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Quasiperiodic Fresnel atom optics, focusing, and the quasi-Talbot effect

J. L. Cohen, B. Dubetsky, and P. R. Berman
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 24 May 1999!

We propose a laser field configuration that acts as a quasiperiodic atom optical diffraction grating. Exact
analytical results for the atomic center-of-mass wave function in the Fresnel region after the grating reveal a
quasiperiodic density pattern, a semiclassical focusing effect, and a quasiperiodic self-imaging of the atomic
wave function analogous to a Talbot effect. The high-contrast quasiperiodic pattern that forms at the focal
plane survives both transverse and longitudinal velocity averaging. The quasi-Talbot effect should be observ-
able using atoms from Bose-Einstein condensates.@S1050-2947~99!00111-0#

PACS number~s!: 03.75.Be, 39.20.1q, 32.80.Lg
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I. INTRODUCTION

Increased attention has been given to periodic atom o
cal systems and to drawing parallels between solid-s
physics and the corresponding atom optics in an easily c
trolled environment@1#. Periodic atom optical elements hav
been used for spatial-@2# and time-domain@3,4# interferom-
etry, atom focusing and lithography@5,6#, Bragg scattering
@7#, anomalous transmission and frequency-shifting Bra
gratings@8#, as well as to exhibit Fresnel diffraction and th
self-imaging ~Talbot effect @9#! of an atomic wave packe
@10#. In addition, optical lattices@11# and atoms interacting
with modulated standing waves have been used to simu
solid-state effects using atomic de Broglie waves. These
oms can exhibit structural effects, such as quantized mo
@12# and extended/localized state~metal/insulatorlike! transi-
tions @13#, as well as dynamical effects, such as quant
momentum diffusion and a transition toward chaos@14#,
propagation of elementary excitations@15#, site-to-site trans-
port @16#, Bloch oscillations@17#, Wannier-Stark ladders
@18#, and wave-packet localization dynamics and oscillatio
@19#.

Much of the previous work on quasiperiodic systems, p
ticularly in the physics community as opposed to the ma
ematics community, has concentrated on discrete syst
@20–22#. Typically, a quasiperiodic potential is defined o
top of a discrete quasiperiodic lattice~like the Harper
model!. Within the standard Harper model, the discre
Hamiltonian has two terms, a site-to-site hopping term t
represents the kinetic and potential energies on the und
ing lattice and a potential term with an incommensurate
riod compared to the lattice that takes on a quasiperio
sequence of values at each successive site. Articles disc
ing the Harper model are ubiquitous in this subfield of co
densed matter@20–24#. Alternatively, in order to mode
condensed-matter experiments, a layered system of fi
thickness has been considered with quasiperiodic stac
sequences of different species, or a two-species solid
been studied with the thickness of the layers forming a q
siperiodic sequence@20#. A common quasiperiodic sequenc
used is the Fibonacci series, which is not unrelated to c
verging sequences that approximate the incommensu
wave-vector ratio chosen for this work (A2). To further the
connection of atom optics with condensed matter and cla
cal optics~where far-field quasiperiodic diffraction pattern
PRA 601050-2947/99/60~5!/3982~8!/$15.00
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have been observed@25#!, the extension of atom optical ex
periments to quasiperiodic systems seems natural.

Real systems in condensed matter and especially a
optics must be understood quantitatively as continuous
tems. The full Hamiltonian consisting of the kinetic ener
and two or more potentials that have incommensurate p
ods must be considered. Recently, Guidoni and co-work
@26# trapped cesium atoms into a quasiperiodic optical latt
formed by a three-dimensional laser configuration with
commensurate spatial components of intensity. Georg
and co-workers have been analyzing such optical lattice
understand their eigenstructure and their relationship w
quasiperiodic condensed-matter systems in one~1D! and two
dimensions~2D! @27#. Recently, we proposed to extend ato
lithography and interferometry experiments to create ato
beams or cold trapped atoms with quasiperiodic center
mass wave functions@28#. This paper details our scheme fo
such an experiment. In Sec. II we present exact analyt
results for the atomic wave function and density in t
Fresnel region after an interaction with a 1D, quasiperio
atom optical diffraction grating. Fourier analysis reveals t
quasiperiodic nature of the wave packets and facilitates
average over atomic velocity distributions. In Sec. III w
study the focusing effect that results from the quasiperio
phase modulation of the wave function, leading to a hig
contrast quasiperiodic density pattern. In Sec. IV we sh
that wave-packet revivals, essentially a quasiperiodic Ta
effect, are possible, where the initial atomic wave functi
can be~nearly! recovered. In Sec. V we conclude by discus
ing the experimental possibilities of observing these qua
eriodic effects in existing cold atom beams and traps.

