever the modulation period is equal to~or is an integer
fraction of! the cavity photon transit time in such a way th
even a small phase perturbation can strongly affect the
namical properties of the system. A well-known manifes
tion of this resonance is the transition of the operational
gime of an internally frequency-modulated laser whi
occurs when approaching the synchronous modulation c
dition @1,11#. In fact, when the intracavity phase perturbati
is driven at a frequency which is approximately but not e
actly equal to the cavity longitudinal mode separation or
one of its harmonics, the laser usually oscillates in the
called FM regime. In this case the output field is basically
almost ideal frequency-modulated signal with an effect
modulation index which is strongly enhanced with respec
that of the applied perturbation due to a cavity effect@1–4#.
However, as the modulation frequency is made closer to s
chronism, strong distorsions from the ideal FM operat
take place, with the appearance of deep amplitude mod
tions ~AM ! superimposed to the pure phase modulation; f
ther closer to resonance the laser switches into a diffe
PRA 601050-2947/99/60~5!/4016~13!/$15.00
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regime of operation, the pulsed FM mode-locking regime
which the laser radiation consists of a train of short mo
locked pulses with a repetition frequency equal to the mo
lation frequency@6–8#. The theoretical framework of lase
oscillation with an intracavity frequency modulation relie
traditionally on two complementary approaches, namely
frequency-domain~or coupled-mode! method as originally
proposed by Harris and McDuff for inhomogeneously broa
ened lasers@1#, and the time-domain method, the simple
form of which was pioneered in an important series of pap
by Kuizenga and Siegman on the theory of FM mod
locking for homogeneously broadened lasers@7,8,12#; an ex-
cellent and comprehensive review of these methods is giv
for instance, in Refs.@11,13#. Although the two mentioned
descriptions are capable of providing the most import
physical insights into the problem, a general and deta
analysis of the stability properties of a laser subjected to
intracavity periodic phase perturbation seems not to be av
able in the literature yet, perhaps due to the complexity
the analysis when adding time-dependent perturbations to
laser equations in the physical space-time variables. Suc
analysis, however, would be of upmost interest for seve
reasons. First, a linear stability analysis of the nonlasing s
is capable of predicting the nature of the most unstable p
turbations that spontaneously will grow from noise as
laser gain parameter is increased beyond threshold,
hence should be able to predict the characteristics of
bifurcating lasing state and, in particular, the occurrence
resonance phenomena in a very general fashion. Secon
bifurcation analysis should clarify the onset of transiti
from FM laser operation to pulsed FM mode locking whi
occurs very close to the synchronous modulation conditi
an aspect of the problem which is hard to investigate in de
within the most traditional descriptions and that has not
4016 ©1999 The American Physical Society
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PRA 60 4017FLOQUET THEORY OF INTRACAVITY LASER . . .
ceived, as a consequence, an adequate attention. Thi
complete linear stability analysis could be useful to inve
gate interesting transient phenomena, including trans
built-up of FM laser oscillation, providing an initial basis t
explain noisy phenomena and other varieties of unstable
haviors observed in phase-modulated lasers when ope
close to the transition region which separates FM oscillat
and FM mode-locking@11,14#.

In this paper we present a detailed and comprehen
linear stability analysis of a homogeneously broadened t
level ring laser with an intracavity periodic phase perturb
tion based on a Floquet analysis of time-dependent Maxw
Bloch laser equations. Due to the periodic time depende
of parameters in the laser equations introduced by the p
modulation, any initial field perturbation in the cavity can
decomposed as a superposition of Floquet solutions, w
evolve ~according to the Floquet theorem@15#! as indepen-
dent modes. A Floquet mode is composed basically b
periodic time-dependent part, with periodicity equal to t
modulation period, and by an exponential term;exp(mt),
where the characteristic exponentm determines the growth
or decay of the mode. We show that the problem of de
mining the characteristic Floquet exponents and correspo
ing periodic Floquet modes for the spatially extended la
cavity can be reduced to the solution of a nonlinear eig
value problem involving solely the time variable. The so
tion to this problem clearly reveals the existence of re
nances and explains the onset of FM oscillation,
appearance of distorted FM modes and the transition to
pulsed FM mode locking regime. In particular, a major res
regards the transition from FM oscillation to FM mod
locking. We show, in fact, that this transition is not smoo
as one could expect, but it is abrupt and corresponds to
intersection of the threshold curves of two distinct Floqu
modes. The role of cavity dispersion and frequency pull
effects of the gain medium on the transition point are a
discussed.

The paper is organized as follows. In Sec. II the mode
intracavity laser frequency modulation is reviewed, and
linear stability analysis of the nonlasing solution, based o
Floquet analysis of the laser equations, is presented. A
tailed analysis of different regimes of operation is develop
in Sec. III, with special emphasis to the transition betwe
the FM regime and the pulsed FM mode locking. Finally,
Sec. IV the main conclusions are outlined.

II. DESCRIPTION OF THE MODEL AND FLOQUET
ANALYSIS

A. The model

The starting point of our analysis is provided by a rath
general model of frequency modulation inside a laser cav
The system under investigation is schematically depicted
Fig. 1 and it consists of a ring cavity of geometrical lengthL
containing a gain medium composed by a collection of tw
level homogeneously-broadened atoms, a traveling-w
longitudinal electro-optic phase modulator, and a fil
and/or a dispersive line which account for finite ga
bandwidth and/or dispersive effects in the cavity.

The dynamical equations for the field variables inside
optical cavity are represented by the Maxwell-Bloch la
, a
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equations for a homogeneously broadened two-level la
@16#, extended to include the parametric term of polarizat
due to the phase modulator and the linear dispersive or
sobptive effects of the filter and of the dispersive eleme
possibly present in the cavity. The presence of such elem
is here simulated by free-propagation of the field, for a d
tancel f , through a linear dispersive and absorptive mediu
In the plane-wave and rotating-wave approximations
equations of motion read

1

c
] tF52]zF2aP1 iSFcos@vm~ t2z/c!1f#2rF

1b] t
2F, ~1!

] tP52g'@FN1~11 id!P#, ~2!

