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Calculation of the positron bound state with the copper atom
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A relativistic method for the calculation of positron binding to atoms is presented. The method combines a
configuration-interaction treatment of the valence electron and the positron, with a many-body perturbation-
theory description of their interaction with the atomic core. We apply this method to positron binding by the
copper atom and obtain a binding energy of 170 me\ML0%). To check the accuracy of the method we use
a similar approach to calculate the negative copper ion. The calculated electron affinity is 1.218 eV, in good
agreement with the experimental value of 1.236 eV. The problem of convergence of positron-atom bound-state
calculations is investigated, and means to improve it are discussed. The relativistic character of the method and
its satisfactory convergence make it a suitable tool for heavier af®1650-294719)08311-(

PACS numbgs): 36.10—k, 31.15.Ar, 31.25.Eb

I. INTRODUCTION methods of atomic structure calculations.
The main difficulty in calculations of positron interaction

Bound states of positrons with neutral atoms have not yetvith atoms comes from the strong electron-positron Cou-
been detected experimentally. For a long time the prevailingomb attraction, which leads to virtual positronium formation
view was that neutral atoms do not bind positrons. For ex{6]. One can say that it gives rise to a specific short-range
ample, Aronsonet al. [1] proved that positron binding to attraction between the positron and the atom, in addition to
hydrogen is not possible, and Gerttgral.[2] showed that a  the usual polarizational potential which acts between a neu-
ground-state helium atom could not bind a positron. In afral target and a charged projectl&7—19. This attraction
number of calculations positron binding was observed forcannot be treated accurately by perturbations and some all-
alkalis and second column ator®-5]. However, important  order technique is needed. In our earlier word 8,19 we
physical effects, such as virtual or real positroni(Pg for- used the Ps wave function explicitly to approximate the vir-
mation, were neglected in those works. As a result, the bindtual Ps-formation contribution to the positron-atom interac-
ing was largely considered as an artifact of the approximation. The same physics may also explain the success of the
tions used, or the positron bound states found were unstabfochastic variation method in positron-atom bound state cal-
against Ps emission. This situation has clearly changed nowulations(see Ref[12] and references therginin this ap-
First, a many-body theory calculation by Dzukaal. [6]  proach the wave function is expanded in terms of explicitly
indicated that atoms with larger dipole polarizabilities andcorrelated Gaussian functions which include factors
ionization potentials greater then 6.8 é¥'s binding energy exp(—arﬁ) with interparticle distancesrj;. Using this
can bind positrons, and predicted positron binding energiemethod, Ryzhikh and Mitroy obtained positron bound states
for Mg, Zn, Cd and Hg. Subsequently, a number of recenfor a whole range of atoms with botk<6.8 eV(Li, Na, and
calculations showed, and even proved, for a few lighter atHe 2°S), and|1>6.8 eV (Be, Mg, Zn, Cu, and Ag This
oms, that positron-atom bound states do exist16). method is well suited for few-particle systems. Its applica-

For the problem of positron-atom binding the atomstion to heavier systems is done by considering the Hamil-
should be divided into two groups: those with an ionizationtonian of the valence electrons and the positron in the model
potentiall smaller than 6.8 eV, and those with-6.8 eV.  potential of the ionic core. However, for heavier atoms, e.g.,
For the former the lowest fragmentation threshold of theZn, the calculation becomes extremely time consunhirtg,
positron-atom system is that of a positive ion and a Ps atormand its convergence cannot be ensured.
Consequently, positron binding to such atoms should rather Another nonperturbative technique is the configuration,
be described as binding of the Ps to the corresponding posinteraction(Cl) method widely used in standard atomic cal-
tive ion. Indeed, the “ion+ Ps” component in their wave culations. This method was applied to the positron-copper

function is large, as shown by the calculations forelli; ~ bound state in Ref16]. In this work the single-particle or-
Na-e®, and He 3S-e™ [7,9-17. For atoms with >6.8 eV  bitals of the valence electron and positron are chosen as
the positron-atom bound state is indeed an “ateéme™” Slater-type orbitals, and their interaction with theCecore

system, at large positron-atom separations. However, this approximated by the sum of the Hartree-Fock and model
process of virtual Ps formation in this system is very impor-polarization potentials. The calculation shows slow conver-
tant [6], especially wherl is close to 6.8 eV. This effect gence with respect to the number of spherical harmonics in-
makes positron-atom bound states a strongly correlateduded in the CI expansion, =10 still not being suffi-
atomic system. The correlations in it are stronger than thoseient to extrapolate the results reliably Ltg,,,— .

