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We analyze the consequences of discretizing one of the two continua in three-body breakup to reduce it to
a two-body close-coupling problem. We identify the origin of oscillations in the singly differential cross
section in those “convergent close-coupling” calculations as lying only in the way the cross section is
calculated from the wave function and not in the wave function itself. The anomalous “step-function” behav-
ior of those calculations is derived from a stationary-phase argument. Calculations are presented on the
Temkin-Poet model for electron-impact ionization of hydrogen, a breakup problem with exponential potentials,
and an analytically solvable model. The anomalies associated with two-body close-coupling calculations are
demonstrated using wave functions from complex exterior scaling calculations that otherwise give converged
results without any anomaliefS1050-294{®9)07111-5

PACS numbs(s): 34.80.Dp, 03.65.Nk

[. INTRODUCTION convergence of the total cross section. By subtracting the
sum of the elastic and excitation cross sections to spectro-
The close-couplindCC) formalism[1] has been used in scopic states from the total cross section, one obtains a con-
electron-scattering calculations for over 40 years, and hagergent approximation to the total ionization cross section.
formed the basis for mosab initio work on low-energy (This same technique was used as early as 1974 by Gallaher
electron-atom scattering. The essence of the method is tH€] to estimate total ionization cross sections with close-
use of internaN-electron target states as a basis for expandeoupling calculations that were far from “convergent.”
ing the full (N+1)-electron wave function. To satisfy the Bray and co-workers emphasized that convergence of the
Pauli principle, each term in the expansion is antisymmetotal ionization cross section, which is the consequence of
trized. Traditionally, close-coupling methods were applied tousing a unitary formalism and a “complete” set of dis-
calculate transitions between discrete states. The target-stateetized target states, says nothing about the way the ioniza-
expansion must obviously be truncated in actual computation flux is distributedwithin the continuun{7,8].
tions and early applications were limited to the use of a few Another important step in using close-coupling techniques
spectroscopic states. In the late 1960s, it was learned thén calculate ionization phenomena was taken by Konovalov,
convergence of excitation cross sections could be acceleraté&tay, and McCarthy in 19949], when they argued that the
by including positive-energy pseudostates in the expansioindividual excitation cross sections to positive energy pseu-
[2], typically obtained by diagonalizing the target Hamil- dostates calculated in the CCC method could be used to
tonian in a basis of square-integrable?) functions. When evaluate the singly differentialenergy sharingionization
these calculations were extended to energies above the ioaross section. It has long been known that the positive energy
ization threshold in the early 19703], they were found to pseudostates with energieg obtained by diagonalizing the
encounter problems with unphysical resonances near psetarget Hamiltonian in ah.? basis are, apart from an overall
dostate thresholds, but their effects appeared to diminishormalization constant, approximately equal to the exact tar-
with increasing number of stat¢4]. get continuum wave functions at the same energies over the
For the close-coupling expansion to “converge,” the tar-restricted region of coordinate space spanned by fhieasis
get states must approach completeness in the interaction rgt0]. That being the case, they argued that the corresponding
gion. That this could be realized in a practical calculationexcitation cross sections to such pseudostates should be re-
was dramatically and convincingly demonstrated foraft¢  lated to the true singly differential cross secti@DCS for
problem in 1992 by Bray and Stelbovi€S]. By using La-  ejecting a target electron with energy by a proportionality
guerre functions to generate discrete target basis sets thednstantw,, that merely reflects the difference in normaliza-
could be systematically increased, they showed that the psetion between the pseudostate and the true continuum state.
doresonances observed in CC calculations carried out witKonovalov, Bray, and McCarthjQ] used the notion of an
smaller sets naturally disappear as the basis is increased ateluivalent quadrature’[11] to argue that the proportional-
that the excitation cross sections converge in this “converity constant could be approximated as a trapezoidal quadra-
gent close-coupling’(CCO) scheme. They also showed that ture weightw,= (e, 1—&,-1)/2 [12]. Bray and co-workers
the sum of the excitation cross sections into energetically13] later refined this approach by using the overlap integrals
open positive-energy pseudostates gives an accurate repteetween the pseudostates and the true continuum functions
sentation of the total ionization cross section. This followsto “renormalize” the underlyingl-matrix elements. The fact
from the optical theorem, and the completeness of the targehat these renormalized amplitudes could be used to compute
basis: convergence of the elastic scattering amplitude impliedetailed triply differential ionization cross sections whose
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shapes matched experimental data led Bray and Fursa tepulsion by its spherical average, has provided a vehicle for
guestion whether the CCC method was in fact “a completdesting these ideas numerically and has been the subject of
scattering theory'114]. many recent papers on ionization. For the triplet cadstal
Since the electrons are indistinguishable, the singly differspin 1), the antisymmetry of the wave function requires that
ential cross sectiondg/de) should be symmetric abo&/2, the SDCS vanish at the poist=E/2, and a recent bench-
where E is the energy relative to the ionization threshold, mark calculation[20] has verified that the results of the
that is, the probability of finding an ejected electron with close-coupling calculations appear to be converging to the
energye should be the same as finding it with enerBy correct values fore<E/2. For the singlet case, where the
—&, where 0<e<E. This is the symmetrization postulate SDCS has a substantial valueE®2 for energies below 100
that emerges in the formal theof{5]. This property does eV, the CC values are found to oscillate about the correct
not follow automatically from the close-coupling formalism, values fore <E/2. Fore>E/2, the calculations presented in
even though the underlying wave function is antisymmetric.Ref. [20] yield the expected symmetry, while the CC cross
In the close-coupling treatment, the probabilities of produc-sections are near zero.
ing ejected electrons with energiesandE — & are connected In assessing the significance of the close-coupling ap-
with independent excitation amplitudes for pseudostates witlpproach to ionization, it is important to bear in mind that the
energiese and E—¢ and are not related by any specific recent applications which treat differential ionization pro-
symmetry relatio 16]. Indeed, it was noticed that for these cesses do not share the same mathematical foundation that
“raw” CCC ionization cross sections, those connected withcharacterized previous close-coupling studies which were
pseudostates whose energiesvere greater thaf/2 were  limited to calculating total ionization cross sections. The to-
very much smaller than those for whiehwas less thaile/2  tal ionization cross section is related by unitarity to the total
[13]. The required symmetry was restored in the CCC for-and nonbreakup cross sections, and the convergence of the
malism by the artifice of defining a unitarity preserving ob- latter is linked to the completeness of the underlying target

