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Non-Markovian energy-corrected sudden model for the rototranslational spectrum of N
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A model generalizing the isotropic-scattering-energy-corrected su@@s relaxation matrix to arbitrary
rank spectra is developed on the basis of a theoretical expression proposed by A.P. [Qpeadval Line
Shapes 14th International Conference on Spectral Line Shapes, State College, PA, 1998, edited by R. M.
Herman, AIP Conf. No. 467TAIP, Woodbury, NY, 1999 Vol. 10, p. 497 for the case of non-Markovian
collisions. The constructed matrix obeys all known general relations obtained from first principles: both matrix
and Ben-ReuverjPhys. Rev.141, 34 (1966] symmetries as well as the double-sided sum rules. In the
framework of the present formalism the usiaal hocdetailed balance factor is replaced by a more physical
one. Without any additional parameter with respect to the Markovian ECS, this model gives a reasonable
description of the B anisotropic depolarized spectrum in the whole frequency range up to the far wing.
[S1050-294{@9)08507-9

PACS numbeps): 34.10:+x, 33.70.Jg

I. INTRODUCTION - 1 O - "
s<'>(w)=; Re 2 APl (@=L +nT D (w)]; 5 Al

Light scattering from molecular gases provides important i 1)
information about angle-dependent intermolecular forces.
Due to wide atmospheric and diagnostic applications it hasiere A{l) are the components of the associatéfu rank ir-
been intensively studied both experimentally and theoretireducible spherical coupling tensor in the line-space basis
cally [1,2]. But, in contrast to the atomic case, the depolar-(for the optical transition — f)
ized light scattering by a molecular gagriori involves the
allowed and induced polarizabilities of the molecules. The o Jg
present paper is devoted to the study of the allowed molecu- 0 0 O Mit
lar spectra only. It will be shown indeed that the opportunity
offered by the available experimental absolute intensities invhere[abc- - -]=(2a+1)(2b+1)(2c+1)--- and (:::) is
the case of M allows us to confirm that the induced spectra@ 3J symbol.n;; is the norm of the line-space vectathe
are almost negligible not only in the core of the spe¢am  transition operator$f)(i[), obtained with the symmetrized
expectedl but even in the far wings. form of the scalar produgb]

The description of the central part of isotropic<{0) and ot ) /2112
anisotropic ¢ =2) light scattering spectra involves only the nie=[(pi+pOI2]75
frequency-independent Markovidimpach it of the 1e- ere ), = 7, e gB(3+1)] with 4=(KT)~* andB is
axation matrixl =. 1hiS approacn IS Justilied by e fact .o \,ational constant of the active molecule. The squared
that for a photon energy nearly equal to the molecular reso. lues of A give the intensities of separate lings, is the
nance frequencies the energy defect can be neglected TE%)uville 0 Ifergtorfor the free active mcF))IecuIe Ieadi.n in the
“three participants” situation(two colliding molecules plus basi g o the di | matrix of tati 9. | tran-
one photoi, which takes place in the spectroscopic study, is asis used, 1o the diagonal matrix ol proper rotational fran
then simplified to the usual scattering thedtyo colliding sition frequenciesyy; .

molecule$. On the contrary, the treatment of spectral wings For low density values of t.h? pertu_rbmg mo_lecules, Eq.
needs the introduction of the frequency dependence of th ) leads to a spectrum consisting of isolated lines described

relaxation matrixI"("'(w) due to the significant increager y the diagonal elements 6f"), whose real and imaginary

decreasgof the rototranslational energy by the extra photonparts. represent linewidths and line shifts. At high densities,
energy during the transition process the lines overlap and the observed band shapes are greatly

In general, the matrix elements &%) (w) characterize modified. Consequently, the off-diagonal elements must also
the coupling ,between two optical transitions>f and i’ be known, since they are responsible for the transfer of in-

S X tensity between lines.
—f’ from the initial i(i") to the final f(f') states of the Co N .
The infinite-order suddefiOS) approximatior{ 6], which
active molecule and thus need four indidé%?i,f,(w). The shih sudde(los) approximatior(6], whi

