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Quasiperiodic Fresnel atom optics, focusing, and the quasi-Talbot effect
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We propose a laser field configuration that acts as a quasiperiodic atom optical diffraction grating. Exact
analytical results for the atomic center-of-mass wave function in the Fresnel region after the grating reveal a
guasiperiodic density pattern, a semiclassical focusing effect, and a quasiperiodic self-imaging of the atomic
wave function analogous to a Talbot effect. The high-contrast quasiperiodic pattern that forms at the focal
plane survives both transverse and longitudinal velocity averaging. The quasi-Talbot effect should be observ-
able using atoms from Bose-Einstein condensd®s050-294{©9)00111-7

PACS numbd(s): 03.75.Be, 39.20:q, 32.80.Lg

I. INTRODUCTION have been observd@5]), the extension of atom optical ex-

Increased attention has been given to periodic atom optiperiments to quasiperiodic systems seems natural.
cal systems and to drawing parallels between solid-state Real systems in condensed matter and especially atom
physics and the corresponding atom optics in an easily coreptics must be understood quantitatively as continuous sys-
trolled environmenf1]. Periodic atom optical elements have tems. The full Hamiltonian consisting of the kinetic energy
been used for spatial2] and time-domairi3,4] interferom- ~ and two or more potentials that have incommensurate peri-
etry, atom focusing and lithograpH,6], Bragg scattering 0ds must be considered. Recently, Guidoni and co-workers
[7], anomalous transmission and frequency-shifting Bragd?26] trapped cesium atoms into a quasiperiodic optical lattice
gratings[8], as well as to exhibit Fresnel diffraction and the formed by a three-dimensional laser configuration with in-
self-imaging (Talbot effect[9]) of an atomic wave packet commensurate spatial components of intensity. Georgakis
[10]. In addition, optical lattice$11] and atoms interacting and co-workers have been analyzing such optical lattices to
with modulated standing waves have been used to simulaténderstand their eigenstructure and their relationship with
solid-state effects using atomic de Broglie waves. These agluasiperiodic condensed-matter systems in(@i and two
oms can exhibit structural effects, such as quantized motioflimensiong2D) [27]. Recently, we proposed to extend atom
[12] and extended/localized statmetal/insulatorlikgtransi-  lithography and interferometry experiments to create atomic
tions [13], as well as dynamical effects, such as quanturbeams or cold trapped atoms with quasiperiodic center-of-
momentum diffusion and a transition toward chdd€], = mass wave functiong28]. This paper details our scheme for
propagation of elementary excitatiofib], site-to-site trans- such an experiment. In Sec. |l we present exact analytical
port [16], Bloch oscillations[17], Wannier-Stark ladders results for the atomic wave function and density in the
[18], and wave-packet localization dynamics and oscillationd=resnel region after an interaction with a 1D, quasiperiodic
[19]. atom optical diffraction grating. Fourier analysis reveals the

Much of the previous work on quasiperiodic systems, parduasiperiodic nature of the wave packets and facilitates an
ticularly in the physics community as opposed to the mathaverage over atomic velocity distributions. In Sec. Il we
ematics community, has concentrated on discrete systensudy the focusing effect that results from the quasiperiodic
[20—-23. Typically, a quasiperiodic potential is defined on phase modulation of the wave function, leading to a high-
top of a discrete quasiperiodic latticdike the Harper contrast quasiperiodic density pattern. In Sec. IV we show
mode). Within the standard Harper model, the discretethat wave-packet revivals, essentially a quasiperiodic Talbot
Hamiltonian has two terms, a site-to-site hopping term thagffect, are possible, where the initial atomic wave function
represents the kinetic and potential energies on the underlgan be(nearly recovered. In Sec. V we conclude by discuss-
ing lattice and a potential term with an incommensurate peing the experimental possibilities of observing these quasip-
riod compared to the lattice that takes on a quasiperiodi€riodic effects in existing cold atom beams and traps.
sequence of values at each successive site. Articles discuss-
ing the Harper model are ubiqu?tous irj this subfield of con- Il. QUASIPERIODIC PATTERNS IN THE RAMAN-NATH
densed mattef20—-24. Alternatively, in order to model APPROXIMATION
condensed-matter experiments, a layered system of fixed
thickness has been considered with quasiperiodic stacking An experimental arrangement for producing a quasiperi-
sequences of different species, or a two-species solid hasglic atom density is shown in Fig. 1. Two pairs of off-
been studied with the thickness of the layers forming a quaresonant laser beams of widthintersect at a point along a
siperiodic sequend@0]. A common quasiperiodic sequence transversely cooled atomic beam with velodity propagat-
used is the Fibonacci series, which is not unrelated to coning in thez direction[29]. Alternatively, in a cold atom trap
verging sequences that approximate the incommensuratgith the trap lasers off, two pairs of laser pulses impinge on
wave-vector ratio chosen for this work/2). To further the the atoms. Assuming the laser beam pairs are detuned from
connection of atom optics with condensed matter and classbne another, we can ignore the cross terms in the intensity.
cal optics(where far-field quasiperiodic diffraction patterns The atoms are modeled as having two internal states with
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Interaction Region shape is required to calculate the Raman-Nath parameter,
KEEN2 KR ViN- _To.pres.ent thfa e§sentia! physics of interest here, the
quantitative discussion is restricted to the Raman-Nttim

