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Non-Markovian energy-corrected sudden model for the rototranslational spectrum of N2

J. V. Buldyreva* and L. Bonamy
Laboratoire de Physique Mole´culaire, UMR CNRS 6624, Universite´ de Franche-Comte´, 25030 Besanc¸on Cedex, France

~Received 9 October 1998!

A model generalizing the isotropic-scattering-energy-corrected sudden~ECS! relaxation matrix to arbitrary
rank spectra is developed on the basis of a theoretical expression proposed by A.P. Kouzov@Spectral Line
Shapes, 14th International Conference on Spectral Line Shapes, State College, PA, 1998, edited by R. M.
Herman, AIP Conf. No. 467~AIP, Woodbury, NY, 1999!, Vol. 10, p. 497# for the case of non-Markovian
collisions. The constructed matrix obeys all known general relations obtained from first principles: both matrix
and Ben-Reuven@Phys. Rev.141, 34 ~1966!# symmetries as well as the double-sided sum rules. In the
framework of the present formalism the usualad hocdetailed balance factor is replaced by a more physical
one. Without any additional parameter with respect to the Markovian ECS, this model gives a reasonable
description of the N2 anisotropic depolarized spectrum in the whole frequency range up to the far wing.
@S1050-2947~99!08507-8#

PACS number~s!: 34.10.1x, 33.70.Jg
an
e
ha
et
ar

h
c
ity
s
tra

e

t
s
T

, i

gs
t

on

sis

red

he
an-

.
bed

es,
eatly
lso
in-

the

ns

ta-
iled

U

I. INTRODUCTION

Light scattering from molecular gases provides import
information about angle-dependent intermolecular forc
Due to wide atmospheric and diagnostic applications it
been intensively studied both experimentally and theor
cally @1,2#. But, in contrast to the atomic case, the depol
ized light scattering by a molecular gasa priori involves the
allowed and induced polarizabilities of the molecules. T
present paper is devoted to the study of the allowed mole
lar spectra only. It will be shown indeed that the opportun
offered by the available experimental absolute intensitie
the case of N2 allows us to confirm that the induced spec
are almost negligible not only in the core of the spectra~as
expected! but even in the far wings.

The description of the central part of isotropic (r 50) and
anisotropic (r 52) light scattering spectra involves only th
frequency-independent Markovian~impact! limit of the re-
laxation matrixG (r ). This approach is justified by the fac
that for a photon energy nearly equal to the molecular re
nance frequencies the energy defect can be neglected.
‘‘three participants’’ situation~two colliding molecules plus
one photon!, which takes place in the spectroscopic study
then simplified to the usual scattering theory~two colliding
molecules!. On the contrary, the treatment of spectral win
needs the introduction of the frequency dependence of
relaxation matrixG (r )(v) due to the significant increase~or
decrease! of the rototranslational energy by the extra phot
energy during the transition process.

In general, the matrix elements ofG (r )(v) characterize
the coupling between two optical transitionsi→ f and i 8
→ f 8 from the initial i ( i 8) to the final f ( f 8) states of the
active molecule and thus need four indicesG i f ,i 8 f 8

(r ) (v). The

expression for the spectral densityS̃(r )(v) can be written as
@3–5#
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S̃(r )~v!5
1

p
Re (

i f ,i 8 f 8
Ai f

(r )@ i ~v2Ls!1nG (r )~v!# i f ,i 8 f 8
21 Ai 8 f 8

(r ) .

~1!

Here Ai f
(r ) are the components of the associatedr th rank ir-

reducible spherical coupling tensor in the line-space ba
~for the optical transitioni→ f )

Ai f
(r )5~21!Ji@JiJf #

1/2S Ji r J f

0 0 0D ni f ,

where@abc•••#[(2a11)(2b11)(2c11)••• and (:::) is
a 3J symbol.ni f is the norm of the line-space vectors~the
transition operatorsu f &^ i u), obtained with the symmetrized
form of the scalar product@5#

ni f 5@~r i1r f !/2#1/2,

wherer i5Zrot
21exp@2bBJi(Ji11)# with b5(kT)21 andB is

the rotational constant of the active molecule. The squa
values ofAi f

(r ) give the intensities of separate lines.Ls is the
Liouville operator for the free active molecule leading, in t
basis used, to the diagonal matrix of proper rotational tr
sition frequenciesv f i .