one finds in its electron analogs, atomic negative ions. This In the present work we calculate the ground states of
feature makes the positron-atom bound complexes very incue® and Cu systems using a Cl calculation within a
teresting for atomic theory. This also makes them a challengspherical cavity of finite radiuR. This procedure facilitates
ing testing ground for applications of modern numericalthe convergence of the Cl expansion in the difficult positron-
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atom case, and we show how to extrapolate the results to tha

B b a [ a a
R—c limit. The CI method which we use is based on the é :Ot S "% m b m_~7
combined relativistic configuration interaction and many- ” P b
<z
2 3 4

body perturbation theory methd@I+MBPT) developed in

our earlier work[20] for precise calculations of many-

electron atoms with more than one valence electron. It was

shown there that correlations between the core and valence FIG. 1. Second-order diagrams for the self-energy of the va-
electrons are very important, and often contribute more tqence electron % operatoy. Summations over excited electron
the energy than the correlations between the valence elegtatesy and 8 and core hole states andn are assumed.

trons. The core-valence correlations are included into the ef-

fective CI Hamiltonian of valence electrons by means of\\here ¢, and ¢; are the electron and positron orbitals, re-
many-body perturbation theory. This allows us to achieve Zpectively. The expansion coefficier®; are to be deter-

high accuracy in calculations of atomic energies and tranSigineq by the diagonalization of the matrix of the effective
tion amplitudes. In the present work we adapt this approacky| yamiltonian acting in the Hilbert space of the valence

to the positron problem. _ electron and the positron,
As a single-particle basis for the CI calculations we use

B-splined[21] Hartree-Fock wave functions in the cavity of o & o s

finite radiusR. The B-spline technique has been successfully Heir=hNethp+hep,

used in atomic calculations for many yedeee, e.g., Ref.

[22]), and was recently incorporated with the 4OIBPT A Ze? . .

method[23]. The use oB splines ensures good convergence  h.=cap+(B—1)mc— — +VN =V A+ S,

of the CI calculation with respect to the number of radial €

orbitals. Convergence is further controlled by varying the

cavity radius, while the effect of a finite cavity size on the N NI

energy of the system is taken into account analytically. hp=Ccap+(—-1)mc*+ —— Va3, 2
We have chosen the copper atom for the positron bound- .

state calculations for several reasons. First, this atoms looks

like a good candidate for positron-atom bounding. It has a no_ e

large polarizability of 40 a.u.24], and its ionization poten-

tial 1=7.724 eV[25] is not too far from the Ps binding

energy of 6.8 eV, which ensures a sizable contribution of r r . . . I

virtual Ps to the positron-atom attraction. Second, copper ha\gherehe andhy the effectlve slngl.e—partlcle Hgmlltonlans of

a relatively simple electronic structure with only one valenceth€ electron and positron, and, is the effective electron-

electron above closed shells. This makes the positron-copp@PSitron two-body interaction. Apart from the relativistic

problem effectively a two-particle problem well suited for Dirac operatorh, and h, include the direct and exchange

application of the C-FMBPT method. Third, there are accu- Hartree-Fock potentials of the core eIectro\vaJ’1 and

rate experimental data and a number calculations for the e/ 1 ' respectively. The additiondl operators account for

ergy of the copper negative ion. Thus, we can test OUgorrelations involving core electrorisee Ref[20] for a de-

method on Cu, and compare the results with th(_)se Obtamedtailed discussion We calculateS, using the second-order
by other techniques. Last but not least, the existence of the i . i s )
BPT in the residual Coulomb interactiok. describes the

positron-copper bound state was predicted by Ryzhik an¢ .
Mitroy [13] in the framework of the stochastic variational interaction between the valence electron and the electrons of

method, which allows us to compare the results obtaine¢he core. All four second-order diagrams for the are pre-

with the two different techniques. sented in Fig. ﬁp is the correlation interaction between the
positron and the core. In the second or&gris represented
Il. METHOD OF CALCULATION by a sole digram in Fig. 2. Both operators are often called

correlationpotentials because theseonlocal operators can

be included into the equations for the single-particle orbitals
We use the relativistic Hartree-Fock method in W& *  together to the Hartree-Fock potential, and 3, are

approximation to obtain the single-particle basis sets of elecenergy-dependent operators, which are different for the elec-

tron and positron orbitals and to construct an effectiveron and the positron. They are calculated separately for each