. leng regime for square pulses,
v Detection/

Lithography _ — _
— Beary‘ Resion V(x,t)=V(x) =V, cos &x+V, cos,2kx for T<t<(91a)
X
T_, , k&EN2 |k =0 for all other times, (4b)

laser fields
although computer simulations can be used to solve(Bq.
FIG. 1. The atomic beam traverses the quaSIpel’IOdIC poten“%r arb|trary |nteract|0n t|mes and pulse Sham For the
formed by the laser beams and is detected by light scattering ®quare pulse¥/py=V;+V,/2 [32]. In the Raman-Nath ap-
lithography after free propagation. proximation the kinetic energy is ignored during the interac-
tion, allowing an immediate integration of E@2) using

upper-state lifetimd” 1. The center-of-mass motion is de- B(x,—7)="1. We can writep(x,0)= exg —iV(x)7/#] or [33]

scribed by plane-wave states. A light-shift potential for the
atomic ground state is formed, B(x,0)=exel i (A; cos Kx+ A, cosy2kx)], )

V(%,2) = V1(2)008 Kx+V(2)cosy2kx, (1) where the pulse area is defined Wyj=—V,7/%. The

whereV,(2)=1|,(2)|2/8A, for Rabi frequencie€),(z) and standing-wgve light f_ields_ act as a quasiperiodic atomic
atom-field detuningq, of the laser beam paits=1,2. Spon- phase g.ratlng. Equatiofd) is valid .also_ for smooth pulse
taneous emission during the atom-field interaction is ignore&'hapes in the Raman-Nath approximation.

. : After the interaction, the evolution of the wave function
2 2 } ,
u_n_der the assumption thb(ﬁ,_(z)| T'widU A ?1' This con into the Fresnel region follows from the free time-dependent
dition assures that the excited state remains essentially u%’chr’tﬁinger equation or its propagator. We can expand Eq

fpopulgted and.has tbgenﬂs]hown tp b? cljmfiortant n fatoml&-)) into a plane-wave representation. The resulting, initial
ocusing experiment}6]. The quasiperiodicity arises from wave function for the Schringer equation is a superposi-

the incommensurate wave vectors of the optical potential[- - . . - )
o . : ) ion of free-particle eigenstat #] with energi
Phase stability between the laser fields is essential for th ° S Zee ba t(.:? eigenstates. ¢ifyx/h] energies
mn=Pm.n/2M, giving the result

potential’s integrity.
While this choice of configuration creates a specific light- ®

shift potential, the arguments that follow can be applied to B(x,t>0)= E ™3 (A1) Jdn(Ay)

any potential which contains incommensurate wave vectors. ' m, mon e

For example, a 2D potential, like the pentagonal Penrose

lattice formed by five laser beams intersecting in a plane, Xex;{ika

n=—=

. (6

could be positioned in front of an atomic beam, or under
atoms dropped from a cold trap, to tailor the wave packet. In
this sense the optical fields coherently control the quasiperizhere
odic wave packet which forms.

The atomic motion is described by a Sctfirmger equation
for the transverse wave functiab(x,t), either in the trap or emnl @) =Em ot/ =
in the atomic beam’s rest frame=U,t. AssumingMU? ' ’
>(MUZ+MUZ+2V(x,2)), one finds(30]

0P
IﬁE—

m-+ %) —i (Pm,n(wkt)

2
wkt (7)

n
m+ —
V2

is the phase associated with the momentum component

2
Px

W+V(X,t)

b, 2 Prmn=2fik(M+n/42), (8

where the full, Born-Oppenheimer wave function of the@"d Jm i @ Bessel function. The momentum space wave
beam is given by function superposes a set of regularly spaced, but not peri-

odic, components which are integer combinations of momen-
MU M U2 tum exchanges between the atom and fields. Notice that the
WV (x,z,t)=ex | ——z— i ———t ¢(x,z=U,t). (3)  wave function has time-independent momentum amplitudes
h 2h Cn
I Jm(Al)Jn(AZ)-

The potential in the interaction region appears as a pulse of Using a sum rule for Bessel function products, the trans-
; iy X

durationT=w/U, in the atomic rest frame. The pulse shapeverse densityp(x,1) = ¢ (x,1) ¢(x,1), can be written as

is determined by the transverse laser profiles. N
Three interaction time scales exist: the Raman-Nath X t)= wexd i 2kxl m+ —

<(kaRN/ﬁ)7l/2], th|Ck |enS[(a)kVRN/ﬁ)7l/ZS TSw[l], p( ’ ) mE,n pm'n( s ) \/E

and Bragg-like o, 1) regimes, wherev,=2%k?/M is a

two-photon recoil frequency. Information about the pulseThe density has time-dependent Fourier amplitudes,

l . 9
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—tU,/U, and A,—A,U,/U,, wheret and A, are refer-

. n JE—
Pmn( @) =Im| 2A1 SIN m+ﬁ Wyt ] enced to the average velocity,,=(U,), and longitudinal
flux averages are denoted ky=[dU,W(U,). As a result,
) m n the velocity-averaged densitp(x,t)={p(x,t)), for a ther-
X Jn) 2A;siN E”L 5o (100 mal transverse distribution takes the general form
creating a spatial pattern which evolves in time. Thus, the — ) n —
atomic density is not only a quasiperiodic function of the p(X, ):% exp i2kx| m+ E (Pmn(@il)),

coordinatex at fixedt but also of the coordinate=U,t at
fixed x. This exact expression for the density components of
a quasiperiodic wave packet, written explicitly for the first
time to our knowledge, can be used for direct experimental
comparison by properly averaging over the longitudinal and
transverse velocity distributions, just as similar results were
used for periodic gratings in Ref3].

