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Double photoionization of helium: The hypersphericalR-matrix method with semiclassical
outgoing waves
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We present anab initio scheme for computing the wave function of the pair of electrons projected into the
double continuum of the helium atom by a one-photon dipolar excitation. The scheme uses the Floquet
approach to convert the time-dependent Schro¨dinger equation into an infinite set of coupled time-independent
equations. The latter reduces to a single stationary inhomogeneous Schro¨dinger equation in the weak-field
limit, which is relevant here. This equation is solved using anR matrix approach to combine a quantum
treatment of all variables within the hypersphereR<R0 with a semiclassical treatment of theR motion outside
this hypersphere. We apply this approach to a model helium atom wherer 15r 2. We thus demonstrate the
feasibility of the method, and obtain insights into the dynamics of the double photoionization of helium at
equal sharing of a low excess energy.@S1050-2947~99!01210-X#

PACS number~s!: 32.80.Fb
-
e
r
he
te
of
e
a

ee
th
ir
to
d

rd
o

an

ti
co
.
e
g
ta

e
o
th
v

a
a
a
ly

to
ody

tial
r

ere
-

,
ave
ry
the

ery
I, a
ua-
re
ore.
re
e
ag-

-

I. INTRODUCTION

Double photoionization~DPI! of He, though an elemen
tary process of atomic physics, remains a challenge for
perimentalists as well as for theoreticians. This paradox
sults from the DPI process being entirely due to t
electronic correlations in the initial and in the final sta
Experimentalists are then faced with the measurement
very low signal, and theoreticians are faced with the nonp
turbative description of a correlated motion not only in
bound but also in a continuum state.

The interest in this low rate photoprocess has b
boosted in recent years by the great improvements of
experimental tools, namely the advent of second- and th
generation synchrotron facilities delivering intense pho
beams, as well as the development of position-sensitive
tectors with high spatial and temporal resolution. Acco
ingly, detailed information on the most challenging case
near-threshold DPI of He has become recently available
is still under progress right now@1–3#.

Important advances have been achieved on the theore
side as well. However, no single method has yet been re
nized as providing a definitive description of the process

This is because most methods used so far rely upon
tending to DPI the numerical schemes designed for sin
photoionization studies: one looks for a solution of the s
tionary homogeneous Schro¨dinger equation satisfying th
appropriate photoionization boundary condition. But f
double ionization, this condition becomes very difficult bo
to formulate and to enforce: the asymptotic form of the wa
function itself is still the object of intensive research@4–7#,
and its matching to an accurate short-rangeL2 solution has
not been accomplished yet. One is then led to introduce
proximations: in fact, most approaches eligible in the ne
threshold domain extend over the entire configuration sp
a representation of the wave function which is valid on
PRA 601050-2947/99/60~5!/3667~10!/$15.00
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within a restricted region. This restricted region turns out
be the asymptotic region, in methods based on three-b
Coulomb asymptotic wave functions@8–10#, or, inversely,
the short-range region, inL2 methods@11–13#, or else the
neighborhood of the saddle point of the three-body poten
surface in methods@14–23# which make use of the Wannie
@24# analysis.

New promising approaches have emerged recently, wh
these difficulties are avoided by relying, explicitly or implic
itly, upon the time-dependent Schro¨dinger equation. In@25#,
the time-dependent Schro¨dinger equation is solved directly
but the cross sections are not extracted from the final w
packet yet. In@26–31#, the authors consider the stationa
inhomogeneous equation, which can be deduced from
latter by taking the wave packet in the Floquet form.

The approach we present in this paper belongs to this v
last class of methods. It is described in Sec. II. In Sec. II
numerical scheme is proposed to solve the resulting eq
tions. In Sec. IV, we apply it to a model helium atom whe
the two electrons remain at equal distances from the c
We present our conclusions, along with directions for futu
work, in Sec. V. In the following, we use atomic units for th
mechanical quantities and Gaussian units for the electrom
netic ones.

II. THEORETICAL FRAME

Let us consider a helium atom in the ground stateC0 with
energyE0 of its HamiltonianH0. At time t50, we switch on
an external field which oscillates at the frequencyv. The
atom-field interactionV(t) oscillates with the same fre
quency. The further evolution of the atomic wave functionC
is governed by the time-dependent Schro¨dinger equation

ı
]C

]t
5@H01V~ t !#C~ t !. ~1!
3667 ©1999 The American Physical Society
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According to Floquet’s theorem~see @32# and references
therein!, the solution of Eq.~1! can be searched for, with n
loss of generality, in the form of a phase factor exp(2ıEt),
involving a ‘‘quasienergy’’E, times a periodic function of
time F(t) with the periodT52p/v. By expandingF(t)
andV(t) in Fourier series

V~ t !5 (
k52`

1`

Vke
2ıkvt, ~2a!

C~ t !5e2ıEtF~ t !5e2ıEt (
n52`

1`

Fne2ınvt, ~2b!

the original time-dependent problem is turned into the in
nite set of coupled stationary equations

~E1nv2H0!Fn5 (
k52`

1`

VkFn2k , n52`, . . . ,1`,

~3a!