Hamiltonian. The main point for this choice is the simplicity partial wave, 6,5, P12, P32, etc). However, at large dis-

of the MBPT, as discussed in R¢20]. The self-consistent tances both operators have the same asymptotic behavior,
potential is determined for the Cuion and the single-

A. Effective Hamiltonian

particle states of the external valence electron and the posi- “ B b
tron are calculated in the field of the frozen core.
The two-particle electron-positron wave function is given ?
by the CI expansion >
W(rg ,rp) = |§]: Cij Ui(re) ¢j("p), (1) FIG. 2. Second-order diagram for the positron self-ene@y (

operato). The double line denotes positron states.
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a . b a N b a B b B splines are constructed on them as piecewise polynomials
& c o § c S S of a certain degree. They are bell-shaped overlapping smooth
¢ d SV d $V d functions. With an appropriate choice of the radial mesh they

can approximate atomic wave functions to a very high pre-
cision. Note that it is not convenient to uBesplines directly
1 2 3 in Cl or MBPT calculations because of their nonorthogonal-

FIG. 3. Screening of the positron-electron Coulomb interactionity. Instead we use their linear combinations, which are
eigenstates of the single-particle Hartree-Fock Hamiltonian.

(S¢p Operatoy. ] :
This ensures orthogonality, allows to separate core and va-
we? I_ence states and improves convergence, sin_ce only a rela-
Se(r,r’), S,rr)=- —45(r—r'), (3) tively small number of lower Hartree-Fock eigenstates are
2r sufficient for the convergence of the CI calculation. This also

means that while we use the saBeplines for the electron
wherea is the dipole polarizability of the atomic core. This and positron states the resulting single-particle basis states
asymptotic form comes from the dipole contribution of the gre different, because the Hartree-Fock Hamiltonians for the
first diagram in Fig. 1 for the electron, and diagram in Fig. 2g|ectrons and positrons are different. Another advantage of
for the positron. Formula3), with some empirical cutoff at o ;56 0B splines is that the convergence can be controlled
small distances, is often used as an approximation for thBy the cavity radiusR (its reduction leads to a more rapid
correlation potentials, and is usually called the “polarizationconvergenc)e while its effect on the energy is taken into

potential. account analytically.

2.¢p is another type of correlation between the external
particles and core electrons. It can be described as screening
of Coulomb interaction between the external electron and
positron by the core electrons. There are, in all, six second- The choice of the cavity radiuR (see abovgis dictated
order diagrams foﬁep_ Three of them are shown in Fig. 3. by.a compromise between the convergence rate and the re-
The other three can be obtained from them by mirror reflecquired accuracy of the calculations. On the one hand, the
tion with respect to the vertical axis. When the electron andadius must be large enough to accommodate the wave func-

the positron are well outside the atomic C(ﬁtgpis given by tion of the state under investigation, e.g., the positron-atom
the following asymptotic expression: bound state. On the other hand, smaller radii mean faster

convergence, both with respect to the number of radial orbit-
als and, what is especially important for positron-atom cal-

33 (4) culations, to the number of angular harmonics. This effect is
lelp very strong since convergence is determined by the cavity
o ) . volume which is proportional t&R®, and having a smaller
Similarly to Eq.(3), this formula is often used to construct pj;s means that one needs fewer basis states to describe the
rough approximations foiep. Such potentials are called the wave function.
“dielectronic correction” or “two-body polarization poten-  The problem of convergence is crucial for the positron-
t'aL”_ ) ] o atom interaction. As discussed in Sec. I, the positron tends to