servable cross section £8,13,14 expansion basis. However, the assertion thatdifferential
ionization cross sections computed by the CCC method are
do(e) do(e) do(E—e) correct is based more on empirical evidefit® results seem
de  ds + de @D 1o agree with available experimental dathan on math-

ematical rigor. For example, Bray and co-workers argued
where the bars refer to the raw pseudostate excitation cro¢bat the close-coupling method implies a distinguishable
sections. The total ionization cross section is then given aselectron model of ionization since one electron is in a bound
pseudostate and the other in a true continuum $fi8€1 g
E do(e) E2  do(e) They further argued that since a “detector” positioned at
fo € e :f €74 2) “infinity” only detects the true continuum electron, it is
natural to expect the raw excitation amplitudes correspond-

The ad hocidea of expressing the observable ionizationind t0 pseudostates with>E/2 to tend to zero, since they
cross section as an incoherent sum of cross sections corré2rrespond to a “bound” electron reaching the detector be-
sponding to two distinguishable processes has been a sourt®@® & completely shielded slow electron in a plane-wave
of some discussion and has led sofd€] to question the state. It is not clear whether this completely heuristic argu-
validity of the CCC approach to ionization, since it seems tgn€nt, since it makes reference to shielding, would also apply
be incompatible with the formal theory of ionizatigts]. It O close-coupling calculations of breakup processes in situa-
is important to mention that the observed asymmetry in thdions that only involve short-range interactions. _

raw excitation cross sections is not peculiar to the CCC ap- !N @ recent papef20], we presented accurate numerical

proach, and has also been observed in other implementatioff{ization cross sections for a model three-body Coulomb
of the close-coupling methdd]. problem, which were obtained by a method that does not rely

Bray [18] commented recently on the way the singly dif- O @1y specific asymptotic form being imposed on the wave
ferential cross sectiofSDCS is evaluated in the ccc function. In our method, we introduce a two-dimensional
method, and tried to reconcile it with the formal theory. He Numerical grid and solve directly for the outgoing-wave part
argued that in the limit of an infinite basis the raw excitation©f the full wave function using either finite-elemeji2tl] or
cross sections will vanish far>E/2, and hence only one of finite-difference[20] techniques. We avoided the specifica-
the terms in Eq(1) will be nonzero. However, if the true tion Of asymptotic boundary conditions by applying an exte-

SDCS is nonzero a/2, then the CCC method will try to rior complex scaling transformatidi22] to both radial elec-

approximate a function that goes to zero discontinuously!on coordinates:

and there will be a resulting lack of convergence for any
finite basis. This “step-function hypothesis” was used to R(r)= r , r<Ro ?)
explain the poor convergence in the SDCS found in CCC Ro+(r—Rpe'?, r=Rg|’
calculations ofe-H ionization at low energies. There is less
trouble at higher energies. As the collision energy increasesind extrapolating the results to infinigy. In comparing our
the value of the “step” atE/2 in the SDCS decreases, and results with those obtained by two different close-coupling
the cross sections tend to be more strongly peakedsye@r  techniqueg8], both of which gave nonconvergent results for