The density Fourier transforiDFT),

(133

<pm,n(wkt_)> = f dUZW(Uz)Pm,n(wkmz/Uz)

X exp[— [pm,nuxwz/(zuzﬁ)]z}-
(13b

This is an exact quantum expression for the density and its
Fourier components, accounting for spherical, chromatic,
and transverse aberrations. The expressionfgf,(wt))
replacespp, h(wit) in Eq. (11) for the DFT. To obtain quan-
titative results, we model the beam’s single-particle flux dis-
tribution asW(U,) = (U, /\/7Uu,) exd — (U,— Ug)%/u?] with

p(q,t)=(2w)‘1f p(x,t)e'%dx

=m2n Prn( @) 8(a—Prmnlh), (11)

has peaks ay= p_m'n/ﬁ—2k_(m+n/\/§) [see Eq(8)]. When u,<U, andU,>0. For this narrow flux distribution the av-
squaredp(q,t) gives the time-dependent structure factor of - ) ) i

the atomic distribution. The atomic momentum space wavé&rage speed i&),~U,, and the small relative width is
function and the DFT have a dense spacing between compe= V2(U2—U2)Y3U,~u,/U, with accuracyu?/2U3. This
nents for all time$=0 [20,21]. The density is reminiscent of distribution is used to find quantitative results below. Note
the eigenfunctions of the absolutely continuous spectrum ofhat a longitudinal average is unnecessary in the trap since
eigenvalues in thé&discrete¢ Harper model, which are known the pulse duration and evolution time are nearly identical for
to exhibit self-similar features up to a correlation lengthg|| of the atomsﬂzﬂuzﬂo_

which depends critically on the potential strengf®,23. To detect the density as a function nfor equivalently

While not part of this work, one could explore the multifrac- 37— Z/UZ, one can scatter a transient probe off of the atoms to

tal (scaling characteristics for such wave functions and deNecord the time evolution of certain DFT components. For

sity patterns, reflecting the structure of the spectrum an@:xample a probe pulse with duratien(ku)~ and wave
eigenfunctions of the potentiéda) as well as a devil's stair- ’

case density of statd@7]. vector k_pz —kX bai:kscatters a field,s proportional to
In realistic experiments, thé-function line shape of each (pP1.@kt)) in the +x direction:

spectral component would be broadened by a finite beam

width or trap sizeD. In the Fresnel region for atomic beams

wider than the largest important spatial scdl®=1

-10 mm>(A1+A2/\/§)/Z<], this effect is negligible com-

pared to modifications of the density produced by an initial

transverse velocity distribution. For a thermal transverse dis-

tribution, (muy) ~ texp —(U,/uy)?], with most probable speed

u,, the replacement

Eps~ JdU,W(U,)J1(2A, sinl w, tU,/U,])
X Jo(2A,siM w, tU, /U, /2]

xexd — (ku,tU,/U,)?].

This is a type of free induction decay experiment to detect
ground-state population grating3,34).

Alternatively, either direct deposition or lithography with
the atomic beam could be used to reconstruct the density
in Eq. (10) rigorously accounts for Doppler dephasing. This pattern on a substrate. Atomic lithography has advanced to
expression pertains to atoms in a beam that is laser-cooled the point where atoms can be used to carve nanostructures in
the transverse direction or atoms in a trap or Bose-Einsteimaterials such as silicon, silicon dioxide, and goRb].

pm,n(wkt)ﬁpm,n(a)kt)exd_(pm,nuxt/Zﬁ)z] (12)

condensate after the trapping beams are removed.
In addition, a(single-particl¢ longitudinal flux distribu-

Deposition or the use of lithographic techniques would con-
stitute the creation of a quasiperiodic surface from a coherent

tion, W(U,), in the atom beam can be incorporated into theatomic density pattern, as opposed to quasiperiodic stacked

calculation. The quantity\Ww(U,)dU,, is the probability to
find an atom with velocity betwedd, andU,+dU, passing
through a plane perpendicular to theaxis. For the beam
atoms detected at a fixed distarme U,t from the interac-
tion, the time and pulse areas become velocity-depentlent,

layers in MBE-type systemp20]. Such quasiperiodic sur-
faces could be used for solid-state surface and transport stud-
ies in metallic and semiconductor samples. The implications
for quantum and optical properties may be profound owing
to the quasiperiodic boundary conditions for the elec-
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FIG. 2. The optical potential, V(x)7/h=A,cos Xx
+A,c0sy2kx (— —), is plotted forA;=5 andA,=10. The corre-
sponding atomic density at the quasifocp(sx,t_f), is overlaid for
two atomic beam cases. Monovelocity case- -): v=u,=0.
Velocity-broadened cagsolid line): v=0.15, V2ku,/w,=1. Qua-
siperiods are pronounced nedne 2wja~2mjb+2, where peaks
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TABLE I. Sequence of approximations fQi2, Gs=as /b, de-
fines the dominant quasiperiodsk»@~2mjas, and the quasi-
Talbot timestg of Eq. (14).

s 1 2 3 4 5 6

ag 1 3 7 17 41 99

b 1 2 5 12 29 70
Gs=as/by 1 15 1.4 1.4167 1.4138 1.4143
|\/§—Gs| 0.41 8.6e-2 l1l4e-2 25e-3 4.2e-4 7.2e-5
wylts 4 4 20m 241 1167 1407

havingv=u,=0 and a beam having a distribution of longi-
tudinal and transverse velocities,=0.15 and y2ku,/wy

=1 (corresponding to the rms single-photon transverse re-
coil limit), respectively. The high-contrast pattern persists in

are labeled by j@,jb). The peaks show the sharp features thatthe velocity-broadened case although the high-frequency

appear in the density as a result of lensiighe initial density,

(coherenxoscillations near the base of each peak are damped

equal to one uniformly, defines the relative unit of density. Oneout. Smaller peaksfor example, the peak atkX~3x2x
would multiply the curve by the number of atoms per unit length tomz\/jx 27 in Fig. 2) result from focusing by the shallower

find the true density.

tron or electromagnetic waves, including photon localizatio

and fractal surface stat¢20,24].

