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The transition state is fundamental to modern theories of reaction dynamics: essentially, the transition state
is a structure in phase space that all reactive trajectories must cross. While transition-statéTit8&pihas
been used mainly in chemical physics, it is possible to apply the theory to considerable advantage in any
collision problem that involves some form of reaction. Of special interest are systems in which chaotic
scattering or half-scattering occurs such as the ionization of Rydberg atoms in external fields. In this paper the
ionization dynamics of a hydrogen atom in crossed electric and magnetic fields are shown to possess a
transition state: We compute the periodic orbit dividing surféd@®D9 which is foundnot to be a dividing
surface when projected into configuration space. Although the possibility of a PODS occurring in phase space
rather than configuration space has been recognized before, to our knowledge this is the first actual example:
its origin is traced directly to the presence of velocity-dependent terms in the Hamiltonian. Our findings
establish TST as the method of choice for understanding ionization of Rydberg atoms in the presence of
velocity-dependent forces. To demonstrate this TST is uséd tmcover a multiple-scattering mechanism for
ionization and(ii) compute ionization rates. In the process we also develop a method of computing surfaces of
section that uses periodic orbits to define the surface, and examine the fractal nature of the dynamics.
[S1050-294{@9)06710-4

PACS numbes): 32.80.Fb, 45.50:j, 05.45—~a, 32.60+i

I. INTRODUCTION nient, natural laboratory for the investigation of many physi-
cal phenomena which they display with exceptional clarity.
The ionization of a hydrogen atom interacting with com- In these atoms, the Rydberg electron is very weakly bound,
binations of external electric and magnetic fields is an intri-and it resides mostly at an immense distance from the atomic
cate problem of fundamental importande?2]. In this paper or molecular core, to the point that if the Rydberg atoms
we use modern concepts from chemical physics and nonlinvere solid, they would be just about visible to the naked eye.
ear dynamics to understand this process. Laboratory-scale external fields, and even weak stray electric
In the past few years innovative, sophisticated experimenfields[7], become comparable to the atomior moleculay
tal techniques have lead to renewed interest in atoms or moEoulomb field sensed by the Rydberg electron, and interest-
ecules in which an electron is promoted to a high-energyng dynamical properties, such as, for example, quantum
state, where it is only weakly bound to the core and its dy-chaology[8—10Q] can be studied experimentally.
namics is approximately hydrogen|8]. These states are Rydberg atoms in strong external fields constitute funda-
typically characterized by very large principal quantum num-mental physical systems where the quantum-mechanical re-
bers (=50) [4,5], and such atomgor moleculey are ge- gime of strong nonlinearity can be testeglD,11]. While the
nerically known as “Rydberg” atoms, because the energyproblem of a Rydberg atom interacting with a strong mag-
levels of the excited electron are well described by anetic field(the quadratic Zeeman effédtas been fairly well
Rydberg-like formula[4]. More precisely, deviations from understood as a result of sustained research in the past two
the pure hydrogenic eigenenergies are induced by the intedecaded9,12], the superficially similar scenario resulting
action between the Rydberg electron and the electronic clouftom the addition of a perpendicular electric field—the so-
around the atomic or molecular core. These deviations arealled crossed field arrangemgaB—18—remains the least
described by thguantum defecs, which enters in the for- understood of all Rydberg problems. This is all the more
mula for the energy levels as a correction to the principakegrettable in view of the prominence of the crossed fields in
guantum numben [4,6]. diverse areas of physics ranging from excitonic systems to
Rydberg atoms and molecules occupy a special place iplasmas and neutron stars. This problem is so complex be-
the physical sciences, as their loosely bound electron lives inause no continuous symmetry survives the extensive sym-
that poorly charted territory where the quantum world of themetry breakind19] induced by the two fields. The result is a
atom transforms into the classical reality of macroscopic obwealth of new physics which is only possible beyond two
jects. Rydberg atoms have many exaggerated properties sudbgrees of freedom, such as Arnol'd diffusiph0,20,21.
as huge dipole moments, and they constitute a very convérhis absence of symmetry also allows localizing electronic
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wave packets in all spatial dimensions, and the observatiohasic idea, which is strictly classical in origin, is that there
of these localized wave packd®?] has led to new insights exists a minimal set of states that all reactive trajectories
into the dynamics of the electron in the correspondence prinmust pass through and which is never encountered by any
ciple regime. It has also been found that a velocity-nonreactive trajectories. This set of states is collectively
dependent, Coriolis-like force in Newton’s equations causesalled the “transition state.” We will demonstrate that this
the ionization of the electron to exhibit chaotic scatteringmodel not only holds for the ionization of a hydrogen atom
[23,24). All these phenomena, as well as renewed interest ifin crossed magnetic and electric fields, but that it provides
the motional Stark effec{25,26, make the crossed-field probably the only way to picture the mechanism of ioniza-
problem an experimentally accessible paradigm for a wide¢ion. We choose this system because it encapsulates all of the
variety of outstanding issues in atomic and molecular physkey ingredients of transition-state thediyST), and it raises
ics, solid-state physicg27,28, nuclear physic$29], astro- a number of issues that are not normally encountered when
physics[30], and celestial mechani¢81]. applying transition-state theory to chemical reactions: the
The experimental challenge has been taken up by Raithemost significant feature we discover is a periodic orbit divid-
Fauth, and Walthef16,32 who in a landmark of experi- ing surface(PODS (more on these belowthat exists in
ments have identified a class of quasi-Land@L) reso- phase space rather than in configuration space, as has been
nances in the spectra of rubidium Rydberg atoms in crosseexclusively the case up until now. This novelty can be traced
electric and magnetic fields. Similar to the original QL reso-directly to the presence of velocity-dependent forces that re-
nances observed by Garton and TomkiB$§], this set of sult from the symmetry breaking due to the crossed fields
resonances is associated with a rather small saqilarfar  configuration. Velocity-dependent forces have confounded
orbits of the crossed-field Hamiltonian which is known to many previous attempts to describe the ionization dynamics
support an enormous number of mostly nonplanar periodiof this problem[34] and account for the large number of
motions[16]. experimental and theoretical studies of this system. So far,
More recent experimen{84] showed that the ionization no general consensus has emerged as to the mechanism of
threshold has a nontrivial progression with respect to théonization. Here we show that TST provides a direct ap-
external fields. Its classical-like scaling behaviae., the proach to describing and understanding the ionization dy-
progression was found to depend on the scaled fields alon@amics in this large class of experimentally important prob-
[34] suggested the possibility of a classical explanation. Relems.
cently, two of us documented this classical mechar{ia#j The notion of a transition state can be traced to the work
which explains and consolidates these findings for energiesf Marcelin[40] in 1915. Subsequently, in 1931, Eyring and
below, at, and above threshold by showing that the atonPolanyi[41] quantified the idea of a transition state in the
undergoes its transition to chaotic scattering due to the exiszollinear H+H, reaction. Their paper, which must be viewed
tence of a critical point in the Hamiltonian flow. as the origin of modern theories of chemical reactions, re-
The problem of ionization of a Rydberg atom in crossedports the first calculation of the potential-energy surface of a
magnetic and electric fields resembles a chemical reaction: ireaction. This surface consists of two valleys, one associated
a typical unimolecular reactidi85] the molecule is first “ac-  with the reactants and the other with the products, separated
tivated” by the injection of sufficient energy, so that it can by a potential barriefthe small minimum that was thought
overcome the barrier to reaction. Some time after the activato lie at the top of the potential barrier, “Lake Eyring,” was
tion, if energy finds its way into the reactive mode, the reacsubsequently shown to be an artif§d2]). Using this sur-
tion occurs. In the problem of the ionization of Rydberg face, Eyring and Polanyi defined the transition state as the
atoms the “activation” is the initial excitation to a state of path of steepest ascent from the saddle point of the barrier.
very high principal quantum numben{-50 or largey. Fol-  After the system has surmounted the barrier and crossed the
lowing state preparation, energy flows into the ionizationtransition state, the forces are such that they push the system
channel and the electron is detached. In both systems a ceaven farther out into the products valley. Thus it would ap-
tral question concerns the rate at which the energy migratgsear that the system can never recross the transition state to
into the reactiveor ionizing) mode. In this paper we develop return to the reactants side of the potential; in other words,
an approach to the ionization of Rydberg atoms in crossethat the transition state is a surface of no return. This analysis
electric and magnetic fields that builds on recent advances iis flawed, as will be discussed shortly.
the theory of chemical reaction dynam[&6,37]. The key to Immediately following the appearance of this work,
describing a chemical reaction is the recognition of the im-Wigner[43] and other§44,45, developed a variety of very
portance of classical phase-space structuiesttienecks, simple, yet extremely useful, theories of bimolecular reac-
turnstiles, etg.that govern the progress of the react[@8].  tions, for example, activated complex theory and transition-
Identifying these structures requires techniques from nonlinstate theory. During the next decade further seminal papers
ear dynamics and chaotic scattering theory. We apply anth the development of unimolecular reactions were published
extend these methods to treat the ionization of Rydberg af-35]. Again the concept of a transition state played a central
oms in crossed electric and magnetic fields, and we find thable, although these early theories of chemical reactions re-
this intricate process can be described in this manner. Let umained strictly classical in nature. Quantization was the next
begin with a review of transition-state theory and requisitemajor step in the development of transition-state th¢dr.
nonlinear dynamics. Even in the earliest days it was recognized that the tran-
The concept of a transition state is central to the theory oition state, as defined by Eyring and Polanyi, was in fact not
chemical reaction dynamid89]. Its role in atomic physics a surface of no return, and that trajectories can recross this
has been discussed by Faf@6]; also see Ref[67]. The surface many time$48]. This is due to the existence of
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dynamical effects that can result from cross-terms in the kiscattering systems, namely, Ericsson fluctuations, has been