For low density valuesn of the perturbing molecules, Eq
~1! leads to a spectrum consisting of isolated lines descri
by the diagonal elements ofG (r ), whose real and imaginary
parts represent linewidths and line shifts. At high densiti
the lines overlap and the observed band shapes are gr
modified. Consequently, the off-diagonal elements must a
be known, since they are responsible for the transfer of
tensity between lines.

The infinite-order sudden~IOS! approximation@6#, which
is obtained by neglecting the molecular rotation during
collision, allows us to construct the entireG (r ) matrix from
its diagonal. But, in this approach, two fundamental relatio
~the sum rules and the detailed balance! are lost. The energy-
corrected sudden~ECS! model @7# consists first in reintro-
ducing, at least approximately, the effect of molecular ro
tion and then in imposing the sum rules and the deta

ni-
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PRA 60 371NON-MARKOVIAN ENERGY-CORRECTED SUDDEN MODEL . . .
balance relation. This model leads to a reasonable theore
interpretation of numerous experimental spectra@8–11#.

For the past several years, experimental techniques h
allowed the spectral intensities to be measured in the very
wings. For example, the anisotropic depolarized Ram
spectrum of N2 at high pressure has been observed by
Duff and Teboul@12# up to 620 cm21. This wide frequency
domain needs the theoretical description to be essent
non-Markovian and the entire relaxation matrixG (2)(v)
must be known. For sufficiently high rotational energy sta
the Massey parameterh5v f itc , wheretc is the mean col-
lision duration, is large. This means that the collisions
adiabatic. The interaction picture becomes static and the
turbation theory~PT! approximation becomes valid since th
smallness condition of the rotational perturbation in comp
son with the considered energy gap\v f i can be satisfied
Such a calculation was realized by Fuet al. @13#, who dem-
onstrated that the observed intensities in the far wing
essentially due to the allowed rototranslational spectrum
not to induced effects.

But the actual description of the spectrum is incomple
At low frequencies the Markovian (v-independent! ECS
model leads to a good description@7–11#, while at high fre-
quencies the PT treatment~including thev dependence! is
available @5,13#. The analysis of the relaxation matrix i
these two limiting approaches@5# demonstrates the presen
of a common structure. This indicates the possibility of u
fied treatment for the whole frequency range.

Recently, a general non-Markovian extension of the rel
ation matrix in the frame of the ECS approach was propo
by Kouzov@14# by incorporating incomplete collisions in th
Fano-Mori formalism together with complete ones. It shou
be noted that a non-Markovian relaxation matrix can be
tained within the completed collisions scheme@15#, but the
sum rules fail. In Ref.@14# the relaxation matrix is expresse
through the collisional superoperator@3# with the full Hamil-
tonian

H5HR1HB1V,

whereHR is the rotational Hamiltonian~which is neglected
in the IOS approach!, HB is the bath Hamiltonian~includ-
ing the isotropic part of the interaction potential!, and V
stands for the anisotropic part of the interaction. The spec
choice of the bath basis as the eigenbasis ofHB1V at a fixed
molecular axis orientation in the laboratory frame grea
simplifies the calculation. The relaxation matrix is then co
pletely defined by the correlation functions characterizing
intracollisional dynamics. The relaxation matrix obtained
symmetric, so that the sum rules are double sided and
Ben Reuven relation@16# accounting for the time-reversa
symmetry is respected.

In Sec. II, starting from the general expression of R
@14# we put it in a concrete ECS form. This is done b
preserving the main assumptions of the usual impact E
model @7# developed for the isotropic scattering case a
without introducing any additional parameter. The importa
particular case of the Qiso branch is discussed separately
Sec. III. The detailed balance factor obtained in the fram
work of the actual model improves thead hocfactor previ-
ously introduced by De Pristoet al. @7#. Finally, the calcula-
cal
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tion of the N2 rototranslational spectrum in the who
frequency range, including the far wing, is presented a
discussed in Sec. IV. The concluding section is devoted
summarizing remarks.

