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Nonlinear decoherence in quantum state preparation of a trapped ion
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We present a nonlinear decoherence model which models decoherence effects caused by various decohering
sources in a quantum system through a nonlinear coupling between the system and its environment, and apply
it to investigating decoherence in nonclassical motional states of a single trapped ion. We obtain an exactly
analytic solution of the model and find very good agreement with experimental results for the population decay
rate of a single trapped ion observed in the NIST experiments by Meekhof and co-workers@D. M. Meekhof
et al., Phys. Rev. Lett.76, 1796~1996!#. @S1050-2947~99!05310-X#

PACS number~s!: 32.80.Pj, 42.50.Lc, 03.65.Bz, 05.45.2a
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In recent years, much progress has been made in prep
tion, manipulation, and measurement of quantum state
the center-of-mass vibrational motion of a single trapped
experimentally@1–8# and theoretically@9–16#, which are not
only of fundamental physical interest but also of practi
use for sensitive detection of weak signals@17# and quantum
computation in an ion trap@3,9#. In particular, the NIST
group @4# has experimentally created and observed nonc
sical motional states of a single trapped ion. In the NI
experiments@4#, an anti-Jaynes-Cummings-model~JCM! in-
teraction between the internal and motional states o
trapped ion is realized through stimulated Raman transitio
which couple internal states of the trapped ion to its motio
states, when the Lamb-Dicke limit is satisfied and the driv
laser fields are tuned to the first blue sideband. Detectio
motional states is carried out by observing the evolut
characteristics of quantum dynamics of internal levels of
trapped ion under the influence of the anti-JCM-type int
action. The NIST experiments revealed the fact that
population of the low atomic state (P↓) evolves according to
the following phenomenological expression:

P↓~ t !5
1

2 S 11(
n

pn cos~2gtAn11!e2gntD , ~1!

where pn is the initial probability distribution of motiona
states of the trapped ion in the Fock representation,g is a
coupling constant between the atomic internal and motio
states, andgn is a decay rate. The experimentally observ
decay rate is of the form

gn5g0~n11!n, ~2!

where the observed value ofn is n.0.7.
A question that naturally arises is, how do we explain

above experimentally observed decay rate? It is gener
accepted that the appearance of the decay factorgn in the
evolution of internal states is a consequence of decohere
It is of practical significance for a good understanding
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decoherence for preparation of nonclassical states and q
tum computation in ion traps. There are various sources
decoherence@1#, such as ion vibrational decoherence, i
internal-state decoherence, decoherence caused by non
external fields, and so on. Recently, Schneider and Milb
@18# have investigated decoherence due to laser intensity
phase fluctuations and obtained the powern in Eq. ~2! with
n80.5 instead of the experimentally observed value 0
More recently, Murao and Knight@19#, using the master
equation method, have studied decoherence due to the
perfect dipole transitions and fluctuation of vibrational p
tential in the NIST experiments. In spite of these efforts,
problem of decoherence in quantum state preparation
trapped ion has not been satisfactorily solved, and its ch
acter and microscopic origin still call for further attention.
particular, it should be pointed out that the experimenta
observed decay rate indicated in Eq.~2! is a collective effect
caused by various decohering sources, not by a specific
cohering source. Nevertheless, authors in Refs.@18,19# in-
vestigated the decay rate caused only by a specific sourc
decoherence, not by various sources of decoherence. So
to model the experimentally observed decay rate caused
various decohering sources is an interesting subject in qu
tum state preparation and manipulation of a trapped ion
this paper, we present a nonlinear decoherence mode
model decoherence effects caused by various decohe
sources in a quantum system. We shall show that our th
retical model can describe the experimentally observed
cay rate in the NIST experiments@4# well.