netic energy, for example dynamical barri¢4®]. The rec- detected numerically in this system by Main and Wunner

ognition of the complex nature of the dynamics led to the[23] who showed that, above the threshold, the electron dy-

development of a variational approag#5—47. Here the namics is scattering and chaotic.

central idea is to consider the set of all possible transition As an additional twist, a potential-energy surface cannot

states and then to choose the one with the minimum flube defined for this system because a nonconserved paramag-

across it. Clearly, if trajectories recross a prospective transinetic term mixes coordinates and momefgae Eq.(8) be-

tion state, then these trajectories will be counted more thatow]. Consequently, the equations of motion are not symmet-

once in the computation of the flux. Pechuk&8] solved the  ric with respect to time reversal, and the traditional analysis

variational problem by demonstrating that the surface obf transition-state theory employing a potential-energy sur-

minimum flux, and hence the transition state, must be aiace must be generalized.

unstable periodic orbit whose projection into coordinate At this point it is useful to introduce the concept of a

space connects the two branches of the relevant equipoteadrface of zero relative velocity to understand the motion of

tials. These surfaces are called “periodic orbit dividing sur-the electron in a rotating frame which is the most convenient

faces” or PODS(as is the convention, we decree that theframe for studying the dynamics. A consequence of New-

term PODS be both singular and pluf&l]). The PODS ton’s second law is that if a conservative foRRe — VV acts

with the minimum flux is chosen as the transition state.  on a particle, then motion with respect to axes that are rotat-
While the original idea of a transition state was expressedhg with constant angular velocity about thez axis will be

as a dividing surface iooordinatespace, it was soon recog- determined by

nized that a proper treatment must be in terms of dividing

surfaces inphase spaceFrom this point of view the goal is P=m[f+{2w2X i} +{w?2X (2X1)}], 1)

to partition phase space into volumes corresponding to reac-

tants and products. Progress in this direction had to wait fowhere the extra terms as compared to Newton's second law

two deve|0pments(i) advances in the Study of dynamica| in an inertial frame in the first and second sets of Curly braces

systems, an(ﬂ”) access to Sufficienﬂy powerfu| computers. are the Coriolis and Centrifugal forces, respectively. The fol-

In the mid 1980s Davis and co-workef86] studied the lowing relation has also been used

phase space dynamics of a number of reactive systems. They

have shown that the partitioning of phase space can be ac- d_r= ﬂ+w><r )

complished using the manifolds of the PODS associated with dt ot '

the transition states. Another related approach to the investi-

gation of the structure of phase space of reactive system#hich relates thétotal) rate of change of a vectorin a fixed

which is closer to the approach adapted here, is that of Ozdrame of reference to that in a frame rotating with angular

rio de Almeidaet al. [37]. Tiyapan and Jaff¢52] extended Velocity w. If r is decomposed into perpendicular and planar

these ideas considerably, and showed that the manifolds gomponents as

the PODS can be used to construct an invariant fractal tiling R

of phase space, and in the simplest case of complex forma- r=zz+p, (€)

tion (unimolecular reactionshave characterized this fractal

structure. then
This paper is organized as follows: Section Il introduces

the Hamiltonian for the hydrogen atom in crossed fields

which we treat in the planar limit. This approximation is Using the relatiorp i = p- p and forming the quantit- i,

expected to capture most of the essential dynamics, becauafé can calculate the work done in going frokto B:
the planar model has proved extremely useful in explaining ’

experimental observatiorj84]. The transition state itself is
WAB:f

P=m[i+2w2X+ w?p]. (4

2

B Mmw
P-dr=7(vg=vd)———(pg—pR)., (8

A

introduced in Sec. lll, which identifies an unusual class of
PODS that ionizing trajectories must pass. The treatment of

the half-scattering problem is contrasted to that needed for a . .
full collision in Sec. IV. Conclusions are in Sec. V. wherev, andvsg are the mechanical velocities. For a con-

servative fieldW,g=V(A)—V(B), and so we obtain the re-
sult

m
2

Il. PLANAR CROSSED-FIELD PROBLEM
Imi?+V—3imw?p?=const. (6)
In the present work we are interested in a particular aspect

of this problem: chaotic ionization in the sense that residencé is apparent that the motion in the rotating frame is gov-
times of the electron inside the Stark saddle point show &rned by thenodifiedpotential energy function
fractal structurg[53]. This ionization can be thought of as
chaotic half-scattering, since there is no flux of incoming Q(x,y,2)=V—imw?p?, (7)
electrons and the system starts out in a quasibound state, as
opposed to the conventional case of chaotic scattering imhich for fixed(} is the locus of the surfaces of zero veloc-
which the system is unbound in both asymptotes. Chaotidy. In celestial mechanics the surface definedbi,y,z) is
scattering leads to observable fractal signatures in the quaften called thesurface of zero relative velocityr simply the
tum mechanics. Indeed, the best-known indicator of chaotizero-velocity surfacg€54,55.
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A. Hamiltonian Having defined a new Hamiltonian, we have also redefined
The Hamiltonian(in atomic units for the planar hydrogen the time variable. The regularized time is given by
atom in crossed electric and magnetic fields in Cartesian co- dr
ordinates is a=(u2+v2)—1. (14)

H= %(Pi-f- P?)— %4’ %(XPY—YPX) When the scaled energy is negativik<0) the regularized
Hamiltonian given in Eq(13) is that of two coupled isotro-
pic harmonic oscillators with frequendy=+—2H. In or-
, (8) der to place this Hamiltonian into a more standard form, we

scale the coordinates and time once more:

2
w
+§C(X2+Y2)—SX

whereR= X%+ Y?, w, is the cyclotron frequency, andlis Q=01
the electric field. The three terms in the brackets are due to ’ (15)
the external fields: the first is the paramagnetic term, the T=0"1.
second is the diamagnetic term, and the third is the electric-
field interaction. The paramagnetic term gives rise to theThis yields
velocity-dependent forces. Defining scaled coordinafes
and timeT, 2 1 , . 1 , 2.
K= 52 E(Pu+ Pv)+ E(U +v )+ W(U +v )(UPV
2/3
Q=wca, .
€
S © VP (W) (v, (19
C 1

the Hamiltonian becomes The equations of motion are given by

Lp2ipy 12 iy T v(u?+v?)
H=§(PX+Py)—F+ z(xPy—yPX)nL §(X +y“)—ex]|. u” 202 '
Here H=w; ?*H is the scaled energys=w_ *¢ is the V=Pyt zgzuuthve),
scaled electric-field strength, ame= x?+yZ2. This Hamil- (17
tonian has a single critical point that is usually called the . 2e , 1 1 5 o
Stark saddle point. = U QaUT T 5z U(UP, = VP = 2z Py (Ut ve)

The Coulombic singularity results in significant numerical
difficulties which can be minimized by the method @és-
sical regularization56]. This is accomplished by first trans- T 1604
forming to semiparabolic coordinates,

u(u?+v?)2.