II. QUASIPERIODIC PATTERNS IN THE RAMAN-NATH
APPROXIMATION

An experimental arrangement for producing a quasip
odic atom density is shown in Fig. 1. Two pairs of of
resonant laser beams of widthw intersect at a point along a
transversely cooled atomic beam with velocityUz propagat-
ing in thez direction@29#. Alternatively, in a cold atom trap
with the trap lasers off, two pairs of laser pulses impinge
the atoms. Assuming the laser beam pairs are detuned
one another, we can ignore the cross terms in the inten
The atoms are modeled as having two internal states w
3982 ©1999 The American Physical Society
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upper-state lifetimeG21. The center-of-mass motion is de
scribed by plane-wave states. A light-shift potential for t
atomic ground state is formed,

V~x,z!5V1~z!cos 2kx1V2~z!cosA2kx, ~1!

whereVl(z).\uV l(z)u2/8D l for Rabi frequenciesV l(z) and
atom-field detuningsD l of the laser beam pairsl 51,2. Spon-
taneous emission during the atom-field interaction is igno
under the assumption thatuV l(z)u2Gw/4UzD l

2!1. This con-
dition assures that the excited state remains essentially
populated and has been shown to be important in ato
focusing experiments@6#. The quasiperiodicity arises from
the incommensurate wave vectors of the optical poten
Phase stability between the laser fields is essential for
potential’s integrity.

While this choice of configuration creates a specific lig
shift potential, the arguments that follow can be applied
any potential which contains incommensurate wave vect
For example, a 2D potential, like the pentagonal Penr
lattice formed by five laser beams intersecting in a pla
could be positioned in front of an atomic beam, or und
atoms dropped from a cold trap, to tailor the wave packet
this sense the optical fields coherently control the quasip
odic wave packet which forms.

The atomic motion is described by a Schro¨dinger equation
for the transverse wave functionf(x,t), either in the trap or
in the atomic beam’s rest frame,z5Uzt. AssumingMUz

2

@^MUx
21MUy

212V(x,z)&, one finds@30#

i\
]f

]t
5F px

2

2M
1V~x,t !Gf, ~2!

where the full, Born-Oppenheimer wave function of t
beam is given by

C~x,z,t !5expS i
MUz

\
z2 i

MUz
2

2\
t Df~x,z5Uzt !. ~3!

The potential in the interaction region appears as a puls
durationt5w/Uz in the atomic rest frame. The pulse sha
is determined by the transverse laser profiles.

Three interaction time scales exist: the Raman-Nath@t
!(vkVRN/\)21/2#, thick lens @(vkVRN/\)21/2&t&vk

21#,
and Bragg-like (vkt@1) regimes, wherevk52\k2/M is a
two-photon recoil frequency. Information about the pu

FIG. 1. The atomic beam traverses the quasiperiodic pote
formed by the laser beams and is detected by light scatterin
lithography after free propagation.
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shape is required to calculate the Raman-Nath param
VRN. To present the essential physics of interest here,
quantitative discussion is restricted to the Raman-Nath~thin
lens! regime for square pulses,

V~x,t !5V~x!5V1 cos 2kx1V2 cosA2kx for 2t,t,0
~4a!

50 for all other times, ~4b!

although computer simulations can be used to solve Eq.~2!
for arbitrary interaction times and pulse shapes@31#. For the
square pulsesVRN5V11V2/2 @32#. In the Raman-Nath ap
proximation the kinetic energy is ignored during the intera
tion, allowing an immediate integration of Eq.~2! using
f(x,2t)51. We can writef(x,0)5exp@2iV(x)t/\# or @33#

f~x,0!5exp@ i ~A1 cos 2kx1A2 cosA2kx!#, ~5!

where the pulse area is defined byAl52Vlt/\. The
standing-wave light fields act as a quasiperiodic atom
phase grating. Equation~5! is valid also for smooth pulse
shapes in the Raman-Nath approximation.

