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Floguet theory of intracavity laser frequency modulation
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The theory of laser oscillation with an intracavity sinusoidal modulation of the optical frequency is revisited
and analyzed in the framework of general principles governing the properties of time-dependent periodic
systems. It is shown that the two traditional and complementary descriptions of frequency modiHitjon
laser oscillation and pulsed FM mode-lockihg.E. Harris and O.P. McDuff, IEEE J. Quantum Electron.
QE-1, 245(1965; D.J. Kuizenga and A.E. Siegmaifid. QE-6, 694 (1970] can be unified by means of a
more general approach based on a Floquet analysis of the laser equations in presence of a periodic phase
perturbation. Starting from a spatially extended model of intracavity laser frequency modulation for a homo-
geneously broadened two-level ring laser, the relevant Floquet modes and corresponding Floquet exponents
governing the stability properties of the nonlasing state are derived as solutions of a nonlinear eigenvalue
problem. Resonance phenomena, which occur when the modulation frequency is made close to an integer
multiple of the cavity axial mode separation, explain the onset of FM laser oscillation and the transition to the
pulsed FM mode locking closer to the synchronous modulation. In particular, the transition from FM laser
oscillation to the pulsed FM mode locking is shown to be sharp and due to a crossing of the threshold curves
of two distinct Floquet modes. The role of cavity dispersion on the transition is also investigated.
[S1050-294{@9)06610-X

PACS numbd(s): 42.60.Fc, 42.55.Ah

I. INTRODUCTION regime of operation, the pulsed FM mode-locking regime, in
which the laser radiation consists of a train of short mode-
Intracavity modulation of the phager frequency of the  locked pulses with a repetition frequency equal to the modu-
electromagnetic field in optical cavities and lasers is knowrlation frequency[6—8]. The theoretical framework of laser
to profoundly affect the properties of the emitted light in oscillation with an intracavity frequency modulation relies
different fashions, and a wide variety of effects, sometimegraditionally on two complementary approaches, namely the
unpredictable at first sight, have been investigated both thedrequency-domain(or coupled-mode method as originally
retically and experimentally in different contexts. Among proposed by Harris and McDuff for inhomogeneously broad-
others, these include the generation of highly coherent freened laser$l], and the time-domain method, the simplest
quency modulated signals in lasdrs-4], laser frequency form of which was pioneered in an important series of papers
switching[5], ultrashort pulse generatigf—8|, and genera- by Kuizenga and Siegman on the theory of FM mode-
tion of squeezed states of ligfsee, e.g., Ref49,10], and locking for homogeneously broadened ladét$8,17; an ex-
references thereinin case of a periodi¢sinusoidal phase cellent and comprehensive review of these methods is given,
perturbation, resonance phenomena are known to appefor instance, in Refs[11,13. Although the two mentioned
whenever the modulation period is equal(tw is an integer descriptions are capable of providing the most important
fraction of) the cavity photon transit time in such a way that physical insights into the problem, a general and detailed
even a small phase perturbation can strongly affect the dyanalysis of the stability properties of a laser subjected to an
namical properties of the system. A well-known manifesta-intracavity periodic phase perturbation seems not to be avail-
tion of this resonance is the transition of the operational reable in the literature yet, perhaps due to the complexity of
gime of an internally frequency-modulated laser whichthe analysis when adding time-dependent perturbations to the
occurs when approaching the synchronous modulation coraser equations in the physical space-time variables. Such an
dition[1,11]. In fact, when the intracavity phase perturbationanalysis, however, would be of upmost interest for several
is driven at a frequency which is approximately but not ex-reasons. First, a linear stability analysis of the nonlasing state
actly equal to the cavity longitudinal mode separation or tois capable of predicting the nature of the most unstable per-
one of its harmonics, the laser usually oscillates in the soturbations that spontaneously will grow from noise as the
called FM regime. In this case the output field is basically aaser gain parameter is increased beyond threshold, and
almost ideal frequency-modulated signal with an effectivehence should be able to predict the characteristics of the
modulation index which is strongly enhanced with respect tdifurcating lasing state and, in particular, the occurrence of
that of the applied perturbation due to a cavity effiglct4]. resonance phenomena in a very general fashion. Second, a
However, as the modulation frequency is made closer to syrbifurcation analysis should clarify the onset of transition
chronism, strong distorsions from the ideal FM operationfrom FM laser operation to pulsed FM mode locking which
take place, with the appearance of deep amplitude modulaccurs very close to the synchronous modulation condition,
tions (AM) superimposed to the pure phase modulation; fur-an aspect of the problem which is hard to investigate in detail
ther closer to resonance the laser switches into a differerwithin the most traditional descriptions and that has not re-
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ceived, as a consequence, an adequate attention. Third, . Gain
complete linear stability analysis could be useful to investi- Yo

gate interesting transient phenomena, including transien e
built-up of FM laser oscillation, providing an initial basis to  —

explain noisy phenomena and other varieties of unstable be

haviors observed in phase-modulated lasers when operate
close to the transition region which separates FM oscillationc)utmIt
and FM mode-locking11,14]. Mirror
In this paper we present a detailed and comprehensive I_I
linear stability analysis of a homogeneously broadened two- — | u
p

Zg

EO

i
L ™ Modulator

level ring laser with an intracavity periodic phase perturba-

tion based on a Floquet analysis of time-dependent Maxwell- Z

Bloch laser equations. Due to the periodic time dependence Zy
of parameters in the laser equations introduced by the phase

modulation, any initial field perturbation in the cavity can be  FIG. 1. Schematic diagram of the frequency-modulated laser
decomposed as a superposition of Floquet solutions, whicgavity.

