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Use of two-body close-coupling formalisms to calculate three-body breakup cross sections
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We analyze the consequences of discretizing one of the two continua in three-body breakup to reduce it to
a two-body close-coupling problem. We identify the origin of oscillations in the singly differential cross
section in those ‘‘convergent close-coupling’’ calculations as lying only in the way the cross section is
calculated from the wave function and not in the wave function itself. The anomalous ‘‘step-function’’ behav-
ior of those calculations is derived from a stationary-phase argument. Calculations are presented on the
Temkin-Poet model for electron-impact ionization of hydrogen, a breakup problem with exponential potentials,
and an analytically solvable model. The anomalies associated with two-body close-coupling calculations are
demonstrated using wave functions from complex exterior scaling calculations that otherwise give converged
results without any anomalies.@S1050-2947~99!07111-5#

PACS number~s!: 34.80.Dp, 03.65.Nk
h

t
nd
e
e
t

st
ut
ew
th
a

sio
il-

io

se
is

r
n
on

t
se
wi

a
e
at
al
ep
w
rg
li

the
tro-
con-
on.
aher
e-

’
the
of

-
iza-

es
lov,
e
eu-

to

rgy

ll
tar-
the

ding
e re-

a-
tate.

-
dra-

als
tions
t
pute
se
I. INTRODUCTION

The close-coupling~CC! formalism @1# has been used in
electron-scattering calculations for over 40 years, and
formed the basis for mostab initio work on low-energy
electron-atom scattering. The essence of the method is
use of internalN-electron target states as a basis for expa
ing the full (N11)-electron wave function. To satisfy th
Pauli principle, each term in the expansion is antisymm
trized. Traditionally, close-coupling methods were applied
calculate transitions between discrete states. The target-
expansion must obviously be truncated in actual comp
tions and early applications were limited to the use of a f
spectroscopic states. In the late 1960s, it was learned
convergence of excitation cross sections could be acceler
by including positive-energy pseudostates in the expan
@2#, typically obtained by diagonalizing the target Ham
tonian in a basis of square-integrable (L2) functions. When
these calculations were extended to energies above the
ization threshold in the early 1970s@3#, they were found to
encounter problems with unphysical resonances near p
dostate thresholds, but their effects appeared to dimin
with increasing number of states@4#.

For the close-coupling expansion to ‘‘converge,’’ the ta
get states must approach completeness in the interactio
gion. That this could be realized in a practical calculati
was dramatically and convincingly demonstrated for thee-H
problem in 1992 by Bray and Stelbovics@5#. By using La-
guerre functions to generate discrete target basis sets
could be systematically increased, they showed that the p
doresonances observed in CC calculations carried out
smaller sets naturally disappear as the basis is increased
that the excitation cross sections converge in this ‘‘conv
gent close-coupling’’~CCO! scheme. They also showed th
the sum of the excitation cross sections into energetic
open positive-energy pseudostates gives an accurate r
sentation of the total ionization cross section. This follo
from the optical theorem, and the completeness of the ta
basis: convergence of the elastic scattering amplitude imp
PRA 601050-2947/99/60~5!/3740~10!/$15.00
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convergence of the total cross section. By subtracting
sum of the elastic and excitation cross sections to spec
scopic states from the total cross section, one obtains a
vergent approximation to the total ionization cross secti
~This same technique was used as early as 1974 by Gall
@6# to estimate total ionization cross sections with clos
coupling calculations that were far from ‘‘convergent.’!
Bray and co-workers emphasized that convergence of
total ionization cross section, which is the consequence
using a unitary formalism and a ‘‘complete’’ set of dis
cretized target states, says nothing about the way the ion
tion flux is distributedwithin the continuum@7,8#.

Another important step in using close-coupling techniqu
to calculate ionization phenomena was taken by Konova
Bray, and McCarthy in 1994@9#, when they argued that th
individual excitation cross sections to positive energy ps
dostates calculated in the CCC method could be used
evaluate the singly differential~energy sharing! ionization
cross section. It has long been known that the positive ene
pseudostates with energies«n obtained by diagonalizing the
target Hamiltonian in anL2 basis are, apart from an overa
normalization constant, approximately equal to the exact
get continuum wave functions at the same energies over
restricted region of coordinate space spanned by theL2 basis
@10#. That being the case, they argued that the correspon
excitation cross sections to such pseudostates should b
lated to the true singly differential cross section~SDCS! for
ejecting a target electron with energy«n by a proportionality
constantvn , that merely reflects the difference in normaliz
tion between the pseudostate and the true continuum s
Konovalov, Bray, and McCarthy@9# used the notion of an
‘‘equivalent quadrature’’@11# to argue that the proportional
ity constant could be approximated as a trapezoidal qua
ture weightvn5(«n112«n21)/2 @12#. Bray and co-workers
@13# later refined this approach by using the overlap integr
between the pseudostates and the true continuum func
to ‘‘renormalize’’ the underlyingT-matrix elements. The fac
that these renormalized amplitudes could be used to com
detailed triply differential ionization cross sections who
3740 ©1999 The American Physical Society
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shapes matched experimental data led Bray and Furs
question whether the CCC method was in fact ‘‘a compl
scattering theory’’@14#.