= is obtained by neglecting the molecular rotation during the
expression for the spectral densg{f’(w) can be written as  collision, allows us to construct the entifé"”) matrix from
[3-5] its diagonal. But, in this approach, two fundamental relations
(the sum rules and the detailed balanaee lost. The energy-
corrected suddefECS model[7] consists first in reintro-
*Permanent address: Institute of Physics, Saint Petersburg Untlucing, at least approximately, the effect of molecular rota-
versity, Peterhof, Saint Petersburg 198904, Russia. tion and then in imposing the sum rules and the detailed

AP =(—1)%[3,3,1Y2
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balance relation. This model leads to a reasonable theoreticbn of the N, rototranslational spectrum in the whole

interpretation of numerous experimental spe¢&alll. frequency range, including the far wing, is presented and
For the past several years, experimental techniques havfiscussed in Sec. IV. The concluding section is devoted to

allowed the spectral intensities to be measured in the very fasummarizing remarks.

wings. For example, the anisotropic depolarized Raman

spectrum of N at high pressure has been observed by Le

Duff and Teboul[12] up to 620 cm®. This wide frequency Il ECS MODEL FOR THE RELAXATION MATRIX

domain needs the theoretical description to be essentially It should be recalled that the ECS model was proposed by

non-Markovian and the entire relaxation matiX?)(w) De Pristoet al. [7] for calculating the rotational transition

must be known. For sufficiently high rotational energy stategprobability I' ;5 for going from state] to stateJ’. The main

the Massey parametej= w;; 7., wherer. is the mean col- result of this model was to obtain;; simply by correcting

lision duration, is large. This means that the collisions arghe corresponding 10S expression by a multiplicative

adiabatic. The interaction picture becomes static and the ped-dependent adiabaticity factél; accounting for the effect

turbation theory(PT) approximation becomes valid since the of molecular rotation during the collision. This aproximation

smallness condition of the rotational perturbation in comparifor the relaxation matrix will be preserved in the present

son with the considered energy gém:; can be satisfied. non-Markovian extension of the ECS model.

Such a calculation was realized by Eual. [13], who dem- To do this, we start from the general expression for the

onstrated that the observed intensities in the far wing areff-diagonal matrix elemerft14]

essentially due to the allowed rototranslational spectrum and

not to induced effects. Fi(fr?i,f,(w)z —[1+exp — Bhw)]l2nin;
But the actual description of the spectrum is incomplete.

At low frequencies the Markovian«f-independent ECS « L1ELT D (0— wer

model leads to a good descriptifn—11], while at high fre- ; [LIFi i lpi (o= o)

guencies the PT treatmefihcluding thew dependendeis .
available[5,13]. The analysis of the relaxation matrix in +pi Pl (0= wy1i1)], (]
these two limiting approachg¢8] demonstrates the presence ) _ o o
of a common structure. This indicates the possibility of uni-where the symmetrized Percival-Seaton coefficient is intro-
fied treatment for the whole frequency range. duced,

Recently, a general non-Markovian extension of the relax-

ation matrix in the frame of the ECS approach was proposed s 3.3 J_,J,]l,z( I Ji) (Jf L J?)

by Kouzov[14] by incorporating incomplete collisions in the if,irf D 0 0 0/\0 0 O
Fano-Mori formalism together with complete ones. It should

be noted that a non-Markovian relaxation matrix can be ob- i Jp o

tained within the completed collisions schefii®], but the X 3oL

sum rules fail. In Ref[14] the relaxation matrix is expressed '

through the collisional superopera{®] with the full Hamil-  Here the quantity in braces is a Gymbol. The correlation
tonian functions ®, (w) characterize the intracollisional dynamics

and satisfy the Boltzmann relatigt7]
H=Hgr+Hg+V,
O (-~w)=exp—pho) P (w). )