IIl. QUASIPERIODIC FOCUSING

We now examine two different phenomena in the Fresne
pattern(9) formed by the atoms. Semiclassical dynamics ca

explain a focusing effedi5]. In Fig. 2 the optical potential
(long dashed lineis shown forA;=5 and A,=10. With

cylindrically  focused, Gaussian laser
~exf —2(Z/o5+y?lo%)], with widths o,=30 um and o

=5 mm, for example, these pulse areas are achieved for
traveling wave powers less than 2 milliwatts in sodium at

A =589 nm for|A|=2 GHz andU,= 9x 10 cm/s. Using a
circular focus,o,~o,=30 um, powers of less than 20 mi-

crowatts are required in sodium. Each potential well acts as

lens which can focus atoms using the impulsiggpole)
force, F(X)=MAv, /7= —dV(x)/dx, whereAv, is an im-
pulsive velocity kick. To illustrate this effect/(x) is Taylor
expanded aroungl=0 to give the harmonic focusing force
near this point,F(x)=MAv,/7~(4V,+2V,)kx. Solving
for Av, and settinng,C,:x/AvX, this geometridclassical
argument yields a focus at the timet; q=(2A;+A,) *
=0.05 that translates into a spatial distarzg,=U,t; .
The ratio of pulse areas in Fig. B,/A;=2, was chosen so

intensities,

wells which occur at the quasiperiods of the potential, where
the incommensurate standing waves are nearly in phase. In

Mgeneral, the irrational wave-vector ratig2 in this case, can

be approximated as the ratdb, wherea andb are positive
integers without common factors. Quasiperiods will then be
defined by Xx~2mja~2wjb+/2 for any integej. One par-
}icular converging sequencé&;s=ag/bg, which approxi-

r{nates\/i, is given in Table I[37]. For this sequence each

successive approximation is about five to six times more
accurate than the previous approximation.

Several peaks in Fig. 2 are labeled by their values of
(ja,jb). Note that the pairj@,jb)=(4,3) in Fig. 2 does not
appear in Table | as it is not part of tli& sequence. The
approximatiora/b=4/3=1.3 is not a significantly better ap-
proximation to\2 thana,/b,=3/2, so a larger phase mis-
match in the incommensurate potentials occurskat=287
when compared tokx= 6. The resulting, shallower poten-
flal well leads to a smaller density peak at the quasifocus.
Generally, for smaller differences betwegnandjb /2, the
quasiperiodicity is more pronouncedde., the peaks near
2kx~2mja approach the size of the peakxat 0). For ex-
ample, we can find the density peak near the poikk 2
~14m~10m7\2 (not shown in Fig. 2 but corresponding to
s=3 in Table | andj=1) for the velocity-broadened case.
The density has a value of 8.907 at the poikix2 44.2217
=14.08r compared to the peak of 8.920 at2=0. Thus,
the focal density underlines the quasiperiodicity of the sys-

that each standing wave contributes an equal semiclassici™m-

force. It is possible to show by asymptotic techniq(ig6]
that the true focus can be approximateddny_fs wkt_f,d[l
+2.200yt; (2A1/3+A,/6)Y2]. For the pulse areas pre-
sented hereA;=5 andA,=10, this gives a true focus at
wit1=0.0623.

We actually evaluate Eq13g at the numerically deter-
mined quasifocus where the density peak along=0 is

maximized. This gives,t;=0.062 in this case, showing the

The DFT, when properly averaged over the velocity dis-
tributions, contains the spectral information important for li-
thography, scattering, or surface science. If we are not inter-
ested in the signs of the DFT components, the DFT can be
specified by plotting the magnitude of the Fourier amplitudes

from Eq. (13b), |<pm’n(wkt_)>|, at the wave vectorsy
=2k(m+n/+/2). In Fig. 3a) we compare the magnitudes of

the Fourier amplitudes at the focal plam@myn(wkt_f)ﬂ, for
the monovelocity(triangular points and velocity-broadened

accuracy of the asymptotic result. The densities plotted ir(square pointscases of Fig. 2. For the given parameters in

Fig. 2, p(x,t(), are symmetric with respect to=0. Results
are shown for both a monovelocity bedsmall dashed line

the velocity-broadened density=0.15 andy2ku,/w,=1,
both the magnitude of the Fourier amplitude at eqalalue
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@ 03 J— bothm andn are positive as a result of the properties of the
005 |- .. -v=(;,15 Bessel functions in Ec{.l_O). Indirect evi(_jence that the true
=~ i i /0;k=1 focus pf th(_a mpnovelocny atom bea_m is not at the classical
L 02 Ei . focal time is given by comparing Figs(a88 and 3b). The
g magnitude of the amplitude for eaghvalue in Fig. 3a), the
E 015 F true focus, is generally larger than the amplitude for the same
Y g1 b g value at the classical focus in Fig(i33.
Using computer simulations, we have also deduced that
0.05 |- ATy T when the Raman-Nath approximation breaks down, the cusp-
0 -I'Wl— like shape of the DFT seen in Fig(g3 broadens into a pla-
~30-20-10 0 10 20 30 teau at the thick lens focus with a Sharp cutoff at some value
4/2k of q for the given potential strengths. The physics in that
) thick lens case, relevant for previous atomic focusing and
030 - lithography experimentg5], is more complicated as the at-
025 kon oms can come to a focus within the interaction region. How-
0 ever, the density patterns of the thick lens case show features
A 020 |1 &D similar to the thin lens case that we are presenting in detail.
o Therefore, the expectation is that quasiperiodic optical po-
%0-15 B tentials could create high-contrast surfaces in existing atomic
\9"8010 | 03 focusing geometries if the phase between incommensurate
= standing wave fields can be maintained.
0.05 |
0.00 L IV. QUASI-TALBOT EFFECT