Since the electrons are indistinguishable, the singly diff
ential cross section (ds/d«) should be symmetric aboutE/2,
where E is the energy relative to the ionization thresho
that is, the probability of finding an ejected electron w
energy« should be the same as finding it with energyE
2«, where 0,«,E. This is the symmetrization postulat
that emerges in the formal theory@15#. This property does
not follow automatically from the close-coupling formalism
even though the underlying wave function is antisymmet
In the close-coupling treatment, the probabilities of prod
ing ejected electrons with energies« andE2« are connected
with independent excitation amplitudes for pseudostates w
energies« and E2« and are not related by any specifi
symmetry relation@16#. Indeed, it was noticed that for thes
‘‘raw’’ CCC ionization cross sections, those connected w
pseudostates whose energies« were greater thanE/2 were
very much smaller than those for which« was less thanE/2
@13#. The required symmetry was restored in the CCC f
malism by the artifice of defining a unitarity preserving o
servable cross section as@9,13,16#

ds~«!

d«
5

ds̄~«!

d«
1

ds̄~E2«!

d«
, ~1!

where the bars refer to the raw pseudostate excitation c
sections. The total ionization cross section is then given

s i5E
0

E

d«
ds̄~«!

d«
5E

0

E/2

d«
ds~«!

d«
. ~2!

The ad hoc idea of expressing the observable ionizati
cross section as an incoherent sum of cross sections c
sponding to two distinguishable processes has been a so
of some discussion and has led some@17# to question the
validity of the CCC approach to ionization, since it seems
be incompatible with the formal theory of ionization@15#. It
is important to mention that the observed asymmetry in
raw excitation cross sections is not peculiar to the CCC
proach, and has also been observed in other implementa
of the close-coupling method@8#.

Bray @18# commented recently on the way the singly d
ferential cross section~SDCS! is evaluated in the CCC
method, and tried to reconcile it with the formal theory. H
argued that in the limit of an infinite basis the raw excitati
cross sections will vanish for«.E/2, and hence only one o
the terms in Eq.~1! will be nonzero. However, if the true
SDCS is nonzero atE/2, then the CCC method will try to
approximate a function that goes to zero discontinuou
and there will be a resulting lack of convergence for a
finite basis. This ‘‘step-function hypothesis’’ was used
explain the poor convergence in the SDCS found in C
calculations ofe-H ionization at low energies. There is les
trouble at higher energies. As the collision energy increa
the value of the ‘‘step’’ atE/2 in the SDCS decreases, an
the cross sections tend to be more strongly peaked near«50.

A simplified model of e-H scattering known as the
Temkin-Poet model@19#, which treats only states of zer
angular momentum and replaces the true electron-elec
to
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repulsion by its spherical average, has provided a vehicle
testing these ideas numerically and has been the subje
many recent papers on ionization. For the triplet case~total
spin 1!, the antisymmetry of the wave function requires th
the SDCS vanish at the point«5E/2, and a recent bench
mark calculation@20# has verified that the results of th
close-coupling calculations appear to be converging to
correct values for«,E/2. For the singlet case, where th
SDCS has a substantial value atE/2 for energies below 100
eV, the CC values are found to oscillate about the corr
values for«,E/2. For«.E/2, the calculations presented i
Ref. @20# yield the expected symmetry, while the CC cro
sections are near zero.

In assessing the significance of the close-coupling
proach to ionization, it is important to bear in mind that t
recent applications which treat differential ionization pr
cesses do not share the same mathematical foundation
characterized previous close-coupling studies which w
limited to calculating total ionization cross sections. The
tal ionization cross section is related by unitarity to the to
and nonbreakup cross sections, and the convergence o
latter is linked to the completeness of the underlying tar
expansion basis. However, the assertion that thedifferential
ionization cross sections computed by the CCC method
correct is based more on empirical evidence~the results seem
to agree with available experimental data! than on math-
ematical rigor. For example, Bray and co-workers argu
that the close-coupling method implies a distinguisha
electron model of ionization since one electron is in a bou
pseudostate and the other in a true continuum state@16,18#.
They further argued that since a ‘‘detector’’ positioned
‘‘infinity’’ only detects the true continuum electron, it is
natural to expect the raw excitation amplitudes correspo
ing to pseudostates with«.E/2 to tend to zero, since the
correspond to a ‘‘bound’’ electron reaching the detector
fore a completely shielded slow electron in a plane-wa
state. It is not clear whether this completely heuristic arg
ment, since it makes reference to shielding, would also ap
to close-coupling calculations of breakup processes in si
tions that only involve short-range interactions.