evolve (according to the Floquet theorefh5]) as indepen-

dent modes. A Floguet mode is composed basically by gquations for a homogeneously broadened two-level laser
periodic time-dependent part, with periodicity equal to the[16], extended to include the parametric term of polarization
modulation period, and by an exponential terrexp(ut), due to the phase modulator and the linear dispersive or ab-
where the characteristic exponemtdetermines the growth sobptive effects of the filter and of the dispersive elements
or decay of the mode. We show that the problem of deterpossibly present in the cavity. The presence of such elements
mining the characteristic Floquet exponents and corresponds here simulated by free-propagation of the field, for a dis-
ing periodic Floquet modes for the spatially extended lasetancel;, through a linear dispersive and absorptive medium.
cavity can be reduced to the solution of a nonlinear eigenin the plane-wave and rotating-wave approximations the
value problem involving solely the time variable. The solu-€quations of motion read

tion to this problem clearly reveals the existence of reso-

nances and explains the onset of FM oscillgt.ion, the Z9F=—0,F—aP+iSFcod o (t—2z/c)+ ] — pF
appearance of distorted FM modes and the transition to the €
pulsed FM mode locking regime. In particular, a major result
regards the transition from FM oscillation to FM mode-
locking. We show, in fact, that this transition is not smooth,

as one could expect, but it is abrupt and corresponds to the P=—y,[FN+(1+io)P], 2
intersection of the threshold curves of two distinct Floquet

Filter

p 21

+BIgF, (1)

modes. The role of cavity dispersion and frequency pulling 1 . .
effects of the gain medium on the transition point are also N=—7y N-1- §(PF +FEP*)|, )
discussed.

~ The paper is organized as follows. In Sec. Il the model ofyhere 7 is the longitudinal spatial variable along the ring
intracavity laser frequency modulation is reviewed, and theayity, ¢ is the group velocity of light at each plane inside the
linear stability a_maly5|s of the nonlas_mg s<_)lut|0n, based on Jptical cavity,F and P are the normalized slowly varying
Floquet analysis of the laser equations, is presented. A dgnyelopes of the electric and polarization fields, respectively,
tailed analysis of different regimes of operation is developedne carrier frequency of which has been chosen equal to the

in Sec. llI, _With special emphasis to the tran_sition .betwe?rbigenfrequencyoc of the empty cavity closest to the atomic
the FM regime and the pulsed FM mode locking. Finally, in i ansition frequency,;, = (wa—we)!y, is the atomic de-

Sec. IV the main conclusions are outlined. tuning parameterlN is the normalized population inversion
of the two-level atomsg is the small-signal gain per unit

Il. DESCRIPTION OF THE MODEL AND FLOQUET length in the active mediunp=p(z) accounts for both dis-
ANALYSIS tributed and lumped cavity losseS,is proportional to the

parametric contribution to the polarization inside the electro-
optic modulator,w,, is the modulation frequency, angl an

The starting point of our analysis is provided by a ratherarbitrary phase delay. The last term in E#) describes the
general model of frequency modulation inside a laser cavitypropagation of the field through the dispersive and absorp-
The system under investigation is schematically depicted itive medium at leading order, and simulates the effects of
Fig. 1 and it consists of a ring cavity of geometrical lenggth filtering [Re(8)] and dispersioriIm(B)] inside the cavity.
containing a gain medium composed by a collection of two-n writing Eqg. (1) we have also assumed that the electro-
level homogeneously-broadened atoms, a traveling-waveptic phase modulator operates in a traveling-wave configu-
longitudinal electro-optic phase modulator, and a filterration with exact matching between the phase velocities of
and/or a dispersive line which account for finite gain-light and of the modulation sign@ll7]. The boundary con-
bandwidth and/or dispersive effects in the cavity. ditions imposed by the ring cavity are given by

The dynamical equations for the field variables inside the
optical cavity are represented by the Maxwell-Bloch laser F(L,t)=F(0,), 4

A. The model
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where the origin of the longitudinal coordinarehas been extended moddlEgs.(1)—(4)], powerful mathematical tools
taken at the exit of the modulatésee Fig. 1 It should be useful for the present physical probldsuch as the Floquet
noticed that, in Eqs(1)—(3), the variablesy, S, andB must  theory of periodic equationd5]) are most easily applicable
be regarded as functions af assuming constant values in- to partial differential equations than to differential-delayed
side the gain medium, the modulator and the filter, respecequations. In the following, therefore, we will develop our
tively, and vanishing outside these three regions. Likewiseanalysis making use of the full spatially extended model.
cavity losses due to output coupling at the partially trasmit-
ting mirror, located az=z;3 (see Fig. ], can be simulated in
Eq. (1) by assuming(z) =18(z— z3), wherel = —Inr andr

is the field reflectivity of the output mirror.

The system of Eqs(1)—(3), together with the boundary The basic properties of the laser emission in the presence
conditions(4), represents our basic model of intracavity laserof an intracavity phase perturbation depend upon the nature
frequency modulation and provides the starting point of theof the solutions that the laser selects when the nonlasing state
following analysis. It is worth pointing out that a time- becomes unstable. These solutions are found by linearizing
domain approach to the intracavity frequency modulatiorthe laser equationél)—(3) around the nonlasing solutidh
problem, close to the most familiar descriptions of mode=P=0, N=1 and looking for the growth of perturbations.
locking and related forms of mode coupling in lasersThe relevant equations in the linearized dynamics are those
[11,13,18, could be derived by transformation of the for the electric and polarization fields, which, after introduc-
boundary-value problem, expressed by Ed3—(4), into a  tion of the auxiliary variableD=gd;F, can be cast in the
propagative problem. In this case a differential-delayed equaiormal form
tion for the field envelope at a reference plane inside the
cavity is derived to simulate the successive transits of the
field in the cavity(see, for instance, Ref19]). Although the
propagative model provides a more direct and physical picwhere v(z,t)=(F,D,P)" contains the field variables, and
ture of field propagation inside the cavity than the spatiallyZ(t) is a time-dependent periodic operator given by

B. Linear stability analysis of nonlasing solution: Floquet
analysis

V=LV, 5)

0 1B 0
L=| ptd,—iScod wn(t—2z/c)+¢] 1/Bc a : (6)
—7 0  —y.(1+i9)

Since the linear operatal(t) is invariant under the discrete modes can be defined only mady,,), and therefore a degree
time translationt—t+T,, whereT, is the modulation pe- of freedom is left in the choice of the imaginary part of
riod, the Floquet theorerfil5] applies to the corresponding Floquet exponents. Conversely, the real parta uniquely
partial differential equations, and the relevant Floquet soluyetermined, and it governs the linear stability of the nonlas-
tions are functions of the type ing state. In fact, due to the periodicity af,(z,t) with re-