] tN52g iFN212
1

2
~PF* 1FP* !G , ~3!

where z is the longitudinal spatial variable along the rin
cavity,c is the group velocity of light at each plane inside t
optical cavity,F and P are the normalized slowly varying
envelopes of the electric and polarization fields, respectiv
the carrier frequency of which has been chosen equal to
eigenfrequencyvc of the empty cavity closest to the atom
transition frequencyvat , d5(vat2vc)/g' is the atomic de-
tuning parameter,N is the normalized population inversio
of the two-level atoms,a is the small-signal gain per uni
length in the active medium,r5r(z) accounts for both dis-
tributed and lumped cavity losses,S is proportional to the
parametric contribution to the polarization inside the elect
optic modulator,vm is the modulation frequency, andf an
arbitrary phase delay. The last term in Eq.~1! describes the
propagation of the field through the dispersive and abso
tive medium at leading order, and simulates the effects
filtering @Re(b)# and dispersion@ Im(b)# inside the cavity.
In writing Eq. ~1! we have also assumed that the elect
optic phase modulator operates in a traveling-wave confi
ration with exact matching between the phase velocities
light and of the modulation signal@17#. The boundary con-
ditions imposed by the ring cavity are given by

F~L,t !5F~0,t !, ~4!

FIG. 1. Schematic diagram of the frequency-modulated la
cavity.
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4018 PRA 60S. LONGHI AND P. LAPORTA
where the origin of the longitudinal coordinatez has been
taken at the exit of the modulator~see Fig. 1!. It should be
noticed that, in Eqs.~1!–~3!, the variablesa, S, andb must
be regarded as functions ofz, assuming constant values in
side the gain medium, the modulator and the filter, resp
tively, and vanishing outside these three regions. Likew
cavity losses due to output coupling at the partially trasm
ting mirror, located atz5z3 ~see Fig. 1!, can be simulated in
Eq. ~1! by assumingr(z)5 ld(z2z3), wherel 52 ln r andr
is the field reflectivity of the output mirror.

The system of Eqs.~1!–~3!, together with the boundary
conditions~4!, represents our basic model of intracavity las
frequency modulation and provides the starting point of
following analysis. It is worth pointing out that a time
domain approach to the intracavity frequency modulat
problem, close to the most familiar descriptions of mo
locking and related forms of mode coupling in lase
@11,13,18#, could be derived by transformation of th
boundary-value problem, expressed by Eqs.~1!–~4!, into a
propagative problem. In this case a differential-delayed eq
tion for the field envelope at a reference plane inside
cavity is derived to simulate the successive transits of
field in the cavity~see, for instance, Ref.@19#!. Although the
propagative model provides a more direct and physical
ture of field propagation inside the cavity than the spatia
e
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extended model@Eqs.~1!–~4!#, powerful mathematical tools
useful for the present physical problem~such as the Floque
theory of periodic equations@15#! are most easily applicable
to partial differential equations than to differential-delay
equations. In the following, therefore, we will develop o
analysis making use of the full spatially extended model.

B. Linear stability analysis of nonlasing solution: Floquet
analysis

The basic properties of the laser emission in the prese
of an intracavity phase perturbation depend upon the na
of the solutions that the laser selects when the nonlasing s
becomes unstable. These solutions are found by lineari
the laser equations~1!–~3! around the nonlasing solutionF
5P50, N51 and looking for the growth of perturbations
The relevant equations in the linearized dynamics are th
for the electric and polarization fields, which, after introdu
tion of the auxiliary variableD5b] tF, can be cast in the
normal form

] tv5Lv, ~5!

where v(z,t)[(F,D,P)T contains the field variables, an
L(t) is a time-dependent periodic operator given by
L5S 0 1/b 0

r1]z2 iS cos@vm~ t2z/c!1f# 1/bc a

2g' 0 2g'~11 id!
D . ~6!
e
of
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n
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ob-
s
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g

Since the linear operatorL(t) is invariant under the discret
time translationt→t1Tm , whereTm is the modulation pe-
riod, the Floquet theorem@15# applies to the correspondin
partial differential equations, and the relevant Floquet so
tions are functions of the type

v~z,t !5um~z,t !exp~mt !, ~7!

where $m% are the characteristic Floquet exponents a
um(z,t)5um(z,t1Tm) the corresponding periodic Floque
modes, which are eigenvalues and eigenfunctions, res
tively, of the Floquet operatorL2] t , i.e.,

@L~ t !2] t#um~z,t !5mum~z,t !. ~8!

In the eigenvalue equation~8!, the functional space is de
fined by the class of functions that are periodic int with
periodTm and inz with periodL. The temporal periodicity is
a consequence of the Floquet theorem, whereas the sp
periodicity is due to the ring cavity boundary conditions@Eq.
~4!#. In view of the identity

exp~mt !um~z,t !5exp~m̃t !ũm~z,t !, ~9!

where m̃5m1 ikvm , k50,61,62, . . . , ũm(z,t)
5um(z,t)exp(2ikvmt), we observe that the characterist
Floquet exponents$mn% and corresponding periodic Floqu
-

d

c-

tial

modes can be defined only mod(ivm), and therefore a degre
of freedom is left in the choice of the imaginary part
Floquet exponents. Conversely, the real part ofm is uniquely
determined, and it governs the linear stability of the nonl
ing state. In fact, due to the periodicity ofum(z,t) with re-
spect tot, from Eq.~7! it is clear that the nonlasing solutio
is linearly stable provided that Re(mn),0 for any Floquet
exponentmn , and that an instability~laser threshold! arises
when at least one of the Floquet exponents crosses the im
nary axis. The determination of the Floquet exponents$mn%
requires to solve a two-dimensional linear eigenvalue pr
lem @Eq. ~8!#. As it will be shown below, such problem i
equivalent to a one-dimensional nonlinear eigenvalue pr
lem. In fact, after settingum5(Em ,Wm ,Vm)T, from Eq.~8! it
follows that Wm5b(m1] t)Em and Vm52x(m1] t)Em ,
where x(v)51/(11 id1v/g') is the complex Lorentzian
function of the two-level gain medium, so that the followin
boundary-value problem forEm(z,t) is obtained:

]zEm5S Gm~z,t !2
m

c DEm , ~10!

where
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Gm~z,t !52r2
1

c
] t1ax~m1] t!1b~m1] t!