II. ECS MODEL FOR THE RELAXATION MATRIX

It should be recalled that the ECS model was proposed
De Pristoet al. @7# for calculating the rotational transition
probability GJJ8 for going from stateJ to stateJ8. The main
result of this model was to obtainGJJ8 simply by correcting
the corresponding IOS expression by a multiplicati
J-dependent adiabaticity factorVJ accounting for the effect
of molecular rotation during the collision. This aproximatio
for the relaxation matrix will be preserved in the prese
non-Markovian extension of the ECS model.

To do this, we start from the general expression for
off-diagonal matrix element@14#

G i f ,i 8 f 8
(r )

~v!52@11exp~2b\v!#/2ni f ni 8 f 8

3(
L

@L#Fi f ,i 8 f 8
Lr

@r iFL~v2v f 8 i !

1r i 8FL* ~v2v f i 8!#, ~2!

where the symmetrized Percival-Seaton coefficient is in
duced,

Fi f ,i 8 f 8
Lr

5@JiJfJi8Jf8#1/2S Ji8 L Ji

0 0 0
D S Jf L Jf8

0 0 0
D

3H Ji Jf r

Jf8 Ji8 LJ .

Here the quantity in braces is a 6J symbol. The correlation
functions FL(v) characterize the intracollisional dynamic
and satisfy the Boltzmann relation@17#

FL~2v!5exp~2b\v! FL~v!. ~3!

Notice that Eq.~2! ensures the fundamental symmetry pro
erty

G i f ,i 8 f 8
(r )

~v!5G i 8 f 8,i f
(r )

~v!, ~4!

the time-reversal symmetry~the Ben-Reuven relation@16#!

G i f ,i 8 f 8
(r )

~v!5G f i , f 8 i 8
(r ) * ~2v!, ~5!

and also the double-sided sum rules

2 (
i 8 f 8Þ i f

G i f ,i 8 f 8
(r )

~v!Ai 8 f 8
(r )

52 (
i 8 f 8Þ i f

Ai 8 f 8
(r ) G i 8 f 8,i f

(r )
~v!

5G i f ,i f
(r ) ~v!Ai f

(r ) . ~6!

In fact Eq.~6! allows the diagonal elements to be calculat
once the off-diagonal ones are known.

From a practical standpoint, it is easier to operate w
classical even functionsFL

class(v) instead of the quantum
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ones appearing in Eq.~2!. Due to Eq. ~3!, this can be
achieved by identifying the quantum asymmetry factor c
sistent with Eq.~2!,

ReFL~v!5
2

11exp~2b\v!
FL

class~v!. ~7!

Concerning the imaginary part ofFL(v), previous studies
@8,10# of the isotropic and anisotropic vibrational RamanQ
branches have shown that the influence of the imaginary
of the relaxation matrix is expected to be small, and will
neglected here. Taking into account the even parity
FL

class(v) and the Boltzmann distribution of the populatio
one obtains

G i f ,i 8 f 8
(r )

~v!52
11exp~2b\v!

4ni f ni 8 f 8
(
L

@L#Fi f ,i 8 f 8
Lr

3F r iFL
class~v2v f 8 i !

11exp@2b\~v2v f 8 i !#

1
r i 8FL

class~v2v f i 8!

11exp@2b\~v2v f i 8!#
G . ~8!

Now we assume that all the classical correlation functio
have the same time dependence; this allows theFL

class(v) to
be factorized intoL- andv-dependent parts

FL
class~v!5QL8V~v!.

Furthermore, the correlation functionV(v) will be identified
with the adiabaticity factor of De Pristoet al. @7#,
-

e
f
en
-

rt

f

s

V~v!5S 11
bc

2

12n v̄2
v2D 2n

, n52 ~9!

where the characteristic interaction lengthbc is a fitted pa-
rameter. This choice leads directly to the traditional adia
ticity factor VL5V(vL0) @7#. Here the situation is getting
complicated by the presence ofv f 8 i andv f i 8 . To overcome
this difficulty, we separate these frequencies into their opt
and collisional parts

V~v2v f 8 i !5@V~v2v f i1v f f 8!1V~v2v f 8 i 81v i i 8!#/2,
~10!