. 2¢e 1
_ e —_—— 3—_ J—
xzé(uz—vz) PX:—UE;’ ://ZPV Pv= v eV g2V uR VR
+ 1
(11) 2,2 _ 2. ,2\2
VP,+UPy + 202 PulUT V) — geqav(u™+ v
y=UV By=rgeive , | |
Recall that under time-reversal the dynamical variables
which yields transform as
L P2+PZ 2 1(UP . Q—Q, Q—-Q, .
=512z 2wz Tz (UPy=VPRy o 18
20Z+V2 UZ+V2 " 4 bbb
1 €
+ 3—2(U2+V2)2— E(UZ—VZ). (120  and therefore these equations are not symmetric with respect

to time reversal. In addition, care must be taken in interpret-
ing results obtained from these equations because regulariza-
tion doubles the volume of phase space. This is readily seen
by inverting the transformation equations, Efl).

We now define a new Hamiltonian by multiplying byJ¢
+V?2) and rearranging terms; this yields

1 2. 52 22y L2 2 :
IC=2=§(PU+PV)—H(U +V )+£_1(U +V9)(UPy B. Dynamics

The dynamics of the planar crossed-field problem have
been investigate@i24] as a function of the scaled electric-

1 €
_ . 2 2\3_ _ 4_\/4
VPy)+ 32(U V9 Z(U VY. (13 field strength for a single value of the scaled enertys
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FIG. 1. Shown here is thev¢P,) surface of sectiony(=0,u L5 ..

=0) for an electric-field strength ef=0.4. This is well below the 1 (b) (ii)
onset of chaotic behavior. The two principal periodic orbits of the 1.0+
system lie at the center of the two sets nesteldAi curves. These 1
are shown in Fig. 2. The sets of nest€¢AM curves are not sepa- 0.5 —
rated by a separatrix; this will be discussed subsequently. The upper i
periodic orbit corresponds to the upfield case and the lower periodic > 0.0 -
orbit corresponds to the downfield case. The axes are the scaled i
coordinate and momentum. 0.5
—1.52. The planar system is, of course, integrable dor -1.0 —
=0. We observe the onset of chaos at approximaigly . (i)
~0.5757, which is below the ionization threshold for this 1.5

value of the energy, that is,= H2/4=0.5776.

Before proceeding to identify the transition state, we first
give a brief overview of the structure of phase space as one
traverses: ;. Figure 1 shows thew-P,) surface of section FIG. 2. Shown here are the two principal periodic orbits for an
(u=0.u=0) for e=0.4 which is well before the onset of electric-field strength o=0.4. In(a) they are shown in the regu-
chaos. The two periodic orbits that lie at the center of the twdarized coordinatesu, v), and in(b) they are shown in the Carte-
sets of nested Kolmogorov, Armol'd, and Mos@(AM) sian coordinate$x,y). The orbit labeledi) corresponds to the cen-
curves[20] are shown in Fig. 2 in both regularized and Car- tral periodic orbit(upfield) of the lower set of nesteldAM curves in
tesian coordinates. We use these two orbits to define thBidg- 1, while the orbit labeledii) is the central periodic orbit
fundamental dynamical modes of the system. The centrdfdownfield of the upper set of nestedAM curves. The axes are
periodic orbit in the lower set of nestdétAM curves is the ~Scale coordinates.

“downfield” periodic orbit which we label(ii), and that in Surfaces of section for three values of the electric field
the upper set of nestétAM curves is the “upfield” periodic  strength ¢ =0.5785, 0.58, and O)@vhich all lie above the
orbit which we label(i). These two periodic orbits exist jonization threshold are shown in Fig. 5. First observe that
throughout the range of investigated. the two parts of the energy shell come together in such a
Figure 3 shows the surface of section for a field strengthmanner as to drain the chaotic sea through ionization. Also
of £e=0.5765 which is above the onset of chaos but stilinote that the periodic orbifii) remains stable for a consid-
below the ionization threshold. The full surface of section iserable range above the threshold. & 0.6 [Fig. 5(c)] this
shown in Fig. 8a), while an enlargement of the chaotic re- orbit has, at last, become unstable, and the central island of
gion is provided in Fig. &). First observe that the volume of stability has disappeared. Nevertheless, evidence of island
the chaotic region is quite small and is not readily seen irchains of stability is observed.
Fig. 3(a). Figure 3b) reveals that the chaotic trajectories lie ~ The central question to be discussed shortly concerns the
in an annulus surrounding the periodic orkiit). Figure 4  €Xistence of a transition state lying above the Stark saddle.
shows the chaotic region of phase space at the ionizatiod/e Will demonstrate its existence by construction, and then
threshold,e =0.5776. Again we see that in the center of theUse it to investigate the dynamics of ionization.
chaotic sea there is an island of stability centered on the
periodic orbit(ii). In phase space, for values efoelow the Ill. TRANSITION STATE
ionization threshold £ <<0.5776), the energy shell on which
the dynamics is confined consist of two separate parts corre- In Hamiltonian systems for which there is a clearly de-
sponding to the bound and scattering dynamics. At the ionfined potential energy, the problem of finding the transition
ization threshold these two parts come into contact preciselgtate is straightforward: one searches for a periodic orbit
at the Stark saddle. whose projection into coordinate space begins and ends at

-1.0 05 00 05 10 15
X
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FIG. 4. Shown here is an enlargement of the chaotic region in
the (v-P,) surface of section (=0,u=0) for an electric-field
strength ofe =0.5776. This is well above the onset of chaotic be-
havior, and corresponds to the ionization threshold. Observe that
the central periodic orbitii) is stable and surrounded HYAM
curves forming an island in the chaotic sea. The axes are the scaled
coordinate and the momentum.

periodic orbit for which one is searching is of the first type.
This is illustrated in Fig. 6.

Unfortunately, this approach is not immediately appli-
cable when one cannot define a potential-energy surface as in
the problem at hand. The technical obstacle to progress is
that the equations of motion are not symmetric with respect
to time reversal. To make this clear, consider a trajectory
v whose projection into coordinate space touches the classical
, _ _ boundary. If the equations of motion were symmetric with
FIG. 3. Shown here is thev¢P,) surface of sectiony(=00 respect to time reversal, then, a trajectory which leaves the

=0) for an electric-field strength af=0.5765. This is just above . . 4 - i
the onset of chaotic behavior. The full surface of section is shownCIaSSICal boundary would retrace, in coordinate space, its ap

in (a), and an enlargement of the region surrounding the centraproaCh to the classical boundary. In other words, the time

periodic orbit of the upper set of nesté@hM curves is shown in development of the variables would satisfy
(b). Comparison of these two figures shows that the chaotic trajec-

tories fill a very small region of phase space and that the central g(—t+ty)=q(t+tg),

periodic orbit(ii) remains stable and is surrounded K%M curves (19
which form an island in the chaotic sea. The axes are the scaled . .

coordinate and the momentum. q(—t+tp)=—q(t+1),

the classical boundaridsee Fig. 6. In coordinate space the if the trajectory touches the classical boundary at tige
classical boundaries are given by the equipotentials, and, fawithout this symmetry the classical trajectory will trace out
a system with two degrees of freedom, the position on am new path, as is illustrated in Fig. 7.

equipotential can be specified by a single parameter. Thus, The breaking of the time-reversal symmetry can be traced
numerically, the procedure involves a simple one-parametetb the paramagnetic term in the Hamiltonian. Examination of
search. One approach is to construct a convenient surface tife equations of motion and the Hamiltonian reveal that the
section using the locus of points defining the equipotential aglifficulty lies in the fact that these terms mix odd powers of
initial conditions. One considers the first and second interthe momenta and coordinates. The equations of motion can
sections of the equipotential in the surface of section. Webe transformed into a form which is symmetric with respect
refer to these intersections as the first and second images tf time reversal by the simple expedient of switching the
the equipotentials. The intersections of these two images coidentity of the momentum and coordinate of one of the pairs
respond to periodic orbits. In this manner one finds two dif-of conjugate variables. This is accomplished in a rigorous
ferent types of periodic orbits. The first type touches bothmanner through the canonical transformatiéid] given by
branches of the equipotential and intersect the surface of sec-
tion at a single pointand thus is period)1 The second type
touches one of the branches of the equipotential twice at
different points. These orbits intersect the surface of section
at two different points, and thus are period-2 orbits. The P,=—w.