In a recent paper@20#, we presented accurate numeric
ionization cross sections for a model three-body Coulo
problem, which were obtained by a method that does not
on any specific asymptotic form being imposed on the wa
function. In our method, we introduce a two-dimension
numerical grid and solve directly for the outgoing-wave p
of the full wave function using either finite-element@21# or
finite-difference@20# techniques. We avoided the specific
tion of asymptotic boundary conditions by applying an ex
rior complex scaling transformation@22# to both radial elec-
tron coordinates:

R~r !5 H r ,
R01~r 2R0!eif,

r ,R0

r>R0
J , ~3!

and extrapolating the results to infiniteR0 . In comparing our
results with those obtained by two different close-coupli
techniques@8#, both of which gave nonconvergent results f
the singlet case, we speculated that perhaps the oscilla
found in the CC results were tied more to the way the io
ization information was being extracted than to any inac
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3742 PRA 60RESCIGNO, MCCURDY, ISAACS, AND BAERTSCHY
racies in the underlying wave functions. Additional eviden
that this might indeed be the case is provided by the rec
work of Ref.@23# on the Temkin-Poet model. The purpose
this paper is to explore that speculation in some detail.
will present numerical evidence that it is possible to rep
duce oscillating structures in differential ionization cross s
tions similar to those seen in the CC treatments from a w
function that produces entirely stable and correct res
~symmetric aboutE/2! when a different technique is used
extract the same information. Moreover, we demonstrate
this curious behavior is not the result of long-range Coulo
interactions. Finally, by a combination of numerical expe
ments on a model problem and some formal manipulati
based on stationary-phase ideas, we attempt to explain
origin of the ‘‘step-function hypothesis’’ that was introduce
to explain the behavior of the calculated CCC ionizati
cross sections.

II. DISCRETIZED CONTINUUM STATES IN TWO-BODY
CLOSE-COUPLING CALCULATIONS ON BREAKUP

We treat a system of two light particles~electrons! mov-
ing in the field of an infinitely massive third body~proton!.
For simplicity, we ignore angular-momentum effects and
sume the Hamiltonian for the system is a function of tw
radial variables:

H52
1

2

d2

dr1
22

1

2

d2

dr2
2 1V1~r 1!1V2~r 2!1V~r 1 ,r 2!. ~4!

If the two one-body potentialsV1 andV2 are the same, and
V(r 1 ,r 2) is symmetric under interchange of particles 1 a
2, then the wave functions can be labeled by their parity~6!
under particle exchange. We first partition the full tw
particle wave function into unperturbed,C0

6 , and scattered
wave,CSC

6 , parts. The scattered wave function is defined
@21#

Csc
65G~E!~H2E!C0

6 , ~5!

whereG(E) is the full outgoing-wave Green’s function. In
close-coupling method, the scattered wave function would
expressed as

Csc
6~r 1 ,r 2!5(

a
xa~r 1!ga~r 2!6xa~r 2!ga~r 1!

1(
a,b

cabxa~r 1!xb~r 2!, ~6!

where the statesxa are obtained by diagonalizing the ‘‘tar
get’’ Hamiltonian 2 1

2 d2/dr1
21V1(r 1) in some discrete ba

sis, and the channel functionsga have the asymptotic form
~for open channels!

ga~r ! →
r→`

T0→aeikar /Aka, ~7!

whereka is the channel momentum, andT0→a is a two-body
T-matrix element~scattering amplitude!. The channel func-
tions are assumed to be orthogonal to the target states, s
e
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compensate for this orthogonality constraint by including
second sum on the right-hand side of Eq.~6!.

Close-coupling calculations are typically carried out w
target states that are generated in a discrete basis of func
that are orthogonal on@0,̀ #. However, since we will be car
rying out experiments with wave functions that are genera
on a finite two-dimensional mesh of grid points, it is mo
convenient to use basis functions that are orthogonal o
finite interval@0,L#. In this work, we use a so-called discre
variable representation~DVR! @24# and choose a set o
Lagrange-mesh functions

ui~r !5)
j Þ i

r 2r j

r i2r j
~8!

as our basis functions. Note that these functions have
property

ui~r j !5d i , j . ~9!

The mesh points we use,$r i ,i 50,...,N11%, are connected to
a Gauss quadrature rule. Specifically, the mesh points
chosen to be Gauss-Lobatto quadrature points on the inte
@0,L#. The Gauss-Lobatto quadrature is similar to the m
familiar Gauss-Legendre quadrature, the difference be
that the quadrature points must include the two end poin
and L. This property makes it easy to impose physic
boundary conditions. Equations~8! and ~9! show that the
only basis functions that are nonzero at the end points of
interval areu0 and uN11 , so by excluding these two func
tions from the basis we can generate a set of box-normal
target states that vanish at the end points. Manolopoulos
Wyatt @25# were the first to use this particular DVR basi
which they calledLobatto shape functions, in scattering cal-
culations and we refer the interested reader to their work
additional details. The use of a DVR trivializes the calcu
tion of the Hamiltonian matrix elements, if the underlyin
Gauss quadrature rule is used. Moreover, since the bas
connected to a classical Gauss quadrature, it can be sys
atically increased toward completeness~on @0,L#! without
posing any numerical difficulties.