V~v2v f i 8!5@V~v2v f i2v i i 8!1V~v2v f 8 i 82v f f 8!#/2.
~11!

The presence of both optical transitionsv f i andv f 8 i 8 is jus-
tified by the symmetry condition of the relaxation matrix@cf.
Eq. ~4!#.

The full implementation of the original ECS approach@7#
consists now in replacing each collisional frequencyvkk8
(kk85 i i 8 or f f 8) by the frequencyv̄kk8 of the transition
from the upper level to the closest one consistent with
symmetry of the interaction potential

v̄kk85H vk,k2d , k.k8

0, k5k8

2vk8,k82d , k,k8

~12!

with d52 for N2. Under all the above mentioned remark
the final non-Markovian ECS expression for the off-diagon
relaxation matrix element can be factorized into its imp
limit and anv-dependent correction factor
G i f ,i 8 f 8
(r )

~v!5G i f ,i 8 f 8
(r )impact 11exp~2b\v!

$@11exp~2b\v f i !#@11exp~2b\v f 8 i 8!#%
1/2

3F2
V~v̄ i i 8!1V~v̄ f f 8!

r i1r i 8
G21FV~v2v f i1v̄ f f 8!1V~v2v f 8 i 81v̄ i i 8!

r i 81r i exp@2b\~v2v f 8 i 8!#

1
V~v2v f i2v̄ i i 8!1V~v2v f 8 i 82v̄ f f 8!

r i1r i 8 exp@2b\~v2v f i !#
G , ~13!
. To

vi-
f-
or

,

where the impact limit

G i f ,i 8 f 8
(r )impact

52
1

2

~r ir i 8!
1/2

r i1r i 8

@V~v̄ f f 8!1V~v̄ i i 8!#

3(
L

@L#Fi f ,i 8 f 8
Lr QL8 ~14!

is obtained by settingv5v f i or v f 8 i 8 depending on the con
sidered term.

As easily verified, this final expression respects all nec
sary relations@Eqs.~4! and~5!#. Concerning the sum rules o
Eq. ~6!, they are automatically verified since, as already m
s-

-

tioned, they are used to calculate the diagonal elements
make clear the physical meaning of theQL8 coefficients, the
isotropic scattering case is of particular interest.

III. MARKOVIAN LIMIT FOR Qiso

A previous theoretical study of the isotropic Raman ro
brationalQiso branch@8# has shown that the vibrational e
fects are limited to a global shift of the whole branch. F
this Qiso branch (r 50, i 5 f 5J, i 85 f 85J8) in the Markov-
ian approximation (v5v f i5v f 8 i 850), the off-diagonal ma-
trix element of Eq.~14!, in traditional nonsymmetrized form
is
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TABLE I. Basic ratesQL parameters@Eq. ~16!# and adiabaticity factorV parameters@Eq. ~9!# for the
ECS-P and ECS-EP models with different detailed balance factors for pure N2.

Model Detailed A (295 K) N a g n bc(Å)
balance factor mK/amagat

ECS-EP De Pristo 51.24 1.178 0.7556 0.5183 1 0.821
De Pristo 33.02 1.302 0.7474 0.5870 2 0.7486

Ben Reuven 29.28 1.145 0.7929 0.5963 1 0.923
Ben Reuven 29.94 1.161 0.7939 0.6318 2 0.823

ECS-P De Pristo 78.30 0.9379 1.200 0 2 0.7829
Ben Reuven 53.34 0.9634 1.069 0 2 1.045
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G̃JJ8[S @J8#rJ8
@J#rJ

D 1/2

GJJ,J8J8
(0)

~0!

52
@J8#rJ8

rJ1rJ8

VJ.(L
@L#S J L J8

0 0 0 D 2

QL8 , ~15!

whereJ.5max(J,J8). It differs from the original De Pristo
et al. expression@7# by the detailed balance factorrJ8 /(rJ
1rJ8) instead ofrJ. /rJ . But it can be verified that thes
factors are identical in both limiting casesJ@J8 andJ!J8.

Nevertheless, this expression of the off-diagonal ma
elements allows the basic transition rates to be identified

QL[G̃L05
VL

11rL /r0
QL8 .