v=Py,
(20
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electric-field strength@ ¢=0.5785,(b) £¢=0.58, and(c) £=0.6.
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FIG. 6. Shown here is a cartoon illustrating two periodic orbits.
The first orbit touches both branches of the equipotential. Orbits of
this nature can be used to define transition states. The basic idea is
that any trajectory that crosses this orbit from the bound region into
the unbound regiorithat is, from the left to the rightwill never
return to the bound region. Thus the ionization rate can be obtained
by calculating the flux across this orbit. Orbits of this nature can be
found by a simple one-parameter search for periodic orbits among
the orbits that initially start on an equipotential. Two types of peri-
odic orbits are found in this manner. The first type are orbits that
touch both branches of the equipotential, and the second type are
orbits that touch the same equipotential twice. The transition state
corresponds to an orbit of the first type. This discussion applies to
systems which possess time-reversal symmetry. The system under
consideration does not possess time-reversal symmetry due to the
magnetic field, and thus these ideas must be modified.

time reversibility, the question of the initial conditions re-

mains. Recall that we wish to start trajectories on the classi-
cal boundary. Thus the problem becomes one of identifying
the classical boundary in the new coordinate space. In this
set of coordinates we can define neither a potential energy
nor a zero velocity surfackb5], explained at the beginning

of Sec. Il, and therefore we must seek a new approach. Ob-

-0.2

-0.4

-0.6 —

» -0.8

-1.0

Observe that at these values of the electric field the chaotic trajec-
tories ionize; in other words, the chaotic sea is drained via ioniza-
tion. Also note that the central periodic orbit remains stable and is
surrounded byKAM curves in(a) and (b). For a field strength of

£=0.6 this orbit has become unstable, and the central island of
stability has disappeared. However, evidence of higher-order island

0.6

12 14 16 18
u

chains of stability are observed. The axes are the scaled coordinate F|G. 7. Shown here is a cartoon that illustrates a difficulty that

and the momentum.

Following this well-known transformatiof58], the new

occurs in systems that do not possess time-reversal symmetry. If a
system does possess time-reversal symmetry, then after a trajectory
touches an equipotential it will retrace its path in coordinate space.

equations of motion become symmetric with respect to timeqowever, in a system that does not possess time-reversal symmetry,

reversal.

an orbit that touches the equipotential will not retrace its path in

While this transformation solves the central problem ofcoordinate space. The observed behavior is illustrated in this figure.
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FIG. 8. Shown here are the time-reversal symmetry lines for the

hydrogen atom in crossed electric and magnetic fields for Aouch both time-reversal symmetry lines at an electric-field strength

lectric-field strength o =0.5785. Th lin rinth . . :
electric-field strength 06 =0.5785 ese lines occu the,p,) . £=0.4 well below the onset of chaotic behavior. These two orbits
space. The two central curves are the time-reversal symmetry lines . .
- . . : .~ are the central periodic orbits of the nested setKAM curves
of interest in the present problem. Orbits which touch these lines

. ) L . observed in Fig. 1 and that are shown in Fig. 2. The axes are the
retrace their path in theu(P,) space. The periodic orbits that cor- scaled coor dingtes 9
respond to transition states will touch each of these two branches '

once. The axes are the scaled coordinate and the momentum.

FIG. 9. Shown here are the two periodic orb{ODS that

shown in Fig. 2. These are the two fundamental period-1

. . . . eriodic orbits which the large-scale integrable structures,
serving that the equipotential and the zero velocity surfac g g

) , hat is, invariant tori, surround. They persist throughout the
contours are time-reversal symmetry lines suggests that OM8hge ofe investigated in the present work. Also shown in

consider 'Fhese time-rleversal symlmetry Iinhes inlth.e p.refseqf.lese figures are the classical boundaries. At field strengths
case. A tyme-reversa §ymmetry ne is the so l_JF'OmD above the ionization threshold £ 0.5776), two additional
=0, and P,=w=0 subject to the energy condition{2/ pODS appeared in the vicinity of the two Stark saddles.

=K(Py,—w,u,Py). In the present problem four solutions These PODS £=0.6) are shown in Fig. 10. Note that in
exist to this equation, and are shown in Fig. 8 &+ 0.6.

The upper and lower curves bound the dynamics from above
and below, respectively. The two central curves are the so- L7~ (a)
lutions of interest to us. .
With the equations of motion in a form that is symmetric
with respect to time-reversal and with the classical bound-
aries identified, one is in a position to implement the pro-
gram discussed above. The time-reversal symmetry line has -1.7
two branches. These two branches are transformed into each 1.7 (b)
other by inversion, that igy— —u andP,— — P, ; thus we
need only consider one of these curves. Note that in the .
(u, v) space this set of initial conditions corresponds to 0.0
points along ther axis with momentum perpendicular to this .
axis; that isy=0 andP,=0. For one of the branches of the 174
time-reversal symmetry line the momentiéyis in the posi- — 1T r T ' 1 7T
tive direction, and on the other it is in the negative direction -4.0 2.0 0.0 2.0 4.0
[see Eq(17)]. If a given trajectory with these initial condi- u
tions intersects the axis in (u, v) space perpendicularly a
second time, then it has touched the other branch of th : ! )
time-reversal symmetry line. In other words, a segment Ogoth tlme-r_evgrsa}l symmetry lines at a f'el.d strength0.6 W?” :
the periodic orbit which starts at one of the classical boundf"bove the fonization threshmd' The projections of these orl:_nts into
) . the (u, v) space are shown if@). Here it is seen that these orbits do
ares a_nd ends at the other in,P,) space co_rrespon_ds t_o @ nhot touch the equipotentials. The projections of these orbits into the
curve in (u, v) space that starts on the axis, leaving it

. ; . ) . (u,P,) space are shown ifb). Here it is seen that these orbits
perpendicularly, and returning to theaxis, approaching it touch the time-reversal symmetry lines. The dashed orbits corre-

perpendicularly. Implementing such a search routine igpongs to the periodic orbit that lies in the center of the chaotic sea
straightforward. o [labeled i) in Figs. 2 and & At this field strength this orbit is

At field strengths(e=0.4) below the ionization threshold ynstable. The two small circular orbits on the right and leftan
two PODS are found, both of which are stable. The projecare the periodic orbits that correspond to the transition statéb) In
tion of these PODS intoy,P,) space is shown in Fig. 9. it is seen that these two orbits connect the two branches of the
Their projection into (,v) space and(x,y) space were time-reversal symmetry line. The axes are the scaled coordinates.

FIG. 10. Shown here are the periodic oriBEODS that touch
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FIG. 11. Shown here is the PODS that corresponds to the tran- FIG. 13. Shown in(a) is the trace of the stability matrix Th{)
sition state. In@) this orbit is shown in the original Cartesian space and in (b) the classical actiod for the transition state PODS as a
(x,y), and in(b) this orbit is shown in thex,P,) space. Observe function of the electric-field strength. Note that the PODS are
that the PODS does not touch the equipotentighjrbut does touch  highly unstable, and that both of these quantities appear to be linear
both branches of the time-reversal symmetry lindlih The axes  functions of the electric-field strength. The flux across the transition
are the scaled coordinates. state is proportional to the classical actidn

transforming back into the physicak,y) space the two space that ionizes becomes possible. The central goal is to
PODS in the Stark saddle map into the same orbit; see Figise the dynamics to partition phase space. This is achieved
11. This orbit is the transition state: This is evident when onddy construction of the stable manifolds of the PODS associ-
views the projection into either the:(P,) spacdFig. 1ab)]  ated with the two transition states. Consider the stable mani-
or the ,P,) space[Fig. 11b)]. In Fig. 12 we show the fold of th(_a PODS on the right-hand S|d¢; see Fig. 10. This is
transition-state PODS for five different values of the field@ two-dimensional surface(tubg within the three-
strength. The trace of the stability matiikand the classical dimensional energy shell that partitions the energy shell. The
actionJ of the transition-state PODS are shown as a functiorfraectories that lie within this volume all ionize to the right.

of the field strength in Fig. 13. It should be noted that theln @ similar manner all of the trajectories that lie within the

L stable manifold associated with the PODS on the left-hand
E)ObDeSalﬁ nrgg?% ﬁgt?é?]béef ta;]gdﬁtglzt sti(r];rr?gr;ﬂ TrM) appear side, will ionize to the left. The trajectories that lie outside of

both of these stable manifold will never ionize; that is, they
are bound. In order to examine the time development of the
system we construct a surface of section that intersects this

Once the transition state has been identified and foundartitioning transversely, that is, we chose our surface of

the investigation of the structure of the volume of phaseSection plane in such a manner that one of the stable mani-
folds intersects it once each period. As will be explained

0.8 below this yields a fractal tiling59] of the surface of sec-

\/ tion. It is this partitioning of the surface of section that is
1 needed in order to discuss the half-scattering problem. For
example, the scaling laws of this fractal determine the clas-
0.4 sical rate of ionization.