Diagrammatic expansions in Figs. 1, 2, and 3 enable ongyrm virtual Ps with the external atomic electrp®,17,18.
to |r_1clude valence-core correlations in ah .|n|t|o manner. e positronium radiusp~2a, can be small compared to
To m_cref';\se th? accuracy of the calculations, hlgher-ordetrhe characteristic size of the positron-atom bound-state wave
contributions to>, can be taken into eAlccount effectively, by fynction, r~1/k>a,, wherea, is the Bohr radius. To de-
introducing a numerical factor befole. For example, the scribe Ps at large separations from the atom expandipn
coefficient for3,, can be chosen by fitting the energies of theneeds to be extended to very high values of angular momen-
neutral atom states to the experimental data. In doing so thieim L and principal quantum numbarto account accurately
important nonlocal structure of the operators is preserved. for the virtual Ps formation. This problem is well known in
positron-atom scattering calculations; see, e.g., R28].
Smaller cavity radii force virtual Ps to be at smaller dis-
) ] ] ) tances, thereby improving the convergence significantly.

We useB-spline basis functionf21] to calculate the dia-  However, the energy of the system is affected. Therefore, the
grams for, and to construct the single-particle orbitals for convergence and the accuracy of the calculation can be really
the CI expansiofiEq. (1)]. For this purpose the atomic sys- improved only if the effect of a finite-radius cavity on the
tem is confined to a cavity of radilR, and the wave func- energy is taken into account.
tions are set to zero at=R. For a sufficiently largeR the To consider the effect of cavity on the energy of the sys-
error introduced by this boundary condition is very small fortem let us consider the problem of a particle weakly bound in
atomic-size binding energies; exp(—2«R), wherek is re-  an s state by a finite-range potential. ‘Weakly bound’ here
lated to the binding energy as,= «?42/2m. However, for ~means that the binding energy is much smaller than the typi-
weakly bound states, e.g. those of the positron with the atontal scale of the potential. This is definitely true for positron-
this error has to be considered more carefi#ige below. atom bound states whose binding energy is much smaller
The interval O,R] is divided into a number of segments, andthan 1 eV. To determine the radial wave functigfr) at

C. Effect of finite cavity size

2
a€’rg-ry
Sedlep)=—755—

B. Basis set
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large distances it is sufficient to impose on it a boundary
condition

-0.25
1d
-2 =k 5)
X dr r=a

at the outer radius =a of the potential well[27]. The « -0.26

parameter is related to the energy of the bound state =~
— k?%2/2m, and determines the asymptotic form of the wave "5
function, x(r)=Ae “". K I

The boundary condition is unchanged when we place the », -0.27
system in the cavity of finite radiuR, R>a, provided the g I
energy of the bound state is still small. However, the wave &
function must now turn into zero at the cavity radiggR) i
=0. This shifts the energy of the weakly bound state up 28
from & to some other valueg, which depends on the radius
of the cavity. The Schidinger equation foa<r <R, where
the potential is vanishingly small, is

5 4 2 0.29
he dy : .
ﬁP+SRX(r)_O' ©) T R B RN PR
0 5 10 15 20
n
After solving it with boundary condition&) and y(R) =0,
one obtains a negative eigenvaltg= — K%hZ/Zm, where FIG. 4. Energy of Ca" as a function of the number of radial
electron and positron basis functions in each partial wavg,(
k= krltani kg(R—a)]; (7) =10). Open circles are foR=15a, and solid ones forR

=30a,.
if Ris not too smallR—a>«"1. As one can see, foR
— o the solution of Eq(7), kg, approaches its asymptotic cavity radii R. The uncertainly in the value di is in fact
value k, and the energy in the cavityz—e. For a smaller unimportant, as long as we consider weakly bound states for
cavity radius the eigenvalue becomes positiver =~ Which ka<1.

= szﬁz/Zm, wherekg, is found from Note that the wave function is also affected by the finite
cavity size. This should be taken into account in calculations
k=kg/tarkgr(R—a)]. (8) of the annihilation rate and other matrix elements. The anni-

hilation rate is proportional to the probability of finding the
This means that the state which is bound may appear gsositron close to the atom. Fa<R the wave function at
unbound due to the effect of the cavity. Equati8his valid  r<a is affected via normalization only. The change of the
for kg(R—a) <w/2. Otherwisex<0, and the energy is too normalization can be found by comparing the normalization

high, so that it remains positive even when the cavity wall isintegral forr >a calculated numerically within the cavity,
removed.