A simplified model of eeH scattering known as the the singlet case, we speculated that perhaps the oscillations
Temkin-Poet mode[19], which treats only states of zero found in the CC results were tied more to the way the ion-
angular momentum and replaces the true electron-electramation information was being extracted than to any inaccu-
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racies in the underlying wave functions. Additional evidencecompensate for this orthogonality constraint by including the

that this might indeed be the case is provided by the recergecond sum on the right-hand side of Eg).

work of Ref.[23] on the Temkin-Poet model. The purpose of  Close-coupling calculations are typically carried out with

this paper is to explore that speculation in some detail. Wearget states that are generated in a discrete basis of functions

will present numerical evidence that it is possible to repro-that are orthogonal of0,c]. However, since we will be car-

duce oscillating structures in differential ionization cross sec+ying out experiments with wave functions that are generated

tions similar to those seen in the CC treatments from a waven a finite two-dimensional mesh of grid points, it is more

function that produces entirely stable and correct resultgonvenient to use basis functions that are orthogonal on a

(symmetric abouE/2) when a different technique is used to finite interval[O,L]. In this work, we use a so-called discrete

extract the same information. Moreover, we demonstrate thatariable representatioDVR) [24] and choose a set of

this curious behavior is not the result of long-range Coulomd_agrange-mesh functions

interactions. Finally, by a combination of numerical experi-

ments on a model problem and some formal manipulations _ r—r

based on stationar i i w(n=11 = ®
y-phase ideas, we attempt to explain the T

origin of the “step-function hypothesis” that was introduced

to explain the behavior of the calculated CCC ionizationas our basis functions. Note that these functions have the

cross sections. property

ui(rj)=26;;. 9
Il. DISCRETIZED CONTINUUM STATES IN TWO-BODY
CLOSE-COUPLING CALCULATIONS ON BREAKUP The mesh points we usfr,; ,i=0,...N+ 1}, are connected to

a Gauss quadrature rule. Specifically, the mesh points are
chosen to be Gauss-Lobatto quadrature points on the interval
[O,L]. The Gauss-Lobatto quadrature is similar to the more
familiar Gauss-Legendre quadrature, the difference being
that the quadrature points must include the two end points O
and L. This property makes it easy to impose physical
1d2 1 d2 boundary conditions. Equation8) and (9) show that the
=T sa2 232 +Vi(r) +Vo(ra) +V(rq,ry). (4) only basis functions that are nonzero at the end points of the
i r2 interval areup anduy, 1, SO by excluding these two func-
tions from the basis we can generate a set of box-normalized
target states that vanish at the end points. Manolopoulos and
Wyatt [25] were the first to use this particular DVR basis,

We treat a system of two light particléslectrong mov-
ing in the field of an infinitely massive third bodproton.
For simplicity, we ignore angular-momentum effects and as
sume the Hamiltonian for the system is a function of two
radial variables:

If the two one-body potential¥; andV, are the same, and
V(rq,r,) is symmetric under interchange of particles 1 and

2, then the_wave functions can b? Iabeleq_by their party pich they called_obatto shape functionsn scattering cal-
under particle exchange. We first partition the full two- ., ations and we refer the interested reader to their work for
particle wave function into unperturbe®,y , and scattered qgitional details. The use of a DVR trivializes the calcula-
wave,¥gc, parts. The scattered wave function is defined agjon of the Hamiltonian matrix elements, if the underlying
[21] Gauss quadrature rule is used. Moreover, since the basis is
. . connected to a classical Gauss quadrature, it can be system-
Y=G(E)(H-E)¥q, (5  atically increased toward completene@s [0,L]) without

) ) _ posing any numerical difficulties.
whereG(E) is the full outgoing-wave Green'’s function. In a

close-coupling method, the scattered wave function would be Ill. CALCULATIONS IN THE TEMKIN-POET MODEL
expressed as

The first set of calculations we describe use Temkin-Poet
wave functions W _(r,,r,), at total energyE=1.0 hartree
that were obtained from an earlier study in which the scat-
tered wave equatiofb), was solved by a high-order finite-
difference scheme on a complex, exterior-scaled, two-
dimensional grid20]. The real part of the grid extended out
to 200 bohr in bottr; andr,, and on the complex portions
where the stateg, are obtained by diagonalizing the “tar- of the grid beyond that value the Coulomb potentials were
get” Hamiltonian — %dzldriJer(rl) in some discrete ba- truncated to assure an exponential decrease in the wave func-

sis, and the channel functiom have the asymptotic form tion on the scaled portions of the grld To decompose this

W§c<r1,r2>=§ Xa(T1)Ga(T2) % Xal(2)9u(r7)

+EB CapXall)Xp(r2), (6)