(
n52`

1`

Fn5C0 . ~3b!

Extensive use has been made of the Floquet equations~3! for
the study of multiphoton processes in intense laser fie
@33#. But they can shed light as well on the weak-field ca
where one-photon absorption is the only relevant proc
Then, n runs only from 0 to 1 andk reduces to the single
value 11, so that Eq.~3! reduces to a system of thre
coupled equations involving the three unknown quantit
E,F0 ,F1. To lowest order in the field, the solution is ob
tained by settingF0.C0 andE.E0, so thatF1 satisfies the
stationary inhomogeneous equation

~E01v2H0!F15V11C0 . ~4!

An outgoing wave boundary condition is appropriate for t
Fourier component of the wave packet~2b!. Equation~4!,
which is central to our approach, has already been u
in previous photon- or electron-impact ionization stud
@29–31,26–28#.

We specialize here on the case where the final energE
5E01v lies above the double ionization threshold. In th
case, the behavior ofF1 in the region of configuration spac
whereboth r1 andr 2 tend to infinity reflects the dynamics o
the double escape process. By contrast, its behavior w
either r1 or r 2 tends to infinity corresponds to the competi
process of single escape. We focus here on the double
ization process which is best described using as coordin
the hyperspherical radiusR5Ar 1

21r 2
2, the hyperanglea

5arctan(r1 /r2), and a setV4 of four angles specifying the
directions of the two electrons, withV5 denoting the set
$a,V4% as often as possible, for compactness. T
asymptotic behavior ofF1 corresponding to double escap
can then be quantified@34# as

lim
R→`

F1~R,V5!5
eıKR1ıj(V5)ln(KR)

R5/2
F~V5!, aÞ0,p/2.

~5!
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In Eq. ~5!, K is the module of the six-dimensional asympto
momentum KW 5(k1 ,k2) defined from the three-dimensiona
asymptotic momentak1 and k2 of the two electrons. The
function j(V5) is given byZ/k11Z/k221/uk12k2u, where
Z is the nuclear charge, namelyZ52. The functionF(V5) is
the double photoionization amplitude. The asymptotic s
dimensional current associated toF1 is given to lowest order
in 1/R by JW5KuF1u2RW /R, where RW 5(r1 ,r2). Now we set
V45$V1 ,V2%5$(u1 ,w1),(u2 ,w2)%, where (u1 ,w1) and
(u2 ,w2) are the spherical angles of the asymptotic mome
k1 andk2, and we introduce the asymptotic kinetic energ
E1 and E2 of the two electrons, which satisfyE11E25E
andE1 /E25tan2a. The surface element on the hypersphe
SR of hyperradius R can then be written dSW

5R5sin 2a dE1dV1dV2 RW /4ER, so that the asymptotic flux
Fout5*S`

JW•dSW of JW through a hypersphere of infinite hype
radius reads

Fout5
K

4E
lim

R→`
E

SR

R5uF1u2sin 2a dE1 dV1 dV2 . ~6!

The total double ionization cross sections (g,2e) , defined as
the ratio ofFout to the incoming photon fluxFin , is indepen-
dent of the amplitude of the electric field associated with
incident plane electromagnetic wave. Accordingly, we
sume the latter to be unity, so thatFin5c/8pv with c the
speed of light, and we get

s (g,2e)5
2pvK

c E
lim

R→`
E

SR

R5uF1u2sin 2a dE1 dV1 dV2 .

~7!

The expressions of the various differential cross sections
low, with the triple differential cross section~TDCS!, for
instance, being given by

s (g,2e)
(3) ~E1 ,V1 ,V2!5

2pvK

c E
lim

R→`

R5uF1u2sin 2a. ~8!

The limits in Eqs.~7! and ~8! are easily taken by replacin
R5uF1u2 by uF(V5)u2 according to Eq.~5!. Computing the
various DPI cross sections then amounts to solving Eq.~4!
subject to the outgoing wave boundary condition up to v
large R. At this point, it is convenient to write down th
right-hand side of Eq.~4! explicitly in the dipole approxima-
tion. Assuming, with no loss of generality, that the unit ele
tric field is directed along thez axis, we get

V11C05@T~rW1!1T~rW2!#C0 , ~9!

where the dipole transition operatorT(rW) assumes differen
forms in the length (L), the velocity (V), or the acceleration
~A! gauges:

TL~rW !5
1

2
z, ~10a!

TV~rW !5
1

2v

]

]z
, ~10b!
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TA~rW !5
Z

2v2

z

r 3
. ~10c!

Note that, when acting on a fully symmetric1Se state,T(rW)
in Eq. ~9! can be replaced in theV gauge by

TV~rW !5
1

2v

z

r

]

]r
. ~11!