Equations(7) and (8) can be used to find the infinite- 5
cavity energys = — x%42/2m from the energyx calculated L x“(r)dr,
for the finite cavity radiuR. It is important that these for-
mulas are insensitive to the detailed shape of the atomic pqgjth the analytical value
tential, and depend only on the atomic radiud he value of
a can be estimated from the position of the classical turning foc

1
pointr, in the potential for an external atomic electron, efz”dr=ﬂe72"a.

a

2 2

e

rC 2a0V2

e

Ill. RESULTS AND DISCUSSION

A. Copper negative ion
wherev is the effective quantum number of the valence elec- .
tron. Beyond the turning point the valence electron’s wave To test the method and find out what accuracy can be

non decrases exponntay. as ). Threore, o L2, U5 U SO o o 0 T
a resonable estimate faris p p y very

the positron-copper interaction considered above. It should

a=r.+agr=(2v>+v)ay. (9)  be mentioned that for Cuonly the electror® operator is
involved (Fig. 1), and for the screening of the electron-
For copper [=0.28349 a.u.p=1.33) this givea~5a,. A  electron interaction, instead of the diagrams on Fig. 3, one
more accurate value afcan be found by applying E§7) to  must use similar diagrams presented[20] (Fig. 4). The
two bound-state calculations performed with two differentresults of calculations for Cu and Cuare presented in Table
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TABLE I. Ground-state energies of Cu and Cuaalculated us- TABLE I1l. Electron affinities of Cu(eV). Comparison with

ing different approximationga.u). other calculations and experiment.
Cu Cu Electron affinity Affinity Ref. Method
RHF? —0.23830 —0.20309 —0.03521 Theory
RHF + 3 P —0.27672 —0.27280 —0.00392 1.00 [28] Nonrelativistic MR CI calculations
Cl¢ —0.23830 —0.26424 0.02594 1.09 [29] Modified coupled pair functional methddelativistic)
Cl+3 d -0.27672 —0.31802 0.04130 1.199 [30]
Cl+ fx> © —0.28394 —0.32869 0.04475 1.236 [31] Relativistic coupled-cluster method
Experimenf —0.28394 —0.32935 0.04541 0.921 [13] Nonrelativistic stochastic variational method
— - - - 091 [16] Nonrelativistic Cl method

8Relativistic Hartree-Fock scheme; a single-configuration approxi- 5qg Present work

mation, no core-valence correlations are included.
bSingle-configuration approximation; core-valence correlations are_L

. 226 [32]
included by means of MBPT. 19358 [33
¢Standard CI method. ‘ [33]
dCI+MBPT method, both core-valence and valence-valence corre-

lations are included. . _ .
€S, for answave is taken with a factdir=1.18 to fit the Cu ground ~ Stochastic variational method, while another result 0.916 eV

state energy. was achieved in the standard CI calculation. Both methods
'Reference$25,33. are variational in nature and differ basically by the form of
the trial two-electron wave function. Since the two results
gree well with each other, good convergence has probably
een achieved in both methods. However, there is a notice-
able discrepancy between their result and the experimental

Experiment

| together with the experimental values. The energies ar
given with respect to the Cucore. The accuracy of the
Hartree-Fock approximation is very poor. The binding en- - . .
ergy of the 4 electron in neutral Cu is underestimated byelectron affinity valug. Erom our point of View the most
about 20%, while the negative ion Ciappears altogether probab[e source of this discrepancy is approximate treatment
unbound(its energy lies above that of the neutral ajoifhe ~ Of the > operator of the valence-core interaction. In their

inclusion of core-valence correlation& Y does improve the works Mitroy a.md.Ryzh|kh use approximate expressions for
the core polarization potentials, based on asymptotic formu-

energy of the neutral atom, but the negative ion is still no S ; N
bound. The standard Cl method, in contrast, takes into atl?s(g) and(4), which include only dipole core polarization in

count the valence-valence correlations, while neglecting th he local energy-independent form. Note again that the actual

core-valence correlations. It does produce binding for thex OPerator is energy dependent. It is different for different
negative ion, but the binding energy is almost two timesangular momenta, and for the electron and positron, while
smaller than the experiment value. Only when both coreth® approximate expressi¢8) is always the same. Note also
valence and valence-valence correlations are included dodkat the screening operathg, depends not only on the states
the accuracy improve significantly. It is equal to 2.6% for theinvolved but also on the multipolarity of the Coulomb inte-
ionization potential of the neutral atom and 10% for the elec-gral. The approximate formuled) describes the dipole part
tron affinity, which is quite good for a relatively simps  of screening only; however, other Coulomb multipoles are
initio calculation. The remaining discrepancy is mostly duealso screened. Even though the largest contribution to
to third- and higher-order correlation correctionsSinsince ~ Screening comes from the dipole term, monopole and quad-

the configuration expansion for Clconverges rapidly, and uPole screening cannot be neglected. For example, mono-
the corresponding error is small. pole screening directly contributes to the diagonal Hamil-

tonian matrix elements in important configurations like® 4
in Cu~, while dipole screening affects only the off-diagonal
matrix elements.