2

1 iS cos@vm~ t2z/c!1f#

andEm(L,t)5Em(0,t). The solution of Eq.~10! can be writ-
ten as

Em~L,t !5expF E
L2 l m

L

GmdzGexpF E
0

L2 l mGmdzG
3exp~2mL/c!Em~0,t !, ~11!

where, for the sake of convenience, the field propaga
inside the phase modulator has been evidenced through
operator exp(*L2lm

L Gmdz). After observing that

expF E
L2 l m

L

G~z,t !dzG5exp$ iD cos@vm~ t2L/c!1f#%

3expS 2
l m

c
] tD ,

whereD5Slm is the single-pass modulation index, using t
boundary conditionEm(L,t)5Em(0,t) and assumingf
5vmL/c, we finally obtain the following nonlinear eigen
value equation forEm(t)[Em(0,t):

Q~m,t !Em5exp~2pm/vc!Em , ~12!

wherevc52pc/L is the free-spectral range of the laser ca
ity and Q(m,t) is a time-dependent operator, defined on
space of functions that are periodic in the interval@0,Tm#,
given by

Q~m,t !5exp@ iDcos~vmt !#exp@D f~] t1m!2

1g0x~] t1m!2 l #exp~dT] t!. ~13!

In Eq. ~13!, D f5b l f is the filter parameter,dT5Tm2TR is
the time detuning between the cavity round-trip timeTR

5L/c and the modulation periodTm52p/vm , l 5*0
Lrdz

are the single-pass cavity losses, andg05a l g is the gain
parameter. The nonlinear eigenvalue equation~12! is the ba-
sic result of this subsection and allows one to determine
set of Floquet exponents$mn% and corresponding periodi
Floquet modes$En% at the reference planez50. It is impor-
tant to point out that, although in general the form of pe
odic Floquet modes along the cavity depends on the pos
of the various elements inside the cavity~i.e., on the cavity
topology!, the Floquet exponents$mn%, and therefore the
threshold conditions for the various Floquet modes, turn
to be independent of cavity topology, as it should be. Due
the nonlinear dependence of the operatorQ on the Floquet
exponentm, the problem of determining eigenfunctions a
corresponding eigenvalues ofQ is in general challenging
However, an effective iterative procedure can be used wh
ever any frequency shift and line broadening effect indu
by the gain medium and by the filter on the longitudin
modes of the empty cavity is small. This case applies,
instance, to laser systems with a moderate gain or loss
with gain and dispersion lines much broader than both
n
the
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modulation frequency and the free spectral range of the la
cavity. These conditions are typically fullfilled, for instanc
in case of intracavity frequency modulation of broad-ba
solid-state lasers, where the effective cavity bandwidth, l
ited by either the atomic transition linewidth~as in Nd:YAG
lasers, see Ref.@4#! or intracavity birefringent tuners or eta
lons ~as in FM-operated Ti:sapphire or Er-Yb:glass las
and in erbium-doped fiber lasers, see Refs.@20–22#!, can
vary typically from few hundreds of GHz up to a few THz
and is therefore much larger than modulation frequenc
achievable with electro-optic phase modulators. In this ca
a leading order approximation to the Floquet exponents
be obtained by an analysis of the lossless empty cavity;
is done by assuming in Eq.~12! Q;exp(dT]t), which yields
exp(2pm/vc);exp(iavmdT), a50,61,62, . . . . Sincem is
defined mod(vm), we can satisfy this condition by assumin

mn
(0)5 invc , ~14!

wheren is an arbitrary integer. Once we have a first appro
mation to the Floquet exponentsmn

(0) , we can use them as
first trial for a self-consistent calculation of both period
Floquet modes and characteristic exponents by succes
iterations. For each value ofmn

(0) given by Eq. ~14!, the
linear eigenvalue problem

Q~mn
(0) ,t !Em5LnEm ~15!

can be solved and, sinceLn5exp(2pmn /vc), the new value
mn closest tomn

(0) can be determined. With this better valu
of mn one can proceed to update the operatorQ and find a
new estimate to the characteristic exponent and corresp
ing Floquet mode. Note that, due to the periodicity ofEm ,
the problem of determining the eigenvalues of Eq.~15! is
equivalent to the computation of the eigenvalues of
infinite-dimensional matrix associated to the periodic ope
tor Q, which can be easily done by standard numerical me
ods. The iteration can be repeated until convergence
reached within a fixed precision level. It should be notic
that, in the case of small frequency shift effects, an accu
approximation to the characteristic exponents and co
sponding periodic modes is obtained at the first iterati
Furthermore, if the modulation frequency is close to an in
ger multiple ofvc ~which is indeed the case of major intere
in practice!, due to the invariancem→m1 invm from Eq.
~14! it follows that the characteristic exponents can be or
nized in N groups of nearly degenerate modes with valu
close to

mn
(0);0,ivc ,2ivc , . . . ,~N21!ivc , ~16!

whereN is the integer closest tovm /vc . These groups of
modes correspond to the so called supermodes~or hyper-
modes! of the harmonic FM laser~see, for instance, Ref
@23#!. Note that, due to the near degeneracy of modes wi
each set, a leading order approximation of eigenmodes
any set is at once obtained by solving the linear eigenva
problem@Eq. ~15!# when the operatorQ is evaluated in cor-
respondence of the various values ofmn

(0) given by Eq.~16!.
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4020 PRA 60S. LONGHI AND P. LAPORTA
In particular, in the fundamental FM operation, i.e., ifvm
;vc , there is only one set of eigenmodes corresponding
mn

(0);0.

