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We present amb initio scheme for computing the wave function of the pair of electrons projected into the
double continuum of the helium atom by a one-photon dipolar excitation. The scheme uses the Floquet
approach to convert the time-dependent Sdimger equation into an infinite set of coupled time-independent
equations. The latter reduces to a single stationary inhomogeneousdidgeroequation in the weak-field
limit, which is relevant here. This equation is solved using7ammatrix approach to combine a quantum
treatment of all variables within the hypersph&e R, with a semiclassical treatment of tRemotion outside
this hypersphere. We apply this approach to a model helium atom where,. We thus demonstrate the
feasibility of the method, and obtain insights into the dynamics of the double photoionization of helium at
equal sharing of a low excess ener§$1050-294®9)01210-X]

PACS numbes): 32.80.Fb

I. INTRODUCTION within a restricted region. This restricted region turns out to
be the asymptotic region, in methods based on three-body
Double photoionizatioDPI) of He, though an elemen- Coulomb asymptotic wave functiori8—10], or, inversely,
tary process of atomic physics, remains a challenge for exthe short-range region, ih? methods[11-13, or else the
perimentalists as well as for theoreticians. This paradox reneighborhood of the saddle point of the three-body potential
sults from the DPI process being entirely due to thesurface in methodgl4—23 which make use of the Wannier
electronic correlations in the initial and in the final state.[24] analysis.
Experimentalists are then faced with the measurement of a New promising approaches have emerged recently, where
very low signal, and theoreticians are faced with the nonperthese difficulties are avoided by relying, explicitly or implic-
turbative description of a correlated motion not only in aitly, upon the time-dependent Scldinger equation. 1§25],
bound but also in a continuum state. the time-dependent Schiimger equation is solved directly,
The interest in this low rate photoprocess has beeibut the cross sections are not extracted from the final wave
boosted in recent years by the great improvements of thpacket yet. In[26—31], the authors consider the stationary
experimental tools, namely the advent of second- and thirdnhomogeneous equation, which can be deduced from the
generation synchrotron facilities delivering intense photonatter by taking the wave packet in the Floguet form.
beams, as well as the development of position-sensitive de- The approach we present in this paper belongs to this very
tectors with high spatial and temporal resolution. Accord-last class of methods. It is described in Sec. II. In Sec. I, a
ingly, detailed information on the most challenging case ofnumerical scheme is proposed to solve the resulting equa-
near-threshold DPI of He has become recently available antions. In Sec. IV, we apply it to a model helium atom where
is still under progress right nopd—3|. the two electrons remain at equal distances from the core.
Important advances have been achieved on the theoreticife present our conclusions, along with directions for future
side as well. However, no single method has yet been recogvork, in Sec. V. In the following, we use atomic units for the
nized as providing a definitive description of the process. mechanical quantities and Gaussian units for the electromag-
This is because most methods used so far rely upon exetic ones.
tending to DPI the numerical schemes designed for single
photoionization studies: one looks for a solution of the sta- Il. THEORETICAL FRAME
tionary homogeneous Scliimger equation satisfying the ) ) . ]
appropriate photoionization boundary condition. But for ~Letus consider a helium atom in the ground stitewith
double ionization, this condition becomes very difficult both €NergyE, of its HamiltonianH,. At time t=0, we switch on
to formulate and to enforce: the asymptotic form of the wavean external field which oscillates at the frequensy The
function itself is still the object of intensive reseafehr-7], ~ atom-field interactionV(t) oscillates with the same fre-
and its matching to an accurate short-rahdesolution has duency. The further evolution of the atomic wave functibn
not been accomplished yet. One is then led to introduce ags governed by the time-dependent Sclinger equation
proximations: in fact, most approaches eligible in the near-
threshold domain extend over the entire configuration space ﬂ _
. . 2 . I =[Ho+ V()P (t). (€h)
a representation of the wave function which is valid only dt
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According to Floquet's theorentsee [32] and references In Eq.(5), K is the module of the six-dimensional asymptotic
therein, the solution of Eq(1) can be searched for, with N0 momentum K= (k; k) defined from the three-dimensional
loss of generality, in the form of a phase factor expflt),  asymptotic moment&, and k, of the two electrons. The
involving a “quasienergy”&, times a periodic function of fynction £(Qs) is given byZ/k,+ Z/k,— 1/|k; — k5|, where
time @(t) with the periodT=2m/w. By expanding®(t)  zis the nuclear charge, namely= 2. The functionF (Qs) is
andV(t) in Fourier series the double photoionization amplitude. The asymptotic Six-
. dimensional current associateddq is given to lowest order

