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Competition between one- and two-photon lasing in two cavity modes
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We examine two-photon lasing in competition with the one-photon lasing into a second mode near reso-
nance with a transition to an intermediate state. The model assumes pumping to the upper state of the
two-photon transition. After a derivation of the relevant master equation for the atomic system, we consider the
Maxwell-Bloch equation on the basis of which we study the steady state and the time-dependent dynamical
behavior of the system. We show that two-photon lasing can be sustained in coexistence with one-photon
lasing after the latter is saturated. The results are illustrated with an application to a specific atomic system
~potassium! as an amplifying medium.@S1050-2947~99!00607-1#

PACS number~s!: 42.50.Hz, 42.55.Ah
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I. INTRODUCTION

Although the quest for the two-photon laser began so
after the single-photon laser became operational, to this
such a device does not exist in the optical range of wa
length, and in a form directly analogous to the single-pho
one. By ‘‘directly analogous,’’ we mean a system in whi
the upper state of the lasing two-photon transition is pum
externally, with a cavity mode tuned on or around resona
with one-half of the energy separation between the upper
lower state. This has not prevented a number of interes
developments over the years such as~a! the clever explora-
tion of the properties of dressed states by Zakrzewski,
wenstein, and Mossberg@1# and Gauthieret al. @2# to achieve
two-photon gain and even continuous operation, and~b! the
thorough work of Brune and co-workers@3# on the two-
photon micromaser. At the same time much theoretical w
has been performed, both semiclassical@4–6# and quantum
@7–9#, on many aspects of the prospective device, wh
does indeed continue to reveal more layers of interes
features.

One of the main obstacles in the realization of the st
dard form of the two-photon laser is a technological o
namely, the difficulty in constructing a cavity in which th
modes are sufficiently separated in frequency for the tw
photon gain to prevail over the single-photon gain in an
jacent frequency corresponding to a dipole transition fr
the upper state to an intermediate one of opposite parity
other words, the quality factor and finesse of presently av
able cavities in the optical range are not sufficiently fav
able. Recall that a two-photon transition at optical wav
lengths between two atomic states, with rare exceptions,
involve between them states of parity opposite to that of
active pair which serve as virtual intermediate states. In p
ciple, it is desirable for one such intermediate state to
sufficiently near one-photon resonance in order to enha
the two-photon transition. This is in fact the case in the tw
photon micromaser. If, however, a cavity mode happens
be sufficiently near resonance with the one-photon transi
PRA 601050-2947/99/60~1!/398~8!/$15.00
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between the upper~pumped! and intermediate levels, th
gain into that transition will take over. In the microwav
range, it is possible to have a cavity such that no cavity m
is sufficiently near that transition. But at optical frequenci
the situation is at best problematic. We are not in a posit
to judge whether this can be viewed as a technological
ficulty which can be overcome soon. In pondering this iss
one should not forget the rapid progress on microcavities
the optical range which has already made possible the r
ization of the microlaser@10#. Thus it may well be meaning
ful to keep in mind the possibility of a two-photon microla
ser, where the issues discussed in this paper would b
immediate relevance.

Let us assume then that such a coincidence is inevita
and that a nearby one-photon transition will feed from t
pumped upper-state population. Because of the very stre
of that transition, relative to the two-photon one, the on
photon oscillation should saturate, in which case oscillat
into the two-photon mode should grow. Under what con
tions would two-photon lasing be established in coexiste
with single-photon lasing? This is the question we have f
mulated and explored in this paper.

We do indeed show that it is possible to have oscillat
in both modes, which implies that under such conditions,
two-photon laser will be accompanied by a satellite on
photon laser. In some sense this is equivalent to a two-m
laser, which under the proper conditions will have a stea
state @11#. But unlike the two-mode one-photon laser, t
frequencies of the two modes are in this case very differ
from each other. As we will see in the following sections, t
main issue is whether the system can be pumped to a de
sufficient to sustain both oscillations. This, of course, do
depend on the parameters of the cavity and the amplify
medium. In an effort to present a quantitative assessmen
well, we have performed calculations for a particular set
parameters, some of which are realistic, others perhaps
optimistic. However, many of our results are scalable a
can be useful under a different scenario.