(for open channejs wave function into two-body components, we have to choose
a basis whose range lies within the portion of the grid where
9.(r) — To %1k, 7) poth coordinates are real. A set of sin.glle—particle target func-

r—o tions x,, was generated by diagonalizing teevave radial

hydrogen Hamiltonian in a DVR basis of 100 Lobatto shape
wherek,, is the channel momentum, afg_, , is a two-body  functions in a box of length 90.0 bohr. The basis produces
T-matrix element(scattering amplitude The channel func- eight negative-energy target states and 33 positive-energy
tions are assumed to be orthogonal to the target states, so wtates below 1.0 hartree. The scattered wave function was
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FIG. 1. Singlet SDCSunits of waZ/hartre¢ for the Temkin- FIG. 2. Triplet SDCS(units of waglhartree}. for the Temkin-
Poet model at 40.82-eV incident energy. Solid line: exterior com-Poet model at 40.82-eV incident energy. Solid line: exterior com-
plex scaling calculations; dashed line: projection onto the two-bodyPlex scaling calculations; dashed line: projection onto the two-body
close-coupling representation. close-coupling representation.

interpolated onto the grid of DVR points. Assuming the scat-small. The singlet cross sections appear to oscillate about the

tered wave function can be expanded as in @&j. we nu-  correct values before becoming small for energies greater

merically projected the wave function onto open target statethanE/2.

and evaluated the resulting one-particle function at the point It is important to bear in mind that this behavior is not a

r,=L: reflection of any inherent errors in the wave functions we
started with, but rather appears to be the result of the par-

L N , ticular way in which the SDCS is being “extracted.” The

gn(L)= fo droxn(r)Wedra,L)=AsTo_n€* "/ \kn (10 ave functions we are using have the proper symmetry un-
der interchange of; andr,. Indeed, if we use hyperspheri-

where A, is a constant related to the normalization of thecal coordinatesp= JrZ+r2 and a=tan (r,/r,) to express

target state. The “cross sections” are evaluated from the sthe differential ionization cross section in terms of the flux

definedT-matrix elements. For bound target states, the crosgdue toW . (r,,r,) through a hypersphere of radipg [15],

sections are obtained directly from tflematrix elements

given by Eq.(10). We checked that the elastics,2and 3 1

excitation cross sections computed in this fashion agreed F(po,a)=z[(\I'Sic)*V\IfC—\PSiCV(\IfSiC)*]|p=po (13

with values reported by othef26]. For the positive-energy

pseudostates, we have to restore the proper continuum den-

sity of states to the excitation cross sections. Adopting théhen for largep, we can identifya as tan *(k; /k;), and com-

procedure of Konovalov, Bray, and McCartfig], we as- pute the SDCS from the expression

sume that the pseudostates give a discretization of the con-

tinuum that can be interpreted as an energy quadrature: do(e) 1 Az

& F(po,a) po, (14
0

£ de  Esinacosa
S Ixal= [ dele)el=_ 3 anlented,
0<e,<E 0 0<en<E P o .
(12) whereky/2 is the incident electron energy. This latter proce-
dure gives the smooth curves shown in the figures that are
where|y,) is a pseudostate ane,) is an exact target con- fully consistent with the symmetrization postulate.
tinuum state at the same energy. To compute the SDCS we
therefore divide the cross sections computed from (EQ)
by the appropriate weight,,, which identifies the constant
A, as Jo,. We used the trapezoidal rule formula for the

IV. CALCULATIONS OF BREAKUP CROSS SECTIONS
FOR SHORT-RANGE POTENTIALS

guadrature weights given by Bransden and Stelbovi2s Having established that we can reproduce the structures
found in other CC calculations of differential ionization
on=(enr1—&n-1)/2, N#1M, cross sections in the Temkin-Poet model, we can now ques-
tion whether the observed behavior was peculiar to problems
w1=(w1+ 0,)/2, (120 involving Coulomb interactions or whether it would be
found in other cases as well. In formulating the “step-
oy=E—(eyt+ey_1)/2, function hypothesis,” Bray argued that the excitation cross
sections to positive-energy pseudostates withE/2 should
where O<eq,...,ey<E. The renormalized excitation tend to zero in the limit of a complete target basis, because

cross sections to the open positive-energy target states atteey represent the unphysical situation in which a “bound”
plotted in Figs. 1 and 2 for the singlet and triplet casesgelectron reaches the detector before a completely shielded
respectively. These curves bear a strikingly similar resemslow electron in a plane-wave state. Does this argument
blance to the results found in the close-coupling treatmenthinge on any shielding of the “free” electron from the Cou-
[8]. The triplet cross sections so computed accurately followomb interaction with the proton?

what we know to be the correct SDCS for target state ener- We performed a second set of calculations with short-
gies up toE/2; beyond that point, they become vanishingly range potentials, choosing the Hamiltonian
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‘ , , puted the SDCS by the method described in Sec. lll. For the
e Elastic single-particle states, we also chose a box of length 40.0
C__ Breap bohr, but this time used a basis of 50 DVR Lobatto func-