V)= D Ve tket, (2a) in 1/R by J=K|®,|?R/R, where R=(r,r,). Now we set
k=—e Qy={Q1,Q2}={(01,¢1),(02,¢2)}, where @1,¢;) and
(0,,9,) are the spherical angles of the asymptotic momenta
te k, andk,, and we introduce the asymptotic kinetic energies
V(t)=e "P(t)=e ¢ Z Pe” ", (2b)  E; andE, of the two electrons, which satisfig, + E,=E
= andE,/E,=tarfa. The surface element on the hypersphere
the original time-dependent problem is turned into the infi->r _©Of hyperradius R can then be written dS
nite set of coupled stationary equations =R®sin 22 dE;dQ,dQ, R/4ER, so that the asymptotic flux
Fou=Js_J-dSof Jthrough a hypersphere of infinite hyper-

+ oo

(E+nw—Hy)®,= > V@, ,, n=—o,. .. +o, radius reads
k=—o
K
(39 Four= 7z lim f R%|®4|%sin 22 dE; dQ, dQ,.  (6)
+ o0 4ER~>00 ER
n;_m Pn="Wo. (30 The total double ionization cross section, ) , defined as

the ratio of 7, to the incoming photon flu¥;,, is indepen-

Extensive use has been made of the Floquet equat®iisr ~ dent of the amplitude of the electric field associated with the
the study of multiphoton processes in intense laser field§icident plane electromagnetic wave. Accordingly, we as-
[33]. But they can shed light as well on the weak-field casesume the latter to be unity, so th&j,=c/8mw with ¢ the
where one-photon absorption is the only relevant proces$peed of light, and we get

Then,n runs only from 0 to 1 and reduces to the single

value +1, so that Eq.(3) reduces to a system of three ( Ze)zzm”K ”mJ R|®,|%sin 2a dE, dQ, d(,.

coupled equations involving the three unknown quantities L& CE r ..Jsq

E,Dy,P,. To lowest order in the field, the solution is ob- (7)

tained by settingb,=V, andé=E,, so thatd, satisfies the

stationary inhomogeneous equation The expressions of the various differential cross sections fol-

low, with the triple differential cross sectiofDCS), for

(Eg+w—Hg)®,=V,,¥,. (4)  instance, being given by

An outgoing wave boundary condition is appropriate for this 3) 27K ).

Fourier component of the wave pack@b). Equation(4), 0(y2)(E1,Q21,05) = CE lim R®|®y[“sin2a. (8)

R—s00

which is central to our approach, has already been used

in previous photon- or electron-impact ionization studies-l-he limits in Eqs.(7) and (8) are easily taken by replacing
[29-31,26-28 . R®|®,|? by |F(Qs)|? according to Eq(5). Computing the
We specialize here on the case where the final enBrgy \ 4105 DPI cross sections then amounts to solving (Bx.
=Ep+ o lies above the double ionization threshold. In this g piect 1o the outgoing wave boundary condition up to very
case, the behavior aP, in the region of configuration space |5rge R At this point, it is convenient to write down the

whereboth r; andr, tend to infinity reflects the dynamics of right-hand side of Eq(4) explicitly in the dipole approxima-
the double escape process. By contrast, its behavior whefy, Assuming, with no loss of generality, that the unit elec-
either r, orr, tends to infinity corresponds to the competing yyi¢ field is directed along the axis, we get

process of single escape. We focus here on the double ion-
ization process which is best described using as coordinates VW o=[T(F)+T(Fp)]¥ (9)
the hyperspherical radiuR= \/r21+r22, the hyperanglea e ! 2o

=arctan(,/rp), and a set}, of four angles specifying the \yhere the dipole transition operat®(r) assumes different

{a,Q24} as often as possible, for compactness. Thea) gauges:

asymptotic behavior ofb; corresponding to double escape

can then be quantifielB4] as .01
! )= 52, (109
elKR+|§(!)5)In(KR)
Filian)l(R,QS): 7 F(Qg), a#0,m/2. . w o
(5) (=20 72" (105
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cal approximation in the outer region using the hyperspheri-

- Z z X : g . k
TA(r) = 53 (100 cal radius as the matching coordinate. The following sections
20°r give the detailed equations.
Note that, when acting on a fully symmetrt&® state,T(F) B. The inner region equations

in Eg. (9) can be replaced in thé gauge by ! , . :
Let us first rewrite Eq.(4) more explicitly. Inserting

v 1z ®4(R,05) = (R%?sin 2a) 1®(ROs) and premultiplying by
T =5 r o (1)  —R%2sin 20, we get
2
The physical results being invariant if the right-hand side of | — } (9_24_ To.+V(R,Qg)—E|D(R,Q5)=DC(R,0s).
Eq. (4—and henceb,—is multiplied by an arbitrary phase 2 iR °
factor, we have taken positive signs on the right-hand side of (12)

each member of Eq10), for simplicity. Note that, although ] ) , S
the right-hand side of Eq4) has a gauge-dependent form, The first two terms on the left-hand side describe the kinetic