Our formalism is based on a traditional laser sche
398 ©1999 The American Physical Society
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where the pumped exited atomic state is connected t
lower state by a two-photon transition and, in addition, to
intermediate state by a one-photon transition~Fig. 1!. In this
scheme, there are several spontaneous decay proce
which must also be taken into account since these effe
unlike those in the microwave regime, are significant in
case of optical transitions.

The paper is organized as follows. In Sec. II we derive
master equation for the time evolution of the atomic dens
matrix; the equations governing the time evolution of t
field are derived in Sec. III. The steady state under so
reasonable approximations is discussed in Sec. IV. In Se
we present the time-dependent behavior of our model
plied to a cavity filled with potassium vapor, with the co
clusions summarized in Sec. VI.

II. MASTER EQUATION

We consider the interaction of a quantized amplifying m
dium with a time-dependent electromagnetic field in t
semiclassical formalism@12# describing the electric field
classically through Maxwell’s equations and the medium
terms of the density matrix. The system under considera
is depicted in Fig. 1, where the unperturbed atomic lev
u1&, u2&, u3&, and u j & have energies\v1 , \v2 , \v3, and
\v j , respectively. The atom interacts with the electric fie
E(z,t), which is assumed to contain two componentsEo and
Ea having the same polarizationê end well separated fre
quenciesvo andva :

E~z,t !5 1
2 ê@Eoe2 ivot1Eae2 ivat1c.c.#, ~1!

Ei5Ei(t)Ui(z), i 5o,a, whereEi(t) is the slowly varying
~during an optical cycle! amplitude of the electric field, and
the mode functionUi(z), which is assumed to depend on
on the longitudinal coordinatez, is either exp(ikiz) for a

FIG. 1. Schematic representation of the atomic system.
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running-wave cavity or sin(kiz) for a standing-wave cavity
with ki the wave number;va is tuned around the 3→2 tran-
sition, and 2vo is near the 3→1 two-photon resonance. Th
total Hamiltonian corresponding to this system can be w
ten as

H5H01V, ~2!

where

H05\v1u1&^1u1\v2u2&^2u1\v3u3&^3u1(
j

\v j u j &^ j u

~3!

is the Hamiltonian of the free atom, and

V52er E ~4!

is the interaction with the electromagnetic field. In the dipo
approximation, the electric dipole moment operatorer has
nonvanishing matrix elementsmnk5^nueruk&, n,k51,2,3,j ,
only between levels having opposite parities. In our mod
levels u1& and u3& have the same parity, and levelsu2& and
u j & have the opposite parity. The levelsu j & are those which
are sufficiently far from resonance with either frequencyvo
or va to serve as virtual intermediate states in the effect
two-photon matrix element coupling levelsu1& and u3&, and
are eliminated adiabatically from the density-matrix equ
tions, as discussed below.

The time evolution of the system’s density matrixr obeys
the master equation

d

dt
r52

i

\
@H,r#. ~5!

Applying the transformationr→e2 i (Ho /\)tr̃ei (Ho /\)t, we ob-
tain the master equation in the interaction picture. The tra
formed master equation forr̃ reads

d

dt
r̃52

i

\
@Ṽ,r̃ #, ~6!

with Ṽ5ei (Ho /\)tVe2 i (Ho /\)t. We now make a rotating-wave

approximation~RWA! in the following way: we keep inṼ
only terms oscillating with frequenciesv322va , v3 j6vo
andv j 16vo , wherevnk5vn2vk is the energy difference
between levelsn and k. We do not make a RWA for field
Eo , since vo differs substantially from6v3 j and 6v j 1.
Since the detuning of 2va from the two-photon 3→1 reso-
nance is assumed to be very large, the fieldEa cannot con-
tribute to this transition, but it does contribute to the dynam
Stark shift of the levelsu1& and u3&. From Eq.~6!, we have
d

dt
r̃ j 152g j 1r̃ j 11 i

m j 1

2\
~Eoe2 ivot1c.c.!eiv j 1t~ r̃112 r̃ j j !1 i

m j 3

2\
~Eoe2 ivot1c.c.!e2 iv3 j tr̃31, ~7a!