V(z,t)= U, (z,t)exp( ut), (7 _spe_ct tot, from Eq.(7) ?t is clear that the nonlasing solution

is linearly stable provided that Re() <0 for any Floquet

where {u} are the characteristic Floquet exponents andcexponentu,, and that an instabilitylaser thresholdarises
u,(z,t)=u,(zt+Ty) the corresponding periodic Floguet when at least one of the Floquet exponents crosses the imagi-
modes, which are eigenvalues and eigenfunctions, respenary axis. The determination of the Floquet exponépis}

tively, of the Floquet operatof — 4, , i.e., requires to solve a two-dimensional linear eigenvalue prob-
_ lem [Eqg. (8)]. As it will be shown below, such problem is
[L(1) = a]u,(z) = uu,(z,1). ®  equivalent to a one-dimensional nonlinear eigenvalue prob-

lem. In fact, after setting,,=(E, ,W, ,VM)T, from Eq.(8) it

In the eigenvalue equatio(8), the functional space is de-
follows that W,=gB(u+4d)E, and V,=—x(u+d)E,,

fined by the class of functions that are periodictimvith A , i
periodT,, and inzwith periodL. The temporal periodicity is Wher_e)((w) =1(1+io+ “’/7_@) IS t_he complex Lorent2|a_n
a consequence of the Floquet theorem, whereas the spat{sfiction of the two-level gain medium, so that the following
periodicity is due to the ring cavity boundary conditigisy. ~ Poundary-value problem fcE (1) is obtained:

(4)]. In view of the identity

= wt)u 22
SXRU U2 ) = XU U2, © azEf(g,L(z,trz) E,. (10
where  p=up+iko,, k=0+x1,%2,..., U,(zt)
=Uu,(z,t)exp(—ikw,t), we observe that the characteristic
Floquet exponent$u,,} and corresponding periodic Floquet where
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1 modulation frequency and the free spectral range of the laser
Gu(z)=—p= chtax(nta)+B(u+ da)? cavity. These conditions are typically fullfilled, for instance,
in case of intracavity frequency modulation of broad-band
+iScof wy(t—2z/c)+ @] solid-state lasers, where the effective cavity bandwidth, lim-

ited by either the atomic transition linewidtas in Nd:YAG
andE ,(L,t)=E,(Ot). The solution of Eq(10) can be writ- lasers, see Ref4]) or intracavity birefringent tuners or eta-
ten as lons (as in FM-operated Ti:sapphire or Er-Yb:glass lasers
) - and in erbium-doped fiber lasers, see R¢2)-27), can
_ ~'m vary typically from few hundreds of GHz up to a few THz,
EuLY) ex;{ fL|mg"dZ exp{ J; Gz and is therefore much larger than modulation frequencies
achievable with electro-optic phase modulators. In this case,
xXexp(—uL/c)E,(0), (11 aleading order approximation to the Floquet exponents can
) i . be obtained by an analysis of the lossless empty cavity; this
yvh_ere, for the sake of convenience, the field propagatiofy yone by assuming in E12) O~ exp(sT4,), which yields
inside the phase modulator has been evidenced through trég(p(zwmw )~explaw,dT), a=0,+1,+2 Since u is
. C. m 1 11— gy e
operator expl;_; G,d2). After observing that defined modé,,), we can satisfy this condition by assuming
L
exp{ f g(z,t)dz
L=l

—expliA cog w(t—L/c)+ B} pP=inw, (14)

I wheren is an arbitrary integer. Once we have a first approxi-

><exp( —< ) mation to the Floquet exponents®), we can use them as a

first trial for a self-consistent calculation of both periodic
whereA =S|, is the single-pass modulation index, using theFloquet modes and characteristic exponents by successive
boundary conditionE ,(L,t)=E,(0t) and assumingg iterations. For each value qi{” given by Eq.(14), the
=wyl/c, we finally obtain the following nonlinear eigen- linear eigenvalue problem
value equation fokE ,(t)=E,(0):

(0) —
O )E, =exp2mul wo)E,,, (12) Qun™ DB, =AnE, 9

wherew = 2mc/L is the free-spectral range of the laser cav-can be solved Oand, singe, = exp(2muy/wg), the new value
ity and O(u,1t) is a time-dependent operator, defined on thewn closest tou”) can be determined. With this better value
space of functions that are periodic in the interf@JT,,],  of u, one can proceed to update the oper&oand find a

given by new estimate to the characteristic exponent and correspond-
ing Floguet mode. Note that, due to the periodicityEf,
Q(u,t)=exdiAcog wnt)]exd D(d;+ p)? the problem of determining the eigenvalues of Ep) is
equivalent to the computation of the eigenvalues of the
+0ox(diF ) —11exp(8Tay). (13 infinite-dimensional matrix associated to the periodic opera-

tor @, which can be easily done by standard numerical meth-
ods. The iteration can be repeated until convergence is
reached within a fixed precision level. It should be noticed
; X i ‘ that, in the case of small frequency shift effects, an accurate
are the single-pass cavity losses, ajig=aly is the gain  ,noroximation to the characteristic exponents and corre-
parameter. The nonlinear eigenvalue equatidd) is the ba-  ¢0n4ing periodic modes is obtained at the first iteration.
sic result of this subsection and allows one to determine th?urthermore, if the modulation frequency is close to an inte-
set of Floquet exponentsu,} and corresponding periodic ger myltiple ofw, (which is indeed the case of major interest
Floquet m_ode$En} at the reference plare=0. It is impor- _in practice, due to the invariance.— u+inw,, from Eq.

tant to point out that, although in general the form of peri-(14) t follows that the characteristic exponents can be orga-

odic Floguet modes along the cavity depends on the positioR;;eq in N groups of nearly degenerate modes with values
of the various elements inside the cavitye., on the cavity