the solutiond®, must be gauge independent. energy of the syst(_am, with the radir_:\l contr_ibution sir_lgled
To conclude, let us stress that this theoretical formulation®Ut- The next term is the three-body interaction potential

based on atationary inhomogeneowsjuation, combines the

advantages of a nonstationary approach, where the difficul- V(R,Qe) = — E_ E+ 1 (13)

ties of defining and imposing a double photoionization e r{ r, frq

asymptotic condition are avoided, with those of a stationary

homogeneous approach, where optimized numerical methodgd the right-hand sid®®(R,Qs) = — R¥?sin 22V, ;¥, can

have long been available. be made explicit using Eq$9)—(11). Following theR ma-
trix technique, we consider now the real eigenvaldgsand
Ill. NUMERICAL SCHEME the associated orthonormal eigenvectdr§R,()s) of the

left-hand side operator in Eq12) completed by the Bloch

term [37] required to ensure that it is Hermitian over the
Basic to our scheme is the splitting of configuration spacdinite inner region. They satisfy

into an inner regioR< R, and an outer regioR>R,. In the

A. A short sketch

inner region, we apply a quantum treatment to all dynamical 16 1 d

variables includingR. In the outer region, by contrast, we 5 o2t 3 9R=Ro)—o+To + V(R Q2s) —Ei
restrict the quantum treatment to the angular variables

and treatR semiclassically. Accordingly, we must takg XDKR,05)=0, R<R,. (14
large enough for the semiclassical treatment ofRhaotion

to be valid in the external region. Then, we premultiply Eq(12) by ®**, Eq. (14) by ®*,

Using theR matrix techniqug35] in the inner region, we substract the complex conjugate of the latter from the
derive from Eq(4) a linear inhomogeneous relation betweenformer, and integrate over the inner region with the volume
the values of some set of radial channel functi6f{®) and  element now given bydRdQs=dRdad(,/4 due to the
the values of their derivative’#(R) at the boundaryr,. Let  change of unknown functions performed. The contributions
us emphasize that here, unlike in stand&dmatrix treat- of the potentialV(R,{Q5) cancel each other. Those of the
ments, the derivatives are taken with respect to the hyperradermitian operatofm 0, cancel each other as well. The re-
dius R instead of the radius of a single outgoing particle. Inmajning terms are computed by expandidgand the®*
addition, due to the right-hand side in Bd), the R matrix  into partial waves as
condition becomes inhomogeneous. Next, we perform a
frame transformation to locally adapted angular partial
waves[36] at Ry: the locally uncoupled radial channel func- CD(R,Q5)=Z fm(R) Xm(Qs), (15a
tions F;(R) which result in the adiabatic approximation sat- m
isfy the frame transforme@® matrix condition. Again,R,
must be taken large, so that the adiabatic approximation is
valid from R, outwards.

To these uncoupled radial channel functions we impose

the behavior qf outgoing semiclassical waves: a!inear. homOObserving that the radial functions in Eq&5) vanish at
geneous relation follows between thgR) and their deriva-  |oast as quickly aR5”2 asR tends to zero, and assuming that
tivesFj(R) at anyR=R. the ®* form a complete orthonormal basis over the finite

Next, we solve the two independent linear relations objnner region, we get the announc&imatrix type relation
tained so far for the radial channel functioRg(R,) at the

boundary, and we construct the full wave function f=Rf +7, (163
D ,(Rp,Q5). We are then left with the task of propagating it
outwards inR using the appropriate semiclassical scheme. DK PC

To summarize, the originality of this scheme lies in the T (Ro)ZE (@ >fk(RO) (16h)
combination of theR matrix technique with the semiclassi- " ¥ E—E ™77

@k(R,Qg,):; fX(R) Xon(Qs). (15h)
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1« R (Ry) D. Matching

R mm (Ro)= 2 Ek T E—E (169 Letting U(Rgp) acton Eq.(_lBa){ expressing the c_ontinuity
of the wave function and its first radial derivative at the
boundary, and taking account of the proportionality relation

C. The outer region equations given by Eq.(21) at R,, we get the following set of linear

Let us now introduce, at any fixed hyperradigsn the  inhomogeneous equations for thg;(Ry):

outer region, the locally adapted angular basis set
{xM(R;Qg)} defined by g P ’ (IpURUTp—p)F=-pUZ at R=R;. (22

[To + V(R Q) —Ey(R) IXy(R:Qs)=0, R=R,. Once we have solved E¢R2), we can set up the full wave
5 17 function ®,(Ry,{5) at the boundary. Its knowledge is
enough to initiate a semiclassical radial propagation up to as
Igrge a hyperradius as needed.
To summarize, our method sets dp(Ry,{25) by com-
bining a quantum treatment of all angular variakfeswith