The physical results being invariant if the right-hand side
Eq. ~4!—and henceF1—is multiplied by an arbitrary phas
factor, we have taken positive signs on the right-hand sid
each member of Eq.~10!, for simplicity. Note that, although
the right-hand side of Eq.~4! has a gauge-dependent form
the solutionF1 must be gauge independent.

To conclude, let us stress that this theoretical formulati
based on astationary inhomogeneousequation, combines the
advantages of a nonstationary approach, where the diffi
ties of defining and imposing a double photoionizati
asymptotic condition are avoided, with those of a station
homogeneous approach, where optimized numerical meth
have long been available.

III. NUMERICAL SCHEME

A. A short sketch

Basic to our scheme is the splitting of configuration spa
into an inner regionR<R0 and an outer regionR.R0. In the
inner region, we apply a quantum treatment to all dynam
variables includingR. In the outer region, by contrast, w
restrict the quantum treatment to the angular variablesV5,
and treatR semiclassically. Accordingly, we must takeR0
large enough for the semiclassical treatment of theR motion
to be valid in the external region.

Using theR matrix technique@35# in the inner region, we
derive from Eq.~4! a linear inhomogeneous relation betwe
the values of some set of radial channel functionsf j (R) and
the values of their derivativesf j8(R) at the boundaryR0. Let
us emphasize that here, unlike in standardR matrix treat-
ments, the derivatives are taken with respect to the hype
dius R instead of the radius of a single outgoing particle.
addition, due to the right-hand side in Eq.~4!, theR matrix
condition becomes inhomogeneous. Next, we perform
frame transformation to locally adapted angular par
waves@36# at R0: the locally uncoupled radial channel fun
tions F j (R) which result in the adiabatic approximation sa
isfy the frame transformedR matrix condition. Again,R0
must be taken large, so that the adiabatic approximatio
valid from R0 outwards.

To these uncoupled radial channel functions we imp
the behavior of outgoing semiclassical waves: a linear ho
geneous relation follows between theF j (R) and their deriva-
tives F j8(R) at anyR>R0.

Next, we solve the two independent linear relations o
tained so far for the radial channel functionsF j (R0) at the
boundary, and we construct the full wave functio
F1(R0 ,V5). We are then left with the task of propagating
outwards inR using the appropriate semiclassical scheme

To summarize, the originality of this scheme lies in t
combination of theR matrix technique with the semiclass
f

of
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cal approximation in the outer region using the hypersph
cal radius as the matching coordinate. The following secti
give the detailed equations.

B. The inner region equations

Let us first rewrite Eq.~4! more explicitly. Inserting
F1(R,V5)5(R5/2sin 2a)21F(R,V5) and premultiplying by
2R5/2sin 2a, we get

S 2
1

2

]2

]R21TV5
1V~R,V5!2EDF~R,V5!5FG~R,V5!.

~12!

The first two terms on the left-hand side describe the kine
energy of the system, with the radial contribution singl
out. The next term is the three-body interaction potential

V~R,V5!52
Z

r 1
2

Z

r 2
1

1

r 12
, ~13!

and the right-hand sideFG(R,V5)52R5/2sin 2aV11C0 can
be made explicit using Eqs.~9!–~11!. Following theR ma-
trix technique, we consider now the real eigenvaluesEk and
the associated orthonormal eigenvectorsFk(R,V5) of the
left-hand side operator in Eq.~12! completed by the Bloch
term @37# required to ensure that it is Hermitian over th
finite inner region. They satisfy

S 2
1

2

]2

]R21
1

2
d~R2R0!

]

]R
1TV5

1V~R,V5!2EkD
3Fk~R,V5!50, R<R0 . ~14!

Then, we premultiply Eq.~12! by Fk* , Eq. ~14! by F* ,
substract the complex conjugate of the latter from
former, and integrate over the inner region with the volum
element now given bydRdV55dRdadV4/4 due to the
change of unknown functions performed. The contributio
of the potentialV(R,V5) cancel each other. Those of th
Hermitian operatorTV5

cancel each other as well. The re

maining terms are computed by expandingF and theFk

into partial waves as

F~R,V5!5(
m

f m~R! xm~V5!, ~15a!

Fk~R,V5!5(
m

f m
k ~R! xm~V5!. ~15b!

Observing that the radial functions in Eqs.~15! vanish at
least as quickly asR5/2 asR tends to zero, and assuming th
the Fk form a complete orthonormal basis over the fin
inner region, we get the announcedR matrix type relation

f 5Rf 81I, ~16a!

Im~R0!5(
k

^FkuFG&
Ek2E

f m
k ~R0!, ~16b!
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R mm8~R0!5
1

2 (
k

f m
k ~R0! f m8

k* ~R0!

Ek2E
. ~16c!

C. The outer region equations

Let us now introduce, at any fixed hyperradiusR in the
outer region, the locally adapted angular basis
$XM(R;V5)% defined by

@TV5
1V~R,V5!2EM~R!#XM~R;V5!50, R>R0 .

~17!