d

dt
r̃ j 252g j 2r̃ j 21 i

m j 1

2\
~Eoe2 ivot1c.c.!eiv j 1tr̃121 i

m j 3

2\
~Eoe2 ivot1c.c.!e2 iv3 j tr̃322 i

m32

2\
EaeiDatr̃ j 3 , ~7b!
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d

dt
r̃ j 352g j 3r̃ j 31 i

m j 3

2\
~Eoe2 ivot1c.c.!e2 iv3 j t~ r̃332 r̃ j j !1 i

m j 1

2\
~Eoe2 ivot1c.c.!eiv j 1tr̃132 i

m23

2\
Ea* e2 iDatr̃ j 2 , ~7c!

whereDa5v322va is the detuning of theEa field from the 3→2 transition resonance, andgnk is the relaxation constant o
the respective matrix element ofr̃, which we include here phenomenologically. If, as assumed, the frequenciesvo andva are
far from the j→1 and j→3 resonances, we can neglect the population transfer to the levelsu j & and substituter̃ j j 50
everywhere. Then we integrate Eqs.~7! making the slowly varying envelope approximation for the field amplitudesEo andEa

and the density matrix elementsr̃nk ~adiabatic elimination!. Using gnk to drop the lower limit of integration~it is valid for
times t@1/gnk) and neglectinggnk in the nonresonant denominators, we obtain

r̃ j 15 i
m j 1

2\ S Eo* eivot

v j 11vo
1

Eoe2 ivot

v j 12vo
Deiv j 1tr̃112 i

m j 3

2\ S Eo* eivot

v3 j2vo
1

Eoe2 ivot

v3 j1vo
De2 iv3 j tr̃31, ~8a!

r̃ j 25 i
m j 1

2\ S Eo* eivot

v j 11vo
1

Eoe2 ivot

v j 12vo
Deiv j 1tr̃122 i

m j 3

2\ S Eo* eivot

v3 j2vo
1

Eoe2 ivot

v3 j1vo
De2 iv3 j tr̃322 i

m32

2\

Eae2 ivat

v322va
eiv32tr̃ j 3 , ~8b!

r̃ j 352 i
m j 3

2\ S Eo* eivot

v3 j2vo
1

Eoe2 ivot

v3 j1vo
De2 iv3 j tr̃331 i

m j 1

2\ S Eo* eivot

v j 11vo
1

Eoe2 ivot

v j 12vo
Deiv j 1tr̃131 i

m23

2\

Ea* eivat

v322va
e2 iv32tr̃ j 2 . ~8c!
si
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We substitute these expressions into the remaining den
matrix equations found from Eq.~6!. Since the conditions are
such thatv3 j1v j 122vo[Do!uvo2v j 1,3j u, we havev j 1
2vo.vo2v3 j . Now making the two-vo-photon RWA we
obtain the final set of equations, which govern the time e
lution of the density matrix elements of the effective thre
level system, where the levelsu j & have been eliminated adia
batically:

d

dt
r̃1152Rr̃111g2r̃221

i

2\
~Eo*

2e2 iDotmo
(2)r̃312c.c.!,

~9a!

d

dt
r̃2252g2r̃221g3r̃331

i

2\
~Ea* e2 iDatm23r̃322c.c.!,

~9b!

d

dt
r̃335Rr̃112g3r̃332

i

2\
~Eo*

2e2 iDotmo
(2)r̃312c.c.!