Note that our notation distinguishes the dependence of th
Xwu on the angle$)s from their parametric dependence Bn
which is expected to be smooth at lafgeThis new basis is o .
related to the original one by a unitary transformation, which® specm_c treatment of the hyperradllasbased on quantum
also connects the original radial channel functions to the ne\pwechanlcs in the inner region, but on the semiclassical ap-

ones denoteé,(R). This is expressed in matrix notation as prox_imatio_n in the outer _region. By completing it with the_
M semiclassical propagation scheme, we can obtain

®,(R..,Q5), and accordingly the observable cross sections.
The matching radiuR, must be chosen large enough for the
B semiclassical and adiabatic approximations to be valid in the
F(RI=U(R) f(R). (18D external region. The originality of our approach, compared to
. ) ) _ previous ones based on the same stationary inhomogeneous
In deriving the new radial equations from H32), we intro- g4 ,ation[26—31], is that the solution of the latter satisfying
duce the following outer region approximatior{s: we ne- e anpropriate outgoing wave boundary condition is ob-
glect the inhomogeneous term, which decays exponentially;jned over the entire configuration space, that is to say, from
with increasingR; (ii) we neglect the nonadiabatic couplings ihe inner reaction zone up to the asymptotic region, where
dhue to the parametric radial dependence ofXie We get  he cross sections can be extracted directly.
then

X(R;Q5)=U(R) x(2s), (18a

92 IV. FIRST APPLICATION
_§W+ Em(RI—E|Fu(R)=0, (19 A. The a= /4 model

We wanted to perform a quick test of our method on a
which shows that the new channels are uncoupled, with theurrent desk computer. This is why we have searched for a
radial motion in each channel governed by the channel adianodel problem of reduced dimensionality to apply it to.
batic potential. This situation lends itself particularly well to  The pioneering work of Wannidi24] is at the origin of
the implementation of the semiclassical approximation demany such models for the near-threshold double photoion-
fined by ization of two electron atoms. Wannier considered the clas-
sical motion of the representative poiR,, 6,,) of a two-

1 R o electronS state, which is determined, at very low energy, by

Fm(R) = —=—=—==¢e"/rRMMFIIRE (R), (208 the structure of the three-body potential surface
IPu(R)] V(R a, 6,,)—with the obvious notatiord,,= (k;,k,). Bas-

ing his argument on the well known saddle shape of this

pPm(R)=V2[E-Eu(R)], (20D surface at fixedR, as well as on the dissipative character of

the equations of a related simulated system, he concluded

dZIEM dpu that all trajectories leading to double escape pass, at some
W<1 and = 4R <1. (209 critical radial distance, through the eye of a needle set out at
Pwm the saddle point¢= /4, 6,,= ). The idea followed that

many features of near-threshold double escape could be ob-
The relations(20) ensure an outgoing behavior in the opentained from a study of the dynamics in the neighborhood of
channels and an exponentially decaying behavior in thene saddle point, where the unstahlemotion decouples
closed channels, in agreement with the physical meaning Gfom the stabled;, motion. This decoupling was later ex-
the wave functionb. In addition, a relation of proportional- tended beyond the vicinity of the saddle point in semiclassi-
ity is obtained betweeR andFy,, which can be written in  cal studies of the motion at fixed= /4 and freed;, [ex-
matrix form as tended Wannier ridge modéEWRM) [30,31]].
By analogy with EWRM studies, we restrict our general
F'=ipF, (21)  approach by setting = 7/4, to define a first testing bench of
reduced dimensionality for our method. As a result, our cal-
wherep is the diagonal matrix of the semiclassical momentaculations will only concern the equal energy sharing situa-
in each channel. tion, sinceE, /E,=tarfa.
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B. Numerical implementation

The main tasks in our method af® to solve the inner
region eigenvalue equatidt4) for eigenvectors expanded in
angular partial waves according to H45); (ii) to compute
the overlapg ®*|®®) of the right-hand side of Eq12) with
these eigenvectors over the finite inner region; &iid to
solve the fixedR eigenvalue equatiofil7) at the boundary,
which is merely a particular case @j. Once these tasks are
completed, theR matrix andZ vector can be assembled ac-
cording to Eq.(16), the matrixp of the semiclassical mo-
menta can be set up from E@O0), and the unitary matrixJ

is readily available. It is then straightforward to solve Eq.

(22) for the wave function at the boundary.