I
1 23 456 7 8

o2k Atoms that propagate after interacting with periodic atom

optical elements exhibit a self-imaging of their wave func-
FIG. 3. The magnitude of the density Fourier amplitudes,!ion, or Talbot effect, and return to uniform density at times
(pma(weD))], plotted atq=2k(m-+n/y2), as given by Eqs(10) _wkt=_2wj fqr integer j>0 [9,10]. While an _exact ;elf-
and (133. The common amplitude,p, O(a)kt_)):l is not shown imaging WhICh. reprqduc.ess(x,O) [Eq. (5)]. IS |_m9035|ble
but defines the relative scale for the Fourier compongatLom- owing to the dlspe_rS|0n in EdJ), the quaSIPe”Odlc.nature
parison between focal amplituddép, ,(wt;~0.062)| of the of the wave function can lead to a quasirephasing when
Pm,n\ @kl=U. —~ it ; -/ s :
monovelocity case (triangles, v=u,=0, and the velocity- ¢m,n==2]" for some integeq'>0. Initially, we ignore the

velocity-averaging process which would destroy this new ef-
broadened casgsquarel v=0.15, y2ku/w,=1. These are the fect bu)'i suggegst '?WFC)J ways to overcome this be){ow
Fourier amplitudes of the focal densities plotted in Fig. 2. The deg- The appropriate observation times for self-imaging will

radation of amplitudes by Doppler decay is evident in the velocity- d h f h hich
broadened caséb) Amplitudes for the monovelocityu=u,=0) pro UC? phases o.r each momentum component which are
- nearly integer multiples of 2. For even values obg, the

case at the classical focal positidty, ,(wkts o= 0.05)] (circles. . o .
The region ofg values shown irfb) contains amplitudes labeled by choice, wyts=2mbs, from Eq.(7) gives the phases
(m,n). The horizontal axes for botfa) and(b) are densely packed

with small Fourier amplitudes. @mn(2mhg) =2m(bgm?+bgn?/2+bgy2mn),  (14)

and the overall width of the DFT are reduced when com-where we again refer to Table I, abd\2=a by construc-
pared to the monovelocity case. However, this velocitytion. At these times the first two terms in Ed.4) are inte-
broadening does not eliminate the strong modulation, as reggers for allm,n. Furthermore, the third term is nearly an

resented by the significant number of Fourier amplitudesnteger, as required. For odd values lnf, the rephasing
(square pointsremaining in Fig. 8) for [m[,|n[>0. These occurs atwts=4mb;.

relatively large Fourier amplitudes at relatively largeare The wave-function phas#(x,t) is defined by @(x,t)
stil[ ngedgd tq form the high-resolution focus given by the=|(x,t)|exdié(x,t)]. For exact self-imaging, this phase re-
solid line in Fig. 2. turns to 8(x,0)= A, cos(&x)+A, cos(2kx) and the density

The Fourier spectra of Fig.(8 have qualitative scaling g unity. In Fig. 4 we plotd(x,ty), as well as the atomic
properties: for any Fourier wave vector of the densjgy a densityp(x,ty), for A;=A,=1 ands=2, 4, and 6. The self-
wave vectorq’ =2k(m' +n'/\/2) can be found which is ar- imaging becomes more pronounced at longer titgescor-
bitrarily close toqy, even if the amplitude of that comppnent responding to a better approximation ¢2 by Gs. The av-
is much less than unity. To show these amplitudes in Mor@rage valuegdenoted by the barand standard deviations
detail, in Fig. 3b) we plot the magnitudes of the density (denoted byo) of both the densityp(x,ts), and the phase
Fourier amplitudes in the region<0g/2k<8 for the monov-  djfference, ;= A(X,ts) — 6(x,0), are shown in Table Il for
elocity beam ¢=u,=0) evaluated at the classical focal the cases of Fig. 4. Note that these averages are performed
time, [{pmn(@ktsc))|. A few of the larger amplitudes a  over many periods of both potentia|@kx|<16. The im-
=2k(m+n/+/2) are labeled by their corresponding values ofprovements in the self-imaging are evidendp(x,ts)) and
(m,n). The larger amplitudes are dominated by terms wherer(5s) converge monotonically to zero ésincreases.
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FIG. 4. Quasiperiodic Talbot effect fok;=1 andA,=1. (a)
0(x,t), the phase of the atoms at the quasi-Talbot time®r s
=2 (---), 4 (...), 6 (- - -), versusé(x,0), the initial phasé—),
where 6(x,0)= A;cos(XxX)+A, cos/2kx). The self-image is more
precise at longer times. In fact(x,tg) is difficult to distinguish
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property, 2nJ,(A)=A[J;+ 1(A) +J,,—1(A)], one finds that
the approximate wave function to lowest order iag(

—bs\2) is
B(x,2mhg) = (x,0) +i mAL Ay (85— bsy/2)

[

M I (AD) +Im_1(A]

m,n=—o

X[In+1(A2)+In-1(A2)]
n
m+ —

xexp{ika 2 /2

= p(x,0{1+i7A;Ax(as—bgy2)
X[cog2— 2)kx—cog 2+ v2)kx]}. (17)
Thus, the phase difference is found by taking

(16)

Os=IM[In ¢(x,2wbg) —In H(x,0)]

~ A A(as— be2)[ cog 2 — /2)kx—cog 2+ /2)kx].
(18

The average phase differenc&, would be zero if we
could average over an infinite period, while the standard de-
viation of the phase difference;( ), would be7A;A,(ag
—bg\/2). Averaging over the finite window|,2kx| < 16,
gives analytical correction factors and the expressiégs
=0.06637A;A,(as—bsy2) and o(8y)=0.9787AA,(as
—bey/2). These expressions correspond to the values in
Table Il with errors of 0.76% and 0.5% ids and o(Js),

from 6(x,0). (b) p(x.ty), the density of the atoms at the quasi- respectively, fors=6 and with errors of 4.9% and 0.6%,

Talbot timestg for s=2 (-.-.-), 4 (... ), 6 (- - -). Ideally, the atoms
achieve a uniform density of 1.

respectively, fos=4. The errors are over 10% fer=2. We
see that for fixed pulse areas the phase difference to lowest
order in (@s—b<y2) becomes a better approximation at later

_ The values and t(ends in Table Il can be ur_wderstood quarquasi-Talbot times, corresponding &, being a better ap-
titatively by expanding the wave function’s time-dependentproximation of\/2. Equation(18) has also been verified as a

phase factor at the quasi-Talbot times,

ext —i emn(27hg) ]=1+2mimn(as—bgy2)
+2[mimn(as—bgy2)]?, (15)

where we have added and subtracted the phasenBa,

function of the pulse area#y; and A,, at the fixed quasi-
Talbot time w,t;_,= 247 and is more accurate for smaller
pulse areas, as expected. A similar expression tdH).can
be derived for the density to second order & bs\/i).