The use of this alternative~known as Ben-Reuven’s! detailed
balance factor needs a new determination of the basic r
QL . The usual procedure has been used here by introdu
either the exponential-polynomial~ECS-EP! modeling of the
L dependence of theQL @18#,

QL5A~T!@L~L11!#2aexp@2gbBL~L11!#,

A~T!5A~T0!S T

T0
D 2N

, ~16!

where T0 is a reference temperature, or the polynom
~ECS-P! modeling (g50) @8#. This procedure consists i
minimizing the mean square deviation between the theo
cal linewidths and the experimental linewidths obtained fr
low-pressure measurements on isolatedQiso(J) lines@19,20#.
The theoretical linewidthsG̃JJ are obtained through the sum
rule @Eq. ~6!# which reads in the particular case of aQiso(J)
line

G̃JJ52 (
J8ÞJ

G̃JJ8 .

The optimizedQL parametersA,N,a,g corresponding to the
two detailed balance factors are collected in Table I for p
N2. The values of the parameterbc for the adiabaticity factor
are also presented for the two valuesn51 and 2.
x

tes
ng

l

ti-

e

IV. APPLICATION TO THE N 2 ROTOTRANSLATIONAL
SPECTRUM

The measurements far from the band center can be r
ized only at high pressures. It may be thought that the res
ing spectrum is the superposition of a collision-induced sp
trum and of the allowed rototranslational one. Neverthele
it was demonstrated@13# by a full quantum perturbation cal
culation in the case of N2, that beyond 350 cm21, the mea-
sured intensity is only due to the allowed spectrum. T
situation provides a test for the non-Markovian model dev
oped above. It should be noticed that due to Eq.~5! the

spectral densityS̃(r )(v) defined by Eq.~1! is symmetric with
respect to the frequency, while the observed spectral den
S(r )(v) is asymmetric and satisfies the Boltzmann relat
@5#

S(r )~2v!5exp~2b\v!S(r )~v!. ~17!

S(r )(v) can be related toS̃(r )(v) by introducing a quantum
asymmetry factor. In general, the choice of this factor is
unique and influences greatly the calculated shape at
frequencies. Here, due to the accepted symmetric form of
scalar product, one has

S(r )~v!5
2

11exp~2b\v!
S̃(r )~v!. ~18!

The full relaxation matrix forO-Q-S branches was calcu
lated by Eq.~13! with different parametrizations forQL and
V(v) ~cf. Table I! and substituted in Eq.~1!. Then, the re-
sulting spectra are corrected by the quantum asymmetry
tor of Eq. ~18!. Finally, the calculated spectra are related
the absolute cross sectionV]2s/]V]v (cm6) measured by
Le Duff and co-workers@12,21,22# by

V
]2s

]V]v
5

4k
0
k3g2

15n0

1

r
S(2)~v!. ~19!

The proportionality factor is obtained by comparing the de
nitions of the double differential cross sections from Re
@13,21#. Notice that, here, the wave numbersk andk0, asso-
ciated, respectively, with the scattered and the incident ra
tions (k051.221231023Å21) are nearly equal.g is the an-
isotropic polarizability of N2 (g54.823 a.u.@13#! andn0 is
the density of molecules under normal conditions. This le
to 4k0

4g2/15n051.1283310248 cm5. The division by r
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FIG. 1. Calculated and measured absolu
cross sections for the anisotropic depolarized R
man spectrum of N2 at 41 and 169 amagats.
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5n/n0 ~the amagat density! in Eq. ~19! is made to clearly
show that the limiting behavior of the spectral function f
high v values,

S̃(r )~v!.
n

p (
i f ,i 8 f 8

Ai f
(r )*

v2v f i
G i f ,i 8 f 8

(r )
~v!

Ai 8 f 8
(r )

v2v f 8 i 8

, ~20!

which is proportional to the density, is actually reached
yond 350 cm21.