To make clear how these tasks are performed within the
present model, we first complete the specification of the co-

ordinate system. Since= /4, ()5 reduces td),, which we
write asQ,={64,,Q3}, where(); is the set of three Euler
angles associated with the rotation, which takes the labor
tory frameOxyzinto the body fixed fram® XY Zsuch that
Zxr Xr, andXor,+r, as in[38]. With these coordinates
the differential operatol o, reduces to

To,= (23)

1

L2+ /2- —)

2R? 4

whereL=/"1+/, is the total angular momentum of the
electron pair, acting o), and/'=/,—/, is the relative
angular momentum of the two electrons, which act®gmas
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with the following definitions for the angular operators:

(o 1 J . 0 d cosf,—1
T 2SN, a0, 246, 4sifoy,
(279
W(b1p)= —— (27D
¥ 1—cosby,

We now complete our partial wave representation by choos-
ing as af,, basis the set of orthonormal vectors

0
VA +1d7 313 610 =/ + 1c032iz P

C0S6,5).
(28)

9,(010)=

The functiong(r,#;,) must contain a cog(,/2) factor to

fancel the[ cos@15/2)]~ ! term in D 1(Q3) and to let the

well-known node of the!P° wave functlon atf,,= ap-
pear. Besides, the Jacobi polynommg(cosalz) form a
complete basis for any function df;,. Accordingly, the
0,(012),7=0, .../ max form a complete basis for thé,,
dependence o (r,6,,). In addition, they are eigenvectors
of t12 with the eigenvalues (2+1)(2/+3)/8[40], so that
they provide, without any calculation, the required Hermitian
representation d?2. They also allow the matrix elements of
W(6,,) to be computed exactly using low-order Gauss Leg-
endre quadratures. To summarize, our partial wave represen-
tation is given by

well. Detailed expressions of these operators in this coordi-

nate system can be found [i@8].

Next we choose a partial wave representatiQif(,).
Let us first recall that, whem is frozen at its saddle point
value /4, the *P° wave function®*(R,€,) can be written
in full generality [38,39 as the product of a function
#*(R,01,) by a symmetrized Wigner functio®?; (Q5)
[39,40. The latter can be expressed in terms#g and of
the polar angle®), and 0, of k; andk, in the laboratory
frame as

c0sf,+ cosb,
Dot (Qa)=————5— (24
2 oS>~

At this stage, it is convenient to eliminate the Euler anglesh with n zerosr; ,i

from the dynamical treatment, to get rid of tRe 2 singu-
larity due toTq,_ in Eq. (14), and to work on a standard inner

N+ 1cos— P Y(coshy,) D

X A(Qy)= 5

1(Q3), (29

where/" is connected with the relative angular momentum of
the electron pair and varies from 0 4G ax-

To solve the system of coupled radial differential equa-
tions obtained by restricting Eq(26) to the subspace
spanned by the,(6,,), we project it on the radial basis
formed by then normalized Lagrange functions

hi(r)=(=1)'Jri(1-

S(@n+3)l 3G (r)
'(n+3)| r—ry’

(30

associated to the shifted Jacobi polynon@4f'(r) of degree
=1,2, ... n within the interval of defini-
tion [0,1] [see [41] for the original presentation of the
Lagrange mesh method, which is a particularly convenient

region of unit hyperradius. This is accomplished by introduc-formulation of the better known discrete variable representa-

ing the scaled hyperradius= R/R,, setting
I(Q3)1

premultiplying Eq.(14) by Rqr, and finally projecting it on
D1 (Q3). We then arrive at

21
—r+ = 5(r—1)

DK(R,Q4)=Ryr ¢X(r,6;2) D} (25

J 3
0104
2 or 1+ )+4t +8 27Z\2Rqr

<

+RorW(612) — RgrzEk} o(r,0,)=0, O=r<1,

(26)

tion (DVR) [42]]. These functions, which form an orthonor-
mal basis, display the appropriate behavior at both ends of
the definition interval: they vanish as’? atr=0 and take
nonzero values at=1, thus allowing a loss of flux through
the hypersurfaceR=R,. The associated representation is
most accurate near 0 and 1, where the zeros of the Jacobi
polynomial are accumulated: these are the important regions
in our treatment, since thR matrix condition,expressed at
r=1, involves the scalar product®*|®€) of the ®* with

the short-ranged®®. In addition, exact analytical expressions
can be obtained for the matrix elements of all radial opera-
tors, in accordance with the general property of the Lagrange
mesh methodsee, for instancg43]).
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The computation of the overlag®*|®®) involves inte- AL B B B N
grations overR, 6,,, and Q5. The latter is obvious if one
observes thatb® depends on(); through the very factor
D3, (Q3). The remaining ones are performed using Gauss
Legendre quadratures.

Apart from the few quadratures pointed out above, the
numerical work involves only elementary operations of lin-
ear algebra which we complete using the standard routines
from the LAPACK library [44]. The important convergence
parameters in this approach arg,,, the highest relative
angular momentum included in the partial wave representa-
tion (29), andn, the number of radial basis functiof30).