2
i

2\
~Ea* e2 iDatm23r̃322c.c.!, ~9c!

d

dt
r̃2152g21r̃212

i

2\ (
i 5o,a

s1
i uEi u2r̃211

i

2\
Ea* e2 iDatm23r̃31

1
i

2\
Eo

2eiDotmo
(2)r̃23, ~9d!

d

dt
r̃3152g31r̃311

i

2\ (
i 5o,a

~s3
i 2s1

i !uEi u2r̃31

1
i

2\
EaeiDatm32r̃211

i

2\
Eo

2eiDotmo
(2)~ r̃112 r̃33!,

~9e!
ty-

-
-

d

dt
r̃3252g32r̃321

i

2\ (
i 5o,a

s3
i uEi u2r̃32

1
i

2\
EaeiDatm32~ r̃222 r̃33!1

i

2\
Eo

2eiDotmo
(2)r̃12.

~9f!

We have adopted the notationgnk for the relaxation rate of
the nondiagonal matrix elementsr̃nk and gn for the relax-
ation of the populations~diagonal matrix elements! r̃nn . The
quantity R denotes an effective incoherent pumping ra
from u1& to u3& through which inversion of the two-photo
active medium can be controlled.

mo
(2)5

1

2\ (
j

m3 jm j 1

v j 12vo
~10!

is the two-photon effective dipole moment of the 3→1 tran-
sition, while

s3
i 5

1

\ (
j

um3 j u2v3 j

v i
22v3 j

2
, ~11!

s1
i 5

1

\ (
j

um1 j u2v j 1

v j 1
2 2v i

2
~12!

are the Stark shift coefficients~polarizabilities! of levels u3&
and u1&, respectively, due to the fieldEi , where in this con-
text Ei is eitherEo or Ea . Note that in Eqs.~9d!–~9f! we
have taken into account the Stark shift induced by the fi
Ea as well, since, as mentioned above, for sufficiently lar
amplitudeEa , this can reach values of significance for th
problem under consideration. Moreover, the ac Stark s
can have interesting effects on the quantum statistical p
erties of the generated field, namely, the squeezing of lig
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which has been shown elsewhere@9# using a purely
quantum-mechanical approach. It is thus worthwhile to ke
these terms in the formalism.

III. MEDIUM POLARIZATION

Consider now the polarization of the medium of atom
densityN. The general expression which can be used her

P~r,t !5N Tr~er r!5N(
n

(
k

mnkr̃kne
2 ivnkt,

~13!

n,k51,2,3,j .

On the other hand, the electric field~1! induces the polariza
tion

P~r,t !5 1
2 @Poe2 ivot1Pae2 ivat1c.c.#, ~14!

wherePi5Pi(t)Ui(z), i 5o,a, vary slowly in an optical pe-
riod. We substitute Eqs.~8a! and ~8c! into Eq. ~13!, and
equate the resulting expression with Eq.~14!. After identify-
ing and grouping together terms oscillating with the sa
frequency, we obtain

Po52NEo~s1
or̃111s3

or̃33!14Nmo
(2)Eo* r̃31e

2 iDot, ~15!

Pa52NEa~s1
ar̃111s3

ar̃33!12Nm23r̃32e
2 iDat. ~16!

The spatially slowly varying~in an optical wavelength! po-
larization componentsPi are found by projectingPi onto the
mode functionUi(z):

Pi5
1

N i
E

0

L

dz Ui* ~z!Pi . ~17!

Here Ni5*0
LdzuUi(z)u2 is the mode normalization factor

andL the cavity length.
The evolution of each mode of the electric field is det

mined by Maxwell’s equation

d

dt
Ei52KiEi1 i

v i

2e0
Pi , ~18!

whereKi5v i /(2Qi) is the relaxation~loss! rate of the field
of the ith mode, andQi the corresponding quality factor o
the cavity. Both, the electric fieldEi and polarizationPi con-
tain the phase factor exp(2ifi). This equation, together with
polarizations~15!–~17! and the density-matrix equation o
motion ~9!, form a closed system of equations providing
complete description of our system.

IV. STEADY STATE

In order to gain some physical understanding of the p
cess and discuss some aspects of the threshold condit
we first analyze the steady-state behavior of the syst
From here on we restrict ourselves to the easier case
running-wave cavity, since it is more tractable and in a
case contains the basic physics.