whereHpy, is the rotational Hamiltoniaigwhich is neglected
in the 10S approadhHg is the bath Hamiltoniariinclud- ~ Notice that Eq(2) ensures the fundamental symmetry prop-
ing the isotropic part of the interaction potentjiahndV ~ erty
stands for the anisotropic part of the interaction. The specific
choice of the bath basis as the eigenbasid gf V at a fixed Fi(fr,)i/f,(w)=1ﬂi(2,,if(w), (4)
molecular axis orientation in the laboratory frame greatly
simplifies the calculation. The relaxation matrix is then com-the time-reversal symmetighe Ben-Reuven relatiofi6])
pletely defined by the correlation functions characterizing the
intracollisional dynamics. The relaxation matrix obtained is Fi(fr?i/fr(w)=rgg?ffi/(—w), )
symmetric, so that the sum rules are double sided and the
Ben Reuven relatiof16] accounting for the time-reversal and also the double-sided sum rules
symmetry is respected.

In Sec. ll, starting from the general expression of Ref. _ 2
[14] we put it in a concrete ECS form. This is done by
preserving the main assumptions of the usual impact ECS
model [7] developed for the isotropic scattering case and =Fi(fr?if(w)Ai(fr)- (6)
without introducing any additional parameter. The important
particular case of the @ branch is discussed separately in In fact Eq.(6) allows the diagonal elements to be calculated
Sec. lll. The detailed balance factor obtained in the frameonce the off-diagonal ones are known.
work of the actual model improves tlaa hocfactor previ- From a practical standpoint, it is easier to operate with
ously introduced by De Pristet al.[7]. Finally, the calcula- classical even function®®®{w) instead of the quantum

() ) _ ()
Fif,i’f’(w)Ai’f’__ 2 Ai’f’ri’f’,if(w)
i #if i #if
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ones appearing in Eq?2). Due to Egq.(3), this can be b2 n
achieved by identifying the quantum asymmetry factor con- O(w)= ( 1+ —— wz) , h=2 9)
sistent with Eq.(2),

where the characteristic interaction lendghis a fitted pa-
DL ). (7)  rameter. This choice leads directly to the traditional adiaba-
ticity factor Q, =Q(w_o) [7]. Here the situation is getting
Concerning the imaginary part @b, (w), previous studies complicated by the presence @f,; andwy;, . To overcome
[8,10] of the isotropic and anisotropic vibrational Ram@n this d|ﬁ|(;qlty, we separate these frequencies into their optical
branches have shown that the influence of the imaginary paﬁnd collisional parts
of the relaxation matrix is expected to be small, and will be Q(w—01)=[Qw—wi+wi)+ QU o— o +w;)]2,

RePL(®) = T exd— Bho)

neglected here. Taking into account the even parity of (10)
®°{») and the Boltzmann distribution of the populations

one obtains Qo= i) =[Qo— ot~ ;i) + Uo— oy — o) ]2
11

ro (w)=— 1+exp—pho) z [L]F‘Lr. The presence of both optical transitiong and w;;: is jus-

A angnyg T e tified by the symmetry condition of the relaxation mafiix.

Eq. (4)].

PP w—wr) The full implementation of the original ECS approdah

1+exd — Bh(w—wr)] consists now in replacing each collisional frequenay.
' (kk"=ii" or ff") by the frequencyw,, of the transition

pi @Y w— wyir) from the upper level to the closest one consistent with the

. 8 i i i
L+ exd— Bt (oo (8)  symmetry of the interaction potential

. . . W k-6 k>k’
Now we assume that all the classical correlation functions

have the same time dependence; this allowsitfié*{ ») to oo =1 0. k=K’ (12)
be factorized intd_- and w-dependent parts —wy k-5 K<K'
DY ) =Q[ N (w). with §=2 for N,. Under all the above mentioned remarks,

the final non-Markovian ECS expression for the off-diagonal
Furthermore, the correlation functidd( ) will be identified  relaxation matrix element can be factorized into its impact
with the adiabaticity factor of De Pristet al. [7], limit and anw-dependent correction factor

- 1+exp(— Bhw)
I‘_(r)_, ) =I‘_(r)_lr,nrfact
i (@)=L {[1+exp — Bliwg) [[1+exp — Bhoi) [}