V. CONCLUSION

The ability to perform an experiment on long time scales

from Eq.(14) to extract the small phase mismatch. Insertingis limited by transverse cooling considerations and the lon-
this expression into Eq(6) and using the Bessel function gitudinal flux widthv. The initial transverse velocity width

TABLE II. Averages(denoted by the barand standard devia-
tions (denoted byr) of the quasi-Talbot density,(x,ts), and phase
mismatch,8;= 8(X,ts) — 6(x,0), for |2kx|<167.

s 2 4 6
%ty 1.019 1.00085 1.000024
o(p(x.tg)) 0.505 0.0170 0.000508
5, (rads 0.0324 0.00645 0.00106

o(8y) (rad9 0.417 0.0899 0.0156

u, degrades the focusing effect unless a scaled cooling con-
dition, kuy/w,=<(A;+Ay/4) A +A,/2) [36], is met.
This condition prevents transverse effects from broadening
the focal spot size. Such broadening has been suppressed by
laser cooling for thick lens focusing schemgg35]. We
have shown in Fig. 2 that, in spite of strong chromatic aber-
ration, effective thin lens focusing can persist for atoms
cooled to the recoil limit, where the cooling condition is
clearly met. The longitudinal flux width we useds=0.15, is
experimentally reasonable while we have also found using
thermal longitudinal beams,=0.513, that similar focusing
contrasts require approximately twice the laser power. The
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relative experimental importance of a narrow transverse veguantum theory of quasiperiodic echoes: the density compo-
locity distribution over a narrow longitudinal distribution is nents vary in time as harmonics af T and w,T/+/2 after
apparent in the physics of EQL3a. The transverse distribu- the atoms interact with two field zones separated by a Time
tion contributes to the average over the sensitive DoppleThis work will be published at a later date.
phasesp,, U/, leading to a density Fourier component’s  In summary, this paper has introduced the possibility of
Gaussian decay, eE«p(pm,nuXIIZh)Z], while the longitudinal  quasiperiodic atom optical elements made from laser inten-
average over slightly different focal regions for each velocitysity gratings with incommensurate wave vectors. The quan-
subclass is a slowly varying integral over the Fouderpli-  tum, analytical results show that the atomic wave packet be-
tudes Atom beams from recent experimefgs5,38,39, in- comes a quasiperiodic function, developing momentum
cluding a beam produced from a Bose-Einstein condensatepmponents which are similarly incommensurate. The
could confirm our quasiperiodic focusing results. Fresnel density is a function of the time of flight from the
For the quasi-Talbot effect to be observable, the beam adiffraction grating. Atoms come to semiclassical quasifo-
trap needs to be cooled below the recoil limiu(<w,) in cuses according to the depth and curvature of the potential
the transverse direction. Atomic beams from previous exwells. The tunable density can survive velocity-averaging
periments(e.g., Chapman and co-workers in Rlf0]) with and be used for atomic lithography to create quasiperiodic
narrow transverse and longitudinal distributions have alsurfaces for condensed-matter studies. Furthermore, ultra-
lowed for an observation of the normal Talbot effect aftercold atoms will exhibit a quasi-self-imaging of their wave
diffraction of atoms from periodic microfabricated struc- functions.
tures. A quasi-Talbot experiment with SW light fields may
be possible with the L!Itracpld atom clouds and beams pro- ACKNOWLEDGMENTS
duced from a Bose-Einstein condensf®8,40, where the
longitudinal velocity distribution is narrow as well. Evidence  The authors would like to thank F. Nori, Q. Niu, G. Geor-
for the normal Talbot effect with SW pulses in the Raman-gakis, R. Merlin, and A.G. Rojo for discussions regarding
Nath regime has recently been observed in a separated puldgs work. J.L.C. would like to acknowledge the support of
experiment in atoms released from a condengdfd. To  Laura Glick and Professor Max Cohen. This work was sup-
overcome the Doppler dephasing for long timegt>1, ported by the National Science Foundation under Grant Nos.
ground-state photon echo configurations employing thd®HY-9414020 and PHY-9800981, the U.S. Army Research
methods devised by Cahn and co-work@kcan be used to Office under Grant No. DAAG55-97-0113 and AASERT
examine quasiperiodic effects. We have also developed Ho. DAAH04-96-0160, and the University of Michigan.

[1] For review articles, seédtom Interferometryedited by P.R. and A. Zeilinger, Phys. Rev. Letf.7, 4980(1996; S. Bernet,
Berman(Academic Press, San Diego, 1997 M.K. Oberthaler, R. Abfalterer, J. Schmiedmayer, and A.
[2] V.P. Chebotayev, B. Dubetsky, A.P. Kazantzev, and V.P. Ya-  Zeilinger,ibid. 77, 5160(1996.
kovlev, J. Opt. Soc. Am. B, 1791(1985; O. Carnal and J. [9] H.F. Talbot., Philos. Mag9, 401 (1836; J.T. Winthrop and
Mlynek, Phys. Rev. Lett66, 2689(1991; D. Keith, C.R. Ek- C.R. Worthington, J. Opt. Soc. Ams5, 373(1965; K. Pator-

. o ski, Prog. Opt28, 1 (1989.
strom, Q.A. Turchette, and D.E. Pritcharihid. 66, 2693 .
' .F. W. R h, Appl. Phys. B: Ph hys.
(199)); for a review of atomic matter waves diffracted by [10] J.F. Clauser and M.W. Reinsch, App ys otophys

. . . . Laser Chemb54, 380 (1992; U. Janicke and M. Wilkens, J.
standing wave light fields, see C.S. Adams, M. Sigel, and J.