III. ANALYSIS OF DIFFERENT REGIMES
OF OPERATION BY PERTURBATION

THEORY OF FLOQUET MODES

It is known that the frequency modulation introduced
the modulator inside the laser cavity can strongly influen
the laser threshold as well as the spectral and tempora
havior of the selected lasing state near threshold even if
phase perturbation is arbitrarily small. This singular behav
is related to a resonance phenomenon which occurs whe
modulation frequency is made close to an integer multiple
the cavity axial mode separation, by means of which effici
mode coupling of laser modes can take place@11#. This reso-
nant phenomenon is the basic physical principle underly
the appearance of the two major regimes of operation o
phase-modulated laser, namely, frequency modulation o
lation ~where the laser emits a nearly constant amplitu
phase modulated beam! and FM mode locking~correspond-
ing to a pulsed regime of operation!. In this section we show
that the Floquet theory developed in the previous sectio
capable of providing a unified and comprehensive view
the basic physical phenomena occuring in a phase-modu
laser, namely, the existence of resonances, the onset o
quency modulation regime and the transition to FM mo
locking. In particular, it shows that the transition from F
oscillation to FM mode-locking regimes is sharp and cor
sponds to an intersection in the phase plane of two diffe
bifurcating Floquet modes. In Sec. III A we develop a p
turbative theory of Floquet modes starting from the modes
the nonmodulated empty laser cavity, and show the failur
the perturbation analysis and the appearance of secular
nances for modulation frequencies approaching the ca
resonance frequencies. In Sec. III B we improve the per
bation analysis by considering a near resonant freque
modulation, and show that the most natural basis for
asymptotic expansion is provided in this case by the Be
modes of the phase-modulated empty cavity. This anal
again fails when the frequency detuning parameter is m
closer to zero and the bandwidth of the Bessel modes
comes comparable to the gain bandwidth of the laser. In
case a transition from FM oscillation to the pulsed F
mode-locking takes place, which is analyzed in details
Sec. III C.

A. The off-resonance regime

Let us assume that the longitudinal modes of the n
modulated, lossless empty cavity are weakly perturbed
the presence, inside the cavity, of the various elements
picted in Fig. 1. As we will show below, this is indeed wh
happens whenever the modulation frequencyvm is far away
from the resonance cavity eigenfrequencies. We can form
state our perturbation idea by introducing a bookeeping
rametere, which provides the smallness of phase modu
tion, gain, loss and cavity dispersion effects, and we set

Q~m,t !5exp@ i eDcos~vmt !#exp@eB~m!#exp~dT] t!,
~17!
to
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where

B~m!5D f~] t1m!21g0x~] t1m!2 l . ~18!

Then we look for a solution of the nonlinear eigenval
equation~12! as an asymptotic expansion ine by setting

E~ t !5E(0)1eE(1)1e2E(2)1•••, ~19!

m5m (0)1em (1)1e2m (2)1•••. ~20!

After introduction of expansions~19!,~20! into Eq. ~12! and
using Eqs.~17!,~18!, a hierarchy of equations at successi
orders ine is obtained. The eigenvalue equation at lead
order, O(e0), is solved by the following set of eigenfunc
tions and corresponding eigenvalues:

En
(0)5exp~ invmt !, ~21!

mn
(0)5 ingvc , ~22!

wheren50,61,62, . . . is themode index and

g512vm /vc . ~23!

Note that, at this order, the complete Floquet mod
En(t)exp(mnt) reduce to the longitudinal modes of the los
less, nonmodulated empty cavity, and that all these mo
are neutrally stable at this order. The next oder correction
the Floquet exponents is obtained from the solvability co
dition at O(e2) in the asymptotic expansion, which yields

mn
(1)5

vc

2p
@2D fn

2vc
21g0x~ invc!2 l # ~24!

and the solution at this order is given by

En
(1)5A1 exp@ i ~n11!vmt#1A2 exp@ i ~n21!vmt#,

~25!

where

A652
iDexp~22p ing!

2~exp~6 i2pg!21!
. ~26!

Equations~25!,~26! show the formation, at the leading orde
in the perturbation expansion, of sideband modes at frequ
cies6vm around the cavity axial mode induced by the pha
modulator, whereas Eq.~24! determines at leading order th
growth rates, and hence the threshold condition, of the v
ous modes. It should be noticed that the asymptotic exp
sion given by Eqs.~19!,~20! is meaningful provided that any
term in the expansion is of increasing order ine. An inspec-
tion of Eqs.~25!,~26! reveals thatEn

(1) becomes of order;1
wheneverg gets close to an integer by less than;D, i.e.,
whenever the modulation frequency is close to an inte
multiple of the cavity free spectral range. This case, wh
corresponds to a near-resonant modulation of the opt
field, leads to a secular growth of generated sideband mo
and indicates strong coupling among the longitudinal mo
of the lossless, nonmodulated empty cavity.
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B. The near-resonant regime: FM laser oscillation

When the modulation frequencyvm is close to an intege
multiple of the cavity free-spectral rangevc , the analysis
developed in Sec. III A indicates that even a small value oD
can drastically change the periodic Floquet modes fr
those corresponding to the nonmodulated empty cavity
this case, the laser operates in the so-called frequency m
lation regime, where, at leading order, the natural ‘‘las
modes’’ are Bessel modes of the phase-modulated em
cavity @1,11#. For the sake of clearness, we will limit ou
analysis to the casevm;vc , i.e., to the fundamental FM
operation, although the present analysis could be extende
a modulation at harmonic orders. To study the near-reso
regime, it is convenient to follow a different strategy fro
that used in the previous section by including at the zer
order approximation in the asymptotic expansion the ph
modulation term, regardless of the smallness ofD. This cir-
cumstance is related to the fact that, as we will show bel
the natural modes of the laser for a near resonant modula
are those of the phase-modulated empty cavity. In orde
proceed in the analysis, we assumeg;O(e) @see Eq.~23!#,
where e is a bookeeping parameter which organizes
asymptotic expansion, and we set

Q~m,t !5Q0~ t !exp@e2B~m!# ~27!

whereQ0(t)5exp@iD cos(vmt)#exp(dT]t) andB(m) is given
by Eq. ~18!. Note that in writing Eq.~27! we have assumed
B;e2; the choice of this scaling will be clearer later and
turns out to be satisfied in the range of parameters where
laser operates in the undistorted FM regime. The nonlin
eigenvalue equation~12! is solved by an asymptotic expan
sion ine of eigenvalues and eigenfunctions, as given by E
~19!,~20!. At zeroth order the eigenvalue problem reads

exp@ iDcos~vmt !#E(0)~ t1dT!5expS 2p
m (0)

vc
DE(0)~ t !

~28!

whose eigenfunctions and corresponding eigenvalues ar

En
(0)[un&5exp~ invmt !exp@ iGcos~vmt1w!#, ~29!

mn
(0)5 ingvc , ~30!

wheren50,61,62, . . . , and

G5
D

2 sin~vmdT/2!
;

D

2pg
, ~31!

w52
vmdT

2
1

p

2
. ~32!