In Eq. (13), D¢=Bl; is the filter parametet§T=T,,— Tr IS
the time detuning between the cavity round-trip tifig
=L/c and the modulation period =27/ w,, I:fgpdz

close to
topology), the Floquet exponent§u,}, and therefore the
threshold conditions for the various Floquet modes, turn out 0 _ _
to be independent of cavity topology, as it should be. Due to pn ~Olwc,2ioc, ... (N=Diwe, (16)

the nonlinear dependence of the operafon the Floquet

exponentu, the problem of determining eigenfunctions andwhereN is the integer closest t@,,/w.. These groups of
corresponding eigenvalues @ is in general challenging. modes correspond to the so called supermdadeshyper-
However, an effective iterative procedure can be used whermode$ of the harmonic FM lasefsee, for instance, Ref.
ever any frequency shift and line broadening effect induced23]). Note that, due to the near degeneracy of modes within
by the gain medium and by the filter on the longitudinal each set, a leading order approximation of eigenmodes for
modes of the empty cavity is small. This case applies, folany set is at once obtained by solving the linear eigenvalue
instance, to laser systems with a moderate gain or loss argtoblem[Eq. (15)] when the operato@ is evaluated in cor-
with gain and dispersion lines much broader than both theespondence of the various valuesudf’ given by Eq.(16).
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In particular, in the fundamental FM operation, i.e.,qif,  where
~w., there is only one set of eigenmodes corresponding to
w@~0. B(u)=D(d+ )+ dox(dy+ ) — 1. (18)

Then we look for a solution of the nonlinear eigenvalue

I1l. ANALYSIS OF DIFFERENT REGIMES . . . ;
equation(12) as an asymptotic expansion énby setting

OF OPERATION BY PERTURBATION

THEORY OF FLOQUET MODES E(t) = EO+ EW1 2E@ 1 ..., (19

It is known that the frequency modulation introduced by
the modulator inside the laser cavity can strongly influence w=pO+euM+e2p@+. .. (20)
the laser threshold as well as the spectral and temporal be-
havior of the selected lasing state near threshold even if thafter introduction of expansion€l9),(20) into Eg.(12) and
phase perturbation is arbitrarily small. This singular behaviotsing Egs.(17),(18), a hierarchy of equations at successive
is related to a resonance phenomenon which occurs when tiggders ine is obtained. The eigenvalue equation at leading
modulation frequency is made close to an integer multiple oprder, O(€°), is solved by the following set of eigenfunc-
the cavity axial mode separation, by means of which efficientions and corresponding eigenvalues:
mode coupling of laser modes can take plgkH. This reso-

nant phenomenon is the basic physical principle underlying EP=expinwyt), (21)
the appearance of the two major regimes of operation of a

phase-modulated laser, namely, frequency modulation oscil- ,ugo):inywc, (22
lation (where the laser emits a nearly constant amplitude,

phase modulated bearand FM mode lockingcorrespond- wheren=0,+1,+2, ... is themode index and

ing to a pulsed regime of operatiprn this section we show

that the Floquet theory developed in the previous section is y=1-onlw;. (23

capable of providing a unified and comprehensive view of

the basic physical phenomena occuring in a phase-modulatddote that, at this order, the complete Floguet modes
laser, namely, the existence of resonances, the onset of fr&y(t)exp(u,t) reduce to the longitudinal modes of the loss-
guency modulation regime and the transition to FM moddess, nonmodulated empty cavity, and that all these modes
locking. In particular, it shows that the transition from FM are neutrally stable at this order. The next oder correction to
oscillation to FM mode-locking regimes is sharp and correthe Floquet exponents is obtained from the solvability con-
sponds to an intersection in the phase plane of two differerdition atO(e?) in the asymptotic expansion, which yields
bifurcating Floquet modes. In Sec. IIl A we develop a per-

turbative theory of Floquet modes starting from the modes of 1)_ @c 5 2 )
the nonmodulated empty laser cavity, and show the failure of mn =5 [ =D wc+gox(inwe) —1] (24)
the perturbation analysis and the appearance of secular reso-

nances for modulation frequencies approaching the caviténd the solution at this order is given by

resonance frequencies. In Sec. Ill B we improve the pertur-

bation analysis by considering a near resonant frequency Egl):A+ exgi(n+D o t]+A_exdi(n—1)wyt],
modulation, and show that the most natural basis for the (25)
asymptotic expansion is provided in this case by the Bessel

modes of the phase-modulated empty cavity. This analysighere

again fails when the frequency detuning parameter is made

closer to zero and the bandwidth of the Bessel modes be- iAexp(—2miny)

comes comparable to the gain bandwidth of the laser. In this Ar=— 2exp=izay) 1) (26)
case a transition from FM oscillation to the pulsed FM

mode-locking takes place, which is analyzed in details i”Equations(25),(26) show the formation, at the leading order
Sec. llIC. in the perturbation expansion, of sideband modes at frequen-
cies* wp, around the cavity axial mode induced by the phase
A. The off-resonance regime modulator, whereas E@24) determines at leading order the
Let us assume that the longitudinal modes of the nongdrowth rates, and hence the threshold condition, of the vari-
modulated, lossless empty cavity are weakly perturbed b{YS m_odes. It should be npUced t_hat the asymptotic expan-
the presence, inside the cavity, of the various elements d&ion 9iven by Eqs(19),(20) is meaningful provided that any
picted in Fig. 1. As we will show below, this is indeed what €M in the expansion is of nereasnd ordereinAn inspec-
happens whenever the modulation frequengyis far away ~ tion of Eqs.(25),(26) reveals thak,” becomes of order-1
from the resonance cavity eigenfrequencies. We can formall'neénevery gets close to an integer by less tham, i.e.,
state our perturbation idea by introducing a bookeeping pavhenever the modulation frequency is close to an integer
rametere, which provides the smallness of phase modulaMultiple of the cavity free spectral range. This case, which

tion, gain, loss and cavity dispersion effects, and we set c_orresponds to a near-resonant modulation _of the optical
field, leads to a secular growth of generated sideband modes

Q(u,t)y=exgieAcog wpyt)]exd eB(u)lexp( sTady), and indicates strong coupling among the longitudinal modes
(17)  of the lossless, nonmodulated empty cavity.
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B. The near-resonant regime: FM laser oscillation perposition of nearly degenerate modes, the coefficients

When the modulation frequenay,, is close to an integer ©f the superposition at any order being determined by the
multiple of the cavity free-spectral range,, the analysis solvability conditions at the next order. If we limit our analy-
developed in Sec. Il A indicates that even a small valua of SIS DY considering FM modes that are close to the center of

can drastically change the periodic Floguet modes fronfn€ laser gain line, we may assumeGte”):

those corresponding to the nonmodulated empty cavity. In

this case, the laser operates in the so-called frequency modu- E@O=> cOn), u®=0, (33
lation regime, where, at leading order, the natural “laser n

modes” are Bessel modes of the phase-modulated emp
cavity [1,11]. For the sake of clearness, we will limit our
analysis to the case,,~w., i.e., to the fundamental FM
operation, although the present analysis could be extended