1 tions, which produced 12 energetically open pseudostates at
the specified total energy. The SDCS values obtained by pro-
jecting the scattered wave onto target states is also shown in
Fig. 4. The results behave exactly as they did in the Temkin-
Poet case, arguing strongly that the observed behavior is
linked to the method of extraction of the SDCS from the
wave function, and has nothing to do with the Coulomb po-
tentials of the atomic ionization problem. Note that tb&al
0 1 20 30 20 50 breakup cross section, obtained by summing the two-body
Incident Energy (¢V) excitation cross sections, was found to be 4%)3n good

agreement with the value 1.8%obtained from the flux cal-
FIG. 3. Cross section@n units ofa3) for the short-range poten- cSIation §

tial problem defined in the text. Dashed line: total scattering; solid
line: breakup; dotted line: elastic scattering.

15 |

Cross Section
[

05

V. ANALYTICALLY SOLVABLE TEST PROBLEM

2 2 . . . . . .
H=— 1 d_z_ } iz_ 3e~T1—3e T2+ 100 (1+72). (15) _ Wh!le the foregoing numerical experiments give convinc-
2dr; 2dr; ing evidence that the representation of the wave function in

terms of a close-coupling expansion is responsible for the
The one-particle Hamiltonian has a single bound state witlbbserved behavior in the extracted SDCS, they unfortunately

energy—11.19 eV. We performed calculations on this sys-shed little light on any underlying mathematical reasons for
tem using a finite element basis like that used in some of ousuch a curious result. To gain further insight, we now turn to
earlier calculations on ionization that employed exteriora simple model problem that has an analytical solution. We
complex scaling[21]. This calculation employed a two- consider a hypothetical breakup problem in which the free-
dimensional grid whose real part extended to 40.0 bohr, angarticle Green’s function governs the motion of the scattered
whose complex part extended to 60.0 bohr. wave. Consider first the Green’s function for two free par-

Figure 3 shows the total, elastic, and integral breakupicles defined by the equation
cross sections for this problem for singlet coupling. This
problem makes a convenient test case, since for this choice[E+ 2V5+ 3V3]G(ry,r5r i r5E)=8(r1—r;)8(r—rb).
of potential parameters the breakup cross section is as large (16
as or larger than the elastic-scattering cross section from
threshold to 50.0 eV. Because the target binds only one statéhe outgoing-wave solution for this problem can be ex-
the only processes allowed are elastic scattering and breakupiessed in a closed form §28]

Evidently because the repulsive potential between the elec-
trons is of such short range, the analogous triplet breakup i HY(Klp—p'])
O ’ . G(ryryryf5B)=———F———, (17
cross section is as much as an order of magnitude or more br2 47 lp—p’|
smaller in this energy range.

We generated the scattered wave function at an incidetwhereE=K?/2, H(Zl) is a Hankel function of integer order 2,
energy of 24.0 eV on a numerical grid, and computed theandp is the 6-vector:
singly differential breakup cross section by computing the
flux directly using Eqs{(13) and (14) in exactly the same
way used in our previous calculations on ionizatj@0,27]. p=
That SDCS, shown in Fig. 4, is a smooth curve and satisfies
the symmetrization postulate. We then decomposed thigVe want the Green’s function fawaves, which is obtained
same wave function into two-body components, and comfrom Eq.(17) by taking the matrix element

i
rJ' (18

) G(rlr,r;;:zr,gz = :f Yoo Q1) Yoo Q2)G(r,ror 1,15 E)

g X Yoo(€21) Yool ©25)dQ;dQ,dQ1dQ; .

£ (19
0.00 ST TG B The integrations can be performed by using the identity

000 0.10 020 030 040 D i

99 ((a—bx—cy) ¥ = be 2 (A DXZY) )
FIG. 4. SDCS(in units ofaZ/hartre¢ at 24.0-eV incident energy axay 0 y 4(a—bx—cy)

for the short-range potential problem as a function of ejection en- (20

ergy (hartreg. Solid line: exterior complex scaling; dashed line:

projection onto the two-body close-coupling representation. to derive the result
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G120 r4iE) = — 5 (HEIK (1 +112)
(52N HP K ((r =)
F(r5+ )Y - HEVK((ri+ri?)
F(r5 =)+ HEVK((rf—ri?)
+(ra=r?)ML (21)

If we switch to hyperspherical coordinates,= p sina and
r,=p coSa, and use the asymptotic form of the Hankel func-
tion,

. 2 1/2 eiZ
Hgl>(z)—>e'”’4( ;) ZTQ, (22)

we obtain the limiting behavior of5(r,r,;r;,r5;E) for
large p:

G(rq,ra;ry,r5;E)

= ei37r/42(

p—®

2 1/2
W)
iKp

XW sin(K sin(a)r;) sin(K coq a)ry).