Notice that at this order the complete Floquet mod
En(t)exp(imnt) are given by exp(invct)exp@iG cos(vmt1w)#,
i.e., they correspond to the well-known Bessel modes o
phase-modulated optical cavity. Note also that, asg;e is
small, for a given valuen̄, all modes withn2n̄;O(1) are
degenerate at leading order with eigenvaluem (0); i n̄g. To
correctly perform a perturbative analysis we must theref
assume as a solution at leading order an arbitrary linear
In
u-

r
ty

to
nt

h
e

,
on
to

e

he
ar

s.

s

a

e
u-

perposition of nearly degenerate modesun&, the coefficients
of the superposition at any order being determined by
solvability conditions at the next order. If we limit our analy
sis by considering FM modes that are close to the cente
the laser gain line, we may assume atO(e0):

E(0)5(
n

cn
(0)un&, m (0)50, ~33!

where the sum in Eq.~33! is extended over the modes wit
n;O(1) andcn

(0);O(1). At order ;e in the perturbation
expansion, we obtain

~Q021!E(1)5(
n

S 22p ing1
2p

vc
m (1)D cn

(0)un&. ~34!

Since we require thatE(1);O(e), the right hand side in Eq
~34! must vanish, i.e.,

S 22p ing1
2p

vc
m (1)D cn

(0)50. ~35!

Equation~35! can be satisfied by assuming

cn
(0)5dn,n̄ , m (1)5 ign̄vc ~36!

and the solution atO(e) is given by

E(1)5 (
n (nÞn̄)

cn
(1)un&. ~37!

Equation~36! shows that, at leading order, the Bessel mod
of the modulated empty cavity are not mixed, i.e., they re
resent the natural modes of the laser system for the cho
scaling in the perturbation expansion. It may be noticed a
that at this order any solution corresponding to different v
ues of n̄ is neutrally stable, so that we need to push t
perturbation analysis to the second order to remove the
generacy of Re(m). At O(e2) we get

~Q021!E(2)522p ig (
n (nÞn̄)

~n2n̄!cn
(1)un&

1F2p

vc
m (2)2Q0B~0!G un̄&. ~38!

The solutionE(2) to Eq. ~38! is of order;e2 provided that
the right hand side in the equation be zero. Since the Be
modesun& form a set of orthogonal functions, this conditio
gives

m (2)5
vc

2pTm
^n̄uQ0B~0!un̄&, ~39!

cn
(1)5

i

2pTmg~n2n̄!
^nuQ0B~0!un̄& ~nÞn̄!, ~40!

where^ f ug&5*0
Tmf * (t)g(t)dt denotes the usual scalar pro

uct. To evaluate the integrals in Eqs.~39!,~40!, we consider
the case, usually satisfied in practice, where the comp
Lorentzian functionx(v) of the gain medium can be ex
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panded up to the second order inv and the laser cavity is
tuned to resonance with the atomic transition frequencyd
;0); after setting

x~] t!5~11] t /g'!21;12
1

g'

] t1
1

g'
2

] t
2

in Eq. ~18!, we obtain

m (2)5
vc

2p F2S n̄2vm
2 1

G2vm
2

2 D S D f1
g0

g'
2 D

1g02 l 2
i n̄vmg0

g'
G ~41!

and

cn̄61
(1)

57
Gvm

4pg F g0

g'

2 i S D f1
g0

g'
2 D ~2n̄61!vmG , ~42!

cn̄62
(1)

57
i

4pg

G2vm
2

4 S D f1
g0

g'
2 D , ~43!

cn
(1)50 for nÞn̄61, n̄62. ~44!

Equation~41! can be used to determine the threshold con
tion of the various FM modes, whereas Eqs.~37!,~42!–~44!
provide the leading order correction to the ideal FM mod
and show the appearance of amplitude modulations~AM ! at
frequenciesvm and 2vm superimposed to the pure FM sig
nal. This is in agreement with the previous analysis done
Harris and McDuff@1# and explains the onset of AM osci
lations observed in experiments on FM operated las
@3,19#. By setting Re(m (2))50 in Eq. ~41!, the threshold
conditionsgth(n̄) for the various Bessel modes are found
be

gth~ n̄!5
l 1Dg~vm

2 n̄21G2vm
2 /2!

12~vm
2 n̄21G2vm

2 /2!/g'
2

, ~45!

whereDg5Re(D f). From Eq.~45! it follows that the reso-
nant FM mode, corresponding ton̄50, has the lowest
threshold, and Eqs.~42!,~43! indicates that for this mode AM
oscillations at frequencyvm vanish if the cavity dispersion is
negligible @i.e., if Im(D f);0]. This result is in agreemen
with the analysis previously given in Ref.@19#, where it was
also experimentally observed that AM oscillations at f
quency 2vm , i.e., at a frequency twice the modulation fr
quency, are dominant over AM oscillations at the modulat
frequency. The asymptotic expansion based on the sca
used in Eq.~27! and corresponding to the FM regime
operation of the laser is valid provided that the bandwidth
the FM spectrum, given approximately by;2Gvm , remains
much smaller than the gain bandwidth of the cavity, det
mined either by the gain medium or by the filter. This can
seen, for instance, by an inspection of Eq.~43!, which re-
veals thatE(1) remains small and of order;e provided that
i-

s

y

rs

-

n
ng

f

r-
e

G2vm
2 ~D f1g0 /g'

2 !;e2. ~46!

It should be noticed that, when the detuning parameterugu
governing the effective modulation indexG @see Eqs.
~23!,~31!# is so close to zero that the left hand side in E
~46! is still small, but of order;e, a different scaling forB
should be used in Eq.~27!, namely,B;e. In this case, it
turns out that the effects of finite gain bandwidth and cav
dispersion would appear already atO(e) in the asymptotic
expansion, and strong distorsions of FM modes would
therefore present at leading order. This situation foresees
transition from the FM regime to the pulsed mode-locki
regime, which is analyzed in the next subsection and in
Appendix.