%here the sum in Eq.33) is extended over the modes with
n~0(1) andc!¥~0(1). At order ~ ¢ in the perturbation
iaa(pansion, we obtain

a modulation at harmonic orders. To study the near-resonant 20
regime, it is convenient to follow a different strategy from (Qu—1)EM=> <_27Tin'y+_,l1,(l) cOn). (34
that used in the previous section by including at the zeroth n We

order approximation in the asymptotic expansion the phasg. . . . L
modulation term, regardless of the smallnesaofThis cir- (gf,)IZ)Cﬁq\LIJV; T;nlflsrﬁ tihéE O(e), the right hand side in Eq.

cumstance is related to the fact that, as we will show below,
the natural modes of the laser for a near resonant modulation 2
are those of the phase-modulated empty cavity. In order to (—277iﬂy+ —u
proceed in the analysis, we assume O(¢) [see Eq(23)], We

where € is a bookeeping parameter which organizes thezquation(35) can be satisfied by assuming
asymptotic expansion, and we set

Qp,t)= Qo(t)exd e?B(p)] (27)

where Qq(t) =exdiA cosmt) lexp@Td) and B(w) is given
by Eq.(18). Note that in writing Eq(27) we have assumed
B~ €%; the choice of this scaling will be clearer later and it EM= E_ cg1)|n>. (37
turns out to be satisfied in the range of parameters where the n (n#n)

laser operates in the undistorted FM regime. The nonline
eigenvalue equatiofil2) is solved by an asymptotic expan-
sion in e of eigenvalues and eigenfunctions, as given by Eqs
(19),(20). At zeroth order the eigenvalue problem reads

c@=0. (35)

CEO): 5n,ﬁy ;U«(l): [ )/ch (36)

and the solution aD(e€) is given by

aIﬁquation(36) shows that, at leading order, the Bessel modes
of the modulated empty cavity are not mixed, i.e., they rep-
fesent the natural modes of the laser system for the chosen
scaling in the perturbation expansion. It may be noticed also
that at this order any solution corresponding to different val-

)E(O)(t) ues ofn is neutrally stable, so that we need to push the
(29) perturbation analysis to the second order to remove the de-
generacy of Reg). At O(€?) we get

whose eigenfunctions and corresponding eigenvalues are

(0)

exfiAcog o t)JE@(t+ 5T) = exp( 2t

We

(Qo-1E@==27iy X (n—n)cM|n)

EQ=|ny=expinwyt)exdilcogwyt+¢)], (29 et

(0)_; 2 —
#n =inyec, (30 H=pn@-guB0) ). (@9
wheren=0,£1,+2, ..., and ’
The solutionE®® to Eq. (38) is of order~ € provided that
B A A the right hand side in the equation be zero. Since the Bessel
I'= 2siMw,oT/2) 27y’ (32) modes|n> form a set of orthogonal functions, this condition
gives
WnoT N T 32) ®
== o @=—_"° /] )
2 2 m 277Tm<n| QoB(0)|nY, (39
Notice that at this order the complete Floquet modes
E,(t)expliust) are given by explot)exdil’ coswt+¢)], (1_ — —
i.e., they correspond to the well-known Bessel modes of a Cn _Zmey(n—H) (n|QoB(0)[n)  (n#n), (40

phase-modulated opticil cavity. Note also ihat,me is
small, for a given value, all modes withn—n~O(1) are where<f|g>=fgmf*(t)g(t)dt denotes the usual scalar prod-

degenerate at leading order with eigenvajl®~iny. To  uct. To evaluate the integrals in Eq89),(40), we consider
correctly perform a perturbative analysis we must thereforéhe case, usually satisfied in practice, where the complex
assume as a solution at leading order an arbitrary linear su-orentzian functiony(w) of the gain medium can be ex-
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panded up to the second orderdnand the laser cavity is szrzn(DergO/yf%ez. (46)
tuned to resonance with the atomic transition frequengy (
~0); after setting It should be noticed that, when the detuning parampger

governing the effective modulation indek [see Egs.
(23),(31)] is so close to zero that the left hand side in Eq.
(46) is still small, but of order~ ¢, a different scaling foi3
should be used in Eq27), namely, 5~ e€. In this case, it

1 1
x(0)=1+3d/y,) *~1-—o+ —
YL oa

in Eq. (18), we obtain turns out that the effects of finite gain bandwidth and cavity
dispersion would appear already @{¢) in the asymptotic
202 expansion, and strong distorsions of FM modes would be
(2) We > 2 Dy Jo . . . .
v N“wmn+ > Di+— therefore present at leading order. This situation foresees the
™ b transition from the FM regime to the pulsed mode-locking
— regime, which is analyzed in the next subsection and in the
inw ;
+go—I— —mgO (41) Appendix.
pat
C. Transition from the FM regime to pulsed FM mode
and locking
r Break up of the FM regime described in previous section
@ _1om G . Jdo| .— ) .
Cly= __|( D¢+ _2) (2n*1)w,|, (420  occurs when the modulation frequency is made close to the
B amy| 7 b axial mode separatiofor to an integer multiple of jtby an
amount such that conditio@6) is violated. Conversely, it is
@ i sz?n Jdo known that at resonander for a modulation frequency de-
Che2™ "2, 2 | Pt 2 (43 tuned from exact synchronism by a small amguhe laser
Y Y1 operates in the FM mode-locking regime, which is charac-

o o terized by the formation of a periodic train of short pulses

cM=0 for n£n+1, n+2. (44)  which pass through the modulator in correspondence to ei-

ther the maxima or minima of the phase perturbation. Al-

Equation(41) can be used to determine the threshold condithough the theory of FM mode locking for homogeneously
tion of the various FM modes, whereas E(37),(42)—(44) broadened lasers, including detuning effects, has been widely

provide the leading order correction to the ideal FM modesstudied in literaturgsee, for instance, Ref§7,12,24), for