-1

v zﬂ(zii')ﬁLQ(Eff') Qo— o+ o)+ Q0= oy + o))

pitpir pirt+piexd — Bh(w—wir)]
Qw—wn— i)+ Q(0— 0 — o
n ( fi il ) ( fri ff ) , (13)
pitpir exd — Bh(o—wy)]
|
where the impact limit tioned, they are used to calculate the diagonal elements. To
7 make clear the physical meaning of Qg coefficients, the
Fi(fr?i"ﬁfem: -3 (pipi [ () + Q)] isotropic scattering case is of particular interest.
pitpir
. Ill. MARKOVIAN LIMIT FOR Qs
X LIF Q| 14 . . . : :
EL: [LIFici Qo (149 A previous theoretical study of the isotropic Raman rovi-

brational Q;s, branch[8] has shown that the vibrational ef-
is obtained by setting = w¢; or w;;; depending on the con- fects are limited to a global shift of the whole branch. For
sidered term. this Qiso branch ¢=0,i=f=J,i'=f'=J") in the Markov-
As easily verified, this final expression respects all necesian approximation ¢ = w;; = w¢+;»=0), the off-diagonal ma-
sary relationgEqgs.(4) and(5)]. Concerning the sum rules of trix element of Eq(14), in traditional nonsymmetrized form,
Eq. (6), they are automatically verified since, as already menis
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TABLE |. Basic ratesQ, parameter$Eq. (16)] and adiabaticity factof) parametersEq. (9)] for the
ECS-P and ECS-EP models with different detailed balance factors for pure N

Model Detailed A (295 K) N a ¥ n be(A)
balance factor mK/amagat
ECS-EP De Pristo 51.24 1.178 0.7556 0.5183 1 0.8217
De Pristo 33.02 1.302 0.7474 0.5870 2 0.7486
Ben Reuven 29.28 1.145 0.7929 0.5963 1 0.9235
Ben Reuven 29.94 1.161 0.7939 0.6318 2 0.8239
ECS-P De Pristo 78.30 0.9379 1.200 0 2 0.7829
Ben Reuven 53.34 0.9634 1.069 0 2 1.045
- [J'py 172 ©) IV. APPLICATION TO THE N , ROTOTRANSLATIONAL
FJJ,E<W) I';555(0) SPECTRUM
, 2 The measurements far from the band center can be real-
_ [J']py Q 2 [L] J Q. (15 ized only at high pressures. It may be thought that the result-
pitpy >4 0O 0 O L ing spectrum is the superposition of a collision-induced spec-

whereJ. =max(,J’). It differs from the original De Pristo
et al. expressior[7] by the detailed balance facter: /(p;
+py) instead ofp;~ /pj. But it can be verified that these
factors are identical in both limiting casds-J’ andJ<J’.

Nevertheless, this expression of the off-diagonal matrix

elements allows the basic transition rates to be identified,

N ,

LY
QL LO 1+P|_/P0QL

The use of this alternativdknown as Ben-Reuven'sletailed

trum and of the allowed rototranslational one. Nevertheless,
it was demonstratedL3] by a full quantum perturbation cal-
culation in the case of )\l that beyond 350 cit, the mea-
sured intensity is only due to the allowed spectrum. This
situation provides a test for the non-Markovian model devel-
oped above. It should be noticed that due to Es). the

spectral densit$")(w) defined by Eq(1) is symmetric with
respect to the frequency, while the observed spectral density
S (w) is asymmetric and satisfies the Boltzmann relation

(5]

S(—w)=exp(— Bhw)S") (w). (17

balance factor needs a new determination of the basic rate¥”) () can be related té(r)(w) by introducing a quantum
Q.. The usual procedure has been used here by introducirgsymmetry factor. In general, the choice of this factor is not

either the exponential-polynomiédECS-EB modeling of the
L dependence of th®, [18],

Qu=A(MIL(L+1)] “exd —yBBL(L+1)],

-N

(16)

T
A(T) =A(To)<T—0

unigue and influences greatly the calculated shape at high
frequencies. Here, due to the accepted symmetric form of the
scalar product, one has

S (w)= S (w).