In the outer region, we propagate the angular correlation
pattern overR which, due to the semiclassical approxima-
tion, plays the role of a “time” variable. The numerical
scheme used was developed previously within the frame-
work of the EWRM: a detailed account of it can be found in
[45] and[30,31]. Here, we only point out that the relevant
parameters in this scheme ang,, the number of points

where the angular pattern is discretizatt, the constant
“time” step; andR.., the end point of the propagation.

2

[$(R.0,,)I

|6(R,0,,)"

FIG. 1. (@) | ¢(R, 61)|? at R, (dashed lingsand atR., (continu-
ous lineg in arbitrary units versu®,, in degrees from three calcu-
lations which differ by their choice of the matching radRg The
1. Numerical properties three curves aR, peak at increasing values éf, asR increases
. ) ) . from 15 to 20 and finally to 30 a.u., whereas the three curvés, at
Let us start by inspecting the numerical properties of ourgincide. (b) |6(R,6:,)|2 at R, in arbitrary units versusg;, in
scheme in the illustrative case of DPI of He B&=6 eV degrees from calculations performed in théong dashed linesV
under equal energy sharing conditions. (short dashed lingsand A (continuous linesgauge, respectively.
First of all, we consider the convergence rate, assumingh each gauge, the calculations are reported for four different
that convergence is obtained when the increase of any pa&hoices of the He ground-state wave functisee text All plots
rameter leave$® (R..,61,)|? unchanged visibly. For a cal- refer to DPI of He aE,;=E,=3 eV.
culation performed wittRy=15 a.u., this is achieved for
=15/ ma=5, ny,=50,dt=0.01a.u., an®R.,=10" a.u. The first observe that they are gauge dependent. Next we note
low value of /i in agreement with previous analysis of that there is a dependence on the helium ground-state wave
experimental results based on exact and complete parametfiinction, which is very pronounced in tie moderate in the
zations of the angular dependence of the cross sedtifils V> and insignificant in theA gauge. All the ground-state
The low value ofn is one more illustration of the power of Wave functions used, however, are of a comparable accuracy,
Lagrange mesh techniqupsl]. Accordingly, the computing I We measure the latter, according to common practice, from

times, even on our 25 Mflops down-market workstation, rethe resulting value of the energy: namely=—2.9020,
main very short: 20 sec for the inner region calculation, 1 sec” 2-90244,—2.903 24, and-2.903 717 9 for the two, three,

for the outer region propagation. six, and twenty parameter wave functio@/—49, respec-

Next we must check that our results become independeﬁEVe|Y- But it is well known from photoionization studies that
of R, as soon as the latter turns large enough for the semNergy, on its own, does not provide a thorough test of the
classical and adiabatic approximations to be valid in the exwave function: the low-amplitude parts of the latter, which
ternal region. From the upper part of Fig. 1, we conclude thagontribute only little to the total energy, are particularly ill-
this independence is achieved fBg=15. In addition, by teste_d. The inspection of the third-order Hylleraas wave
comparing the curvekp(Ry, 01,)|2 obtained for increasing function,
values ofR,, we observe that the angular pattern becomes U (R ~181R(cosa -+ sin a)
more sharply peaked around increasing value9.gf Be- o(R a, b1p)xe

C. Results

sides, comgaring anyé(Rg, 012)|? to th_e corresponding ><[1+0.29?\/Wa003012
|#(R..,012)|%, we note the same evolution of the angular
pattern. The latter indeed reflects the gradual construction of +0.13R?*(coSa—sirfa)], (31)

the angular correlations when the two electrons move away

from the ionic core. Parta) of Fig. 1 shows that these cor- shows that a low amplitude is obtainedRfis large, or if«

relations may be included as well by increasing the size ofs close tow/4, or if 6,, is close to 0. Accordingly, our

the inner region where a full quantum treatment is applied, ocalculations, which are performed @t /4, are likely to be

by propagating semiclassically over the radial coordinateparticularly sensitive to the inaccuracies of the ground-state

This point is discussed in more detail [i45]. wave function. Recalling from Eqg10) and (11) that the
The behavior of our results with respect to the gaugeransition operator scales RS %, R, R™2in thelL, V, andA

transformations is illustrated on the lower part of Fig. 1. Wegauge, respectively, we expect this sensitivity to be impor-
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L L results obtained under the conditions of validity of the
= /4 model, that is to say, at equal sharing of the excess
energy between the two electrons and, by analogy with the
EWRM, at low excess energy. At 20 eV excess energy, we
observe a good qualitative agreement between experiment
and theory, whatever the direction kf (Fig. 2): we repro-
duce the double lobe experimental structure, but the angle
0 150 20 360 between the two lobes is a bit too large, which indicates an
8, underestimation of the angular correlation. This agreement
T T T seems to improve at 6 eV excess energy, as both sides of the
main peak are well reproduced in péilj of Fig. 2, although
some disagreement remains in p@t This tendency is con-
firmed at 1 eV, where the position and width of the main
peak are obtained quantitativelyee partf)].