and show the appearance of amplitude modulatiéid) at  the sake of completeness it is reviewed in the framework of
frequenciesw,,, and 2w, superimposed to the pure FM sig- the Floquet theory in the Appendix. The analysis of the laser
nal. This is in agreement with the previous analysis done bypehavior in the detuning range connecting the exact synchro-
Harris and McDuff[1] and explains the onset of AM oscil- nous or slightly detuned operation, corresponding to FM
lations observed in experiments on FM operated lasermode locking, and the moderate detuning region, corre-
[3,19. By setting Ref(?)=0 in Eq. (41), the threshold sponding to the FM oscillation regime, is challenging and no

conditionsg,(n) for the various Bessel modes are found tocompletely satisfactory analysis seems to be available yet. In

be this subsection we show that the FM theory based on the
Floquet analysis is capable of providing a satisfactory and
1+ Dg(wrznﬁz+rzwr2n/2) comprehensive understa_ndl.n_g of the transition from FM os-
gin(n)= = 7 3 R (45)  cillation to FM mode locking; in particular, we show that the
1= (opn*+ I 0n/2) ]y} transition is sharp and due to an intersection of two Floquet

modes in the planeyg;,). For the sake of simplicity, we
whereDy=Re(Dy). From Eq.(49) it follows that the reso-  will focus our analysis to the case of frequency modulation
nant FM mode, corresponding to=0, has the lowest at the fundamental harmonic, i.e,,~ .. Furthermore, we
threshold, and Eq$42),(43) indicates that for this mode AM  will be mainly concerned with the case where cavity disper-
oscillations at frequency,, vanish if the cavity dispersion is sion is negligible and the overall gain bandwidth of the cav-
negligible [i.e., if Im(D;)~0]. This result is in agreement ity is determined by the filter, leaving a discussion about
with the analysis previously given in R¢fL9], where it was cavity dispersion effects and finite bandwidth of the gain
also experimentally observed that AM oscillations at fre-medium to the end of this paragraph. We thus set in(E8).
quency v, i.e., at a frequency twice the modulation fre- x~1 andD;=Dy+iD;~D, where the real parametells,
quency, are dominant over AM oscillations at the modulationand D; describe finite gain badwidth and cavity dispersion
frequency. The asymptotic expansion based on the scalingffects, respectively. In this case, the dimensionless free pa-
used in Eq.(27) and corresponding to the FM regime of rameters that govern the properties of Floquet modes and
operation of the laser is valid provided that the bandwidth ofcharacteristic exponents are the normalized frequency detun-
the FM spectrum, given approximately by2I'w,,, remains  ing parametery=1—wy/w., the single-pass modulation
much smaller than the gain bandwidth of the cavity, deterdepth A, and the parameteNzl/wm\/Bg, which corre-
mined either by the gain medium or by the filter. This can besponds roughly to the number of cavity axial modes that fall
seen, for instance, by an inspection of E43), which re- under the gain curve of the cavity. Figure 2 shows a typical
veals thatE®) remains small and of order e provided that behavior of the threshold cung,—| of the laser as a func-
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FIG. 2. Laser threshold;,—I as a function of the normalized FIG. 3. Threshold curves of a few low-order Floquet modes as a

frequency detuning parameter=1— o,/ w, for parameter values: function of the frequency detuning parametefor the same pa-
A=0.04, NEl/(wm\/Bg):lOS, andD¢=1/y, =0. The vertical rameter values as in Fig. 2.
dashed lines in the figure separate the regions of FM oscillation and
of pulsed FM mode locking, whereas the dotted line, partially over-These modes correspond to two opposite values ofudm(
lapped with the continuous curve, is the threshold curve as preand their spectra are symmetric about the center of the gain
dicted by Eqs(45),(A26). curve (see Figs. 5,6 From these figures it can be seen that,
far away from the transition regidirigs. 4—@&a)], the three
tion of the normalized detuning parameteras obtained by modes correspond to almost ideal FM signals as discussed in
numerical solution of the eigenvalue equatid®) using the  Sec. 111 B, and we can therefore use the notations introduced
technique described at the end of Sec. IIB. The number of that section to label the modes. The mode corresponding
modes considered in the numerical discretization of the opto curvea both in Figs. 2 and 3 is the central Bessel mode
erator Q has been chosen, for each value of the frequencyp) with the lowest threshold, whereas the other two degen-
detuning parameter, sufficiently large to contain all nonvanerate modegcurve b) are two higher-order models-n)
ishing modes. As it can be seen from Fig. 2, the thresholgyhich corresponds to FM signals with a carrier frequency
curve is symmetric around resonance, and it results from thehifted from the center of the gain line by +nw.. [See
intersection of two different curves andb that correspond Eqgs.(29),(30).] For the parameter values chosen in Figs. 2,3,
to the laser oscillating in the FM regintar from resonande it turns out thatn=14. As the detuning parameter is adia-
and in the pulsed FM mode lockir{glose to the resonanke patically moved closer to the transition region, strong distor-
Far away from resonance, the threshold for laser oscillatioRjons of the mode spectra from ideal Bessel amplitudes ap-
approaches the valug,—1~0 of the free-running laser. As pear [Figs. 4—@b)], until very close to or across the
the detuning parametey is moved toward the resonance transition region it becomes even inappropriate to speak of
from both sidegcurvea in the figure, there is an increase of FM modegsee Figs. 4—@),6(d)]. In that region, in fact, the
the threshold, which is due to the spectral broadening of th@erturbative analysis of Sec. 1lIB becomes inadequate and
central Bessel mode of the phase modulated cdsitg Sec. the identification of the three modes with FM modes of the
[l1 B); the dotted lines in the figure show the threshold Conphase-modulated empty cavity is somewhat arbitrary. How-
dition for this mode as predicted by the perturbation analysigver, we can continue to identify the three modes using the
developed in Sec. 1ll B and given by E@5) with n=0 and  notations|0), |n), and|—n), having in mind that they cor-
Il'wn,<y,. Close to resonance, at around-=*0.00031, respond to the modes given by E®9 solely when the
crossing curve results in a threshold lowering, which marks detuning parameteéty| is adiabatically increased sufficiently
the transition to the pulsed FM mode-locking regime. Theaway from the transition region. In correspondence of this
dotted line in the figure, almost overlapped with cutwe region, the spectrum of mod@) turns out to be composed
shows the threshold condition for the fundamental Gaussiamainly by two lobes, which are shifted away from the center
mode-locking mode as predicted by the perturbation analysisf the gain line and that resemble to the lobes of the original
developed in the Appendipsee Eq(A26)]. To better under- FM signal; conversely, the spectra of modgsn) are
stand the origin of the transition, it is worth considering theformed by a single lobe which moves close to the center of
behavior of the threshold curves for a few low-order Floguetthe gain line as the resonance modulation condition is at-
modes in the neighbor of the transition region, which aretained. In the time domain, the two degenerate modes
shown in Fig. 3. The figure clearly indicates that the transi{=n) correspond to short pulses which pass through the
tion from FM oscillation to FM mode locking is due to the modulator nearby the two different stationary points of the
crossing of the threshold curves of two different Floquetphase perturbation, i.e., in proximity of the maxima or
modes, labeled bg andb in the figure. The intensity profile minima of the phase modulatigeee Figs. 5,@l)]. This kind
and corresponding spectra of these Floquet modes for a feef degeneracy is well-known in the theory of FM mode lock-
values of the frequency detuning parameter are shown iing [11] and indicates that FM mode-locked lasers can sup-
Figs. 4—6. It should be noted that curbeactually describes port two different sequences of pulses differing in the posi-
two distinct Floquet modes that are degenerate in thresholdioning of the pulses within the drive cycle afslightly) in
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FIG. 4. Spectrdleft columng and corresponding intensity pro-