2
1+exp— Bho) (18)

The full relaxation matrix folO-Q-S branches was calcu-
lated by Eq.(13) with different parametrizations fdp, and

where T, is a reference temperature, or the polynomial€2(®) (cf. Table ) and substituted in Eq(1). Then, the re-

(ECS-B modeling (y=0) [8]. This procedure consists in

sulting spectra are corrected by the quantum asymmetry fac-

minimizing the mean square deviation between the theoretfor of Eq.(18). Finally, the 0261|CU|at9d spectra are related to
cal linewidths and the experimental linewidths obtained fromthe absolute cross sectidfi“o/ 9 dw (cm’) measured by

low-pressure measurements on isola@gg(J) lines[19,20.
The theoretical linewidth¥ ;; are obtained through the sum

rule [Eq. (6)] which reads in the particular case ofJg(J)
line

Lyy=—

E T‘JJ/ .

J'#J

The optimizedQ, parameterd\,N, «,y corresponding to the

Le Duff and co-worker$12,21,23 by
o 4k0k3'y2
Voiw 18n

1
_5(2)(0)).
p

(19

The proportionality factor is obtained by comparing the defi-
nitions of the double differential cross sections from Refs.
[13,21]. Notice that, here, the wave numbdrandk,, asso-
ciated, respectively, with the scattered and the incident radia-
tions (ko=1.2212<10 3A~1) are nearly equaly is the an-

two detailed balance factors are collected in Table | for purdsotropic polarizability of N (y=4.823 a.u[13]) andng is

N,. The values of the parametey for the adiabaticity factor
are also presented for the two values 1 and 2.

the density of molecules under normal conditions. This leads
to 4k3y?/15n,=1.1283< 10 *® cnP. The division by p
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105!
1052 present theory 41 amagat
o experiment 41 amagat
10 4 D‘EE' ' — — present theory 169 amagat
& 1054 4 O experiment 169 amagat
5 ~~~~~~~ impact limit 41 amagat
> 105 4
= FIG. 1. Calculated and measured absolute
5 106 4 . cross sections for the anisotropic depolarized Ra-
£ DDDU man spectrum of Nat 41 and 169 amagats.
1057 | (n) el T
U%QDDQDDD\\\
1058 DDDEIEIDDD\\\~
o a
10°%° - 0o
0 100 200 300 400 500 600 700
Frequency (cm™)
=n/ny (the amagat densityin Eq. (19) is made to clearly Here the best results were obtained with the ECS-P model
show that the limiting behavior of the spectral function for using the Ben Reuven balance. Both calculated cuf@edl
high o values, and 169 amagaksind the corresponding experimental values
[22] are shown in Fig. 1 for the whole frequency range
B n AD* A (20-620 cm!). The measured intensity in the far wing is
S ()= — E i ri(f')i,f,(w)'—f, (20) actually proportional to the squared density. Up to
Tifirgr @7 @1 W= Wi 400 cm! the measurements are excellently reproduced by

the theory. Increasing overestimation occurs and reaches a
which is proportional to the density, is actually reached befactor of 4 at 600 cm®. Notice that this disagreement can
yond 350 cm?. be reduced by a factor of Zor these highw values if,

The testing of various ECS-P and ECS-EP parametrizainstead of using the quantum asymmetry factor of @),
tions showed that the spectral profiles are very sensitive tone uses
the choice of the model in the region of intermediate fre-
quencies 200-300 cid and in the far wing (different s(r)(a,):é(r)(w), 0>0 and Eq(17) for w<0
slopes of the theoretical curyesThis means that this wide
frequency range study leads to a good discrimination beby analogy with the empirical observation of De Pristaal.
tween the different ECS-P and ECS-EP models. It should bE7] concerning the relaxation matrix. Recall that in the PT
recalled that for the isotropiQ-branch case at room tem- calculation of Ref[13] the disagreement with respect to ex-
peraturd 23], when only about 20 lines are visible, the set of periment in this frequency domain was also of this order of
experimental linewidths is too poor to favor one of the mod-magnitude. The overestimation of intensities at high frequen-

els. cies in our model may be attributed to the lack of validity of
—— present theory 41 amagat