In Eq. ~18! one can identify the first term on the righ
hand side as the cavity losses per unit time, while the sec
p

is

e

-

-
ns,

.
a

y

nd

term is responsible for amplification in the system. The g
eral procedure which we use here is as follows: After app
ing some straightforward unitary transformations, we so
the density-matrix equations~9! for the steady state and the
use this solution for the derivation of the polarizations ent
ing the Maxwell’s equation~18!. Here we neglect the Star
shifts, keeping in mind that, in principle, they can be inco
porated into the detuning of the corresponding mode fr
the atomic resonance. For simplicity we neglect the con
bution of r̃21 too, assuming thatg21 is much larger than all
other terms in Eq.~9d!. We further setDo50 and takeg3
50, which is quite realistic for many atomic systems, a
our aim in this section is a qualitative rather than quantitat
evaluation. With these approximations Eq.~18! provides an
expression for the ratio of the gain (G) @12# in the two lasing
frequencies~o and a! provided that the system operate
above threshold:

Go

Ga
54

vomo
(2)2

vam32
2

Eo
2
R~Da8

21g32
2 !g212Va

2~R2g2!g32

~2Vo
(2)21Rg31!g2g32

,

~19!

whereVa5m32uEau/2\ andVo
(2)5mo

(2)uE ou2/2\ are the one-
and two-photon Rabi frequencies induced by the fieldsEa

andEo , respectively. The detuningDa8 is shifted now from

Da by the amount of the steady-state value ofḟa(t→`)
[ḟa

ss: Da85v322va2ḟa
ss.

Equation~19! has a simple physical interpretation: First
all, we note that in the caseEo50 the ratio ofG’s vanishes
and, consequently, the inverse ratio tends to infinity eve
Ea50 as well. This stems from the well known fact tha
unlike one-photon lasing, the two-photon laser operat
needs to be triggered by an initial field@4#, since the two-
photon spontaneous emission is practically zero. Cons
further the last fraction of Eq.~19!. Here we see thatGo
increases with the detuningDa of the competing process. In
addition,G in each mode is inversely proportional to its ow
saturation. Thus, if we continue pumping, depending on
Rabi frequencies and other parameters of system, in
course of time, one of the modes~in this caseEa) will be
amplified more than the other until it reaches saturation. F
ther pumping, if it is sufficiently strong to be still abov
threshold, will cause the amplification of the second field
is worth noting also that the ratio ofG’s is proportional to the
ratio of the squares of the dipole moments of the two tran
tions. It should be stressed that steady-state conditions a
relation between the gains can be obtained without the s
plifying assumptions preceding Eq.~19!. The resulting ex-
pression is, however, too complicated to be of inspectio
value.

We turn now to the derivation of the threshold conditio
for laser operation of the system. In the same approxima
as above, from Eq.~18!, after making the Taylor expansio
of Pi for small parameteruEi u, respectively, and omitting
terms responsible for self-saturation, the following two co
ditions are obtained.

~i! For thevo mode~providing thatuEou is small enough
so thatGo is far below the saturation!,
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R5
2Va8

2~Vo
(2)hQo1g31!g2g32

2Va8
2~Vo

(2)hQo22g31!g321~Vo
(2)hQo2g31!g2

,

~20!

where h54mo
(2)N/e0 and Va85Va /(Da8

21g32
2 )1/2. This

equation provides the threshold value of the pumping
lasing into theEo mode, and implies that the threshold
raised as the intensityI a ~inherent inVa

2) of the va mode is
increased, since the probability of stimulated emission i
va increases with that intensity. On the other hand, furt
increase ofI a leads to the saturation of this process~the term
proportional toVa

2 in the denominator! which leads to a satu
ration of the value ofR. This demonstrates that the simult
neous oscillation in a nearby single-photon transition will n
necessarily prevent oscillation into the two-photon mode.
effect will be to raise the threshold value of the pumping