A similar partitioning of the energy shell can be con-
structed using the unstable manifolds. By combining these
two partitionings of the energy shell, one obtains an invariant
> 0.0 fractal tiling of the energy shell. It is this partitioning of the
energy shell that is needed to discuss the full scattering prob-
lem. For example, the scaling laws of this partitioning will
determine the average lifetime of atomic states that are

IV. PHASE-SPACE STRUCTURE

-0.4 4 formed in a collision.
In the following we will characterize these partitionings
] and investigate how they change as a function of the strength
0.8 /_\ of the electric field. At the heart of the method drg the
e L DL B correct choice of the surface of section dbiithe construc-
20 22 24 26 tions of the manifolds in phase space. We now turn to these
X two critical issues.

FIG. 12. The five transition-state PODS for different values of
the electric-field strength are shown in this figure. These are shown
in the original Cartesian spadg,y). The axes are the scaled coor-  While the choice of surface of section is of little conse-
dinates. quence mathematically, it can have a significant impact on

A. Choice of the surface of section
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FIG. 14. Shown here is a periOdiC orbit surface of section for an FIG. 15. Shown in this figure is a schematic i”ustrating the
electric-field strength of = 0.4 constructed using the periodic orbit (jfficulties that can arise if one does not use a periodic orbit to
labeled () in Figs. 2 and 9. This surface of section should be define ones surface of section. Consider the dynamics that are con-
compared with the surface of section shown in Fig. 1. Both argined to the tube shown here. The plane is the surface of section.

constructed from the same data. The use of a periodic orbit t@|early one can obtain closed circular figures in the surface of sec-
construct this surface of section avoids the difficulties observed iftion in two different manners. If the tube intersects the plane one

Fig. 1, and makes clear that at this field strength the dynamics argjjll obtain a closed circle, but also note that one can obtain a

analogous to those of two weakly coupled oscillators. The axes argircular figure if only an elbow of the tube intersects the surface of

the scaled coordinate and the momentum. section plane. Poincareas aware of difficulties of this nature.
They will occur whenever a classical trajectory touches the surface

the ease of interpretation. In order to ensure easy interpret&f Section plane tangentially. These difficulties can be avoided by
tion, it is best to choose a surface of section along one of thdefining ones surface of section using a classical trajectory.
central periodic orbit¢see Fig. 2 There are two reasons for

this: First, with this choice the classical boundary of the surface of section are provided in the Appendix.

face of section will correspond to the periodic orbit; and

second, we ensure that no trajectories intersect the surface of B. Construction of the manifolds

_section tanger_ltially in the range o_f e'?c”ic fie_ld strengths of The PODS associated with the transition states are un-
mteresf[. The first _of these difficulties is seen in the surfaced?able periodic orbits. As a consequence, they possess stable
of section shown in Sec. Il. Here we see two sets of foliated, .,y nstable manifolds which may be constructed as fol-
KAM curves even though no separatrix exists 1o separatg,, q. nitial conditions for the PODS are obtained on a con-
them. .If we ponstruct the surface of SeCt.'On using the Centralenient surface of section. In this case we used thé ()
periodic orbit of the lower patterflabeled(i) in Fig. 2], then

! . P . LS o surface of section(=0,v=0). The stability matrix is con-
n pla_ce of Fig. 1 we obtain Fig. 14. Thls_per|0d|c Or.b't IS the structed using four slightly perturbed trajectories. The eigen-
classical boundary of the surface of section shown in Fig. 1

The central periodic orbit of the upper set of folial&AM vectors of this matrix define the stable and unstable direc-

in Fi labeled(ii) in Fia. 21 is th ral iodi tions in the surface of section. An initial condition is then
curves in =g. Tlabeled(ii) in '9. ]is the central periodic chosen very close to the PODS with the perturbation from
orbit in the new surface of section. The new surface of sec

tion, which we will call the “periodic orbit surface of sec- the F?ODS being chosen in thg un.stable d.irfac.tion. The trajec-

o for thi ‘ is simplv what s for 1 tory is then followed forward in time until it intersects the

tion,” for this system Is simply what one expects for tWo g, 506 of section again. If this second intersection is still

coupled oscillators. . within the linear region of the PODS—that is, the PODS, the
Figure 15 shows an example of what can happen if on

. . . $hitial condition, and its first image all lie on a straight line—
constructs a surface of section using a curve that is not

traiect The ol h is the ph ¢ th t'f’hen a set of initial conditions are constructed on a grid on
rajectory. 1he piane snown s the phase-space surface thatyg, \,q segment connecting the initial condition and the first

used to construct the surface of section. The tube is an Nhtersection. Integrating these initial conditions forward in

variant phase-space surface constructed from trajectories. ime yields the unstable manifold. The corresponding stable

one of the trajectories used to construct the tube INtrSeCiBanifold is obtained using the time-reversal symmetry of the
the surface of section plane tangentially, then one will obtalr]5 stem. In turn. the manifolds of the other PODS are ob-
extraneous closed figures in the surface of section. The ined by a simble inversion

figures are artifacts of the choice of the surface of section. |
is interesting that these difficulties were known to Poincare
[60]. Generally, the use of a periodic orbit to construct the
surface of section avoids problems of this nature. While this In order to investigate the dynamics of ionization we con-
choice of surface of section does increase the complexity astruct the periodic orbit surface of section of the stable mani-
the calculations, it prevents errors and leads to a clearer efelds for the two PODS associated with the transition states;
position. The technical details of the construction of this sursee Fig. 10. All of the states that ionize are confined within

C. lonization
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(a)
b
o]
-0.4 —
b
©
I ! | ! |
-0.2 0.0 0.2 FIG. 17. Shown here are the stable manifolds of the two PODS
PG in the periodic orbit surface of section for an electric-field strength

£=0.57765. Shown irfa) are the two sinks labeldd] and[a] and

FIG. 16. The periodic orbit surface of section for two chaotic the two sources labelgld; and{A}. Shown in(b), in addition to the
trajectories for an electric-field strength=0.57765 just above the sinks and sources, are the fitfit], [b]) and secondiii ], [c]) pre-
ionization threshold are shown in this figure. The orbit showain ~ images of the two sinks. Shown i), in addition to the sinks,
survives 2384 periods before ionization, while that showr(n ~ sources, and their first and second preimages, are the third preim-
survives 77 613 periods. Finding long-lived trajectories of this na-ages[iv] and[d] of the two sinks. Finally, in(d), the sinks and
ture is not difficult at this value of the electric-field strength. By sources and the first five preimages of the sinks are shown. Of
observing these trajectories develop it is clear that they are trappe@grticular interest is the manner in which the preimages swirl
behind a series of bottlenecks. The axes are the scaled coordinadgound the sinks and intersect the sources. The axes are the scaled
and the momentum. coordinate and the momentum.