C. Transition from the FM regime to pulsed FM mode
locking

Break up of the FM regime described in previous sect
occurs when the modulation frequency is made close to
axial mode separation~or to an integer multiple of it! by an
amount such that condition~46! is violated. Conversely, it is
known that at resonance~or for a modulation frequency de
tuned from exact synchronism by a small amount! the laser
operates in the FM mode-locking regime, which is char
terized by the formation of a periodic train of short puls
which pass through the modulator in correspondence to
ther the maxima or minima of the phase perturbation.
though the theory of FM mode locking for homogeneou
broadened lasers, including detuning effects, has been wi
studied in literature~see, for instance, Refs.@7,12,24#!, for
the sake of completeness it is reviewed in the framework
the Floquet theory in the Appendix. The analysis of the la
behavior in the detuning range connecting the exact sync
nous or slightly detuned operation, corresponding to F
mode locking, and the moderate detuning region, co
sponding to the FM oscillation regime, is challenging and
completely satisfactory analysis seems to be available ye
this subsection we show that the FM theory based on
Floquet analysis is capable of providing a satisfactory a
comprehensive understanding of the transition from FM
cillation to FM mode locking; in particular, we show that th
transition is sharp and due to an intersection of two Floq
modes in the plane (g,gth). For the sake of simplicity, we
will focus our analysis to the case of frequency modulat
at the fundamental harmonic, i.e.,vm;vc . Furthermore, we
will be mainly concerned with the case where cavity disp
sion is negligible and the overall gain bandwidth of the ca
ity is determined by the filter, leaving a discussion abo
cavity dispersion effects and finite bandwidth of the ga
medium to the end of this paragraph. We thus set in Eq.~13!
x;1 andD f5Dg1 iD i;Dg , where the real parametersDg
and Di describe finite gain badwidth and cavity dispersi
effects, respectively. In this case, the dimensionless free
rameters that govern the properties of Floquet modes
characteristic exponents are the normalized frequency de
ing parameterg512vm /vc , the single-pass modulatio
depth D, and the parameterN51/vmADg , which corre-
sponds roughly to the number of cavity axial modes that
under the gain curve of the cavity. Figure 2 shows a typi
behavior of the threshold curvegth2 l of the laser as a func
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PRA 60 4023FLOQUET THEORY OF INTRACAVITY LASER . . .
tion of the normalized detuning parameterg, as obtained by
numerical solution of the eigenvalue equation~12! using the
technique described at the end of Sec. II B. The numbe
modes considered in the numerical discretization of the
eratorQ has been chosen, for each value of the freque
detuning parameter, sufficiently large to contain all nonv
ishing modes. As it can be seen from Fig. 2, the thresh
curve is symmetric around resonance, and it results from
intersection of two different curvesa andb that correspond
to the laser oscillating in the FM regime~far from resonance!
and in the pulsed FM mode locking~close to the resonance!.
Far away from resonance, the threshold for laser oscilla
approaches the valuegth2 l;0 of the free-running laser. As
the detuning parameterg is moved toward the resonanc
from both sides~curvea in the figure!, there is an increase o
the threshold, which is due to the spectral broadening of
central Bessel mode of the phase modulated cavity~see Sec.
III B !; the dotted lines in the figure show the threshold co
dition for this mode as predicted by the perturbation analy
developed in Sec. III B and given by Eq.~45! with n̄50 and
Gvm!g' . Close to resonance, at aroundg;60.00031,
crossing curveb results in a threshold lowering, which mark
the transition to the pulsed FM mode-locking regime. T
dotted line in the figure, almost overlapped with curveb,
shows the threshold condition for the fundamental Gaus
mode-locking mode as predicted by the perturbation anal
developed in the Appendix@see Eq.~A26!#. To better under-
stand the origin of the transition, it is worth considering t
behavior of the threshold curves for a few low-order Floq
modes in the neighbor of the transition region, which a
shown in Fig. 3. The figure clearly indicates that the tran
tion from FM oscillation to FM mode locking is due to th
crossing of the threshold curves of two different Floqu
modes, labeled bya andb in the figure. The intensity profile
and corresponding spectra of these Floquet modes for a
values of the frequency detuning parameter are shown
Figs. 4–6. It should be noted that curveb actually describes
two distinct Floquet modes that are degenerate in thresh

FIG. 2. Laser thresholdgth2 l as a function of the normalized
frequency detuning parameterg512vm /vc for parameter values
D50.04, N[1/(vmADg)5108, andD f51/g'50. The vertical
dashed lines in the figure separate the regions of FM oscillation
of pulsed FM mode locking, whereas the dotted line, partially ov
lapped with the continuous curve, is the threshold curve as
dicted by Eqs.~45!,~A26!.
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These modes correspond to two opposite values of Im(m),
and their spectra are symmetric about the center of the
curve ~see Figs. 5,6!. From these figures it can be seen th
far away from the transition region@Figs. 4–6~a!#, the three
modes correspond to almost ideal FM signals as discusse
Sec. III B, and we can therefore use the notations introdu
in that section to label the modes. The mode correspond
to curvea both in Figs. 2 and 3 is the central Bessel mo
u0& with the lowest threshold, whereas the other two deg
erate modes~curve b) are two higher-order modesu6n&
which corresponds to FM signals with a carrier frequen
shifted from the center of the gain line by;6nvc . @See
Eqs.~29!,~30!.# For the parameter values chosen in Figs. 2
it turns out thatn514. As the detuning parameter is adi
batically moved closer to the transition region, strong dist
sions of the mode spectra from ideal Bessel amplitudes
pear @Figs. 4–6~b!#, until very close to or across th
transition region it becomes even inappropriate to speak
FM modes@see Figs. 4–6~c!,6~d!#. In that region, in fact, the
perturbative analysis of Sec. III B becomes inadequate
the identification of the three modes with FM modes of t
phase-modulated empty cavity is somewhat arbitrary. Ho
ever, we can continue to identify the three modes using
notationsu0&, un&, and u2n&, having in mind that they cor-
respond to the modes given by Eq.~29! solely when the
detuning parameterugu is adiabatically increased sufficientl
away from the transition region. In correspondence of t
region, the spectrum of modeu0& turns out to be compose
mainly by two lobes, which are shifted away from the cen
of the gain line and that resemble to the lobes of the origi
FM signal; conversely, the spectra of modesu6n& are
formed by a single lobe which moves close to the cente
the gain line as the resonance modulation condition is
tained. In the time domain, the two degenerate mo
u6n& correspond to short pulses which pass through
modulator nearby the two different stationary points of t
phase perturbation, i.e., in proximity of the maxima
minima of the phase modulation@see Figs. 5,6~d!#. This kind
of degeneracy is well-known in the theory of FM mode loc
ing @11# and indicates that FM mode-locked lasers can s
port two different sequences of pulses differing in the po
tioning of the pulses within the drive cycle and~slightly! in

nd
-
e-

FIG. 3. Threshold curves of a few low-order Floquet modes a
function of the frequency detuning parameterg for the same pa-
rameter values as in Fig. 2.
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4024 PRA 60S. LONGHI AND P. LAPORTA
frequency due to the opposite values of Im(m) competing to
the two modes. As the pulses in the two sequences diffe
the chirp, they are usually called up-chirped and dow
chirped pulses of the FM mode-locked laser.