After the interaction, the evolution of the wave functio
into the Fresnel region follows from the free time-depend
Schrödinger equation or its propagator. We can expand
~5! into a plane-wave representation. The resulting, ini
wave function for the Schro¨dinger equation is a superpos
tion of free-particle eigenstates exp@ipm,nx/\# with energies
Em,n5pm,n

2 /2M , giving the result

f~x,t.0!5 (
m,n52`

`

i m1nJm~A1!Jn~A2!

3expF i2kxS m1
n

A2
D 2 iwm,n~vkt !G , ~6!

where

wm,n~vkt !5Em,nt/\5S m1
n

A2
D 2

vkt ~7!

is the phase associated with the momentum component

pm,n52\k~m1n/A2!, ~8!

and Jm is a Bessel function. The momentum space wa
function superposes a set of regularly spaced, but not p
odic, components which are integer combinations of mom
tum exchanges between the atom and fields. Notice that
wave function has time-independent momentum amplitu
i m1nJm(A1)Jn(A2).

Using a sum rule for Bessel function products, the tra
verse density,r(x,t)5f* (x,t)f(x,t), can be written as

r~x,t !5(
m,n

rm,n~vkt !expF i2kxS m1
n

A2
D G . ~9!

The density has time-dependent Fourier amplitudes,

al
or
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rm,n~vkt !5JmH 2A1 sinF S m1
n

A2
D vktG J

3JnH 2A2 sinF S m

A2
1

n

2D vktG J , ~10!

creating a spatial pattern which evolves in time. Thus,
atomic density is not only a quasiperiodic function of t
coordinatex at fixed t but also of the coordinatez5Uzt at
fixed x. This exact expression for the density components
a quasiperiodic wave packet, written explicitly for the fir
time to our knowledge, can be used for direct experimen
comparison by properly averaging over the longitudinal a
transverse velocity distributions, just as similar results w
used for periodic gratings in Ref.@3#.

The density Fourier transform~DFT!,

r~q,t !5~2p!21E r~x,t !e2 iqxdx

5(
m,n

rm,n~vkt !d~q2pm,n /\!, ~11!

has peaks atq5pm,n /\52k(m1n/A2) @see Eq.~8!#. When
squared,r(q,t) gives the time-dependent structure factor
the atomic distribution. The atomic momentum space w
function and the DFT have a dense spacing between com
nents for all timest>0 @20,21#. The density is reminiscent o
the eigenfunctions of the absolutely continuous spectrum
eigenvalues in the~discrete! Harper model, which are known
to exhibit self-similar features up to a correlation leng
which depends critically on the potential strengths@22,23#.
While not part of this work, one could explore the multifra
tal ~scaling! characteristics for such wave functions and de
sity patterns, reflecting the structure of the spectrum
eigenfunctions of the potential~4a! as well as a devil’s stair-
case density of states@27#.

In realistic experiments, thed-function line shape of each
spectral component would be broadened by a finite be
width or trap sizeD. In the Fresnel region for atomic beam
wider than the largest important spatial scale@D.1
210 mm@(A11A2 /A2)/2k#, this effect is negligible com-
pared to modifications of the density produced by an ini
transverse velocity distribution. For a thermal transverse
tribution, (pux)

21exp@2(Ux /ux)
2#, with most probable spee

ux , the replacement

rm,n~vkt !→rm,n~vkt !exp@2~pm,nuxt/2\!2# ~12!

in Eq. ~10! rigorously accounts for Doppler dephasing. Th
expression pertains to atoms in a beam that is laser-coole
the transverse direction or atoms in a trap or Bose-Eins
condensate after the trapping beams are removed.