We consider a single trapped ion with massm and laser
cooled to the Lamb-Dicke limit. Following the notation o
Ref. @19#, we denote three related internal states and m
tional states of the ion byu i & ( i 50I ,↓,↑) and un& (n
50,1,2, . . . ), respectively. The free Hamiltonian of th
trapped ion is given by Ĥ05\vxâ

†â
2\v01u↓&^↓u2\v02u↑&^↑u, wherev01 (v02) is the transi-
tion frequency between statesu↓& (u↑&) and u0I &, andâ† (â)
is the creation~annihilation! operator of the motional state
with the corresponding frequencyvx . Two driving laser
beams with detuningD, wave vectorkW1 (kW2), and frequency
v1 (v2) are used to cause dipole transitions between
level u↓&(u↑&) and u0I &.
3815 ©1999 The American Physical Society
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With the dipole and rotating wave approximations, und
large detuning condition the intermediate levelu0I & can be
adiabatically eliminated when the Lamb-Dicke limit is m
and the driving laser beam is tuned to the first blue sideba
Then, in the interaction picture ofĤ0, the effective Hamil-
tonian of the system has the anti-JCM-type form

ĤS5\g~ â†s11âs2!, ~3!

whereg is a coupling constant, which depends on the c
pling strength between internal and motional states of
trapped ion and the Lamb-Dicke parameter defined byh
5dkx0, wheredk is the wave-vector difference of the tw
Raman beams alongx, and x05A\/2mvx. For simplicity,
we set\51 throughout this paper.

The Hamiltonian~3! is diagonal in the dressed-state re
resentation with the following basis:

uw~n,i !&5
1

A2
@ u↓,n&2~21! i u↑,n11&], i 51,2 ~4!

uw~0,3!&5u↑,0&. ~5!

And we have ĤSuw(n,i )&5Eniuw(n,i )& with eigenvalues
Eni5(21)i 11gAn11 for i 51,2, andE0350.

Before going to our model, let us briefly recall a few bas
facts about the interaction between a quantum system an
environment. The interaction between the system and its
vironment may create two types of effects@20–34#: decoher-
ence and dissipation, which can be mathematically descr
by decaying of the off-diagonal and diagonal elements of
reduced density operator of the system, respectively. Th
two effects have been paid much attention in various ar
for instance, quantum measurement@20,25–28#, condensed
matter physics@21–23#, quantum computation@29–31#, and
so on. The decoherence effect makes the states of the sy
continuously decohere to approach classical states@20,27#.
The dissipation effect dissipates energy of the system to
environment@21–23#. The two effects can be understood
terms of Hamiltonian formalism@32–34#. If we assume the
total Hamiltonian of the system plus environment to beĤT

5ĤS1ĤR1ĤI , whereĤS and ĤR are Hamiltonians of the
system and environment, respectively, andĤI is the interac-
tion Hamiltonian between them, when the Hamiltonian of t
system commutes with that of the interaction between
system and environment, i.e.,@ĤS ,ĤI #50, which means tha
there is no energy transfer between the system and the e
ronment, energy of the system is conservative, so that w
interaction between the system and environment describ
the decoherence effect. When@ĤS ,ĤI #Þ0, there is energy
transfer between the system and environment, so that w
interaction between the system and environment describ
the dissipation effect. It should be pointed out that the de
herence and dissipation happen at different time sc
@29,30#. The dissipation effect occurs at the relaxation tim
t rel , while the decoherence time scaletd is much shorter
than t rel with the time evolution of a quantum system
Hence, we here restrict our attention on decoherence ef
r
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We now present our model. We use a reservoir consis
of an infinite set of harmonic oscillators to model the en
ronment of the single trapped ion in the NIST experimen
and assume that in the interaction picture ofĤ0 the total
Hamiltonian is of the following phenomenological form:

ĤT5ĤS1(
k

vkb̂k
†b̂k1F~$ÔS%!

3(
k

ck~ b̂k
†1b̂k!1F2~$ÔS%!(

k

ck
2

vk
2

. ~6!

Here the first term is the Hamiltonian of the system in t
interaction picture given by Eq.~3!; the second term is the
Hamiltonian of the reservoir; the third one represents
interaction between the system and the reservoir with a c
pling constantck , where$ÔS% is a set of linear operators o
the system or their linear combinations in the same picture
that of ĤS , F($ÔS%) is an operator function of$ÔS%. In
order to enable what the interaction between the system
the reservoir describes in Eq.~6! is decoherence, not diss
pation, we require that the linear operatorÔS commutes with
the Hamiltonian of the system, i.e.,@ÔS ,ĤS#50. It is well
known that the decohering process can indeed be consid
as a quantum measurement process. The conventional
nition of a quantum measurement involves any form of
teraction between a quantum object and a classical sys
Therefore, the interaction functionF($ÔS%) in the model~6!
can involve any form of interaction between the system a
environment. This enables it to model the collective decoh
ing behavior caused by various decohering sources. The
crete form of the functionF($ÔS%) may be regarded as a
experimentally determined quantity. The last term in Eq.~6!
is a renormalization term, which is discussed in Ref.@21#.
WhenF($ÔS%) is a linear and nonlinear function of the lin
ear operatorÔS , we call decoherence described by the int
action between the system and the reservoir linear and n
linear decoherence, respectively, in the similar sense of
linear and nonlinear dissipation implied in Ref.@21#. In this
sense, decoherence investigated in Ref.@19# is a kind of lin-
ear decoherence. In what follows we shall show that non
ear decoherence can better describe the decay rate in
NIST experiments.