Note that our notation distinguishes the dependence of
XM on the anglesV5 from their parametric dependence onR,
which is expected to be smooth at largeR. This new basis is
related to the original one by a unitary transformation, wh
also connects the original radial channel functions to the n
ones denotedFM(R). This is expressed in matrix notation a

X~R;V5!5U~R! x~V5!, ~18a!

F~R!5U~R! f ~R!. ~18b!

In deriving the new radial equations from Eq.~12!, we intro-
duce the following outer region approximations:~i! we ne-
glect the inhomogeneous term, which decays exponent
with increasingR; ~ii ! we neglect the nonadiabatic coupling
due to the parametric radial dependence of theXM . We get
then

S 2
1

2

]2

]R21EM~R!2EDFM~R!50, ~19!

which shows that the new channels are uncoupled, with
radial motion in each channel governed by the channel a
batic potential. This situation lends itself particularly well
the implementation of the semiclassical approximation
fined by

FM~R!5
1

AupM~R!u
eı*R0

R pM(R8)dR8F̃M~R!, ~20a!

pM~R!5A2@E2EM~R!#, ~20b!

d2F̃M

dR2 !1 and U 1

pM
2

dpM

dR U!1. ~20c!

The relations~20! ensure an outgoing behavior in the op
channels and an exponentially decaying behavior in
closed channels, in agreement with the physical meanin
the wave functionF. In addition, a relation of proportional
ity is obtained betweenFM andFM8 , which can be written in
matrix form as

F85ıp F, ~21!

wherep is the diagonal matrix of the semiclassical mome
in each channel.
t

e

h
w

lly

e
a-

-

e
of

a

D. Matching

Letting U(R0) act on Eq.~16a!, expressing the continuity
of the wave function and its first radial derivative at th
boundary, and taking account of the proportionality relati
given by Eq.~21! at R0, we get the following set of linear
inhomogeneous equations for theFM(R0):

~ ıp URU† p2p!F52p UI at R5R0 . ~22!

Once we have solved Eq.~22!, we can set up the full wave
function F1(R0 ,V5) at the boundary. Its knowledge i
enough to initiate a semiclassical radial propagation up to
large a hyperradius as needed.

To summarize, our method sets upF1(R0 ,V5) by com-
bining a quantum treatment of all angular variablesV5 with
a specific treatment of the hyperradiusR, based on quantum
mechanics in the inner region, but on the semiclassical
proximation in the outer region. By completing it with th
semiclassical propagation scheme, we can ob
F1(R` ,V5), and accordingly the observable cross sectio
The matching radiusR0 must be chosen large enough for th
semiclassical and adiabatic approximations to be valid in
external region. The originality of our approach, compared
previous ones based on the same stationary inhomogen
equation@26–31#, is that the solution of the latter satisfyin
the appropriate outgoing wave boundary condition is o
tained over the entire configuration space, that is to say, f
the inner reaction zone up to the asymptotic region, wh
the cross sections can be extracted directly.

IV. FIRST APPLICATION

A. The a5p/4 model

We wanted to perform a quick test of our method on
current desk computer. This is why we have searched fo
model problem of reduced dimensionality to apply it to.

The pioneering work of Wannier@24# is at the origin of
many such models for the near-threshold double photo
ization of two electron atoms. Wannier considered the cl
sical motion of the representative point (R,a,u12) of a two-
electronSstate, which is determined, at very low energy,
the structure of the three-body potential surfa
V(R,a,u12)—with the obvious notationu125(k1 ,k2). Bas-
ing his argument on the well known saddle shape of t
surface at fixedR, as well as on the dissipative character
the equations of a related simulated system, he conclu
that all trajectories leading to double escape pass, at s
critical radial distance, through the eye of a needle set ou
the saddle point (a5p/4,u125p). The idea followed that
many features of near-threshold double escape could be
tained from a study of the dynamics in the neighborhood
the saddle point, where the unstablea motion decouples
from the stableu12 motion. This decoupling was later ex
tended beyond the vicinity of the saddle point in semiclas
cal studies of the motion at fixeda5p/4 and freeu12 @ex-
tended Wannier ridge model~EWRM! @30,31##.

By analogy with EWRM studies, we restrict our gener
approach by settinga5p/4, to define a first testing bench o
reduced dimensionality for our method. As a result, our c
culations will only concern the equal energy sharing situ
tion, sinceE1 /E25tan2a.
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B. Numerical implementation

The main tasks in our method are~i! to solve the inner
region eigenvalue equation~14! for eigenvectors expanded i
angular partial waves according to Eq.~15!; ~ii ! to compute
the overlapŝFkuFG& of the right-hand side of Eq.~12! with
these eigenvectors over the finite inner region; and~iii ! to
solve the fixedR eigenvalue equation~17! at the boundary,
which is merely a particular case of~i!. Once these tasks ar
completed, theR matrix andI vector can be assembled a
cording to Eq.~16!, the matrixp of the semiclassical mo
menta can be set up from Eq.~20!, and the unitary matrixU
is readily available. It is then straightforward to solve E
~22! for the wave function at the boundary.