. _ Consider the last intersection of the stable manifold of the
these two manifolds. The stable manifolds are tWo-pops on the left with the surface of section. This tile is
dimensional tubes Wlthln the three—dlmenspnal energy She”IabeIed[i] in Fig. 17a), all trajectories that pass through this
Consequently, each time one of the manifolds crosses th@e jonize immediately to the left. Now consider the last
surface of section, a closed curve is generated. Howevefptersection of the stable manifold of the PODS on the right.
these closed curves do not intersect. Further, the areas enhis tile is labeleda] in Fig. 17a); all trajectories that pass
closed within these curves, taken together with the bounghrough this tile ionize to the right after an additional period.
states, cover the entire surface of section. In other wordsthese two tiles are the sinks in the surface of section. It is
they form a tiling[59] of the surface of section. Each of the important to recognize that the existence of two sinks is a
enclosed areas is called a “tile,” as will explained in the result of the doubling of the phase space due to the regular-
following discussion. ization of the Hamiltonian discussed in Sec. Il. If one trans-

We begin by considering the ionization dynamics justforms back to their physicdhonregularizegivariables, these
above the ionization threshold=0.57765. The chaotic re- two sinks would be mapped into a single sink. Now follow
gion of the surface of section is shown in Fig. 16. The con-+the states represented by these two tiles backward in time
tinuous outer curve is an invariant torus that bounds the chauntil they once again intersect the surface of section. We
otic region. In Fig. 16a) the scattered points correspond to arefer to these intersections as the preimages of the tiles
single trajectory that survives for 2384 peridé4]. Finding  (sinks. The preimages of the sinks are shown in Fig(bl7
trajectories that survive this long is not difficult at this value and are labeleii ] and[b], respectively. Also shown in this
of . Out of 15 trajectories examined in the chaotic regionfigure are the preimages pii ] and[b]; they are labelediii |
(chosen on a uniform grid on the symmetry line of the sur-and [c], respectively. A trajectory that passes through tile
face of sectionP,=0), one corresponded to an island of [iii ], will pass next through til¢ii ], and then through til¢i]
stability, and three survived for more than 2000 periods. It igo ionize to the left. The flux through these tiles is equal to
much more difficult to find trajectories that correspond totheir areas. Further, the area of each of the tiles seen in this
short lifetimes; out of these 15 trajectories, only one survivedigure is equal to the flux across the transition state. The
for fewer than 50 periods. In Fig. #® we show a truly same holds for the tiles associated with ionization to the left;
exceptional long-lived trajectory; it is trapped behind a serieshat is,[c]—[b]—[a].
bottlenecks and survives for a whopping 77 613 periods. This Also shown in Fig. 17 are the first intersections of the
is clearly a case of “delayed” ionizatiof68]. unstable manifolds of the two PODS associated with the
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0.0 (a)

b -0.1-

0.0

FIG. 19. Shown here is an enlargement of the periodic orbit
surface of section in the region of the two sirfkkand[a] for an
electric-field strength of =0.57765. Seen here are the third preim-
ages of the two sinkfiv] and[d] which are swirling around the
sinks. These tiles have bifurcated. The axes are the scaled coordi-
nate and the momentum.

-0.1 0.0

FIG. 18. Shown here are enlargements of the periodic orbit surl® Show, are wrapped around the tifés’ ] and[iv"] which
face of section in the region of the two sourc@,and {A} for  in turn are wrapped around]. This process continuead
electric-field strengths of = 0.577 65 for(a) ands = 0.5777 for(b). infinitum, yielding structure on all scales. We are forced to
Of particular interest here are the intersections of the filskand ~ conclude that this tiling is fractal. A composite surface of
[c]. The areas interior to these tiles will ionize in three periods. Thesection for the tile$i ] —[vi] and[a]—[f] is shown in Fig.
areas interior to the intersections of these tiles with the sources ark7(d). The stretching and swirling of the phase-space dynam-
captured in the previous period, and thus will only be bound forics is clear.
four periods. The axes are the scaled coordinate and the momentum. The dynamics associated with each of the tiles can be
. characterized by two integers,(m). The first of thesen,
transition states. These are labe{gdand {A} and are asso- jnjicates the number of periods required for the trajectory to
ciated with capture of an electron from the right and the Ieﬂ’be ionized, that is, to cross the transition state. This is related

rgspectir\]/ely.hWe label these areas With.curlly bracket.f,l 10 INg the number of times that the trajectory crosses the periodic
dicate that they are sources. Observe in Figblthat tile it gefining the surface of section. The second integer
[iii ] intersects the are@\} and[c] intersects the aref}. An

enlargement of these intersections is shown in Figa)l8

The area interior to bothiii ] and{A} corresponds to trajec- 0.00
tories that were captured in the previous period from the J
right, and which will ionize to the left in four periods. The
part of the tile[iii ] that is interior to{A} does not have a -0.05
preimage. As a consequence, the preimagégiiaf will be
partitioned into two tiles, which are shown and labdled' ]
and[iv”] in Fig. 19. Observe that the tilgsv'] and[iv"] © -0.10
swirl infinitely often aroundi]. Note that the flux through
these tiles is equal to the combined areas of the tiles. Similar
arguments hold for the intersection [af] and{l}. Here the -0.15 — ’
area of tile[c] interior to{l} correspond to trajectories that f \

have just been captured from the right and will ionize to the

left in five periods. The preimage ¢€] consists of the two -0.20 I .t T
tiles[d’'] and[d"] (see Fig. 12 A composite of all these 015 -0.10  -0.05 0.00
features is shown in Fig. 1@). P

The preimages of tilegiv’] and[iv"”], that is[v'] and c

[v”], swirl infinitely often aroundii] and then the preimages 1. 20. Shown here is an enlargement of the periodic orbit
of [v'] and[v"]; that is,[vi'] and[vi”], swirl infinitely  syrface of section in the region of the two sourdésand{A}, for
often aroundiii ]. As a consequence of tilg¢gi’] and[vi"] an electric-field strength af=0.57765. Seen here are the tifes ]
swirling infinitely often aroundiii |, they will intersect the  and[v”], which are swirling around the tilgi], and tile vi’] and
area{A} infinitely often. This is shown in Fig. 20. Thus, the [vi”], which are swirling around tilgiii ]. As consequence, these
preimage of each of the tilgvi’] and[vi”] will consist of tiles intersect the source infinitely often. The axes are the scaled
two infinite sets of tiles. These tiles, which we do not attemptcoordinate and the momentum.
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indicates the number of times the trajectory crosses the peri- 0.0
odic orbit transverse to the orbit defining the surface of sec-
tion. The sets of infinite sequences of tiles mentioned above,
resulting from the infinite swirling, correspond to dynamics b 01—
characterized by a givem and differentm’s.

The dynamics of ionization are more complicated than is
illustrated in the example just presented. In this example, the
electrons were captured from the right and ionized to the
right or were captured from the left and ionized to the left. In
other words, during the lifetime of the atomic stéteat is, oy
from formation until ionization the electrons orbit the o -01- \
nucleus an odd number of times. Classical trajectories corre-
sponding to atomic states that are characterized by an even -
number of periods of the electron about the nucleus will be ii

[
captured from the right and ionized to the left, or vice versa. -0.2
The reason that this behavior was not observed is not that it ] (©)
does not occur, but rather that we did not investigate the \ *\
dynamics on a fine enough scale. We consider next the dy- b -0.1—
namics for a value of the electric-field strength where behav- @
ior of this nature is more readily observed. T[] for & -
=0.5777 is shown in Fig. X8). This tile intersects both —
1
0

areas{l} and{A}. The atomic states associated with the area 0.2
enclosed in the intersection ¢t] and {I} corresponds to 0. 0.1 0.2

atomic states that survive for five periods. The atomic states P,

within this intersection are both captured from and ionized to

the right. On the other hand, the atomic states associated FIG. 21. Shown here is an enlargement of the periodic orbit
with the area enclosed in the intersectiofofand{A} sur-  surface of section in the region of the two sir[lk}_sand[a]_for an

vive six periods and are captured from the right and ionizectlectric-field strength 0&=0.57770. Seen here is the third preim-

to the left. As a consequence of tife] intersecting both ~age of tile[al. This preimage has bifurcated into three tilef],
areas{l} and{A}, the preimage ofc] will consist of three ~[d"]. and[d"]. The tile[d"] swirls around(a] [seen in(c)], and
tiles[d'], [d"], and[d"]. These tiles are shown in Fig. 21. tllew[d ].swwls aroqnd both. tilega] Iimd [lJ [seenhln(b)]lagd tlled.
Tile [d'] swirls arounda] [Fig. 21(a)], [d"] swirls around E\itg Z\;]v(ljrlrsnﬁa?;rr:f[ug[seen in(@]. The axis are the scaled coordi-

[i] [Fig. 21(c)], and[d"] swirl around botHi] and[a] [Fig. '

21(b)]. The preimages of these three tiles, which we would=0.5784. It should be noted that a direct scattering trajectory
label[ f'], [f"], and[ f”], will swirl around tiles[a] and[ii]. ~ that approaches from the left and leaves to the right never
Clearly, with a bit of care, one can follow these dynamicscrosses the surface of section. It should also be observed that
and unravel the complexity; however, these details are nahe onset of direct scattering coincides with the ftgswirl-
required to make further progress in understanding the feang infinitely often around tilgi]. Similarly, area{Al swirls

tures of the dynamics that determine the ionization rates. infinitely often around aredl}.