(23

We now consider a hypothetical problem in which the

scattered wave is determined by the equation

=

2

d_rg)‘b(r1:r2)2¢o(rlvr2) (24

1 d?
Ed_riJrE

or

MMMFJJGmﬁﬂLQEWNmeN&
(25

wheregy(r,r») is an arbitrary short-range source term. We

chose the latter to be a simple product of exponentials:

Bo(r1.r)=e e Pre, (26)

With this choice, we can use the asymptotic form f&r
given in Eq.(23) to perform the integration in Eq25) ana-
lytically, and obtain an expression fab(r,,r,) which is
valid for largep:

) 2 1/2 eiKp
q)(rlrrZ)p::G_elswmz(;) (KP)ZUZ
y K sina K cosa )
a’+K?sirf o)\ b?+K?cof o) @7
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FIG. 5. Total breakup cross secti@n units ofag) as a function
of energy(in eV) for the analytically solvable model defined in the
text.

e Y2/ Ksina K cosa
fla)=—e "2 — T k2 k2o ,
m) \a’+K?cos a/\b%+K?sir’ a
(28
with the corresponding SDCS
d0'_ 1 5 29
g—@ﬂaﬂ, (29

wheres =k2/2, a=tan Y(k; /k,), andK?=k2+k3. The inte-
gral cross section corresponding to this SDCS,

Edo

is plotted in Fig. 5, and qualitatively resembles that for ion-
ization of an atom. The SDCS as a functionedf plotted in
Fig. 6 for the cas&K=4 with a=b=2. It resembles the
SDCS for the short-range potential problem of Sec. IV.

To obtain a representation of the SDCS in terms of one-
body “target” states for this problem, we use particle in a
box functions normalized of0O,L]:

(30

de de,

0.0015

0.001

Cross Section

0.0005

FIG. 6. SDCS(in units of aé/hartree) as a function of ejection
energy(hartreg for the analytically solvable model. The solid curve
is the exact value, and the broken curves are the results of projec-
tion with different values of ,. The solid squares are the points at

We can thus define a differential breakup amplitude for thiswhich the stationary-phase formula predicts the projected SDCS to

simple model as

be one-fourth of the correct answer.
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1/2 . nar 1/2 o o
Xn(rl)_(r) sin(Kqrq), kn_Tv (31) gn(rz)—? (E) Jwdql(a2+q§)(kﬁ—q§)(K2+b2—q§)
with the corresponding continuum quadrature weights « (eirzx/Kzfqzl_efbrz)[kn_eiqlL(kn cogk,L)

1 o
on= (kn 212Ky 1712)= T K. (32) 19, sin(kaL))] (35

To obtain “close-coupling” representation of the SDCS, As in Eq. (10), identifying the ionization amplitude as the
doCCds, , we fix the value ofr, in Eq. (25), multiply by  coefficient of e*n'2/\k, in the larger, limit, where K?
xn(r1), and numerically integrate ove;. The computation =k2+pa, we evaluate the cross section as

can be simplified by using the momentum-space representa-

tion of the free-particle Green’s function: docc 1

G = o |9n(ro)ePri2ypy |2, (36
n n

G(rq,ra;ry,r5;E)

:iz deQ1deq2 In Fig. 6, we compare this representation with the “exact”
7 Jo 0 SDCS given in Eqs(28) and(29). For these calculations, we
. . . . , choseL=100. To see how the results depend on the value
xsm(qlrl)sm(qzrz)sm(qlr1)S|r1(q2r2) (33  chosen forr, in Eq. (34), we plot the SDCS for three differ-
E—qi/2—q5/2+in ' ent choices ,=50., 100. and 200. Once again we find that
) ) o o the CC representation give values that oscillate about the
Using this representation in the projection on the one-body.g rect results for smak,. However, we now find that the

“target” states, energy beyond which the cross section effectively vanishes
L depends on the value of that was used in the extraction.
gn(r,) = f Xn(r)®(r,ro)dry Whenr,=L, the cross sections are small fg{>E/2. How-
0

ever, this point can be shifted to higher or lower values pf

L by choosing values af;, less than or greater than that lof
:f Xn(rl)f f G(rq,ra;r1,r5:E)epo(ry,ri) respectively. The behavior seen in Fig. 6 is found for other

0 values ofL as well; as the value df is increased, the mag-
nitude of the oscillations about the correct values decreases,
but the point at which the SDCS vanishes only depends on
the ratio ofr, to L. Understanding this behavior is the key to
explaining the “step-function hypothesis.”