III. CALCULATIONS IN THE TEMKIN-POET MODEL

The first set of calculations we describe use Temkin-P
wave functions,Csc

6(r 1 ,r 2), at total energyE51.0 hartree
that were obtained from an earlier study in which the sc
tered wave equation~5!, was solved by a high-order finite
difference scheme on a complex, exterior-scaled, tw
dimensional grid@20#. The real part of the grid extended ou
to 200 bohr in bothr 1 and r 2 , and on the complex portion
of the grid beyond that value the Coulomb potentials w
truncated to assure an exponential decrease in the wave
tion on the scaled portions of the grid. To decompose t
wave function into two-body components, we have to cho
a basis whose range lies within the portion of the grid wh
both coordinates are real. A set of single-particle target fu
tions xn , was generated by diagonalizing thes-wave radial
hydrogen Hamiltonian in a DVR basis of 100 Lobatto sha
functions in a box of length 90.0 bohr. The basis produ
eight negative-energy target states and 33 positive-en
states below 1.0 hartree. The scattered wave function
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interpolated onto the grid of DVR points. Assuming the sc
tered wave function can be expanded as in Eq.~6!, we nu-
merically projected the wave function onto open target sta
and evaluated the resulting one-particle function at the p
r 25L:

gn~L !5E
0

L

dr1xn~r 1!Csc
6~r 1 ,L ![AnT0→neiknL/Akn, ~10!

where An is a constant related to the normalization of t
target state. The ‘‘cross sections’’ are evaluated from the
definedT-matrix elements. For bound target states, the cr
sections are obtained directly from theT-matrix elements
given by Eq.~10!. We checked that the elastic, 2s, and 3s
excitation cross sections computed in this fashion agr
with values reported by others@26#. For the positive-energy
pseudostates, we have to restore the proper continuum
sity of states to the excitation cross sections. Adopting
procedure of Konovalov, Bray, and McCarthy@9#, we as-
sume that the pseudostates give a discretization of the
tinuum that can be interpreted as an energy quadrature:

(
0,«n,E

uxn&^xnu5E
0

E

d«u«&^«u' (
0,«n,E

vnu«n&^«nu,

~11!

whereuxn& is a pseudostate andu«n& is an exact target con
tinuum state at the same energy. To compute the SDCS
therefore divide the cross sections computed from Eq.~10!
by the appropriate weightvn , which identifies the constan
An as Avn. We used the trapezoidal rule formula for th
quadrature weights given by Bransden and Stelbovics@12#:

vn5~«n112«n21!/2, nÞ1,M ,

v15~v11v2!/2, ~12!

vM5E2~«M1«M21!/2,

where 0<«1 , . . . ,«M<E. The renormalized excitation
cross sections to the open positive-energy target states
plotted in Figs. 1 and 2 for the singlet and triplet cas
respectively. These curves bear a strikingly similar rese
blance to the results found in the close-coupling treatme
@8#. The triplet cross sections so computed accurately fol
what we know to be the correct SDCS for target state en
gies up toE/2; beyond that point, they become vanishing

FIG. 1. Singlet SDCS~units of pa0
2/hartree! for the Temkin-

Poet model at 40.82-eV incident energy. Solid line: exterior co
plex scaling calculations; dashed line: projection onto the two-b
close-coupling representation.
-

s
nt
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d

en-
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e
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r-

small. The singlet cross sections appear to oscillate abou
correct values before becoming small for energies gre
thanE/2.

It is important to bear in mind that this behavior is not
reflection of any inherent errors in the wave functions
started with, but rather appears to be the result of the p
ticular way in which the SDCS is being ‘‘extracted.’’ Th
wave functions we are using have the proper symmetry
der interchange ofr 1 andr 2 . Indeed, if we use hyperspher
cal coordinatesr5Ar 1

21r 2
2 and a5tan21(r1 /r2) to express

the differential ionization cross section in terms of the fl
due toCsc

6(r 1 ,r 2) through a hypersphere of radiusr0 @15#,

F~r0 ,a!5
1

2i
@~Csc

6!* ¹Csc
62Csc

6¹~Csc
6!* #ur5r0

~13!

then for larger0 we can identifya as tan21(k1 /k2), and com-
pute the SDCS from the expression

ds~«!

d«
5

1

E sina cosa

4p

k0
2 F~r0 ,a!•r0 , ~14!

wherek0
2/2 is the incident electron energy. This latter proc

dure gives the smooth curves shown in the figures that
fully consistent with the symmetrization postulate.

IV. CALCULATIONS OF BREAKUP CROSS SECTIONS
FOR SHORT-RANGE POTENTIALS

Having established that we can reproduce the structu
found in other CC calculations of differential ionizatio
cross sections in the Temkin-Poet model, we can now qu
tion whether the observed behavior was peculiar to proble
involving Coulomb interactions or whether it would b
found in other cases as well. In formulating the ‘‘ste
function hypothesis,’’ Bray argued that the excitation cro
sections to positive-energy pseudostates with«.E/2 should
tend to zero in the limit of a complete target basis, beca
they represent the unphysical situation in which a ‘‘boun
electron reaches the detector before a completely shie
slow electron in a plane-wave state. Does this argum
hinge on any shielding of the ‘‘free’’ electron from the Cou
lomb interaction with the proton?