To make clear how these tasks are performed within
present model, we first complete the specification of the
ordinate system. Sincea5p/4, V5 reduces toV4, which we
write asV45$u12,V3%, whereV3 is the set of three Eule
angles associated with the rotation, which takes the lab
tory frameOxyz into the body fixed frameOXYZsuch that
Ẑ} r̂13 r̂2 and X̂} r̂11 r̂2 as in @38#. With these coordinates
the differential operatorTV5

reduces to

TV5
5

1

2R2 S L21l 22
1

4D , ~23!

where L5l 11l 2 is the total angular momentum of th
electron pair, acting onV3, and l 5l 12l 2 is the relative
angular momentum of the two electrons, which acts onu12 as
well. Detailed expressions of these operators in this coo
nate system can be found in@38#.

Next we choose a partial wave representationxm(V4).
Let us first recall that, whena is frozen at its saddle poin
valuep/4, the 1Po wave functionFk(R,V4) can be written
in full generality @38,39# as the product of a function
fk(R,u12) by a symmetrized Wigner functionD01

11(V3)
@39,40#. The latter can be expressed in terms ofu12 and of
the polar anglesu1 and u2 of k1 and k2 in the laboratory
frame as

D01
11~V3!52

cosu11cosu2

2 cos
u12

2

. ~24!

At this stage, it is convenient to eliminate the Euler ang
from the dynamical treatment, to get rid of theR22 singu-
larity due toTV5

in Eq. ~14!, and to work on a standard inne
region of unit hyperradius. This is accomplished by introdu
ing the scaled hyperradiusr 5R/R0, setting

Fk~R,V4!5R0 r wk~r ,u12! D01
11~V3!, ~25!

premultiplying Eq.~14! by R0r , and finally projecting it on
D01

11(V3). We then arrive at

F2
1

2
r

]2

]r 2 r 1
1

2
d~r 21!S 11

]

]r D14tu121
3

8
22ZA2R0r

1R0rW~u12!2R0
2r 2EkGwk~r ,u12!50, 0<r<1,

~26!
.

e
-

a-

i-

s

-

with the following definitions for the angular operators:

tu1252
1

2 sinu12

]

]u12
sinu12

]

]u12
2

cosu122 1

4sin2u12
,

~27a!

W~u12!5
1

A12cosu12

. ~27b!

We now complete our partial wave representation by cho
ing as au12 basis the set of orthonormal vectors

gl ~u12!5Al 11d1/2,1/2
l 11/2~u12!5Al 11cos

u12

2
Pl

01~cosu12!.

~28!

The functionwk(r ,u12) must contain a cos(u12/2) factor to
cancel the@cos(u12/2)#21 term in D01

11(V3) and to let the
well-known node of the1Po wave function atu125p ap-
pear. Besides, the Jacobi polynomialsPl

01(cosu12) form a
complete basis for any function ofu12. Accordingly, the
gl (u12), l 50, . . . ,l max form a complete basis for theu12
dependence ofwk(r ,u12). In addition, they are eigenvector
of tu12 with the eigenvalues (2l 11)(2l 13)/8 @40#, so that
they provide, without any calculation, the required Hermiti
representation oftu12. They also allow the matrix elements o
W(u12) to be computed exactly using low-order Gauss Le
endre quadratures. To summarize, our partial wave repre
tation is given by

xl ~V4!5Al 11cos
u12

2
Pl

01~cosu12!D01
11~V3!, ~29!

wherel is connected with the relative angular momentum
the electron pair and varies from 0 tol max.

To solve the system of coupled radial differential equ
tions obtained by restricting Eq.~26! to the subspace
spanned by thegl (u12), we project it on the radial basi
formed by then normalized Lagrange functions

hi~r !5~21! iAr i~12r i !
~2n13!!!

n! ~n13!!
r 3/2

Gn
44~r !

r 2r i
, ~30!

associated to the shifted Jacobi polynomialGn
44(r ) of degree

n with n zerosr i ,i 51,2, . . . ,n within the interval of defini-
tion @0,1# @see @41# for the original presentation of the
Lagrange mesh method, which is a particularly conveni
formulation of the better known discrete variable represen
tion ~DVR! @42##. These functions, which form an orthono
mal basis, display the appropriate behavior at both end
the definition interval: they vanish asr 3/2 at r .0 and take
nonzero values atr .1, thus allowing a loss of flux through
the hypersurfaceR5R0. The associated representation
most accurate near 0 and 1, where the zeros of the Ja
polynomial are accumulated: these are the important reg
in our treatment, since theR matrix condition,expressed at
r 51, involves the scalar products^FkuFG& of the Fk with
theshort-rangeFG. In addition, exact analytical expression
can be obtained for the matrix elements of all radial ope
tors, in accordance with the general property of the Lagra
mesh method~see, for instance,@43#!.
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The computation of the overlaps^FkuFG& involves inte-
grations overR, u12, and V3. The latter is obvious if one
observes thatFG depends onV3 through the very factor
D01

11(V3). The remaining ones are performed using Ga
Legendre quadratures.