xdridrodry, (39

allows us to do the integrals ovef, r5, andr, analytically
because they involve only products of trigonometric func-
tions and exponentials. Moreover the integral oggrcan
then be done py contour integration after some observations \,; sTATIONARY-PHASE DERIVATION OF “STEP-

about symmetries in the integrand have been made that allow FUNCTION HYPOTHESIS"

the range of integration to be extended over the entire real

axis. The result is an expression for the results of the projec- The fact thatr, is large in Eq.(31) suggests that the CC
tion in terms of a single quadrature ovgy, which can be cross section can be evaluated using the stationary-phase ap-
performed numerically: proximation[29], which approximates integrals of the form

2 1/2 _
( ) B(Xp)€MXFT) gl (x5)=0, 0<xe<L

. Ag"(Xo)
Izj x)eMNIX gy = T\ : , 3
o ¢( ) . 2)\9”()(0) ¢(Xo)el()\9(xo)+w/4)’ g (XO):O’ x0:|_ ( 7)
0, g’'(x)#, 0=xy=L.
|
The integral we want to consider is e n"1 term gives a stationary point. Defining(r)=Kp

—k,r, the condition for a stationary point is

ry

L
|n:\/2/Lf dry sin(kor)f(K,a)e®?/\Kp. (39 d r
0 0'(r)= g (KT DMkt )=0=K ——kn=pr—

Writing sin(k,ry) as €'*n"1— e~ kn"1)/2i, we see that only the —kKn, (39
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where K2=k§+ pﬁ. Note that the condition for a stationary <K/v2 and forr,<L, the integral will be nonvanishing for
point is k,>K/v2, just as we found in our model problem.

« Evaluatingg(r,) andg”(r;) at the stationary point gives
r1 kn
5o (40) 9(r$) =Kp—Kar3=par» (42)

If we setr,=L, then there will be one stationary point for and
k,=<p,, sincer, is restricted to lie between 0 ard For

. X ) : 2
k,>p,, there is no stationary point, and the integral tends to woosh 5_ Kri _ k_% 42
zero. This is precisely the result we have found in our nu- g"(ry)= p p° Kp° (42)
merical experiments. Equatidd0) also shows that by mak-
ing r,>L, the integral will tend to zero for values d&f,  The stationary phase value for the integral is thus
|
( 1/2 glPn2 .
e‘3”’4(—) f(K,ao) <L
an ( 0 \/a 1
lh={ 1 m |12 g'Pnl2 k (43
R e'3”’4(—) f(K, @) , Y=L, ap=tan? —n)
2 PnL Jpn n
L 0, ri>L.
|
Using Eq.(36) to evaluate the cross section, with the con- K\% Kor 52
tinuum quadrature weight given by E®2), gives the antici- Pryra) — | 5] F(F oK a)eBrp™ (49
pated result p=e
We consider the result of projecting such a function onto a
|f(K,a)|? s single-particle scattering state,
kP '
dO’St 2 K 3 2 - 2 - [ i /
P [f(K,ap)] L @y =5 fdrljorldrlxkl*(rl)f(rl,rz;K,a)e'KP/pSZ,
4knpn (46)
0, ri*>L.

where the integration in, is over a sphere of radius We
use incoming wave boundary conditions for the single-

We have thus established that if we set the valueaf  particle state, so the function that appears under the integral
which would correspond to the “unbound™ electron coordi- i, £q, (46) has the asymptotic form

nate in a CC treatment, equal to the box lengthwhich

confines the other electron coordinate, and take the Limit

—oo, then the projection of the exact wave function onto

single-particle continuum states gives the exact SDCS foli_ . . .

k,<k,. We obtain one-fourth the correct value wheq o do the integral by stat.lonary phase, we use the asymptotic

=k,, and zero otherwise. For the model problem resultsform of a plane wav¢30]:

shown in Fig. 6, the energies at which the stationary point

lies atr,; =L are indicated for the three different valuesref e ikr_, 2_77 @  5(k+7)—e * s(k—7)). (48

we considered. At these points, the computed cross sections ikr

are exactly one-fourth of the exact values, as predicted by ,

Eq. (44). We see that only the incoming pa(.fIkr of the plane-wave
The result we have derived is valid for any case involvingpiece of y~ contributes a stationary point to the integral in

short-range interactions, and not just the simple test case weg. (46). The condition for a stationary point is thus identical

considered earlier, since the stationary-phase argument we the case we previously considered. If we isgtL, Egs.

used only depends on the scattered wave function behavirlg0—(42) can be used to derive the result

asymptotically asf(K,a)e'®?/(Kp)¥2 In fact, we can use

Xi (1) —e T f (kP Ml (47)

the same line of reasoning to derive the identical result for €34 (ky ko K)eker,,  ki<k,
the full six-dimensional wave function, without reference to ei3m/4 ‘
partial waves. We sketch the argument below. | — f(ky ko K)e 2 r,, ki=k, (49