In addition, a~single-particle! longitudinal flux distribu-
tion, W(Uz), in the atom beam can be incorporated into t
calculation. The quantity,W(Uz)dUz , is the probability to
find an atom with velocity betweenUz andUz1dUz passing
through a plane perpendicular to thez axis. For the beam
atoms detected at a fixed distancez5Uzt from the interac-
tion, the time and pulse areas become velocity-dependet
e
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→ t̄Ūz/Uz and An→ĀnŪz /Uz , where t̄ and Ān are refer-
enced to the average velocity,Ūz5^Uz&, and longitudinal
flux averages are denoted by^&[*dUzW(Uz). As a result,
the velocity-averaged density,r(x, t̄ )[^r(x,t)&, for a ther-
mal transverse distribution takes the general form

r~x, t̄ !5(
m,n

expF i2kxS m1
n

A2
D G ^rm,n~vkt̄ !&,

~13a!

^rm,n~vkt̄ !&5E dUzW~Uz!rm,n~vkt̄ Ūz /Uz!

3exp$2@pm,nuxt̄ Ūz /~2Uz\!#2%.

~13b!

This is an exact quantum expression for the density and
Fourier components, accounting for spherical, chroma
and transverse aberrations. The expression for^rm,n(vkt̄ )&
replacesrm,n(vkt) in Eq. ~11! for the DFT. To obtain quan-
titative results, we model the beam’s single-particle flux d
tribution asW(Uz)5(Uz /ApU0uz)exp@2(Uz2U0)

2/uz
2# with

uz!U0 andUz.0. For this narrow flux distribution the av
erage speed isŪz'U0, and the small relative width isv
[A2^Uz

22Ūz
2&1/2/Ūz'uz /U0 with accuracyuz

2/2U0
2 . This

distribution is used to find quantitative results below. No
that a longitudinal average is unnecessary in the trap s
the pulse duration and evolution time are nearly identical
all of the atoms,Ūz→Uz→0.

To detect the density as a function ofz, or equivalently
t̄ 5z/Ūz , one can scatter a transient probe off of the atom
record the time evolution of certain DFT components. F
example, a probe pulse with duration,(ku)21 and wave
vector kp52kx̂ backscatters a fieldEbs proportional to

^r1,0(vkt̄ )& in the 1 x̂ direction:

Ebs;*dUzW~Uz!J1~2Ā1 sin@vkt̄ Ūz /Uz# !

3J0~2Ā2sin@vkt̄ Ūz /Uz /A2# !

3exp@2~kuxt̄ Ūz /Uz!
2#.

This is a type of free induction decay experiment to det
ground-state population gratings@3,34#.

Alternatively, either direct deposition or lithography wit
the atomic beam could be used to reconstruct the den
pattern on a substrate. Atomic lithography has advance
the point where atoms can be used to carve nanostructur
materials such as silicon, silicon dioxide, and gold@35#.
Deposition or the use of lithographic techniques would co
stitute the creation of a quasiperiodic surface from a cohe
atomic density pattern, as opposed to quasiperiodic stac
layers in MBE-type systems@20#. Such quasiperiodic sur
faces could be used for solid-state surface and transport s
ies in metallic and semiconductor samples. The implicatio
for quantum and optical properties may be profound ow
to the quasiperiodic boundary conditions for the ele
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tron or electromagnetic waves, including photon localizat
and fractal surface states@20,24#.

III. QUASIPERIODIC FOCUSING

We now examine two different phenomena in the Fres
pattern~9! formed by the atoms. Semiclassical dynamics c
explain a focusing effect@5#. In Fig. 2 the optical potentia
~long dashed line! is shown for Ā155 and Ā2510. With
cylindrically focused, Gaussian laser intensitie
;exp@22(z2/sz

21y2/sy
2)#, with widths sz.30 mm and sy

.5 mm, for example, these pulse areas are achieved
traveling wave powers less than 2 milliwatts in sodium
l5589 nm foruDu.2 GHz andŪz. 93104 cm/s. Using a
circular focus,sz.sy.30 mm, powers of less than 20 mi
crowatts are required in sodium. Each potential well acts
lens which can focus atoms using the impulsive~dipole!
force, F(x)5MDvx /t52]V(x)/]x, whereDvx is an im-
pulsive velocity kick. To illustrate this effect,V(x) is Taylor
expanded aroundx50 to give the harmonic focusing forc
near this point,F(x)5MDvx /t'(4V112V2)kx. Solving
for Dvx and settingt̄ f ,cl5x/Dvx , this geometric~classical!
argument yields a focus at the timevkt̄ f ,cl5(2Ā11Ā2)21

50.05 that translates into a spatial distancezf ,cl5Ūzt̄ f ,cl .
The ratio of pulse areas in Fig. 2,Ā2 /Ā152, was chosen so
that each standing wave contributes an equal semiclas
force. It is possible to show by asymptotic techniques@36#

that the true focus can be approximated byvkt̄ f>vkt̄ f ,cl@1
12.20vkt̄ f ,cl(2A1/31A2/6)1/2#. For the pulse areas pre
sented here,Ā155 and Ā2510, this gives a true focus a
vkt̄ f>0.0623.