The frequency detuning valuegT at which the transition
from FM oscillation to FM mode locking occurs is an im
portant parameter which provides indicatively an upper lim
for stable mode-locking operation. A typical dependence
this value on the modulation indexD is shown in Fig. 7. An

FIG. 4. Spectra~left columns! and corresponding intensity pro
files ~right columns! of the fundamental Floquet modeu0& ~curvea
in Figs. 2,3! for a few values of the detuning parameterg. ~a! g
50.002,~b! g50.001,~c! g50.00035, and~d! g50.000184. The
dashed curve in the figures on the left side is the spectral gain
of the filter, whereas the dashed curve in the figures on the r
side shows the modulation signal impressed to the modulator.
y
-

t
f

approximate dependence of the transition detuninggT on the
dimensionless parametersD and N51/vmADg can be ob-
tained by imposing that the threshold values for the cen
Bessel modeu0& and the fundamental Gaussian mod
locking mode be equal. Using the approximate relations
these thresholds as given by Eqs.~45!,~A26!, we get

gT;
1

2pN3/2
A2AD1AD12D2N2. ~47!

The above considerations are valid provided that cavity d
persion and finite gain bandwidth effects in the two-lev
gain medium are negligible. When these effects are con
ered in the analysis, there are some qualitative differen
that can be briefly summarized as follows. The role o

e
ht

FIG. 5. Same as Fig. 4 but for the modeun&.
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FIG. 6. Same as Fig. 4 but for the modeu2n&.

FIG. 7. Behavior of normalized frequency detuninggT at the
transition as a function of the modulation indexD. The points cor-
respond to numerical simulations, whereas the continuous curv
the frequency detuning behavior as predicted by Eq.~47!.
finite gain line of the active medium is to introduce, besid
a spectral filtering action analogous to that exploited by
filter, also a frequency-dependent refractive index near
resonance associated with the complex part of the Lorent
function x(v). Such a frequency-dependent refractive ind
is responsible for a slight shift of the exact synchrono
modulation point and breaks the symmetric behavior aro
the resonance found in the previous analysis. As an exam
Fig. 8 shows a typical behavior of the threshold curvegth

22

of the laser as a function of the normalized detuning para
eter g as obtained by numerical solution of the eigenva
equation~12! by assumingD f50 andg'515vm .

The role of cavity dispersion on FM mode locking h
been already investigated in literature, with special emph
payed to pulse chirp compensation and to dispersion-indu
breakdown of threshold degeneracy of up-chirped and do
chirped pulses~see, for instance, Refs.@25#!. Here we point
out that cavity dispersion also changes the crossing p
between FM mode locking and FM oscillation, pushing t
frequency detuninggT of the transition away from the reso
nance point. This is clearly shown in Fig. 9, where a typic
behavior ofgT as a function of the normalized cavity dispe
sion Di /Dg , as obtained by numerical analysis of Eq.~12!,
is reported. The threshold for laser oscillation at the tran
tion point as a function of cavity dispersion is shown in F
10. Note that the curves are symmetric around the zero
persion point and that, as the cavity dispersion is increa
the transition occurs at larger detuningsgT with a threshold
lowering. This behavior can be understood from a physi
viewpoint by observing that the mode-locking regime ha

is

FIG. 8. Same as Fig. 2 for parameter values:D50.04, g' /vm

515, Dg5Di50, andl 510%.

FIG. 9. Behavior of the transition detuninggT as a function of
the normalized cavity dispersionDi /Dg for the same paramete
values as in Fig. 2.
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4026 PRA 60S. LONGHI AND P. LAPORTA
lower threshold than FM oscillation~see, for instance, Fig
2!, and the exact resonance regime is therefore the prefe
regime of operation of the laser. In presence of a stro
cavity dispersion and when the modulation frequency
tuned close to a resonance of thedispersionlesscavity, the
carrier frequency of the laser can adjust itself in such a w
that exact synchronism is possible between the extern
imposed phase perturbation and a cavity resonance of
dispersivecavity. In other words, we can say that the effe
of cavity dispersion is to broaden the resonances of the l
cavity and to facilitate, as a consequence, the achieveme
exact phase synchronism. This phenomenon has an im
tant impact in enlarging the stability region of FM mod
locking, and it has been successfully exploited to gene
self-synchronized mode-locked pulses in erbium-doped fi
lasers under AM modulation@26#.

IV. CONCLUSIONS

A detailed and comprehensive linear stability analysis
laser oscillation with an intracavity phase modulation of t
optical field, based on a Floquet analysis of spatially
tended laser equations, has been presented. We have s
that the Floquet solutions and corresponding Floquet ex
nents of the laser equations in the presence of a peri
~sinusoidal! phase perturbation can be derived as solution
a nonlinear eigenvalue problem. The occurrence of re
nances when the modulation frequency is close to an inte
multiple of the cavity axial mode separation manifests its
in the strong dependence of Floquet modes on the freque
detuning parameter and explains the well-known cav
enhanced effect of FM modulation near resonance and
transition to the pulsed FM mode locking regime when
modulation frequency is made closer to the synchron
condition. A perturbative analysis of Floquet modes for d
ferent scalings of parameters entering in the nonlinear eig
value problem allows us to recover, as particular cases,
well-known theories of FM laser oscillation@1# and FM
mode locking@7# based on frequency or time domain met
ods. A noteworthy benefit of the Floquet approach is
clarify the transition from FM laser oscillation to pulsed F
mode locking near resonance, an issue that has been inv
gated with some detail in the paper. In particular, the beh
ior of threshold curves for low-order Floquet modes vers
the frequency detuning parameter allows us to explain
transition from FM oscillation to FM mode locking as due
a crossing of two distinct modes. This fact allows us to a
swer to the question, not fully investigated in the literatu