The testing of various ECS-P and ECS-EP parametr
tions showed that the spectral profiles are very sensitiv
the choice of the model in the region of intermediate f
quencies 200–300 cm21 and in the far wing ~different
slopes of the theoretical curves!. This means that this wide
frequency range study leads to a good discrimination
tween the different ECS-P and ECS-EP models. It should
recalled that for the isotropicQ-branch case at room tem
perature@23#, when only about 20 lines are visible, the set
experimental linewidths is too poor to favor one of the mo
els.
-

a-
to
-

e-
e

f
-

Here the best results were obtained with the ECS-P mo
using the Ben Reuven balance. Both calculated curves~at 41
and 169 amagats! and the corresponding experimental valu
@22# are shown in Fig. 1 for the whole frequency ran
(20–620 cm21). The measured intensity in the far wing
actually proportional to the squared density. Up
400 cm21 the measurements are excellently reproduced
the theory. Increasing overestimation occurs and reach
factor of 4 at 600 cm21. Notice that this disagreement ca
be reduced by a factor of 2~for these highv values! if,
instead of using the quantum asymmetry factor of Eq.~18!,
one uses

S(r )~v!5S̃(r )~v!, v.0 and Eq.~17! for v,0

by analogy with the empirical observation of De Pristoet al.
@7# concerning the relaxation matrix. Recall that in the P
calculation of Ref.@13# the disagreement with respect to e
periment in this frequency domain was also of this order
magnitude. The overestimation of intensities at high frequ
cies in our model may be attributed to the lack of validity
al
FIG. 2. Calculated and measured rotation
structures of N2 S branch at 41 amagats.
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FIG. 3. Absolute intensities in N2 far wing at
41 amagats. The PT calculation is done with t
exact expression for the spectral function.
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the adiabaticity factorV(v) in Eq. ~9! which remains
Lorentzian even for high-energy defects\v. Notice that the
correct~Gaussian! behavior of this factor for highv values
could be ensured by using another modeling~expressed
through a Bessel function@24#!, while in the Markovian limit
(v→0) it should still yield the correct Lorentzian behavio
This modification is actually studied, but it needs the int
duction of a new parameter to describe separately thev de-
pendence of the adiabaticity factor at low and high frequ
cies.

The calculated intensities beyond 350 cm21 overestimate
the measured ones. This confirms that the contribution of
induced spectrum is really of minor importance. The dot
curve of Fig. 1 represents the spectral behavior in the imp
limit. It clearly shows that the impact description is adequ
for low frequencies~till '300 cm21), but in the far wing it
disagrees with experiment by one order of magnitude, si
the participation of the extra photon energy in the ene
balance of the scattering process can no longer be negle

At 41 amagats the usual rotational structure of theS
branch is still visible~Fig. 2!. Unfortunately, the low experi-
mental resolution (8 cm21) @12#, needed for measuring th
very low intensities in the wing, is not sufficient to reprodu
these intensity variations. The result of our PT calculation
also plotted in Fig. 3. PT matrix elements were obtained
the same way as in Ref.@13# but, here, the general spectr
density expression of Eq.~1! was used instead of the high
frequency limit of Eq.~20!. It is clear that in this PT calcu
lation the diagonal matrix elements for the first few lines a
overestimated, so that the rotational structure is smoot
out. Nevertheless, at intermediate frequencies such ca
lated PT intensities are quite reasonable.
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V. CONCLUSION

In the preceding sections, starting from the general th
retical expression of Ref.@14#, we proposed a concrete non
Markovian ECS model for the relaxation matrix associa
with the arbitrary rankr irreducible coupling tensor. The
constructed matrix obeys all the known general relatio
symmetry ~imposed by the detailed balance!, double-sided
sum rules, and time-reversal equation. It is remarkable
the actual model is built without introducing any new add
tional parameter. Reasonable description in the whole
quency range, not only in the far wing, was achieved. T
present model shows that the role of the induced spectru
certainly not important, even at high frequencies, as it w
already shown in the second-order PT calculation@13#.
Moreover, if the resolvent operator @ i (v2Ls)
1nG (r )(v)#21 is not developed, the PT calculation reaso
ably reproduces the measured intensities even at interme
frequencies.

The detailed balance factor of De Pristoet al. @7#, which
was introduced empirically, appears as an appropriate a
nate approximation for the Ben Reuven balance factor u
in the present model.
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