We actually evaluate Eq.~13a! at the numerically deter
mined quasifocus, where the density peak alongx50 is
maximized. This givesvkt̄ f.0.062 in this case, showing th
accuracy of the asymptotic result. The densities plotted
Fig. 2, r(x, t̄ f), are symmetric with respect tox50. Results
are shown for both a monovelocity beam~small dashed line!

FIG. 2. The optical potential, V(x)t/\5A1cos 2kx
1A2cosA2kx ~— —!, is plotted forA155 andA2510. The corre-

sponding atomic density at the quasifocus,r(x, t̄ f), is overlaid for
two atomic beam cases. Monovelocity case~- - -!: v5ux50.
Velocity-broadened case~solid line!: v50.15,A2kux /vk51. Qua-
siperiods are pronounced near 2kx'2p ja'2p jbA2, where peaks
are labeled by (ja, jb). The peaks show the sharp features th
appear in the density as a result of lensing.~The initial density,
equal to one uniformly, defines the relative unit of density. O
would multiply the curve by the number of atoms per unit length
find the true density.!
n
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n

,

or
t
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havingv5ux50 and a beam having a distribution of long
tudinal and transverse velocities,v50.15 andA2kux /vk
51 ~corresponding to the rms single-photon transverse
coil limit !, respectively. The high-contrast pattern persists
the velocity-broadened case although the high-freque
~coherent! oscillations near the base of each peak are dam
out. Smaller peaks~for example, the peak at 2kx'332p
'2A232p in Fig. 2! result from focusing by the shallowe
wells which occur at the quasiperiods of the potential, wh
the incommensurate standing waves are nearly in phas
general, the irrational wave-vector ratio,A2 in this case, can
be approximated as the ratioa/b, wherea andb are positive
integers without common factors. Quasiperiods will then
defined by 2kx'2p ja'2p jbA2 for any integerj. One par-
ticular converging sequence,Gs5as /bs , which approxi-
matesA2, is given in Table I@37#. For this sequence eac
successive approximation is about five to six times m
accurate than the previous approximation.

Several peaks in Fig. 2 are labeled by their values
( ja, jb). Note that the pair (ja, jb)5(4,3) in Fig. 2 does not
appear in Table I as it is not part of theGs sequence. The
approximationa/b54/351.3̄ is not a significantly better ap
proximation toA2 thana2 /b253/2, so a larger phase mis
match in the incommensurate potentials occurs at 2kx58p
when compared to 2kx56p. The resulting, shallower poten
tial well leads to a smaller density peak at the quasifoc
Generally, for smaller differences betweenja and jbA2, the
quasiperiodicity is more pronounced~i.e., the peaks nea
2kx'2p ja approach the size of the peak atx50). For ex-
ample, we can find the density peak near the point 2kx
'14p'10pA2 ~not shown in Fig. 2 but corresponding t
s53 in Table I andj 51) for the velocity-broadened case
The density has a value of 8.907 at the point 2kx544.2217
.14.08p compared to the peak of 8.920 at 2kx50. Thus,
the focal density underlines the quasiperiodicity of the s
tem.