. Phys. 114, 1975(1994; M.S. Chapman, C.R. Ekstrom, T.D.
Miynek, Phys. Rep240, 145(1994; E.M. Rasel, K. Obertha- Hammond, J. Schmiedmayer, B.E. Tannian, S. Wehinger, and

ler, H. Batelaan, J. Schmiedmayer, and A. Zeilinger, Phys. D.E. Pritchard, Phys. Rev. AL R14(1995; S. Nowak, Ch.

Rev. Lett.75, 2633(1995; Ch. Kurtsiefer, T. Pfau, C.R. Ek- Kurtsiefer, C. David, T. Pfau, and J. Mlynek, Opt. Le?e,
strom, and J. Mlynek, Appl. Phys. B: Lasers OpD, 229 1430(1997.
(1995. [11] N.P. Bigelow and M.G. Prentiss, Phys. Rev. L&, 29

[3] S.B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P.R. Ber- (1990; C.I. Westbrook, R.N. Watts, C.E. Tanner, S.L.
man, and B. Dubetsky, Phys. Rev. Lét®, 784 (1997). Rolston, and W.D. Phillipsbid. 65, 33(1990); for a review of

[4] See B. Young, M. Kasevich, and S. Chu, in Réfl. optical lattices, see P.S. Jessen and |.H. Deutsch, Adv. At.,

[5] G. Timp, R.E. Behringer, D.M. Tennant, and J.E. Cunning- Mol., Opt. Phys.37, 95 (1996.
ham, Phys. Rev. Let69, 1636(1992; T. Sleator, V. Balykin,  [12] P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudiji, J.-Y.

and J. Mlynek, Appl. Phys. B: Photophys. Laser Ché. Courtois, and G. Grynberg, Phys. Rev. L&8, 3861(1992);
375 (1992; J.J. McClelland, R.E. Scholten, E.C. Palm, and P.S. Jessen, C. Gerz, P.D. Lett, W.D. Phillips, S.L. Rolston,
R.J. Celotta, Scienc262, 877(1993; V. Sandoghdar, U. Dro- R.J.C. Spreeuw, and C.I. Westbroaid. 69, 49 (1992.
dofsky, Th. Schulze, J. Stuhler, B. Brezger, M. Drewsen, T.[13] F.L. Moore, J.C. Robinson, C. Bharucha, P.E. Williams, and
Pfau, and J. Mlynek, J. Mod. Op44, 1883(1997. M.G. Raizen, Phys. Rev. Letl.3, 2974(1994).
[6] V. Natarajan, R.E. Behringer, and G. Timp, Phys. Re\63\  [14] J.C. Robinson, C. Bharucha, F.L. Moore, R. Jahnke, G.A.
4381(1996. Georgakis, Q. Niu, M.G. Raizen, and B. Sundaram, Phys. Rev.
[7] P.J. Martin, B.G. Oldaker, A.H. Miklich, and D.E. Pritchard, Lett. 74, 3963(1995.
Phys. Rev. Lett60, 515 (1988. [15] J.-Y. Courtois, S. Guibal, D.R. Meacher, P. Verkerk, and G.

[8] M.K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, Grynberg, Phys. Rev. Let?7, 40 (1996.



PRA 60

[16] C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I.

Westbrook, and A. Aspect, Phys. Rev. Latt, 1727(1996.
[17] R. Dum and M. Olshanii, Phys. Rev. Lef6, 1788(1996); M.

Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,

ibid. 76, 4508(1996.

[18] S.R. Wilkinson, C.F. Bharucha, K.W. Madison, Q. Niu, and

M.G. Raizen, Phys. Rev. Leff6, 4512(1996; Q. Niu, X.-G.
Zhao, G.A. Georgakis, and M.G. Raizeihid. 76, 4504
(1996.

QUASIPERIODIC FRESNEL ATOM OPTICS .. 3989

evolution. Any calculation in the thick lens regime requires a
solution of the differential equation, E@2), preferably per-
formed in momentum space from the outset if free-space evo-
lution is to follow the interaction. This avoids the lattice com-
plications. To calculate the wave function and density within
the interaction region in the thick lens regime, we have suc-
cessfully employed the Crank-Nicholson methfgke S.E.
Koonin, Computational Physics: FORTRAN Version
(Addison-Wesley, Reading, MA, 199D

[19] G. Raithel, G. Birkl, A. Kastberg, W.D. Phillips, and S.L. [32] C. Henkel, J.-Y. Courtois, and A. Aspect, J. Phys4|11955

Rolston, Phys. Rev. Let#Z8, 630(1997; T. Muller-Seydlitz,

M. Hartl, B. Brezger, H. Hasel, C. Keller, A. Schnetz, R.J.C.

Spreeuw, T. Pfau, and J. Mlynelyid. 78, 1038 (1997); G.
Raithel, G. Birkl, W.D. Phillips, and S.L. Rolstoibid. 78,
2928(1997.