Apart from the few quadratures pointed out above,
numerical work involves only elementary operations of l
ear algebra which we complete using the standard rout
from the LAPACK library @44#. The important convergenc
parameters in this approach arel max, the highest relative
angular momentum included in the partial wave represe
tion ~29!, andn, the number of radial basis functions~30!.

In the outer region, we propagate the angular correla
pattern overR which, due to the semiclassical approxim
tion, plays the role of a ‘‘time’’ variable. The numerica
scheme used was developed previously within the fra
work of the EWRM: a detailed account of it can be found
@45# and @30,31#. Here, we only point out that the releva
parameters in this scheme arenu12

, the number of points

where the angular pattern is discretized;dt, the constant
‘‘time’’ step; and R` , the end point of the propagation.

C. Results

1. Numerical properties

Let us start by inspecting the numerical properties of
scheme in the illustrative case of DPI of He atE56 eV
under equal energy sharing conditions.

First of all, we consider the convergence rate, assum
that convergence is obtained when the increase of any
rameter leavesuF(R` ,u12)u2 unchanged visibly. For a cal
culation performed withR0515 a.u., this is achieved forn
515,l max55, nu12

550,dt50.01 a.u., andR`5104 a.u. The

low value of l max is in agreement with previous analysis
experimental results based on exact and complete param
zations of the angular dependence of the cross sections@46#.
The low value ofn is one more illustration of the power o
Lagrange mesh techniques@41#. Accordingly, the computing
times, even on our 25 Mflops down-market workstation,
main very short: 20 sec for the inner region calculation, 1
for the outer region propagation.

Next we must check that our results become independ
of R0 as soon as the latter turns large enough for the se
classical and adiabatic approximations to be valid in the
ternal region. From the upper part of Fig. 1, we conclude t
this independence is achieved forR0>15. In addition, by
comparing the curvesuf(R0 ,u12)u2 obtained for increasing
values ofR0, we observe that the angular pattern becom
more sharply peaked around increasing values ofu12. Be-
sides, comparing anyuf(R0 ,u12)u2 to the corresponding
uf(R` ,u12)u2, we note the same evolution of the angu
pattern. The latter indeed reflects the gradual constructio
the angular correlations when the two electrons move a
from the ionic core. Part~a! of Fig. 1 shows that these cor
relations may be included as well by increasing the size
the inner region where a full quantum treatment is applied
by propagating semiclassically over the radial coordina
This point is discussed in more detail in@45#.

The behavior of our results with respect to the gau
transformations is illustrated on the lower part of Fig. 1. W
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first observe that they are gauge dependent. Next we
that there is a dependence on the helium ground-state w
function, which is very pronounced in theL, moderate in the
V, and insignificant in theA gauge. All the ground-state
wave functions used, however, are of a comparable accur
if we measure the latter, according to common practice, fr
the resulting value of the energy: namely,E522.902 0,
22.902 44,22.903 24, and22.903 717 9 for the two, three
six, and twenty parameter wave functions@47–49#, respec-
tively. But it is well known from photoionization studies tha
energy, on its own, does not provide a thorough test of
wave function: the low-amplitude parts of the latter, whi
contribute only little to the total energy, are particularly il
tested. The inspection of the third-order Hylleraas wa
function,

C0~R,a,u12!}e21.815R(cosa1sin a)

3@110.29RA12sin 2a cosu12

10.132R2~cos2a2sin2a!#, ~31!

shows that a low amplitude is obtained ifR is large, or ifa
is close top/4, or if u12 is close to 0. Accordingly, our
calculations, which are performed ata5p/4, are likely to be
particularly sensitive to the inaccuracies of the ground-s
wave function. Recalling from Eqs.~10! and ~11! that the
transition operator scales asR11, R0, R22 in theL, V, andA
gauge, respectively, we expect this sensitivity to be imp

FIG. 1. ~a! uf(R,u12)u2 at R0 ~dashed lines! and atR` ~continu-
ous lines! in arbitrary units versusu12 in degrees from three calcu
lations which differ by their choice of the matching radiusR0. The
three curves atR0 peak at increasing values ofu12 asR0 increases
from 15 to 20 and finally to 30 a.u., whereas the three curves atR`

coincide. ~b! uf(R,u12)u2 at R` in arbitrary units versusu12 in
degrees from calculations performed in theL ~long dashed lines!, V
~short dashed lines!, andA ~continuous lines! gauge, respectively
In each gauge, the calculations are reported for four differ
choices of the He ground-state wave function~see text!. All plots
refer to DPI of He atE15E253 eV.
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tant in theL, moderate in theV, and hopefully nonsignifican
in theA gauge. This is exactly what is observed on the low
part of Fig. 1. From this analysis, we conclude that~i! we
will have better chances to achieve gauge independe
when we consider the general 6D case;~ii ! within the present
a5p/4 model, the best results are obtained in the accel
tion gauge, which is the one used throughout the calculat
presented below.