The Hamiltonian~6! can be exactly solved by making us
of the unitary transformation

Û5expS F~$ÔS%!(
k

ck

vk
~ b̂k

†2b̂k! D . ~7!

After applying the unitary transformation~7! to the total
Hamiltonian ~6!, we get a decoupled HamiltonianĤT85ĤS

1(kvkn̂k , where n̂k5b̂k
†b̂k . The density operator assoc

ated with the decoplued Hamiltonian is given by

r̂T8~ t !5e2 iĤ T8 tr̂T8~0!eiĤ T8 t, ~8!

wherer̂T8(0)5Û r̂T(0)Û21, with r̂T(0) being the initial to-
tal density operator. Through a converse transformation
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Eq. ~7!, it is straightforward to obtain the total density o
erator associated with the original Hamiltonian~6! with the
expression

r̂T~ t !5e2 iĤ StÛ21e2 i t(
k

vkn̂kÛ r̂T~0!Û21eit(
k

vkn̂kÛeiĤ St.

~9!

We assume that the system and reservoir are initially
thermal equilibrium and uncorrelated, so thatr̂T(0)5 r̂S(0)
^ r̂R(0), where r̂S(0) and r̂R(0) are the initial density op-
erator of the system and the reservoir, respectively.r̂R(0)
can be expressed asr̂R5)kr̂k(0) where r̂k(0)5(1
2e2bvk)e2bvkn̂k is the density operator of thekth harmonic
oscillator in thermal equilibrium, whereb51/kBT, kB andT
being the Boltzmann constant and temperature, respectiv
After taking the trace over the reservoir, from Eq.~9! we can
get the reduced density operator of the system, denote
r̂(t)5trRr̂T(t); its matrix elements in the dressed-state re
resentation are explicitly written as

r (m8,i 8)(m,i )~ t !5r (m8,i 8)(m,i )~0!Rm8 i 8mi~ t !e2 ifm8 i 8mi(t).
~10!

Here the phase is defined by

fm8 i 8mi~ t !5@Em8 i 82Emi#, ~11!

andRm8 i 8mi(t) is a reservoir-dependent quantity given by

Rm8 i 8mi~ t !5)
k

TrR$D~2amik!

3e2 i tvkn̂kD~2amik!D~2am8 i 8k!

3e2 i tvkn̂kD~2am8 i 8k!r̂k~0!%, ~12!

whereamik5 f ($Omi%)ck /vk with Omi being an eigenvalue
of the linear operator ÔS in a dressed state, i.e
ÔSuw(m,i )&5Omiuw(m,i )&, and D(a)5exp(ab̂k

12a* b̂k) is
a displacement operator.

Making use of properties of the displacement operato

D~a!D~b!5D~a1b!exp@ i Im~ab* !#, ~13!

exp~xn̂k!D~a!exp~2xn̂k!5exp~aexb̂k
12a* e2xb̂k!,

~14!

and the following formula@35#:

TrR@D~a!r̂k~0!#5expF2
1

2
uau2cothS bvk

2 D G , ~15!

we find that the reservoir-dependent quantityRm8 i 8mi(t) can
be written as the following factorized form:

Rm8 i 8mi~ t !5e2 idfm8i 8mi(t)e2Gm8 i 8mi(t), ~16!

with the following phase shift and damping factor:

dfm8 i 8mi~ t !5@F2~$Om8 i 8%!2F2~$Omi%!#Q1~ t !, ~17!

Gm8 i 8mi~ t !5@F~$Om8 i 8%!2F~$Omi%!#2Q2~ t !. ~18!
n

ly.

by
-

Here the two reservoir-dependent functions are given by

Q1~ t !5E
0

`

dvJ~v!
c2~v!

v2
sin~vt !, ~19!