~ii ! For theva mode~providing thatuEau is small enough
so thatGa is far below the saturation!, we have

R5
2Vo

(2)2

g31
S 1

g32zQa21
21D , ~21!

wherez5m32
2 N/2\e0(Da8

21g32
2 ). The interpretation of this

condition is more subtle. When the term inside the paren
ses is positive, the threshold@as in~i! above# is proportional
to the square of the two-photon Rabi frequency or, in ot
words, to the square of the intensityI o of theEo field, since
for a two-photon transitionVo

(2)}uE ou2}I o . In the opposite
case, when the term inside the parenthesis is negative
pumping rate threshold also becomes negative and cond
~i! is, certainly, not satisfied. This means that absorption
theEo field is taking place, due to which some population
transferring to levelu3& with the result that enhancement
the field Ea becomes possible. It should be mentioned t
conditions ~i! and ~ii ! are completely independent of eac
other, and that each of them determines the lasing thres
of the corresponding mode as a function of the cavity de
rate, Rabi frequency of the competing process, and the o
parameters of the system.

V. DYNAMICS

The quantitative analysis of the dynamics of the syst
does not lend itself to simple analytical approximations,
requires a rigorous solution of the time-dependent equati
It is the purpose of this section to present and discuss re
of the numerical solution of the equations derived in Secs
and III. The theory has been applied to a cavity assume
be filled with potassium vapor of densityN51013 cm23.
Not that we literally propose the construction of a laser w
that active medium but only in order to have a context
parameters corresponding to a real atom for numerical il
tration of the ideas. Levelsu1&, u2&, andu3& of our model are
assumed to correspond to the states 4P3/2, 3D5/2, and 6P3/2
of potassium, respectively. The two-photon transition f
quency isv31/252p 2.3931014 rad/s, and the one-photo
transition resonance isv3252p 2.2431014 rad/s@13#. There
is also the state 3D3/2 lying above the levelu2& by the
amount D52.3 cm21, which must be taken into accoun
when choosingDa , becauseDa!D should be satisfied to
r

o
r

t
s

e-

r

he
on
f

t

ld
y
er

t
s.
lts
II
to

f
s-

-

have the RWA valid; we takeDa553108 rad/s everywhere
below. The upper levelu3& spontaneously decays to levelu2&
with the decay rateg353.73105 s21; the decay ofu3& to
the state 3D3/2 is almost ten times smaller, and we neglec
in further calculations. Levelu2& decays further to levelu1&
with the rateg252.63107 s21. The main reason for choos
ing these states is that the photonsvo connecting levelsu1&
and u3& are sufficiently near resonant with the intermedia
5S1/2 state ~with detuningv j 12v31/2.2p 3.7731010 rad/
s!, which enhances the two-photon coupling significantly.

The above combination of choices provides us with
model in which an intermediate level (5S1/2) serves the pur-
pose of enhancing the two-photon transition, while anot
intermediate level (3D5/2) participates in the single-photo
lasing. One could just as easily construct a model using o
one intermediate level for the dual purpose. This is in f
what must be done in the context of the two-photon mic
maser, which we will treat in a forthcoming paper. Havin
however, made the decision to adopt the above combina
of levels in potassium as one model, we have the freedom
separate the roles of the two intermediate states. This
course, assumes some flexibility with the finesse of the c
ity, which in reality may require lasing in both intermedia
states as well as in 3D3/2. All these further complications
could be incorporated into our treatment, but at this stage
added formal complexity would probably detract from rath
than enhance an understanding of the basic effect under
sideration.

A calculation of the dipole matrix elements and Sta
shift parameters yields the following numbers@14#, mea-
sured in meter-kilogram-second units~MKS!: m32/2\52.67
3104, mo

(2)/2\51.7431022, s1
o/2\51.0231021, s3

o/2\
52.9531023, s1

a/2\52.9131024, ands3
a/2\51.7131024.