The hypothesis that our model improves as energy de-
creases will be tested more carefully in the near future by
TDCS measurements in helium at 0.1 €3]. For the mo-
ment, we focus on the energy domain from about 1 eV to 20
eV, where numerous measurements are available, and we
turn to representative quantities, the energy evolution of
which can be represented in a compact form.

The TDCS obtained at equal energy sharing is well
known to factor out exactly into geometricalfactor, which
can be set up from the Stokes parameters of the incident light
and trigonometric functions of the spherical angles of the
e e two electrons, and aorrelation factor depending only on
90 180 270 360 the correlation anglé#,, and on the total energk, which
8, 8, contains all the dynamical information. Previous calculations
FIG. 2. of¥. . (in arbitrary units measured for He &= E within the Wannier mechanisfii6—21] have predicted this

C o Ty _ y o 17=2  factor to be a Gaussian function ofr(- 6,,) with a full
:E/2Aand for geometries whelq ,k,, andz lie in the same plane, \yidgth at half maximum(FWHM) T'(E) proportional to the
with z along the main axis of pola[ization. The direction of one gne-fourth power of the excess energy. The values of the
electron, marked by the value 6{=(z,k,), is fixed within a finite  proportionality coefficient reported by the various authors
angular sector. The direction of the other electron sweeps the wholgere notably different:I';=103, 91, 66.7°(eV) U4 in
plane. It is marked by the angi®,=(z,k,), which varies from 0°  [20,18, and[16], respectively. Other authofg2,23, how-
to 360°. Continuous line: present calculations, taking account of thever, demonstrate that the Wannier mechanism itself, which
opening angle fo#,, not for §,. Points with error bars: experiments s valid only in the Coulomb zona,< R$(4Z—1)/E\/§
from [50] at E=20 eV with 123.5%6,<140.5° (), 106.5%<61  \jth a, the Bohr radius, does not determine the final angular
=<123.5°(b), and 89.5%6,<106.5°(c), from [1]atE=6 eVwith gistribution. The latter can be derived, within this mecha-
20°<6,<40° (d) and 40°<0,<65° (¢), and atE=1 eV with g only if a specific initial condition is introduced at the
40°< 6,<65° (f). boundary of the inner reaction zone. The initial conditions

. ) o which are implicitly assumed in the calculations leading to
tant in theL, moderate in th&/, and hopefully nonsignificant the Gaussian model for the correlation fadtb6—21] have

in the A gauge. This is exactly what is observed on the lowelyeen found in[22] to be rather unrealistic. Despite these
part of Fig. 1. From this analysis, we conclude thiatwe  oa1nesses of the Gaussian model, and despite the fact that
will have better chances to achieve gauge independenGge anergy domain of validity of the Wannier threshold
when we consider the general 6D ca®;within the present o hanism itself has never been fully established, it has be-
a= /4 model, the best results are obtained in the accelerac-Ome common practice to derie values by fitting the ex-

tion gauge, which is the one used throughout the calculationsyessions derived from the Gaussian model to the measured

presentre]zd bdelowl.) ‘ of th del s that absolutE S sections. We have used the same procedure here to
Another drawback of the present model is that absolute,, 4ctT values from ourb initio calculations: this we do

values of the cross sections cannot be obtained. This is bﬁist for the sake of comparison with experimeritavalues:

cause thea= /4 constraint forbids populat|_ng the smgle_a critical comparison between our present results and the
escape channels, leading to a large systematic overestimatigfl, \<cian model is reported below

of the double escape cross sections. Accordir)gly, all CroSS The results are summarized on péai of Fig. 3. The
sections presented below have been renormalized 0 expetiyreement between our results and experiment is excellent in
ment. the eV range, but it seems to deteriorate as the energy
reaches the tens of eV range, as already noted from the an-
gular patterns on Fig. 2. This might indicate that the energy
Figure 2 compares our calculations with the most recentlys then high enough to liberate the electron pair from the
measured TDCS for heliuml,50.. We have selected the influence of the potential surface, making deviations from

.22)
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2. A comparison with recently measured TDCS
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FIG. 4. |#(R,01,)|? at R,, in arbitrary units versug,, in de-
grees for increasing total energi@és eV): 0.01(a), 0.1 (b), 10(c),
and 20(d). Continuous lines: present calculation. Dashed lines: best