Q2~ t !52E
0

`

dvJ~v!
c2~v!

v2
sin2S vt

2 D cothS bv

2 D , ~20!

where we have taken the continuum limit of the reserv
modes:(k→*0

`dvJ(v), whereJ(v) is the spectral density
of the reservoir, andc(v) is the corresponding continuum
expression forck .

We assume that the system is initially in a stater̂(0)
5u↓&^↓u ^ (npnun&^nu. Then, from Eqs.~10!–~16! we find
that at timet the population of the lower atomic state is give
by

P↓~ t !5
1

2 S 11(
n

pn cos@fn1n2~ t !1dfn1n2~ t !#e2Gn1n2(t)D ,

~21!

which indicates that the interaction between the system
reservoir induces a phase shiftdfn1n2(t) and a damping
factor Gn1n2(t) in the time evolution of the atomic popula
tion.

Taking into account the experimental expression~1!, we
choose the following linear operator and interaction functio

ÔS5â†s11âs2 , ~22!

F~$ÔS%!5ÔS
2d11 , ~23!

whered is an adjustable parameter to describe the nonline
ity in the interaction, which reflects the deviation degree
the nonlinearity ofF($ÔS%) with respect to the linear opera
tor ÔS . The value of the parameterd is determined by the
experimental results. With these choices, it is easy to fi
that

F2~On1!2F2~On2!50, ~24!

F~On1!2F~On2!52~An11!2d11. ~25!

Then the phase shift in Eq.~21! naturally vanishes, and th
damping factor becomes

Gn1n254~n11!2d11Q2~ t !, ~26!

so that we can find from Eq.~21! that

P↓~ t !5
1

2 S 11(
n

pn cos~2gtAn11!e24(n11)nQ2(t)D ,

~27!

wheren52d11 andQ2(t) is given by Eq.~20!. From Eq.
~27! we see that the argument of the cosine function on
right-hand side of Eq.~27! does have the same form as th
in the experimental expression~1!. Comparing the theoreti-
cal expression~27! with the experimental result~1!, we find
that when the nonlinear deviationd820.15, then depen-
dence of the damping factor in Eq.~27! is completely in
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agreement with that seen in the experimental expression~1!.
The final step is to determine the time dependence of
damping factor in Eq.~27!. From Eqs.~19!, ~20!, and ~27!,
we see that all necessary information about the effects of
environment is contained in the spectral density of the re
voir. Equation.~27! indicates that the time dependence of t
damping factor is completely determined by the spectral d
sity of the reservoir. The experimental expression~1! re-
quires that the time dependence of the damping factor m
be linear, so that if we choose the spectral density such

Q2~ t !5
1

4
g0t, ~28!

whereg0 is a characteristic parameter, then we can get
expression ofP↓(t), which has exactly the same form as t
experimental result~1!. It is possible to find a spectral den
sity of the reservoir to satisfy the condition~28!. For in-
stance, for the case of zero temperature, if we take the s
tral densityJ(v)5g0 /@2pc2(v)#, substituting it in Eq.~20!
we can realize Eq.~28!.

In conclusion, we have presented a nonlinear decohere
model, and obtained its exactly analytic solution. It has b
shown that our model can give precisely the same expres
of the population decay rate of the single trapped ion as
observed in the NIST experiments@4#. The nonlinear deco-
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herence model can describe the NIST experiments very w
This indicates that the reservoir and the nonlinear coup
between the system and the reservoir, which we des
properly model the real environment of the single trapp
ion in the experiments. It is worthwhile to emphasize that
nonlinearity in the coupling describes a collective contrib
tion of various decohering sources to the decay rate. He
what the nonlinear decoherence describes is a collective
coherence effect caused by various decohering sources,
specific decoherence source. We have noted that autho
Ref. @19# obtained the decay rate in Eq.~1!, but decoherence
which they considered is a specific decoherence cause
the imperfect dipole transitions and fluctuation of vibration
potential, so their results cannot cover the contribution
other decohering sources to the decay rate in the NIST
periment. It can be expected that the nonlinear decohere
model proposed in the present paper can describe deco
ence behaviors of a wide variety of quantum systems.
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