In order to satisfy the threshold conditions, the pumping r
has been chosen relatively large (R553108 s21). Al-
though our choice of potassium has been made only a
illustration, in the interest of consistency we must follow it
bit further.R is large compared to the spontaneous decay
of 4P3/2 to 4S1/2, which is equal 3.83107 s21. Let us then
assume that an additional depopulating light source cau
4P3/2 to make a transition to 4S1/2 at a rate a bit more than
ten times faster. Then some pumping mechanismR can take
the system from 4S1/2 directly or indirectly to the upper las
ing state. This is a rather unconventional pumping conc
but given our idealized model all we can require is that it n
be unphysical. To be more definitive about the pump
mechanism, one would need to know the medium and
cavity, which is beyond our expertise. For the convenien
of illustration, the cavity width for both modes has be
assumed to be extremely small:Ka5103 s21 and Ko52
3102 s21, because otherwise the intensities of the fields
not reach significant values before the system satura
These, together withR, are the optimistic parameters allude
to earlier. If, however, the cavity widthKa,o and the density
of atomsN are changed by a factorb, we obtain the same
behavior of the system by simply rescaling by the same f
tor b the time scale of the process, as easily seen from
~18!. The only limitation on this reasoning is the necessity
keeping the process within the adiabatic regime, i.e., the
of change of both field amplitudes must be small enough



oin

e

en
ls

o
e
w
of

te

s

e

n
ss;

th of
e
f
er
the
,
ses
he

tion

es

f

f

PRA 60 403COMPETITION BETWEEN ONE- AND TWO-PHOTON . . .
the atoms to be close to the state of equilibrium at any p
in time.

In Fig. 2, we show the time evolution of the intensitiesI a
andI o of the competing fields for two different values of th
detuningDo . We trigger the lasing on thevo mode by an
external field; the operation on theva mode in principle
triggers itself by spontaneous emission. In this treatm
however, which is based on a semiclassical formalism, it a
must be triggered externally. For the caseDo50 @Fig. 2~a!#,
the strength of theEa field grows quickly at first, until it
reaches saturation and then remains constant through
while I o , after a small gain at the very beginning of th
process, decays back to the triggering field’s value, which
assume always to be on. The reason for such a behaviorI o
is the ac Stark splitting of the levelsu2& and u3&, which
increases proportionally to the intensityI a moving the tran-
sition 3→1 away from resonance.

A brief analysis in terms of dressed states@15# may be
useful at this point. Recall that the pair of dressed sta
uC6& is determined through the eigenvalue problem

@Dau3&^3u2Va~ u3&^2u1u2&^3u!#uC6&5l6uC6&,
~22!

wherel65 1
2 (Da6ADa

214Va
2). These dressed statesuC6&

can then be expressed in terms of the bare atomic stateu2&
and u3& as

uC2&5cosuu2&2sinuu3&, ~23a!

uC1&5sinuu2&1cosuu3&, ~23b!

where the mixing angleu is defined by

tanu5S ADa
214Va

22Da

ADa
214Va

21Da
D 1/2

. ~24!

FIG. 2. IntensitiesI a ~dot-dashed curves! and I o ~solid curves!
of the two cavity fields as functions of time, for two different valu
of detuningDo : ~a! Do50, and~b! Do5

1
2 (Da2ADa

214Va
(s)2). All

other parameters are given in the text~Sec. V!.
t

t,
o

ut,

e

s

Now setting Do5 1
2 (Da2ADa

214Va
(s)2) @Fig. 2~b!#,

whereVa
(s) is the saturated value of the Rabi frequencyVa ,

we tune theEo field into the two-photon resonance with th
upper one of the pair of dressed statesuC6&. In this case the
intensity I o grows very slowly at first, since the two-photo
transition is nonresonant at the beginning of the proce
however, as soon asI a reaches saturation, the gain ofI o
becomes substantial. Then further increase of the streng
the Eo field induces, in its turn, the Stark splitting of th
levelsu1& andu3&, which is now proportional to the square o
the two-photon effective Rabi frequency or the fourth pow
of the field strength. When this splitting becomes equal to
detuningDa of the Ea field, the latter begins to grow again
but then, with a further increase of the splitting, decrea
fast since it drifts far from resonance. The behavior of t
populations of levelsu1&, u2&, and u3& for the two cases
discussed above is shown in Figs. 3 and 4. The popula
difference between levelsu3& and u2&, after reaching the

FIG. 3. Population of the levelsu1& ~solid line!, u2& ~dotted
line!, and u3& ~dashed line! as a function of time for the case o
Do50.