We performed a second set of calculations with sho
range potentials, choosing the Hamiltonian

-
y

FIG. 2. Triplet SDCS~units of pa0
2/hartree! for the Temkin-

Poet model at 40.82-eV incident energy. Solid line: exterior co
plex scaling calculations; dashed line: projection onto the two-b
close-coupling representation.
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H52
1

2

d2

dr1
22

1

2

d2

dr2
223e2r 123e2r 2110e2~r 11r 2!. ~15!

The one-particle Hamiltonian has a single bound state w
energy211.19 eV. We performed calculations on this sy
tem using a finite element basis like that used in some of
earlier calculations on ionization that employed exter
complex scaling@21#. This calculation employed a two
dimensional grid whose real part extended to 40.0 bohr,
whose complex part extended to 60.0 bohr.

Figure 3 shows the total, elastic, and integral break
cross sections for this problem for singlet coupling. Th
problem makes a convenient test case, since for this ch
of potential parameters the breakup cross section is as l
as or larger than the elastic-scattering cross section f
threshold to 50.0 eV. Because the target binds only one s
the only processes allowed are elastic scattering and brea
Evidently because the repulsive potential between the e
trons is of such short range, the analogous triplet brea
cross section is as much as an order of magnitude or m
smaller in this energy range.

We generated the scattered wave function at an incid
energy of 24.0 eV on a numerical grid, and computed
singly differential breakup cross section by computing
flux directly using Eqs.~13! and ~14! in exactly the same
way used in our previous calculations on ionization@20,27#.
That SDCS, shown in Fig. 4, is a smooth curve and satis
the symmetrization postulate. We then decomposed
same wave function into two-body components, and co

FIG. 3. Cross sections~in units ofa0
2! for the short-range poten

tial problem defined in the text. Dashed line: total scattering; so
line: breakup; dotted line: elastic scattering.

FIG. 4. SDCS~in units ofa0
2/hartree! at 24.0-eV incident energy

for the short-range potential problem as a function of ejection
ergy ~hartree!. Solid line: exterior complex scaling; dashed lin
projection onto the two-body close-coupling representation.
h
-
ur
r

d

p

ce
ge
m
te,
up.
c-
p
re

nt
e
e

s
is
-

puted the SDCS by the method described in Sec. III. For
single-particle states, we also chose a box of length 4
bohr, but this time used a basis of 50 DVR Lobatto fun
tions, which produced 12 energetically open pseudostate
the specified total energy. The SDCS values obtained by
jecting the scattered wave onto target states is also show
Fig. 4. The results behave exactly as they did in the Temk
Poet case, arguing strongly that the observed behavio
linked to the method of extraction of the SDCS from t
wave function, and has nothing to do with the Coulomb p
tentials of the atomic ionization problem. Note that thetotal
breakup cross section, obtained by summing the two-b
excitation cross sections, was found to be 1.03a0

2, in good
agreement with the value 1.06a0

2 obtained from the flux cal-
culation.

V. ANALYTICALLY SOLVABLE TEST PROBLEM

While the foregoing numerical experiments give convin
ing evidence that the representation of the wave function
terms of a close-coupling expansion is responsible for
observed behavior in the extracted SDCS, they unfortuna
shed little light on any underlying mathematical reasons
such a curious result. To gain further insight, we now turn
a simple model problem that has an analytical solution.
consider a hypothetical breakup problem in which the fr
particle Green’s function governs the motion of the scatte
wave. Consider first the Green’s function for two free pa
ticles defined by the equation

@E1 1
2 ¹1

21 1
2 ¹2

2#G~r 1,r 2;r 18,r 28;E!5d~r 12r 18!d~r 22r 28!.
~16!

The outgoing-wave solution for this problem can be e
pressed in a closed form as@28#

G~r 1,r 2;r 18,r 28;E!52
i

4p2

H2
~1!~Kur2r8u!

ur2r8u2 , ~17!

whereE5K2/2, H2
(1) is a Hankel function of integer order 2

andr is the 6-vector:

r5F r 1

r 2
G . ~18!

We want the Green’s function fors waves, which is obtained
from Eq. ~17! by taking the matrix element

G~r 1 ,r 2 ;r 18 ,r 28 ;E!

r 1r 2r 18r 28
5E Y00* ~V1!Y00* ~V2!G~r 1,r 2;r 18,r 28;E!

3Y00~V18!Y00~V28!dV1dV2dV18dV28 .

~19!

The integrations can be performed by using the identity

]]

]x]y
H0

~1!
„~a2bx2cy!1/2

…5bc
H2

~1!
„~a2bx2cy!1/2

…

4~a2bx2cy!
~20!

to derive the result
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G~r 1 ,r 2 ;r 18 ,r 28 ;E!52
i

2
$H0

~1!@K„~r 1
21r 18

2!

1~r 2
21r 28

2!…1/2#2H0
~1!@K„~r 1

22r 18
2!

1~r 2
21r 28

2!…1/2#2H0
~1!@K„~r 1

21r 18
2!

1~r 2
22r 28

2!…1/2#1H0
~1!@K„~r 1

22r 18
2!

1~r 2
22r 28

2!…1/2#%. ~21!