This example elucidates how the fractal tiling evolves as The structure of phase space continues to evolve as the
the field strengthe is increasedcompare Figs. 1@ and field strength is increased. This is illustrated in Fig. 23,
18(b)]. This is illustrated in Fig. 22, where sinkg and[a]  where the first five tiles are shown fer=0.58, 0.59, and 0.6.
and sourcegl} and {A} are shown for three values ef (¢ In this range of field strengths the lifetimes are shOr10
=0.578, 0.5783, and 0.5785This range of values of the periods. A number of features should be noted: First, ob-
field strength corresponds to intermediate lifetifi®8—-100 serve the island of stability. This island shrinks rapidly; be-
periods. In Fig. 22a) (¢=0.578) one sees that tif@] in-  tweene=0.595 and 0.6 the central periodic orbit becomes
tersects with are@A}. The portion of tile[a] that is enclosed unstable and the island disappears. The unstable periodic or-
within area{A} corresponds to trajectories that have beerbit is shown as a dashed curve in Fig. 10. Also observe that
captured from the left in the previous period and will ionize the area of the chaotic region increases as does the area of
to the right in the next period, and thus survive for two the tile[i]; however, the area of the tile increases more rap-
periods. The result of increasing the field strength a smalidly than the area of the chaotic region, which in turn
amount is seen in Fig. 2B) (¢=0.5783). Here we see that squeezes the other structure at the expense of the higher-
now tile [a] intersects ared} and that tile[i] intersects area order tiles. We also observed that in the vicinity of the outer
{A}. The intersecting areas here correspond to atomic statémundary there exist many small islands of stability: associ-
that survive for a single period. This corresponds to the onsedted with these are bottlenecks analogous to those observed
of “prompt” ionization [68]. Finally in Fig. 22c) we see just above the ionization threshold. Consequently, here again
that ate = 0.5785 tile[i] intersects arefl}. The area enclosed we can find trajectories with lifetimes that are extremely
in this intersection corresponds to direct collisions. In otherdong.
words, the electron approaches from the right and immedi- Another way of investigating the fractal structure is to
ately leaves(without orbiting the nucleysto the left. The construct the underlying Cantor set. This can be accom-
onset of direct scattering occurs between 0.5783 ande plished in a manner analogous to the construction ofithe
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FIG. 22. Shown here is the scattering region of the periodic FIG. 23. Shown here is the development of the tiling of the
orbit surface of section for three different values of the electric-fieldperiodic orbit surface of section as the electric-field strength is in-
strength:(a) e=0.578,(b) £=0.5783, andc) ¢=0.5785. In these creased(a) £=0.58,(b) £=0.59, andc) e =0.60. The axes are the
figures we show the development of the sources and sinks as ttszaled coordinate and the momentum.
electric field is increased. Ifa) we see the first intersection of a
sink [a] and a sourcdA}. This corresponds to the onset of direct the ionization rate and the scaling laws of the fractal: each
ionization. As the electric field is increased the sfal intersects tijle is characterized by the number of periods that is required
with both sourcesA} and {I}. As the electric field is increased for the states within the tile to ionize. We will refer to the
further the sinKi] intersects with the sourcdl. The axes are the tjles that requiren periods to ionize as tiles of theth gen-
scaled coordinate and the momentum. eration[52]. The flux through a tile is proportional to its
area. If we call the sum of the areas of tiles of tith gen-

rationa,,, then we expect that these areas will scale in the
imit n—« as

Cantor sef{62]: Start with the first intersection of the un-
stable manifold associated with the PODS on the right, th
is, the boundary of arefd}. When the first tile intersects this
curve (see Fig. 18 remove the portion of the curve that is
interior to the tile. Repeat this procedure for the second tile

Subsequent tiles. In the infinite limit we will have removed number of states ionizing during each period to be an expo_
the entire length of the curve, yet there will remain a set ofnential function of the number of periods, that is,

points of measure zero. The set of trajectories associated
with this set of points is the Cantor set underlying the dy- Fooce k=", (22)
namics. Included in this set of points are the intersection

points of the original curve and the boundaries of the t”eSWhere the rate constant is given by: —In 7. The survival

These intersection points are associated with the doublyrobability (that is, the number of states that have not ionized
asymptotic trajectories, that is, homoclinic and heteroclinicafter n periods is given by

orbits. Also included in this set of trajectories are the un-

stable periodic orbits that exist above the ionization thresh-
old. Si=1-2 Frxe ™=7p". (23
m

Apt1= 7Ap . (21)

D. Scaling laws of the fractal tiling and the classical rate of The survival probabilities for several values of the field

lonization strength €=0.5777, 0.5785, and 0.@re shown in Fig. 24.

A necessary question in any discussion of a fractal occurHere we see that following some induction period, the sur-
ring in a physical system is the relationship between thevival probability is exponential verifying our expectations
properties of the fractal and the physical observables of theoncerning the scaling lafeq. (21)], which governs the flux
system. In the present case there is a direct relation betwedhrough the tiles. Observe that the induction period can be
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ionization dynamics.
A couple of difficulties arise in the implementation of this
procedure. First, recall that for values of the electric-field
= strength investigated, the lifetimes of the atomic states can
7)) be extremely long; consequently, the procedure just outlined
requires an excessively long series of calculations. In addi-
tion to this, this procedure is only applicable above the ion-
ization threshold. Both these difficulties can be avoided by

0 40 80 120 the following modification of the procedure: Instead of fol-
n lowing the pairs of trajectories until they ionize, we follow
) them for 80 periodg40 intersections with the surface of
FIG. 24. Shown here are the survival probabilities for threesectior), or until they ionize. At this point of time we ask
values of the electric-field strengtte) £=0.5777,(b) £=0.5785,  \yhether the two trajectories on the same side of the symme-
and(c) £=0.60. try line in the surface of section. If they are not, we say they
are “uncertain.” Clearly, this modification of the procedure
relatively long(30 periods in the case ef=0.5785). Thisis  ayoids both difficulties mentioned above.
the ionization induction period for “delayed” ionization Consider the symmetry line of the (P,) surface of sec-
[68]. tion (u=0, u=0), that is,P,=0 (see Figs. 1 and B.Note
that the points on this line correspond to the origin of the
E. Fractal dimensions (u,P,) space. Furthermore, it is easy to show that this sym-

Another important property of the fractal tiling of the sur- metry line is the tlme-.reversal SYmme”y line in tHEU(’V_) )
face of section that is of interest in characterizing the ionizaSPace. In other words?,=0 andv=0. We choose our ini-
tion dynamics is the fractal dimension. This quantity can bei@l conditions on this symmetry line, and thus=1. The
interpreted as a measure of the degree of mixing of the dytesults of these calculations are shown in Fig. 25.
namics. In determining this quantity we have followed the The onset of chaos is first observedegf;=0.5757. Be-
pioneering work of Greboggt al.[63] on the dimensionality Iovv_ this value of the field strength the uncertainty dimension
of the boundaries of fractal basins. As we have seen abové; IS €qual to zero. In the range 0.5%5 <0.5776 the un-
in the regularized coordinates, the electron can ionize to eicertainty dimension increases monotonically, while above
ther the right or the left. lonization to the right requires anthe ionization threshold it slowly decreases. This is an inter-
odd number of periods, while ionization to the left requires€Sting result in that it implies that just after the onset of
an even number of periods. Clearly, every point in the chafhaos the system is not highly mixing. However, as the field

otic region of the surface of section can be characterized a&rength is increased, chaos develops and the system be-
ionizing to either the right or the left. comes more highly mixing. Once the ionization threshold is