Another drawback of the present model is that abso
values of the cross sections cannot be obtained. This is
cause thea5p/4 constraint forbids populating the sing
escape channels, leading to a large systematic overestim
of the double escape cross sections. Accordingly, all cr
sections presented below have been renormalized to ex
ment.

2. A comparison with recently measured TDCS

Figure 2 compares our calculations with the most rece
measured TDCS for helium@1,50#. We have selected th

FIG. 2. s (g,2e)
(3) ~in arbitrary units! measured for He atE15E2

5E/2 and for geometries wherek1 ,k2, andẑ lie in the same plane

with ẑ along the main axis of polarization. The direction of o

electron, marked by the value ofu15(ẑ,k1), is fixed within a finite
angular sector. The direction of the other electron sweeps the w

plane. It is marked by the angleu25(ẑ,k2), which varies from 0°
to 360°. Continuous line: present calculations, taking account of
opening angle foru1, not foru2. Points with error bars: experiment
from @50# at E520 eV with 123.5°<u1<140.5° ~a!, 106.5°<u1

<123.5° ~b!, and 89.5°<u1<106.5° ~c!, from @1# at E56 eV with
20°<u1<40° ~d! and 40°<u1<65° ~e!, and at E51 eV with
40°<u1<65° ~f!.
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results obtained under the conditions of validity of thea
5p/4 model, that is to say, at equal sharing of the exc
energy between the two electrons and, by analogy with
EWRM, at low excess energy. At 20 eV excess energy,
observe a good qualitative agreement between experim
and theory, whatever the direction ofk1 ~Fig. 2!: we repro-
duce the double lobe experimental structure, but the an
between the two lobes is a bit too large, which indicates
underestimation of the angular correlation. This agreem
seems to improve at 6 eV excess energy, as both sides o
main peak are well reproduced in part~d! of Fig. 2, although
some disagreement remains in part~e!. This tendency is con-
firmed at 1 eV, where the position and width of the ma
peak are obtained quantitatively@see part~f!#.

The hypothesis that our model improves as energy
creases will be tested more carefully in the near future
TDCS measurements in helium at 0.1 eV@3#. For the mo-
ment, we focus on the energy domain from about 1 eV to
eV, where numerous measurements are available, and
turn to representative quantities, the energy evolution
which can be represented in a compact form.

The TDCS obtained at equal energy sharing is w
known to factor out exactly into ageometricalfactor, which
can be set up from the Stokes parameters of the incident
and trigonometric functions of the spherical angles of
two electrons, and acorrelation factor, depending only on
the correlation angleu12 and on the total energyE, which
contains all the dynamical information. Previous calculatio
within the Wannier mechanism@16–21# have predicted this
factor to be a Gaussian function of (p2u12) with a full
width at half maximum~FWHM! G(E) proportional to the
one-fourth power of the excess energy. The values of
proportionality coefficient reported by the various autho
were notably different:G05103, 91, 66.7 °(eV)21/4 in
@20,18#, and @16#, respectively. Other authors@22,23#, how-
ever, demonstrate that the Wannier mechanism itself, wh
is valid only in the Coulomb zonea0<R<(4Z21)/EA2
with a0 the Bohr radius, does not determine the final angu
distribution. The latter can be derived, within this mech
nism, only if a specific initial condition is introduced at th
boundary of the inner reaction zone. The initial conditio
which are implicitly assumed in the calculations leading
the Gaussian model for the correlation factor@16–21# have
been found in@22# to be rather unrealistic. Despite thes
weaknesses of the Gaussian model, and despite the fac
the energy domain of validity of the Wannier thresho
mechanism itself has never been fully established, it has
come common practice to deriveG values by fitting the ex-
pressions derived from the Gaussian model to the meas
cross sections. We have used the same procedure he
extractG values from ourab initio calculations: this we do
just for the sake of comparison with experimentalG values;
a critical comparison between our present results and
Gaussian model is reported below.

The results are summarized on part~a! of Fig. 3. The
agreement between our results and experiment is excelle
the eV range, but it seems to deteriorate as the ene
reaches the tens of eV range, as already noted from the
gular patterns on Fig. 2. This might indicate that the ene
is then high enough to liberate the electron pair from
influence of the potential surface, making deviations fro
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the a5p/4 ridge compatible with double escape. If this
the case, relaxing the constrainta5p/4, either by allowing
small a motions aroundp/4 according to the Wannie
mechanism, or by letting this variable be free, should rem
this deficiency. But this disagreement could also result
some extent, from the above-mentioned ill-defined chara
of G.