If we switch to hyperspherical coordinates,r 15r sina and
r 25r cosa, and use the asymptotic form of the Hankel fun
tion,

H0
~1!~z!→e2 ip/4S 2

p D 1/2 eiz

z1/2, ~22!

we obtain the limiting behavior ofG(r 1 ,r 2 ;r 18 ,r 28 ;E) for
larger:

G~r 1 ,r 2 ;r 18 ,r 28 ;E!

→
r→`

2e2 i3p/42S 2

p D 1/2

3
eiKr

~Kr!1/2 sin„K sin~a!r 18… sin„K cos~a!r 28….

~23!

We now consider a hypothetical problem in which t
scattered wave is determined by the equation

S E1
1

2

d2

dr1
2 1

1

2

d2

dr2
2DF~r 1 ,r 2!5f0~r 1 ,r 2! ~24!

or

F~r 1 ,r 2!5E E G~r 1 ,r 2 ;r 18 ,r 28 ;E!f0~r 18 ,r 28!dr18dr28 ,

~25!

wheref0(r 1 ,r 2) is an arbitrary short-range source term. W
chose the latter to be a simple product of exponentials:

f0~r 1 ,r 2!5e2ar1e2br2. ~26!

With this choice, we can use the asymptotic form forG
given in Eq.~23! to perform the integration in Eq.~25! ana-
lytically, and obtain an expression forF(r 1 ,r 2) which is
valid for larger:

F~r 1 ,r 2! →
r→`

2e2 i3p/42S 2

p D 1/2 eiKr

~Kr!1/2

3S K sina

a21K2 sin2 a D S K cosa

b21K2 cos2 a D . ~27!

We can thus define a differential breakup amplitude for t
simple model as
-

s

f ~a!52e2 i3p/42S 2

p D 1/2S K sina

a21K2 cos2 a D S K cosa

b21K2 sin2 a D ,

~28!

with the corresponding SDCS

ds

d«
5

1

k1k2
u~a!u2, ~29!

where«5k1
2/2, a5tan21(k1 /k2), andK25k1

21k2
2. The inte-

gral cross section corresponding to this SDCS,

s~E!5E
0

E ds

d«
d«, ~30!

is plotted in Fig. 5, and qualitatively resembles that for io
ization of an atom. The SDCS as a function of« is plotted in
Fig. 6 for the caseK54 with a5b52. It resembles the
SDCS for the short-range potential problem of Sec. IV.

To obtain a representation of the SDCS in terms of o
body ‘‘target’’ states for this problem, we use particle in
box functions normalized on@0,L#:

FIG. 5. Total breakup cross section~in units ofa0
2! as a function

of energy~in eV! for the analytically solvable model defined in th
text.

FIG. 6. SDCS~in units of a0
2/hartree! as a function of ejection

energy~hartree! for the analytically solvable model. The solid curv
is the exact value, and the broken curves are the results of pro
tion with different values ofr 2 . The solid squares are the points
which the stationary-phase formula predicts the projected SDC
be one-fourth of the correct answer.
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xn~r 1!5S 2

L D 1/2

sin~knr 1!, kn5
np

L
, ~31!

with the corresponding continuum quadrature weights

vn5
1

2
~kn11

2/22kn21
2/2!5

p

L
kn . ~32!

To obtain ‘‘close-coupling’’ representation of the SDC
dsCC/d«n , we fix the value ofr 2 in Eq. ~25!, multiply by
xn(r 1), and numerically integrate overr 1 . The computation
can be simplified by using the momentum-space represe
tion of the free-particle Green’s function:

G~r 1 ,r 2 ;r 18 ,r 28 ;E!

5
4

p2 E
0

`

dq1E
0

`

dq2

3
sin~q1r 1!sin~q2r 2!sin~q1r 18!sin~q2r 28!

E2q1
2/22q2

2/21 ih
. ~33!

Using this representation in the projection on the one-b
‘‘target’’ states,

gn~r 2!5E
0

L

xn~r 1!F~r 1 ,r 2!dr1

5E
0

L

xn~r 1!E E G~r 1 ,r 2 ;r 18 ,r 28 ;E!f0~r 18 ,r 28!

3dr18dr28dr1 , ~34!

allows us to do the integrals overr 18 , r 28 , andr 1 analytically
because they involve only products of trigonometric fun
tions and exponentials. Moreover the integral overq2 can
then be done by contour integration after some observat
about symmetries in the integrand have been made that a
the range of integration to be extended over the entire
axis. The result is an expression for the results of the pro
tion in terms of a single quadrature overq1 , which can be
performed numerically:
ta-

y

-

ns
w
al
c-

gn~r 2!5
2i

p S 2

L D 1/2E
2`

`

dq1

q1

~a21q1
2!~kn

22q1
2!~K21b22q1

2!

3~eir 2AK22q1
2
2e2br2!@kn2eiq1L

„kn cos~knL !

2 iq1 sin~knL !…#. ~35!

As in Eq. ~10!, identifying the ionization amplitude as th
coefficient of eiknr 2/Akn in the large-r 2 limit, where K2

5kn
21pn

2, we evaluate the cross section as

dscc

d«n
5

1

vn
ugn~r 2!e2 ipnr 2Apnu2. ~36!