The DFT, when properly averaged over the velocity d
tributions, contains the spectral information important for
thography, scattering, or surface science. If we are not in
ested in the signs of the DFT components, the DFT can
specified by plotting the magnitude of the Fourier amplitud
from Eq. ~13b!, u^rm,n(vkt̄ )&u, at the wave vectorsq
52k(m1n/A2). In Fig. 3~a! we compare the magnitudes o
the Fourier amplitudes at the focal plane,u^rm,n(vkt̄ f)&u, for
the monovelocity~triangular points! and velocity-broadened
~square points! cases of Fig. 2. For the given parameters
the velocity-broadened density,v50.15 andA2kux /vk51,
both the magnitude of the Fourier amplitude at eachq value

t

e

TABLE I. Sequence of approximations forA2, Gs5as /bs , de-
fines the dominant quasiperiods, 2kx'2p jas , and the quasi-
Talbot timests of Eq. ~14!.

s 1 2 3 4 5 6

as 1 3 7 17 41 99
bs 1 2 5 12 29 70
Gs5as /bs 1 1.5 1.4 1.4167 1.4138 1.4143
uA22Gsu 0.41 8.6e22 1.4e22 2.5e23 4.2e24 7.2e25
vkts 4p 4p 20p 24p 116p 140p
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and the overall width of the DFT are reduced when co
pared to the monovelocity case. However, this veloc
broadening does not eliminate the strong modulation, as
resented by the significant number of Fourier amplitud
~square points! remaining in Fig. 3~a! for umu,unu.0. These
relatively large Fourier amplitudes at relatively largeq are
still needed to form the high-resolution focus given by t
solid line in Fig. 2.

The Fourier spectra of Fig. 3~a! have qualitative scaling
properties: for any Fourier wave vector of the densityq0, a
wave vectorq852k(m81n8/A2) can be found which is ar
bitrarily close toq0, even if the amplitude of that compone
is much less than unity. To show these amplitudes in m
detail, in Fig. 3~b! we plot the magnitudes of the densi
Fourier amplitudes in the region 0,q/2k,8 for the monov-
elocity beam (v5ux50) evaluated at the classical foc
time, u^rm,n(vkt̄ f ,cl)&u. A few of the larger amplitudes atq
52k(m1n/A2) are labeled by their corresponding values
(m,n). The larger amplitudes are dominated by terms wh

FIG. 3. The magnitude of the density Fourier amplitud

u^rm,n(vkt̄ )&u, plotted atq52k(m1n/A2), as given by Eqs.~10!

and ~13a!. The common amplitude,̂r0,0(vkt̄ )&51, is not shown
but defines the relative scale for the Fourier components.~a! Com-

parison between focal amplitudesu^rm,n(vkt̄ f.0.062)&u of the
monovelocity case ~triangles!, v5ux50, and the velocity-
broadened case~squares!, v50.15, A2kux /vk51. These are the
Fourier amplitudes of the focal densities plotted in Fig. 2. The d
radation of amplitudes by Doppler decay is evident in the veloc
broadened case.~b! Amplitudes for the monovelocity (v5ux50)

case at the classical focal position,u^rm,n(vkt̄ f ,cl50.05)&u ~circles!.
The region ofq values shown in~b! contains amplitudes labeled b
(m,n). The horizontal axes for both~a! and~b! are densely packed
with small Fourier amplitudes.
-
y
p-
s

re

f
e

both m andn are positive as a result of the properties of t
Bessel functions in Eq.~10!. Indirect evidence that the tru
focus of the monovelocity atom beam is not at the class
focal time is given by comparing Figs. 3~a! and 3~b!. The
magnitude of the amplitude for eachq value in Fig. 3~a!, the
true focus, is generally larger than the amplitude for the sa
q value at the classical focus in Fig. 3~b!.

Using computer simulations, we have also deduced
when the Raman-Nath approximation breaks down, the cu
like shape of the DFT seen in Fig. 3~a! broadens into a pla-
teau at the thick lens focus with a sharp cutoff at some va
of q for the given potential strengths. The physics in th
thick lens case, relevant for previous atomic focusing a
lithography experiments@5#, is more complicated as the a
oms can come to a focus within the interaction region. Ho
ever, the density patterns of the thick lens case show feat
similar to the thin lens case that we are presenting in de
Therefore, the expectation is that quasiperiodic optical
tentials could create high-contrast surfaces in existing ato
focusing geometries if the phase between incommensu
standing wave fields can be maintained.