FIG. 4. Population of the levelsu1& ~solid line!, u2& ~dotted
line!, and u3& ~dashed line! as a function of time for the case o
Do5

1
2 (Da2ADa

214Va
(s)2).
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saturated value, always remains constant in the case oDo
50. On the other hand, whenDo is adjusted to resonanc
with uC1&, once the Stark shift of levelu3& induced byEo
field compensates for the detuningDa , the population differ-
ence becomes negative, but the intensityI a grows at this
short interval of time; this effect can be referred to lasi
without inversion~LWE! @16#. This LWI results from quan-
tum interference which suppresses the absorption from l
u2& and leads to amplification on the transitionu3&→u2&, even
in the absence of a population inversion. Further increas
I o causes the equalizing of the populations of levelsu3& and
u1&, and consequently the saturation, for the specific val
of parameters we have used, is reached whenI o;6
3104 W/cm2.

VI. CONCLUSIONS

In this paper we have derived the general master equa
for a system consisting of the three-levelL-type upper-level-
pumped atoms with one dipole-forbidden transition, plac
in a two-mode optical cavity, where the first mode is tuned
the two-photon transition of the atom and the second mod
near the one-photon resonance. The treatment has been
ried out in the framework of the semiclassical laser theo
which describes the electric field by the Maxwell equatio
and the medium by the density-matrix formalism. T
steady-state behavior of the system has been analyzed u
some reasonable approximations, and the threshold co
tions have been discussed. For a quantitative assessm
time-dependent solutions for a cavity assumed to be fi
with potassium vapor have been presented, illustrating
point that the existence of the possible one-photon com
ing process does not necessarily destroy the lasing on
two-photon transition of the atom. One aspect that
emerged from this analysis, which sets it apart from
analogous two-mode problem in the single-photon laser
the significance of the Stark shift in the dynamics. Althou
the role of the Stark shift in the dynamics, as well as
photon statistics of the two-photon laser, has been noted
discussed@5,8,9#, its role in the present context is differen
and perhaps more influential on the behavior of the syst
Another aspect that has emerged from our treatment is
connection with the concept of lasing without inversion.
ys

ys
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course, the basic scheme of the two-photon laser studie
this paper assumes inversion of populations through pu
ing, but the connection with lasing without inversion ente
through the coupling of the modes. We are not in the po
tion to ascertain at this moment whether present or fores
able technological possibilities, in terms of cavity quali
factor and finesse, place experimental realization near or
side the parameter space we have explored. In any case
model is scalable, and hopefully technical refinement will
continuing.

Given the idealized model we have employed in o
simulations, some not negligible issues are necessarily
unanswered. Not knowing the specific form of the cavity,
cannot say anything about its length, which does not allow
to say anything about pulsations on the one-photon las
transitions in the case of excessive gain path length. Clea
such pulsations would disrupt the two-photon lasing. If a
when schemes such as the one modeled herein are exp
experimentally, those in charge will be much more qualifi
than we are to assess the relevant issues.

The problem we have formulated and solved in this pa
has an interesting counterpart in the microwave regim
where one can in fact tailor the cavity at will, in combinatio
with the choice of the principal quantum number of t
pumped Rydberg state, so as to have or not have a se
mode in near resonance with a single-photon transition.
experimental realization of such a scenario should be r
tively easy with present day technology, and in a follow
paper we expect to report on predictions relevant to that c
Finally, it may be technologically feasible at this time
contemplate the exploration of these effects in the contex
the microlaser, which combines the single- or few-phot
aspect with a more convenient mode structure in the opt
range.
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