In Fig. 6, we compare this representation with the ‘‘exac
SDCS given in Eqs.~28! and~29!. For these calculations, w
choseL5100. To see how the results depend on the va
chosen forr 2 in Eq. ~34!, we plot the SDCS for three differ
ent choicesr 2550., 100. and 200. Once again we find th
the CC representation give values that oscillate about
correct results for smallkn . However, we now find that the
energy beyond which the cross section effectively vanis
depends on the value ofr 2 that was used in the extraction
Whenr 25L, the cross sections are small for«n.E/2. How-
ever, this point can be shifted to higher or lower values of«n
by choosing values ofr 2 less than or greater than that ofL,
respectively. The behavior seen in Fig. 6 is found for oth
values ofL as well; as the value ofL is increased, the mag
nitude of the oscillations about the correct values decrea
but the point at which the SDCS vanishes only depends
the ratio ofr 2 to L. Understanding this behavior is the key
explaining the ‘‘step-function hypothesis.’’

VI. STATIONARY-PHASE DERIVATION OF ‘‘STEP-
FUNCTION HYPOTHESIS’’

The fact thatr 2 is large in Eq.~31! suggests that the CC
cross section can be evaluated using the stationary-phas
proximation@29#, which approximates integrals of the form
I[E
0

L

f~x!eilg~x!dx 5
l→`5

S 2p

lg9~x0! D
1/2

f~x0!ei ~lg~x0!1p/4!, g8~x0!50, 0,x0,L

S p

2lg9~x0! D
1/2

f~x0!ei ~lg~x0!1p/4!, g8~x0!50, x05L

0, g8~x!Þ, 0<x0<L.

~37!
The integral we want to consider is

I n5A2/LE
0

L

dr1 sin~knr 1! f ~K,a!eiKr/AKr. ~38!

Writing sin(knr1) as (eiknr 12e2 iknr 1)/2i , we see that only the
e2 iknr 1 term gives a stationary point. Definingg(r )5Kr
2knr , the condition for a stationary point is

g8~r 1![
d

dr1
„K~r 1

21r 1
2!1/22knr 1…505K

r 1

r
2kn5pn

r 1

r 2

2kn , ~39!
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whereK25kn
21pn

2. Note that the condition for a stationar
point is

r 1
st

r 2
5

kn

pn
. ~40!

If we set r 25L, then there will be one stationary point fo
kn<pn , since r 1 is restricted to lie between 0 andL. For
kn.pn , there is no stationary point, and the integral tends
zero. This is precisely the result we have found in our n
merical experiments. Equation~40! also shows that by mak
ing r 2.L, the integral will tend to zero for values ofkn
n

i-

it
to
fo

lt
in

tio
b

ng

t
vi

fo
to

h

o
-

,K/& and for r 2,L, the integral will be nonvanishing fo
kn.K/&, just as we found in our model problem.

Evaluatingg(r 1) andg9(r 1) at the stationary point gives

g~r 1
st!5Kr2knr 1

st5pnr 2 ~41!

and

g9~r 1
st!5

K

r
2

Kr 1
st2

r3 5
k2

2

Kr
. ~42!

The stationary phase value for the integral is thus
I n55
ei3p/4S p

pnL D 1/2

f ~K,a0!
eipnr 2

Apn

, r 1
st,L

1

2
ei3p/4S p

pnL D 1/2

f ~K,a0!
eipnr 2

Apn

, r 1
st5L, a05tan21S kn

pn
D

0, r 1
st.L.

~43!
a

le-
gral

totic

in
al
Using Eq.~36! to evaluate the cross section, with the co
tinuum quadrature weight given by Eq.~32!, gives the antici-
pated result

dsst

d«n
55

u f ~K,a0!u2

knpn
, r 1

st,L

u f ~K,a0!u2

4knpn
, r 1

st5L

0, r 1
st.L.

~44!

We have thus established that if we set the value ofr 2 ,
which would correspond to the ‘‘unbound’’ electron coord
nate in a CC treatment, equal to the box lengthL, which
confines the other electron coordinate, and take the limL
→`, then the projection of the exact wave function on
single-particle continuum states gives the exact SDCS
k1,k2 . We obtain one-fourth the correct value whenk1
5k2 , and zero otherwise. For the model problem resu
shown in Fig. 6, the energies at which the stationary po
lies atr 15L are indicated for the three different values ofr 2
we considered. At these points, the computed cross sec
are exactly one-fourth of the exact values, as predicted
Eq. ~44!.

The result we have derived is valid for any case involvi
short-range interactions, and not just the simple test case
considered earlier, since the stationary-phase argumen
used only depends on the scattered wave function beha
asymptotically asf (K,a)eiKr/(Kr)1/2. In fact, we can use
the same line of reasoning to derive the identical result
the full six-dimensional wave function, without reference
partial waves. We sketch the argument below.

For short-range potentials, the asymptotic form of t
wave function when both coordinates are large is
-

r

s
t

ns
y

we
we
ng

r

e

F~r1 ,r2! →
r→`

S K

2p D 3/2

f ~ r̂1 , r̂2 ;K,a!eiKr/r5/2. ~45!