files (right columns of the fundamental Floquet mod@) (curvea  approximate dependence of the transition detuningn the

in Figs. 2,3 for a few values of the detuning parameter(a) ¥~ dimensionless parametets and N=1/w,,\/D4 can be ob-
=0.002,(b) y=0.001,(c) y=0.00035, andd) y=0.000184. The tained by imposing that the threshold values for the central
dashed curve in the figures on the left side is the spectral gain lingaggg| mode|0> and the fundamental Gaussian mode-
of the filter, whereas thg da;hed curve in the figures on the righfocking mode be equal. Using the approximate relations for
side shows the modulation signal impressed to the modulator. these thresholds as given by E¢45),(A26), we get

frequency due to the opposite values of pm(competing to 1
the two modes. As the pulses in the two sequences differ by N —JA+ JA+2A2N2 4
the chirp, they are usually called up-chirped and down- a 27N3/2\/ \/ \/ ' “7

chirped pulses of the FM mode-locked laser.

The frequency detuning valug; at which the transition The above considerations are valid provided that cavity dis-
from FM oscillation to FM mode locking occurs is an im- persion and finite gain bandwidth effects in the two-level
portant parameter which provides indicatively an upper limitgain medium are negligible. When these effects are consid-
for stable mode-locking operation. A typical dependence okred in the analysis, there are some qualitative differences
this value on the modulation index is shown in Fig. 7. An  that can be briefly summarized as follows. The role of a
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finite gain line of the active medium is to introduce, besides
a spectral filtering action analogous to that exploited by the
filter, also a frequency-dependent refractive index near the
resonance associated with the complex part of the Lorentzian
function y(w). Such a frequency-dependent refractive index
is responsible for a slight shift of the exact synchronous
modulation point and breaks the symmetric behavior around
the resonance found in the previous analysis. As an example,
Fig. 8 shows a typical behavior of the threshold cugyge 2

of the laser as a function of the normalized detuning param-
eter y as obtained by numerical solution of the eigenvalue
equation(12) by assuming;=0 andy, = 15wy,

The role of cavity dispersion on FM mode locking has
been already investigated in literature, with special emphasis
payed to pulse chirp compensation and to dispersion-induced
breakdown of threshold degeneracy of up-chirped and down-
chirped pulsegsee, for instance, Refg25]). Here we point
out that cavity dispersion also changes the crossing point
between FM mode locking and FM oscillation, pushing the
frequency detuningy; of the transition away from the reso-
nance point. This is clearly shown in Fig. 9, where a typical
behavior ofy; as a function of the normalized cavity disper-
sionD; /Dy, as obtained by numerical analysis of Ef2),
is reported. The threshold for laser oscillation at the transi-
tion point as a function of cavity dispersion is shown in Fig.
10. Note that the curves are symmetric around the zero dis-
persion point and that, as the cavity dispersion is increased,
the transition occurs at larger detunings with a threshold
lowering. This behavior can be understood from a physical
viewpoint by observing that the mode-locking regime has a

4 10—
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., .®
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FIG. 9. Behavior of the transition detuning- as a function of

respond to numerical simulations, whereas the continuous curve ibe normalized cavity dispersioD; /D, for the same parameter

the frequency detuning behavior as predicted by (E@).

values as in Fig. 2.
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S R yet, of whether the transition from FM oscillation to FM
x10 10 1 mode locking, which occurs when decreasing the detuning
i T parameter close to resonance, is continuous or, as we have
shown, abrupt. Finally, an approximate analytical expression
I o° R for the transition frequency detuning has been derived, and
peeee® "eeee the role of cavity dispersion on the transition has been clari-
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lower threshold than FM oscillatio(see, for instance, Fig.  APPENDIX: PERTURBATION THEORY OF FLOQUET

2), and the exact resonance regime is therefore the preferred MODES: THE RESONANT REGIME

regime of operation of the laser. In presence of a strong (FM MODE LOCKING )

cavity dispersion and when the modulation frequency is ) _ ) )

tuned close to a resonance of tispersionlesavity, the In order to find approximate analytical expressions of Flo-

carrier frequency of the laser can adjust itself in such a wafluét modes and characteristics exponents in the parameter
that exact synchronism is possible between the externalljegion corresponding to the pulsed operation of the FM laser,
imposed phase perturbation and a cavity resonance of tH€ introduce the following scaling for the various param-
dispersivecavity. In other words, we can say that the effect€ters entering in Eq12):
of cavity dispersion is to broaden the resonances of the laser

cavity and to facilitate, as a consequence, the achievement of A~e (A1)
exact phase synchronism. This phenomenon has an impor- STwy=2my~e (A2)
tant impact in enlarging the stability region of FM mode m '

locking, and it has been successfully exploited to generate B(p)~e, (A3)
self-synchronized mode-locked pulses in erbium-doped fiber

lasers under AM modulatiof26]. u~e, (A4)