FIG. 10. Laser threshold at the transition point as a function
the normalized cavity dispersion for the same parameter value
in Fig. 9.
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yet, of whether the transition from FM oscillation to FM
mode locking, which occurs when decreasing the detun
parameter close to resonance, is continuous or, as we
shown, abrupt. Finally, an approximate analytical express
for the transition frequency detuning has been derived,
the role of cavity dispersion on the transition has been cl
fied.
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APPENDIX: PERTURBATION THEORY OF FLOQUET
MODES: THE RESONANT REGIME

„FM MODE LOCKING …

In order to find approximate analytical expressions of F
quet modes and characteristics exponents in the param
region corresponding to the pulsed operation of the FM la
we introduce the following scaling for the various param
eters entering in Eq.~12!:

D;e, ~A1!

dTvm52pg;e, ~A2!

B~m!;e, ~A3!

m;e, ~A4!

whereB(m) is given by Eq.~18! and e is a smallness pa
rameter. Using Eqs.~A1!–~A4!, at leading order ine the
nonlinear eigenvalue equation~12! transforms into the linear
eigenvalue problem

@ iDcos~vmt !1B~0!1dT] t#E5
2p

vc
mE. ~A5!

If we restrict our analysis to the case where the finite ba
width effects of the gain medium and cavity dispersion a
negligible, we may assume in Eq.~A5!

B~0!5g0x~] t!1D f] t
22 l;g02 l 1Dg] t

2 .

The spectral equation~A5! is defined in the space of func
tions that are periodic in the interval@0,Tm#. The problem of
determining eigenvalues and eigenfunctions of Eq.~A5! is,
in general, challenging and no exact analytical solutio
seem available. However, as we are interested in determi
pulsed solutions of the FM laser, we may focus our analy
by looking for a class of solutions of Eq.~A5! which assume
a nonvanishing value solely in a narrow temporal window
the modulation periodTm . In this case, we may expand th
sinusoidal phase perturbation at second order in time aro
the pulse positiont0

cos~vmt !;cos~vmt0!2sin~vmt0!~ t2t0!

2
1

2
cos~vmt0!~ t2t0!2 ~A6!

and we may search for a solution of Eq.~A5! in the form of
a generalized Gaussian function

f
as
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E~ t !5S (
n

cn~ t2t0!nDexp@2s~ t2t0!21 iu~ t2t0!#.

~A7!

The pulse parameterss andu, the pulse positiont0 and the
coefficientscn of the polynomial in Eq.~A7! have to be
determined self-consistently by imposing the ansatz~A7! to
be a solution to Eq.~A5!. We note that the ansatz~A7!,
together with the parabolic approximation~A6!, is basically
an extension of the original Siegman-Kuizenga theory of
tuned FM mode locking@12#. After substituting Eqs.
~A6!,~A7! into Eq.~A5! and collecting the terms in the equ
tion of the same power in (t2t0), the following recurrence
relation for the coefficientscn is obtained:

akck121bkck111dkck1rck211vck2250, ~A8!

where

ak5Dg~k11!~k12!, ~A9!

bk5dT~k11!12iuDg~k11!, ~A10!

dk5 iDcos~vmt0!1 idTu1g02 l 2
2p

vc
m

2Dg@2s~2k11!1u2#, ~A11!

r522dTs2 iDvm sin~vmt0!24isuDg , ~A12!

v52
iDvm

2

2
cos~vmt0!14s2Dg . ~A13!

The ansatz~A7! is meaningful provided that the series in E
~A7! reduces to a polynomial of orderN, with N
50,1,2,3, . . . . From Eq.~A8!, it can be seen that the con
dition cNÞ0, ck50 for k5N11,N12, . . . is satisfied if
and only if the following equations are valid:

v5r50, ~A14!

dN50. ~A15!

For a fixed orderN, the coefficients of the polynomial can b
then calculated iteratively by the recurrence equation

cN51, ~A16!

cN2152
bN21

dN21
, ~A17!

ck52
akck121bkck11

dk
~k50,1,2, . . . ,N22!.

~A18!
n

J.

on
-

The condition given by Eq.~A14! determines the pulse pa
rameterss, u and the pulse positiont0, which turn out to be
independent of the mode orderN and are given explicitly by

s5~16 i !j, ~A19!

u56
dT

2Dg
, ~A20!

wherej and t0 are the solutions of the equations

cos~vmt0!56
16Dgj2

Dvm
2

, ~A21!

sin~vmt0!57
4jdT

Dvm
. ~A22!

Notice the double sign in Eqs.~A19!,~A20!, which indicates
the existence of a mode degeneracy, and the complex na
of s, which indicates that the pulses are chirped. On
other hand, condition~A15! allows us to calculate the char
acteristic exponentmN

mN5
vc

2p
@ iDcos~vmt0!1 iudT1g02 l 22Dgs~2N11!

2Dgu2#. ~A23!

The threshold condition for the mode of orderN is then
obtained by making Re(mN)50, and reads

gth~N!5 l 1Dg@2j~2N11!1u2#. ~A24!

From Eq. ~A24! it follows that the fundamental Gaussia
mode, corresponding toN50, is the lowest threshold mode
At exact resonance, i.e., fordT50, the solutions to Eqs
~A21!,~A22! read

t0150 t025Tm/2 j5A D

Dg

vm

4
~A25!

which correspond to the well-known down-chirped and u
chirped pulse sequences passing through the modulato
correspondence of either the maxima or minima of the ph
modulation. For a small frequency detuning, such t
t0vm!p, at leading order the solution toj remains un-
changed, whereas the pulse position is shifted away from
extrema of the phase modulation by the small quan
24jdT/Dvm

2 . Note also that, for small frequency detuning
the threshold for laser oscillation is an almost quadratic fu
tion of the time detuningdT and is explicitly given by

gth5 l 1DgFvm

2
A D

Dg
1S dT

2Dg
D 2G . ~A26!
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