A quantitative estimate of the latter is given in part~a! of
Fig. 3 by the reducedx2 associated with the best fit of th
Gaussian model to our numerical calculations. Its rapid
crease with increasing energy reflects the growing disag
ment between the symmetric shape of the calcula
uF(R` ,u12)u2 and the asymmetric shape of the correspo
ing ansatz based on the Gaussian approximation, as show
more detail on Fig. 4. The Gaussian approximation ind
seems to be acceptable below 1 eV. Below this limit,
have fitted a two-parametersG5G0 Eg law to our computed
values of the FWHM and foundG0569.7° (eV)2g and g
50.19. Theg value is within 25% of the 0.25 value pre
dicted in @16–21#. The G0 value is close to the
66.7° (eV)21/4 value of@16#. This relative agreement, how
ever, should be considered as accidental, given the arbi
assumptions leading to the Gaussian model@22,23#.

In order to test the Wannier assumption of smallu12 mo-
tions aroundp, we have performed additional calculation
with the three-body potential replaced by its quadratic

FIG. 3. ~a! Full width at half maximumG of the angular corre-
lation function in the Gaussian approximation~in degrees! versusE
~in eV! on a semilogarithmic scale. Continuous line: present st
dard calculation. Short dashed line: present calculation with a q
dratic expansion of the three-body potential with respect top
2u12) in the outer region. Symbols: experimental results w
crosses@1#, right triangles@46#, plus signs@51#, circles @52#, and
squares@53#. The error bars of the experimental results, which
almost masked by the symbols used, have been omitted for leg
ity. The long dashed line is the reducedx2 of the fit used to extract
the FWHM from our standard calculation~see text!, the value of
which is 1 at 0.3 eV.~b! Cut of the three-body potential~in a.u.!
alongu12 ~in degrees! at R510 a.u. anda5p/4. Continuous line:
exact potential. Dashed line: quadratic expansion in (p2u12).
y
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pansion inp2u12 in the external region, the inner region
calculation, and hence the initial condition atR0, being un-
changed. The result is represented by the short dashed c
on part ~a! of Fig. 3. The latter lies above the former co
tinuous line throughout the energy range, with the gap
tween the two curves increasing on the low-energy side. T
means that the quadratic approximation underestimates
angular correlation, all the worse as energy decreases. Th
easily understood from theu12 cuts of the three-body poten
tials displayed on part~b! of Fig. 3. The exact potential lies
above its quadratic approximation throughout the range
variation ofu12. The two curves remain within 10% of eac
other for uu122180°u<120°, but they diverge very rapidly
outside this interval, with the exact potential displaying in
nite repulsive walls, whereas its quadratic approximation
mains finite and attractive everywhere. It is this lack of
classically forbidden region which explains the poor perf
mance of the quadratic approximation.

Integration of the TDCS over the direction of one ele
tron’s momentum yields the doubly differential cross sect
~DDCS!. The shape of this DDCS is well known to be co
trolled by the asymmetry parameterb(E). The physical con-
tents of the latter obviously are poorer than that ofG. How-
ever, by contrast toG(E), b(E) is defined from first
principles without relying upon any approximation. Th
makes it a better testing bench for our method. An excell
agreement is observed on Fig. 5 between our calculat
and experiment over the entire energy range, given the
perimental uncertainties. A poor performance of the q
dratic approximation inp2u12 is observed as before.

V. CONCLUSION

We have presented a method for computing the dou
photoionization cross sections of He and, more generally
two electron atoms. This method isab initio. The only ap-
proximations are the semiclassical treatment of the mo
over the hyperradiusR, and the local neglect of nonadiabat
radial couplings, which are applied in the external regionR
.R0: the fact that our results do not depend onR0 anymore,
as soon asR0 exceeds about 10 a.u., demonstrates the va
ity of these approximations. It is worth noting that the ele

-
a-

e
il-

FIG. 4. uf(R,u12)u2 at R` in arbitrary units versusu12 in de-
grees for increasing total energies~in eV!: 0.01 ~a!, 0.1 ~b!, 10 ~c!,
and 20~d!. Continuous lines: present calculation. Dashed lines: b
fit of the Gaussian prediction to the calculated function~see text!.
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tronic correlations are treated nonperturbatively over
entire configuration space: this makes our method part
larly valuable in the near-threshold domain where previo
ab initio methods meet convergence problems.

FIG. 5. Asymmetry parameterb versusE ~in eV! on a semi-
logarithmic scale. Continuous line: present standard calculat
Dashed line: present calculation with a quadratic expansion of
three-body potential with respect to (p2u12) in the outer region.
Symbols: experimental results with diamonds@54#, circles @55# as
cited in @8#, and up triangles@56# and @57# as cited in@56#.
i,
,

.
,

tt
e
u-
s

We have presented an application of this general met
to a model problem of reduced dimensionality: doub
photoionization of He witha5arctan(r1 /r2) frozen at its
saddle point valuep/4 by analogy with EWRM@30,31#. We
have thus proved that the method proposed is sound
numerically effective.

The implementation of the method in the general ca
where a is free is under progress. We anticipate that t
gauge dependence, the lack ofabsolutecross sections, and
the deterioration of the accuracy on the high-energy s
observed within thea5p/4 model, will be remedied by re
laxing the constraint on this radial correlation angle. Detai
comparison with other existing theories will be given in th
general six-dimensional case.
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