where B(u) is given by Eq.(18) and € is a smallness pa-
rameter. Using Eqs(Al)—(A4), at leading order ine the

onlinear eigenvalue equatidh?) transforms into the linear
eigenvalue problem

IV. CONCLUSIONS

A detailed and comprehensive linear stability analysis o
laser oscillation with an intracavity phase modulation of the
optical field, based on a Floquet analysis of spatially ex- 2
tended laser equations, has been presented. We have shown [iAcodwpt) +B(0) + 6T JE= —puE. (AS5)
that the Floquet solutions and corresponding Floquet expo- ¢
nents of the laser equations in the presence of a periodig we restrict our analysis to the case where the finite band-
(sinusoidal phase perturbation can be derived as solutions ofvidth effects of the gain medium and cavity dispersion are
a nonlinear eigenvalue problem. The occurrence of resonegligible, we may assume in E(A5)
nances when the modulation frequency is close to an integer
multiple of the cavity axial mode separation manifests itself B(0)=gox(d) +Dsd;—1~go—I+Dydf .

in the strong dependence of Floquet modes on the frequenc_ly . . i .
detuning parameter and explains the well-known cavity-1N€ SPectral equatiofi5) is defined in the space of func-

enhanced effect of FM modulation near resonance and thons that are periodic in the intervied,Ty,]. The problem of
transition to the pulsed FM mode locking regime when thedetermining eigenvalues and eigenfunctions of &) is,
modulation frequency is made closer to the synchronoud 9eneral, challenging and no exact analytical solutions
condition. A perturbative analysis of Floquet modes for dif- S€€m available. However, as we are interested in determining
ferent scalings of parameters entering in the nonlinear eigerU/Sed solutions of the FM laser, we may focus our analysis
value problem allows us to recover, as particular cases, thgY 100king for a class of solutions of EGAS) which assume
well-known theories of FM laser oscillatiofl] and FM a nonvanishing value solely in a narrow temporal window of

mode locking[7] based on frequency or time domain meth- theé modulation period, . In this case, we may expand the
ods. A noteworthy benefit of the Floquet approach is toSinusoidal phase perturbation at second order in time around
clarify the transition from FM laser oscillation to pulsed FM the pulse positiortg
mode locking near resonance, an issue that has been investi- .

. L ' . co t)~co to) — sl to)(t—t
gated with some detail in the paper. In particular, the behav- S@nt)~cod wnto) ~Si@nto) (1~ to)
ior of threshold curves for low-order Floquet modes versus 1 5
the frequency detuning parameter allows us to explain the —5c0¢ wmto) (t—to) (AB)
transition from FM oscillation to FM mode locking as due to
a crossing of two distinct modes. This fact allows us to an-and we may search for a solution of E&5) in the form of
swer to the question, not fully investigated in the literaturea generalized Gaussian function
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The condition given by Eq(Al4) determines the pulse pa-
E(t)= ( > Cn(t—to)“)exd—U(t—to)zﬂ9(t—to)]- rameterss, 6 and the pulse positioty, which turn out to be
A (A7) independent of the mode orddrand are given explicitly by
The pulse parameters and ¢, the pulse position, and the o=(1=%0)¢, (A19)
coefficientsc,, of the polynomial in Eq.(A7) have to be ST
determined self-consistently by imposing the angAf?) to f=+—. (A20)
be a solution to Eq(A5). We note that the ansaiA7), 2Dy

together W'th ihe pargb_ohc apprOX|mat|QA6), Is basically where¢ andt, are the solutions of the equations
an extension of the original Siegman-Kuizenga theory of de-

tuned FM mode locking[12]. After substituting Egs. 16D &2
(A6),(A7) into Eq.(A5) and collecting the terms in the equa- cof wptg) == 92 , (A21)
tion of the same power int(-t;), the following recurrence Aoy,
relation for the coefficients,, is obtained:
. _AageT
aC+ 2+ BCk+1+ SkCkt pC-1+ 0C(—»=0, (A8) sin(@nto) =+ Awp, (A22)
where Notice the double sign in Eq$A19),(A20), which indicates

the existence of a mode degeneracy, and the complex nature

ax=Dg(k+1)(k+2), (A9) of o, which indicates that the pulses are chirped. On the
. other hand, conditiofiA15) allows us to calculate the char-
Bx=06T(k+1)+2iDy(k+1), (A10) acteristic exponenﬂNmA )
. ) 2 »
5k=IACOS(wmto)+15T6+go—|—w—cu MN:i[iAcos(wmto)—HeﬁTngo—l—2Dgo(2N+1)
—Dg[20(2k+1)+ 62], (A11) ~Dy6?]. (A23)

p=—26To—iAwnysinonte) —4ic0Dy, (Al2)  The threshold condition for the mode of ordlris then
A2 obtained by making Re(y) =0, and reads
iAw

From Eq. (A24) it follows that the fundamental Gaussian
mode, corresponding td=0, is the lowest threshold mode.
At exact resonance, i.e., fa§T=0, the solutions to Eqgs.

(A21),(A22) read

The ansatZA7) is meaningful provided that the series in Eq.
(A7) reduces to a polynomial of ordeN, with N
=0,1,2,3... . From Eq.(A8), it can be seen that the con-

dition cy#0, ¢,=0 for k=N+1N+2, ... issatisfied if
and only if the following equations are valid: A o
tgr=0 to_=T/2 &=\/——" (A25)
w=p=0, (A14) o e D, 4
Su=0 (A15) which correspond to the well-known down-chirped and up-
N chirped pulse sequences passing through the modulator in
For a fixed ordeN, the coefficients of the polynomial can be correspondence of either the maxima or minima of the phase
then calculated iteratively by the recurrence equation modulation. For a small frequency detuning, such that
tow <<, at leading order the solution t§ remains un-
cn=1, (A16)  changed, whereas the pulse position is shifted away from the
extrema of the phase modulation by the small quantity
o = Bn-1 (A17) —4¢£5T/IAw?,. Note also that, for small frequency detunings,
N=1 On_1’ the threshold for laser oscillation is an almost quadratic func-
tion of the time detuningT and is explicitly given by
a Cr+ot BrC
Ck:_%’gkkﬂ (k=0,1,2 ... N—2). b o, A+ 51—)2} n26)
(A18) 9n=1"P 3 N, "\ 2D,/ |
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