2 o experiment 41 amagat
i T S - S IRRREEED impact limit 41 amagat
S
[$]
8
(=]
z
%‘ FIG. 2. Calculated and measured rotational
5 11 structures of N S branch at 41 amagats.
=

0 o ¢

] 100 200 300

Frequency (cm™)
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105
10% - —— present theory 41 amagat
°) o experiment 41 amagat
10°% - / — - exact PT 41 amagat
&
5 10-54 4
% FIG. 3. Absolute intensities in Nfar wing at
g 10% 1 41 amagats. The PT calculation is done with the
= exact expression for the spectral function.
10-56 4
10-57 4
o]
OOOO
1058 T T T T
0 100 200 300 400 500
Frequency (cm™)
the adiabaticity factorQ)(w) in Eg. (9) which remains V. CONCLUSION

Lorentzian even for high-energy defedis. Notice that the
correct(Gaussiahbehavior of this factor for highw values
could be ensured by using another modeliexpressed
through a Bessel functidr24]), while in the Markovian limit
(w—0) it should still yield the correct Lorentzian behavior.

gggigog;fg?]uew Isz;r?;:]ueatlgi/ tf)tlijdelggr’it?gtsg naerg(tjesi thﬁh'}r_]tro'symmetry(imposed by the detailed balancelouble-sided
P P e sum rules, and time-reversal equation. It is remarkable that

Ei(‘ear;dence of the adiabaticity factor at low and high frequen;[he actual model is built without introducing any new addi-

. . _ . tional parameter. Reasonable description in the whole fre-

The calculated intensities beyond 350 choverestimate uenc;l/a range, not only in the far meg was achieved. The
the measured ones. This confirms that the contribution of th resent model' shows that the role of thé induced spect.rum is
induced spectrum Is really of minor importan.ce.. The QOtte ertainly not important, even at high frequencies, as it was
curve of Fig. 1 represents the spectral behavior in the impa Iready shown in the, second-order PT calculz;lt[drs]
limit. It clearly shows that the impact description is adequatel\/loreover if the resolvent operator [i(w—L )'
for low frequenciegtill ~300 cm %), butin the far wing it +nF(r)(w3]*1 is not developed, the PT calculation reason-
d|sagree.s. W't.h experiment by one order of magmtude, SlnC%tbly reproduces the measured intensities even at intermediate
the participation of the extra photon energy in the energy, quencies
balance of the scattering process can no longer be neglected?.l.he detailed balance factor of De Pristbal. [7], which

At 41 amagats the usual rotational structure of Be .o inyoguced empirically, appears as an appropriate alter-
branch is still \{|5|b|e(F|g. 2. Unfortunately, the low EXPEr-  ate approximation for the Ben Reuven balance factor used
mental resolution (8 cm') [12], needed for measuring the

very low intensities in the wing, is not sufficient to reproduceIn the present model.

these intensity variations. The result of our PT calculations is

also plotted in Fig: 3. PT matrix elements were obtained in ACKNOWLEDGMENTS

the same way as in Ref13] but, here, the general spectral

density expression of Eq1l) was used instead of the high-  The authors are thankful to Professor Le Duff for fruitful
frequency limit of Eq.(20). It is clear that in this PT calcu- discussions and for sending them the tabulated values of ex-
lation the diagonal matrix elements for the first few lines areperimental intensities. We thank Dr. A. P. Kouzov for having
overestimated, so that the rotational structure is smootheprovided, in both published and unpublished work, all of the
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In the preceding sections, starting from the general theo-
retical expression of Ref14], we proposed a concrete non-
Markovian ECS model for the relaxation matrix associated
with the arbitrary rankr irreducible coupling tensor. The
constructed matrix obeys all the known general relations:
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