For short-range potentials, the asymptotic form of the L—oo 2
wave function when both coordinates are large is 0, ki>ks,
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wherek?+k5=K?. There are no formal problems with using for the pseudostate basis and that this error is independent of
asymptotic forms for the wave functions in the derivation,the partial wave. .

since the stationary poimf' will be large wherr, andL are The second point is that our treatment differs from “con-
both taken to infinity. We have thus established that the/€rgent close coupling,” in that we used box-normalized tar-

“step-function hypothesis” holds in the general case, at leas8€! States and matched our projected wave function to an
for non-Coulomb interactions. outgoing two-body channel function at a particular value of

r,. The “step discontinuity” at/2 results when that match-
ing point is made equal to the box length. In that respect, our
treatment is closer to the-matrix plus pseudostai&MPS

Recent attempts to use two-body close-coupling formalMmethod[31], in which the full wave function is expanded
isms to calculate differential ionization cross sections havd"Side a box and then matched at its surface to a sum of

yielded results that are inconsistent with the symmetrizatioffn€rgetically open two-body channel functions. However,

postulate of formal ionization theory. The SDCS values ap—bOth the RMPS and CCC methods have shown the same

pear to oscillate about the correct result until the ejectei‘eha\/Ior when applied to the Temkin-Poet mofi#} and

VII. DISCUSSION

electron energy reaches half the maximum available energ 3; beTavuk)]r |sd_repro_duc_ed mf Olﬁr numerlcal eernmeknts.
at which point the cross sections go rapidly to zero. A step- IVI ent yr’] the |scre;[]|zgt|oln 0 tl.e conthL:anbt ",’}t tr?. (;S
function hypothesis has recently been proposed to explaiR ace in the CCC method also implies a sort of "box™ whic
this curious behavior. In this paper, we have attempted t&onfmes the target states.

show that the origin of this anomaly is not necessarily in thestew-rf]l,lllr?c)[,ivoen baerllg%e:;llwewla\r/l;delssgf\g ?:Sgattk: %r:)gt";h(gvxmea
wave function itself but rather is connected to the way in P Y, y

which the cross section is calculated from the wave function!'2Y t© ‘jiVO'd 't in clo_se-coupllng calculatlpns. Th_e _smgly
ifferential cross sections may converge in the limit of a

To support this conclusion, we have performed calculationéj

on the Temkin-Poet model as well as several model prob(_:ompleteL2 basis for the discretized continuum motion, but

lems that do not involve Coulomb potentials. We have alsc}hey clearly do so much more slowly than the total ionization

used a stationary-phase argument, which we believe to bg °>> section. The only instances in which the SDCS ex-

valid for any case involving short-range potentials, to explaintraCtecj from a C.C wave f““C.“O!" appear to converge rapidly
the observed findings. are those in which it is vanishingly small &/2. For real

There are two aspects of the present work that warranif).nization probl_e_ms, this only occurs at high coIIision_ ener-
further comment. One concerns Coulomb interactions. Whilé&'€S ©" for specific symmetry componefgsich as the triplet

we believe that the step-function anomaly has no specifi otal L=0 case ine-H ionization which constitute only a

connection to the use of long-range Coulomb interactionsSmall portion of the observed cross section. At lower ener-

we have to concede that we have only been able to explaigies' the ampli_tude of the oscillgtions can havt_a the same
the oscillations in the singlet Temkin-Poet case through nugrder of magnlt.UQe as the Qeswed Cross sectpns, which
merical demonstrations. We have not been able to extend t ould mak_e it difficult to Ot.’ta'n accurate information about
stationary-phase argument we outlined for short-range poterf1® SDCS in a case where its general features are not already

tials to the three-body Coulomb case. Therefore, we are stiffnown' _By the same token, if the_wave f“UC“O”S themse_lves,
unable to show that the relative angular distributiaisubly and not just the two-body scattering amplitudes, are available

and triply differential ionization cross sectiorsmputed by from a CC calculation, then a direct evaluation of the ioniza-

close-coupling methods should converge in the limit of ation flux at finite py followed by extrapolation might provide

completeL? basis, or to what extent the results depend orf stable alternative for extracting the desired information.
the complicated three-body asymptotic phase structure that
characterizes the true wave functifit]. If the stationary-
phase argument we just outlined for the full wave function in  This work was performed under the auspices of the U.S.
the case of short-range potentials also applied to the Colbepartment of Energy by the Lawrence Livermore National
lomb case, it might indeed explain Bray$8] observation Laboratory and the Lawrence Berkeley National Laboratory
that, at a particular energy, the error in a CCC calculation isinder Contract Nos. W-7405-Eng-48 and DE-ACO03-
fixed (albeit unknowablgonce a particular choice is made 76SF00098.
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