IV. QUASI-TALBOT EFFECT

Atoms that propagate after interacting with periodic ato
optical elements exhibit a self-imaging of their wave fun
tion, or Talbot effect, and return to uniform density at tim
vkt52p j for integer j .0 @9,10#. While an exact self-
imaging which reproducesf(x,0) @Eq. ~5!# is impossible
owing to the dispersion in Eq.~7!, the quasiperiodic nature
of the wave function can lead to a quasirephasing wh
wm,n.2p j 8 for some integerj 8.0. Initially, we ignore the
velocity-averaging process which would destroy this new
fect but suggest two ways to overcome this below.

The appropriate observation times for self-imaging w
produce phases for each momentum component which
nearly integer multiples of 2p. For even values ofbs , the
choice,vkts52pbs , from Eq. ~7! gives the phases

wm,n~2pbs!52p~bsm
21bsn

2/21bsA2mn!, ~14!

where we again refer to Table I, andbsA2.as by construc-
tion. At these times the first two terms in Eq.~14! are inte-
gers for all m,n. Furthermore, the third term is nearly a
integer, as required. For odd values ofbs , the rephasing
occurs atvkts54pbs .

The wave-function phaseu(x,t) is defined byf(x,t)
5uf(x,t)uexp@iu(x,t)#. For exact self-imaging, this phase r
turns tou(x,0)5A1 cos(2kx)1A2 cos(A2kx) and the density
to unity. In Fig. 4 we plotu(x,ts), as well as the atomic
densityr(x,ts), for A15A251 ands52, 4, and 6. The self-
imaging becomes more pronounced at longer timests , cor-
responding to a better approximation ofA2 by Gs . The av-
erage values~denoted by the bar! and standard deviation
~denoted bys) of both the density,r(x,ts), and the phase
difference,ds5u(x,ts)2u(x,0), are shown in Table II for
the cases of Fig. 4. Note that these averages are perfor
over many periods of both potentials,u2kxu<16p. The im-
provements in the self-imaging are evident ass„r(x,ts)… and
s(ds) converge monotonically to zero asts increases.
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The values and trends in Table II can be understood qu
titatively by expanding the wave function’s time-depende
phase factor at the quasi-Talbot times,

exp@2 iwm,n~2pbs!#.112p imn~as2bsA2!

12@p imn~as2bsA2!#2, ~15!

where we have added and subtracted the phase, 2p imnas ,
from Eq. ~14! to extract the small phase mismatch. Inserti
this expression into Eq.~6! and using the Bessel functio

FIG. 4. Quasiperiodic Talbot effect forA151 andA251. ~a!
u(x,ts), the phase of the atoms at the quasi-Talbot timests for s
52 ~-.-.-!, 4 ~ . . . .!, 6 ~- - -!, versusu(x,0), the initial phase~—!,
whereu(x,0)5A1cos(2kx)1A2 cos(A2kx). The self-image is more
precise at longer times. In fact,u(x,t6) is difficult to distinguish
from u(x,0). ~b! r(x,ts), the density of the atoms at the quas
Talbot timests for s52 ~-.-.-!, 4 ~ . . . .!, 6 ~- - -!. Ideally, the atoms
achieve a uniform density of 1.

TABLE II. Averages~denoted by the bar! and standard devia
tions~denoted bys) of the quasi-Talbot density,r(x,ts), and phase
mismatch,ds5u(x,ts)2u(x,0), for u2kxu<16p.

s 2 4 6

r̄(x,ts) 1.019 1.00085 1.000024

s„r(x,ts)… 0.505 0.0170 0.000508

d s̄ ~rads! 0.0324 0.00645 0.00106

s(ds) ~rads! 0.417 0.0899 0.0156
n-
t

property, 2mJm(A)5A@Jm11(A)1Jm21(A)#, one finds that
the approximate wave function to lowest order in (as

2bsA2) is

f~x,2pbs!.f~x,0!1 ipA1A2~as2bsA2!

3 (
m,n52`

`

i m1n@Jm11~A1!1Jm21~A1!#

3@Jn11~A2!1Jn21~A2!#

3expF i2kxS m1
n

A2
D G Y 2 ~16!

5f~x,0!$11 ipA1A2~as2bsA2!

3@cos~22A2!kx2cos~21A2!kx#%. ~17!

Thus, the phase difference is found by taking

ds.Im@ ln f~x,2pbs!2 ln f~x,0!#

.pA1A2~as2bsA2!@cos~22A2!kx2cos~21A2!kx#.

~18!