[20] P. J. Steinhardt and S. Ostlurithe Physics of Quasicrystals

(World Scientific, Singapore, 1987 T.J. Fujiwara and T.
Ogawa,QuasicrystalgSpringer-Verlag, Berlin, 1993

[21] M. Ya. Azbel, Phys. Rev. Lett43, 1954 (1979; B. Simon,
Adv. App. Math.3, 463(1982; J.B. Sokoloff, Phys. Re[d.26,

1768 (1985; A. Bondeson, E. Ott, and T.M. Antonsen, Jr.,

Phys. Rev. Lett55, 2103(1985; A.D. Zdetsis, C.M. Soukou-
lis, and E.N. Economou, Phys. Rev.3, 4936(1986.

[22] A.P. Siebersma and L. Petronero, Europhys. Létt.597
(1987; H. Hiramoto and M. Kohmoto, Phys. Rev.4), 8225
(1989.

[23] H. Hiramoto and M. Kohmoto, Phys. Rev.4), 8225(1989.

[24] M. Kohmoto, B. Sutherland, and K. Iguchi, Phys. Rev. Lett.

(1994. The Raman-Nath condition restricts the interaction
time to 7<[ wy(V1+ V,/2)/%]7 Y2 Hence Vry=V+V,/2. A

thin lens condition which should also be maintained here is
<[2w(V2+ V324 \2V,V,)/312] "% assuring that a spa-
tially modulated phase does not develop during the interaction.
These conditions were found using a nonperturbative proce-
dure to derive the small-time evolution operator of E2).and

to find the spatially modulated exponential amplitude and
phase corrections, respectively,#d0), Eq.(5). While Vgy is
typically determined by the interaction timefor which the
average kinetic energy of the wave packet in the potential is
equal to the minimum interaction strength coupling the mo-
mentum components, this definition has less meaning in the
quasiperiodic case since it does not correspond to the ampli-
tude modulation of the wave function. We could find this con-
dition as well using Eqs(3) and (5). The kinetic energy is
given by Eyxe=—%%$(0)|0%dx? p(0))/2M = w72 (V32
+V§/4)/ﬁ while the minimum interaction strength is given by
Vmin=min(Vy,V,)/2.

58, 2436 (1987; M.S. Vasconcelos, E.L. Albuguerque, and [33] R. Mosseri and F. Bailly, J. Phys.2, 1715(1992.

A.N. Mariz, J. Phys.: Condens. Matt&f, 5839(1998.
[25] M. Tanibayashi, J. Phys. Soc. J#1, 3139(1992.

[34] B. Dubetsky and P.R. Berman, Appl. Phys. B: Lasers Gt.

147 (1994.

[26] L. Guidoni, C. Triche P. Verkerk, and G. Grynberg, Phys. [35] K.K. Berggren, A. Bard, J.L. Wilbur, J.D. Gillaspy, A.G. Heig,

Rev. Lett.79, 3363(1997).
[27] G.A. Georgakis, G. Sundaram, and Q. Nimnpublished
[28] J.L. Cohen and P.R. Bermdunnpublished

J.J. McClelland, S.L. Rolston, W.D. Phillips, M. Prentiss, and
G.M. Whitesides, Scienc@69, 1255 (1995; S. Nowak, T.
Pfau, and J. Mlynek, Appl. Phys. B: Lasers OpS, 203

[29] A similar experiment, leading to the same results as derived in ~ (1996; K.S. Johnson, K.K. Berggren, A. Black, C. Black, A.P.

this paper, would have the atomic beam traveling perpendicu-
lar to the plane of propagation of the four laser beams. The
atomic beam would then travel along tlyeaxis of Fig. 1,

Chu, N. Dekker, D. Ralph, J.H. Thywissen, R. Younkin, M.
Prentiss, M. Tinkham, and G. Whitesides, Appl. Phys. L&9}.
2773(1996.

avoiding possible geometric effects associated with the inter{36] J.L. Cohen, B. Dubetsky, and P.R. Berman, Phys. Re(toA

section of the laser and atomic beams in the interaction region.

frame of thez-dependent center of mass of the atom bé¢see

be published

[30] Thus, the paraxial wave functiof is written in the reference [37] The sequence is defined by the recurrence formuégs,

=a;_1+ 2b,_, andb,=a,_;+ b,_, fora;=b;=1.

Eg. (3)] and in an interaction representation for the spatially[38] J. Schmiedmayer, M.S. Chapman, C.R. Ekstrom, T.D. Ham-

independent internal motions of the ground state of the beam
or trapped atoms.

the complications of numerical computations in coordinate

space, where a lattice would have to be defined underneath a

mond, D.A. Kokorowski, A. Lenef, R.A. Rubenstein, E.T.
Smith, and D.E. Pritchard, in Ref1], pp. 6 and 7.

[31] Our analytical approach to the thin lens approximation avoidq439] M. Kozuma, L. Deng, E.W. Hagley, J. Wen, K. Helmerson,

S.L. Rolston, and W.D. Phillips, Phys. Rev. Le&2 871
(1999.

guasiperiodic function and where the width of each Fourier[40] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman,

component would be limited by a fast Fourier transfaffT)
spatial sampling window of width, allowing a resolution of
Ak=2m/L. While propagation of the free wave function from
the pulse to later times by a Crank-Nicholson method is inef-
ficient, standard FFT into momentum space after a numerical
or analytical coordinate space integration over the pulse cre-
ates a mismatch in the quasiperiodic momentum components

and E.A. Cornell, Scienc269, 198(1995; C.C. Bradley, C.A.
Sackett, J.J. Tollett, and R.G. Hulet, Phys. Rev. L &.1687
(1995; K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van
Druten, D.S. Durfee, D.M. Kurn, and W. Ketterldid. 75,
3969 (1995; D.G. Fried, T.C. Killian, L. Willmann, D.
Landhuis, S.C. Moss, D. Kleppner, and T.J. Greytald. 81,
3807(1998.

and leads to disastrous phase errors in calculating the timp41] S.L. Rolston(private communication