The prescription outlined by Grebogt al. requires that crossed the degree of mixing decreas_es whi(_:h can be attrib-
one choose pairs of initial conditions that are separated by dt€d to the fact the electron escapes in a finite time and the
small quantityx. Trajectories emanating from a pair of initial lifetime of the atomic state limits the degree of mixing.
conditions are then calculated. These trajectories are fol-
lowed until they ionize. If they ionize in opposite directions V. RELATIONSHIP BETWEEN THE HALF- AND
then the pair of trajectories is said to be uncertain. This pro- FULL-SCATTERING PROBLEMS
cedure is repeated a large number of times in order to calcu-
late the fraction of trajectories that are uncertain as a func-  The dynamics of the ionization of a planar atom in the
tion of the small quantityA. This fraction is expected to crossed electric and magnetic fields is a half-scattering prob-

exhibit a power-law dependence lem. The atom is initially prepared in some highly excited
b_s metastable Rydberg state, and we are interested in its behav-
Fe(N)oeN=" %, (24 jor in the future. This is very different from the full-

scattering problem. In the full-scattering problem the system
whereD is the dimension of the space from which the initial is prepared in an unbound initial state, and we are interested
conditions are chosen, a& is the uncertainty dimension of in the dynamics of formation of a highly excite metastable
the boundary between the two basins. Rydberg atom and its subsequent ionization. The analysis of
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the structure of phase space for these two different types of

problems is significantly different. 02 7~ \

The central difference between the analysis of the dynam- .

ics of the half- and full-scattering problems is that in the
. . . . 0.0 —

half-scattering problem one is only interested in the
asymptotic behavior in the infinite future, while in the full- .
scattering problem one is interested in the asymptotic behav- © 0.2
ior in both the infinite future and in the infinite past. As a )
consequence, in the half-scattering problem one need only .
consider the stable manifolds of the two PODS associated /

with the transition states as it is these manifolds that deter- 047 \\ >
mine the dynamical behavior in the infinite future. On the 1 S —
other hand, for the full-scattering problem one must consider — T T T

both the stable and unstable manifolds of the PODS; the -0.4 -0.2 0.0 0.2 0.4

stable manifolds determine the behavior in the infinite future, Pc

and the unstable manifolds determine the dynamical behav-

ior in the infinite past. FIG. 26. Shown here are the intersections of the three largest

The stable manifolds partition the energy shell into threetiles associated with the full-scattering description of the dynamics
parts: one is associated with ionization to the right, anothewith the periodic orbit surface of section for an electric-field
with ionization to the left, and the third with the bound strength ofe =0.60. These tiles are distinct from the tiles associated
states. The unstable manifolds will also partition the energyvith the half-scattering problem. The axes are the scaled coordinate
shell into three volumes: the first two are associated witrand the momentum.
capture of the electron from either the right or the left, while
the third again corresponds to the bound states. In the halsurface of section of the fractal tiling of the energy shell is
scattering problem we are interested in how the stable maniot the “natural” surface of section to use in the investiga-
fold partitions the energy shell, while in the full-scattering tion of the full-scattering problem. The “natural” surface of
problem we are interested in how both the stable and unsection should be constructed using a scattering trajectory.
stable manifold partitions the energy shell. These two parti\When approached from this point of view each of the stable
tionings are quite different. and unstable manifolds corresponds to an infinite curve in

Both partitionings lead to fractal tilings. However, in the the surface of section. The study of the geometry of the
half-scattering problem it is not the patrtitioning of the energyintersections of these curves leads to the usual definition of
shell that is the fractal tiling, rather it is the partitioning of interaction region, and of the turnstiles governing the flux in
the surface of section that is a fractal tiling. In the full- and out of the interaction region.
scattering case the partitioning of the energy shell is a fractal
tiling. Consider Fig. 18). Here we see, in the periodic orbit
surface of section, two intersections of the stable and un-
stable manifolds. Consider the areas enclosed in both mani- We have shown by construction that there exists a transi-
folds. In the half-scattering problem each of these enclosetion state in the planar atom in crossed electric- and
areas are tiles. In order to construct the tiles in the full-magnetic-field problems. This phase-space structure enables
scattering problem one must propagate these areas both fars to partition a suitably chosen coordinate space into two
ward and backward in time. The volume of the energy sheltegions: The first of these corresponds to bound states, while
swept out in this manner is a tile in the full-scattering prob-the second corresponds to ionized states. The fundamental
lem. Clearly, in the full-scattering problem the surface ofimportance of the transition state is that it represents a sur-
section will intersect a given tile many times. This is illus- face of no return. That is, once the electron crosses the tran-
trated in Fig. 26. Shown in this figure is the surface of secsition state from the bound side to the ionized side, it will
tion (¢=0.6) for the three largest tiles resulting from the never cross back.
analysis of the full-scattering problem. As a consequence of We have also shown that the stable manifolds of the
these differences, the fractal properties of the two tilings willPODS associated with the transition state can be used to
be different. In the half-scattering case there will be a singlgartition the surface of section into areas that correspond to
scaling-law-dependent stable manifold, while in the full- different ionization lifetimes. These areas form a fractal til-
scattering case there will be two scaling laws, one dependeiig of the surface of section. We have also demonstrated that
on the properties stable manifolds and the other dependetite scaling laws of the areas of the tiles are directly respon-
on the properties of the unstable manifolds. sible for the exponential decay of the ionization probability.

The important feature to recognize is that in the half- Underlying the fractal structure is an invariant set of tra-
scattering problem the fractal tiling is a partitioning of the jectories that never escape. Among these trajectories are the
periodic orbit surface of section, while in the full-scattering periodic orbits of this system. It is these orbits that organize
problem the fractal tiling is a partitioning of the energy shell. the structure of phase space. The stable periodic orbits are
In the full-scattering problem the surface of section shouldsurrounded by invariant tori and are responsible for the is-
be viewed as being a surface of section of the fractal tiling olands of stability. The unstable periodic orbits act as attrac-
the energy shell. It should also be observed that the perioditors and repellers. Their stable and unstable manifolds chan-
orbit surface of section that we have used to construct theel the flow in phase space.

VI. CONCLUSIONS
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Plainly, a variety of different mechanisms can lead to cha- P,

otic behavior, the best known of these being the Smale f=tan T)

“horseshoe” in which phase space is stretched and folded an

infinite number of time$64]. Such structures have been ob- \yhere (', P!) are the coordinates of the intersection point.

sgrved in a variety of different systems: The area-preservinghus’ the néw variables are given by

Henon map[65] and the van der Waals molecule Hg52]

are just two examples. The chaotic behavior observed in the r=ucosé—P,sind, P,=P,cosfd—vsind,

present system is not a Smale horseshoe. The chaotic region

of the surface of section can be thought of as a bounded s=usinf+P, cosh, Ps=P,sing+v coso.

region on a cylinder. The structures in phase space are

stretched around this cylinder in much the same way as the

are stretched in the Smale horseshoe. However, instead

being folded, they are swirled around the two sinks: in on

case they are swirled in a clockwise direction and in th

1

ext we fit the classical orbit to a cubic spline to obtain
s), the distance of the classical orbit from the straight line
efined above. We now define a new set of coordinates as
efollows:

other in a counterclockwise direction. After they are swirled, p=r—R(s), P,=P
they are stretched around the cylinder again. While this pro- oo
cess is quite different from the construction of the Smale dR(s)
horseshoe, the results are quite similar. o=s, P,=Pg+ PFW
S=o
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Two points are worth remembering: First, we were inter-

ested in the crossing of the trajectories from the right to left,
and thus we chosp=<0 as opposed to the more standard
In this appendix we discuss the technical details of thechoice ofp=0. Second, the common discussion of the diffi-
construction of the periodic orbit surface of section. Considerculties associated with the proper choice of whithbranch
Fig. 10. We wish to construct a surface of section using theéo use in the construction of the surface of section often
central periodic orbit shown in this figure. This is accom-results from an improper definition of the surface of section,
plished by a series of canonical transformations. The first othat is, from defining the surface of section gs=©, P,
these rotates theu(P,) coordinate system through an angle <0). This is incorrect; see Poincaf@0]. Using the correct
0. We define this angle by drawing a straight line connectingdefinition of the surface of section, one sees that if one sim-
the two points where the classical orbit touches the classically asks if the classical trajectory has crossed the surface of
boundaries.f is the angle that this line makes with the section plane, that is, if;_,>0 andp;<0, the entire ques-

APPENDIX: PERIODIC ORBIT SURFACE OF SECTION

u-axis, tion of which branch it is on becomes moot.
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