The average phase difference,d s̄, would be zero if we
could average over an infinite period, while the standard
viation of the phase difference,s(ds), would bepA1A2(as

2bsA2). Averaging over the finite window,u2kxu<16p,
gives analytical correction factors and the expressionsd s̄

.0.0663pA1A2(as2bsA2) and s(ds).0.978pA1A2(as

2bsA2). These expressions correspond to the values
Table II with errors of 0.76% and 0.5% ind s̄ and s(ds),
respectively, fors56 and with errors of 4.9% and 0.6%
respectively, fors54. The errors are over 10% fors52. We
see that for fixed pulse areas the phase difference to low
order in (as2bsA2) becomes a better approximation at la
quasi-Talbot times, corresponding toGs being a better ap-
proximation ofA2. Equation~18! has also been verified as
function of the pulse areas,A1 and A2, at the fixed quasi-
Talbot timevkts54524p and is more accurate for smalle
pulse areas, as expected. A similar expression to Eq.~18! can
be derived for the density to second order in (as2bsA2).

V. CONCLUSION

The ability to perform an experiment on long time sca
is limited by transverse cooling considerations and the l
gitudinal flux width v. The initial transverse velocity width
ux degrades the focusing effect unless a scaled cooling c
dition, kux /vk&(A11A2/4)23/4(A11A2/2) @36#, is met.
This condition prevents transverse effects from broaden
the focal spot size. Such broadening has been suppresse
laser cooling for thick lens focusing schemes@5,35#. We
have shown in Fig. 2 that, in spite of strong chromatic ab
ration, effective thin lens focusing can persist for atom
cooled to the recoil limit, where the cooling condition
clearly met. The longitudinal flux width we used,v50.15, is
experimentally reasonable while we have also found us
thermal longitudinal beams,v50.513, that similar focusing
contrasts require approximately twice the laser power. T
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relative experimental importance of a narrow transverse
locity distribution over a narrow longitudinal distribution
apparent in the physics of Eq.~13a!. The transverse distribu
tion contributes to the average over the sensitive Dop
phases, pm,nUxt/\, leading to a density Fourier component
Gaussian decay, exp@2(pm,nuxt/2\)2#, while the longitudinal
average over slightly different focal regions for each veloc
subclass is a slowly varying integral over the Fourierampli-
tudes. Atom beams from recent experiments@2,5,38,39#, in-
cluding a beam produced from a Bose-Einstein condens
could confirm our quasiperiodic focusing results.

For the quasi-Talbot effect to be observable, the beam
trap needs to be cooled below the recoil limit (kux!vk) in
the transverse direction. Atomic beams from previous
periments~e.g., Chapman and co-workers in Ref.@10#! with
narrow transverse and longitudinal distributions have
lowed for an observation of the normal Talbot effect af
diffraction of atoms from periodic microfabricated stru
tures. A quasi-Talbot experiment with SW light fields m
be possible with the ultracold atom clouds and beams p
duced from a Bose-Einstein condensate@39,40#, where the
longitudinal velocity distribution is narrow as well. Evidenc
for the normal Talbot effect with SW pulses in the Rama
Nath regime has recently been observed in a separated
experiment in atoms released from a condensate@41#. To
overcome the Doppler dephasing for long times,vkt@1,
ground-state photon echo configurations employing
methods devised by Cahn and co-workers@3# can be used to
examine quasiperiodic effects. We have also develope
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quantum theory of quasiperiodic echoes: the density com
nents vary in time as harmonics ofvkT and vkT/A2 after
the atoms interact with two field zones separated by a timT.
This work will be published at a later date.

In summary, this paper has introduced the possibility
quasiperiodic atom optical elements made from laser int
sity gratings with incommensurate wave vectors. The qu
tum, analytical results show that the atomic wave packet
comes a quasiperiodic function, developing moment
components which are similarly incommensurate. T
Fresnel density is a function of the time of flight from th
diffraction grating. Atoms come to semiclassical quasi
cuses according to the depth and curvature of the pote
wells. The tunable density can survive velocity-averag
and be used for atomic lithography to create quasiperio
surfaces for condensed-matter studies. Furthermore, u
cold atoms will exhibit a quasi-self-imaging of their wav
functions.
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