P S T R R fit of the Gaussian prediction to the calculated functisee text
0 90 180 270 360
012

pansion inT— 6, in the external regionthe inner region

FIG. 3. (a) Full width at half maximuni™ of the angular corre-  calculation, and hence the initial condition Rg, being un-
lation function in the Gaussian approximation degreegversusE  changed. The result is represented by the short dashed curve
(in eV) on a semilogarithmic scale. Continuous line: present stanon part(a) of Fig. 3. The latter lies above the former con-
dard calculation. Short dashed line: present calculation with a quagnyous line throughout the energy range, with the gap be-
dratic expansion of the three-body potential with respect#o ( tween the two curves increasing on the low-energy side. This
— 619 in the outer region. Symbols: experimental results with means that the quadratic approximation underestimates the
crosseq 1], right triangles[46], plus signs[51], circles[52], and angular correlation, all the worse as energy decreases. This is

squareg53]. The error bars of the experimental results, which Areaasily understood from the,, cuts of the three-body poten-
almost masked by the symbols used, have been omitted for legibils : : S
ity. The long dashed line is the reducg® of the fit used to extract l[lals displayed on partb) of Fig. 3. The exact potential lies

the FWHM from our standard calculatigsee text, the value of abqvte_' Its ?;Iadr_?ﬂc f\pproxmatlon throuiupuaét:/e r?ngehof
which is 1 at 0.3 eV(b) Cut of the three-body potentigin a.u) Varzla '?n 01012 '180°e<V\10288rV;S rehmalg.WI n 00 lec:
along 0, (in degreepat R=10 a.u. andx= /4. Continuous line: other for| 6~ =< , but they diverge very rapidly

exact potential. Dashed line: quadratic expansionsin-@y,). o_utside thi_s interval, with the _exact poter_ltial displaying infi-
nite repulsive walls, whereas its quadratic approximation re-

_ , . . .. mains finite and attractive everywhere. It is this lack of a
the a=/4 ridge compatible with double escape. If this is ¢jassically forbidden region which explains the poor perfor-
the case, relaxing the constraimt= 7/4, either by allowing  hance of the quadratic approximation.
small a motions aroundn/4 according to the Wannier —|ntegration of the TDCS over the direction of one elec-
mechanism, or by letting this variable be free, should remedy;o's momentum yields the doubly differential cross section
this deficiency. But this disagreement could also result, tc(DDCS). The shape of this DDCS is well known to be con-
some extent, from the above-mentioned ill-defined charactegjjeq by the asymmetry parametg(E). The physical con-
of I, . _ . _ tents of the latter obviously are poorer than thal ofHow-

_ A quantitative esUmg\te of the Iatter. is given in p@l of ever, by contrast tol'(E), B(E) is defined from first
Fig. 3 by the reduceg associated with the best fit of the ,rinciples without relying upon any approximation. This
Gaussian model to our numerical calculations. Its rapid inyakes it a better testing bench for our method. An excellent
crease with increasing energy reflects the growing disagregygreement is observed on Fig. 5 between our calculations
ment between the symmetric shape of the calculatedny gxperiment over the entire energy range, given the ex-
|®(R..,6:7)|° and the asymmetric shape of the correspondperimental uncertainties. A poor performance of the qua-

ing ansatz based on the Gaussian approximation, as shown dfp,+ic approximation inr— 6, is observed as before.
more detail on Fig. 4. The Gaussian approximation indeed

seems to be acceptable below 1 eV. Below this limit, we
. ’ V. CONCLUSION
have fitted a two-parametefs=1"5E” law to our computed
values of the FWHM and founl;=69.7° (eV) ” and y We have presented a method for computing the double

=0.19. They value is within 25% of the 0.25 value pre- photoionization cross sections of He and, more generally, of
dicted in [16-21. The I'y value is close to the two electron atoms. This method @b initio. The only ap-
66.7° (eV) Y*value of[16]. This relative agreement, how- proximations are the semiclassical treatment of the motion
ever, should be considered as accidental, given the arbitraigver the hyperradiuR, and the local neglect of nonadiabatic
assumptions leading to the Gaussian mg¢agl23. radial couplings, which are applied in the external redion

In order to test the Wannier assumption of smg mo-  >R: the fact that our results do not dependRgpanymore,
tions arounds, we have performed additional calculations as soon af, exceeds about 10 a.u., demonstrates the valid-
with the three-body potential replaced by its quadratic exdity of these approximations. It is worth noting that the elec-
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Dashed line: present calculation with a quadratic expansion of th
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Symbols: experimental results with diamor{@g}], circles[55] as
cited in[8], and up triangle$56] and[57] as cited in[56].
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We have presented an application of this general method
to a model problem of reduced dimensionality: double
photoionization of He witha=arctan(;/r,) frozen at its
saddle point valuer/4 by analogy with EWRM30,31]. We
have thus proved that the method proposed is sound and
numerically effective.

The implementation of the method in the general case
where « is free is under progress. We anticipate that the
gauge dependence, the lack alfsolutecross sections, and
the deterioration of the accuracy on the high-energy side,
observed within thex= 77/4 model, will be remedied by re-
|axing the constraint on this radial correlation angle. Detailed
gomparison with other existing theories will be given in this
general six-dimensional case.
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