We consider the result of projecting such a function onto
single-particle scattering state,

I[S K

2p D 3/2E dr̂1E
0

L

r 1
2dr1xk1

2* ~r 1! f ~ r̂1 , r̂2 ;K,a!eiKr/r5/2,

~46!

where the integration inr1 is over a sphere of radiusL. We
use incoming wave boundary conditions for the sing
particle state, so the function that appears under the inte
in Eq. ~46! has the asymptotic form

xk1

2* ~r !→e2 ik1•r1 f ~k1r̂ !* ik1r /r . ~47!

To do the integral by stationary phase, we use the asymp
form of a plane wave@30#:

e2 ik•r→ 2p

ikr
„eikrd~ k̂1 r̂ !2e2 ikrd~ k̂2 r̂ !…. ~48!

We see that only the incoming part,e2 ikr of the plane-wave
piece ofx2 contributes a stationary point to the integral
Eq. ~46!. The condition for a stationary point is thus identic
to the case we previously considered. If we setr 25L, Eqs.
~40!–~42! can be used to derive the result

I →
L→`H ei3p/4f ~k1 ,k2 ;K !eik2L/r 2 , k1,k2

ei3p/4

2
f ~k1 ,k2 ;K !eik2L/r 2 , k15k2

0, k1.k2,

~49!
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wherek1
21k2

25K2. There are no formal problems with usin
asymptotic forms for the wave functions in the derivatio
since the stationary pointr 1

st will be large whenr 2 andL are
both taken to infinity. We have thus established that
‘‘step-function hypothesis’’ holds in the general case, at le
for non-Coulomb interactions.

VII. DISCUSSION

Recent attempts to use two-body close-coupling form
isms to calculate differential ionization cross sections h
yielded results that are inconsistent with the symmetriza
postulate of formal ionization theory. The SDCS values
pear to oscillate about the correct result until the ejec
electron energy reaches half the maximum available ene
at which point the cross sections go rapidly to zero. A st
function hypothesis has recently been proposed to exp
this curious behavior. In this paper, we have attempted
show that the origin of this anomaly is not necessarily in
wave function itself but rather is connected to the way
which the cross section is calculated from the wave functi
To support this conclusion, we have performed calculati
on the Temkin-Poet model as well as several model pr
lems that do not involve Coulomb potentials. We have a
used a stationary-phase argument, which we believe to
valid for any case involving short-range potentials, to expl
the observed findings.

There are two aspects of the present work that war
further comment. One concerns Coulomb interactions. W
we believe that the step-function anomaly has no spec
connection to the use of long-range Coulomb interactio
we have to concede that we have only been able to exp
the oscillations in the singlet Temkin-Poet case through
merical demonstrations. We have not been able to extend
stationary-phase argument we outlined for short-range po
tials to the three-body Coulomb case. Therefore, we are
unable to show that the relative angular distributions~doubly
and triply differential ionization cross sections! computed by
close-coupling methods should converge in the limit o
completeL2 basis, or to what extent the results depend
the complicated three-body asymptotic phase structure
characterizes the true wave function@15#. If the stationary-
phase argument we just outlined for the full wave function
the case of short-range potentials also applied to the C
lomb case, it might indeed explain Bray’s@18# observation
that, at a particular energy, the error in a CCC calculation
fixed ~albeit unknowable! once a particular choice is mad
o
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for the pseudostate basis and that this error is independe
the partial wave.

The second point is that our treatment differs from ‘‘co
vergent close coupling,’’ in that we used box-normalized t
get states and matched our projected wave function to
outgoing two-body channel function at a particular value
r 2 . The ‘‘step discontinuity’’ atE/2 results when that match
ing point is made equal to the box length. In that respect,
treatment is closer to theR-matrix plus pseudostate~RMPS!
method@31#, in which the full wave function is expande
inside a box and then matched at its surface to a sum
energetically open two-body channel functions. Howev
both the RMPS and CCC methods have shown the s
behavior when applied to the Temkin-Poet model@8#, and
that behavior is reproduced in our numerical experimen
Evidently, the discretization of the continuum that tak
place in the CCC method also implies a sort of ‘‘box’’ whic
confines the target states.

While we believe we have discovered the origin of t
step-function anomaly, we have unfortunately not show
way to avoid it in close-coupling calculations. The sing
differential cross sections may converge in the limit of
completeL2 basis for the discretized continuum motion, b
they clearly do so much more slowly than the total ionizati
cross section. The only instances in which the SDCS
tracted from a CC wave function appear to converge rap
are those in which it is vanishingly small atE/2. For real
ionization problems, this only occurs at high collision ene
gies or for specific symmetry components~such as the triplet
total L50 case ine-H ionization! which constitute only a
small portion of the observed cross section. At lower en
gies, the amplitude of the oscillations can have the sa
order of magnitude as the desired cross sections, wh
would make it difficult to obtain accurate information abo
the SDCS in a case where its general features are not alr
known. By the same token, if the wave functions themselv
and not just the two-body scattering amplitudes, are availa
from a CC calculation, then a direct evaluation of the ioniz
tion flux at finiter0 followed by extrapolation might provide
a stable alternative for extracting the desired information
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