To simulate the effects of higher-order terms3nand
thus further improve the accuracy of calculations we intro-

duce numerical factors before the operators to fit the low-
ests, p, and d energy levels of the neutral copper atom.
These factors aré;=1.18, f,=1.42, andf4=1.8 in thes, p
andd channels, respectively. Table | shows that these factors The binding energy of Cuis about 0.045 a.u. It corre-
also significantly improve the calculated electron affinity. It sponds to a bound-state parameier0.3, and the cavity
is natural to assume that the same procedure should wodioes not have a noticeable effect on the calculated energies
equally well for the positron-atom problem. of Cu™, let alone Cu. The relative error introduced by the
Results of other calculations of the electron affinity of cavity can be easily estimated from E(), and even for a
copper are presented in Table Il. Note that only a coupledmoderateR=15a, it does not exceed 0.1% for the electron
cluster method produces a result more accurate than ours. affinity.
is interesting to mention among other results the results by For the positron bound state the situation is different. As
Mitroy and Ryzhikh[13,16 who calculated Cu for the indicated by the calculation of Ref13], the « value for the
same purpose as we do, i.e., to gauge the accuracy of thédu-e™ bound state is about 0.1. This is why we have per-
method for the positron-atom problem. Their first result forformed the calculation of the positron-atom bound state us-
electron affinity to copper, 0.921 eV, was obtained by theng two different cavity radii,R=15a, and R=30a,, to

B. Positron binding to copper
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] yield identicalx from Eq.(7), for the atomic potential radius

i of a=5.58,. The final binding energy obtained is 0.0062
a.u., or 170 meV. This should be compared to the result of
Ryzhikh and Mitroy[13], which is 0.005518 a.u. or 150
meV. From the discussion of the accuracy of calculations
which follows we conclude that the difference between two
results is within the accuracy of both methods. A similar
value is achieved in the CI calculati¢@6], which used 14
radial orbitals in each partial wave up tg,,=10, after
extrapolation td. 5= . However, the latter procedure has
considerable uncertainties. There are several factors which
affect the accuracy of our calculations.

(i) The accuracy of calculation & and contributions of
higher-order correlations. This can be estimated by compar-
ing calculations with and without the fitting parameters, as
discussed in Sec. Il A. The introduction of the fitting param-

eters for the electron part of the correlation oper&@rre—
duces the binding energy by about 0.0009 a.u. However, the
relevant uncertainty must be considerably smaller. First, we
saw that the use of fitting parameters really improves the
L calculated electron affinity of copper. We should expect the
0 0.2 04 06 08 1 same effect for the positron binding energy. Second, the ef-
1/(L+1) fects of the fitting parameters on the electron and positron

FIG. 5. Energy of Ca" as a function of maximal orbital mo- operatorsS,, andip largely cancel each other.
mentum of the electron and positron orbitals in the Cl expansion. (i) Incompleteness of the basis set. We have seen from
Open circles are foR=158,, and closed ones fdR=30a,. Figs. 4 and 5 that the level of convergence achieved is very
high and the corresponding uncertainty is small. Neverthe-
make sure that convergence is really achieved. The conveless, there is a hidden uncertainty related to the radial coor-
gence pattern with respect to the number of basis states usgghate mesh used, the number of splines, and other param-
is illustrated in Figs. 4 and 5. Both plots show the energy ofeters which determine the details of the numerical procedure.
the electron-positron pair moving in the field of Guwith  Varying these parameters shows that their effect on the bind-
respect to the energy of the Cion (in atomic unit3. Empty  ing energy does not exceed 0.001 a.u., when estimated con-
circles correspond t&=15a,, while solid ones correspond servatively.
to R=30a,. The dashed line shows the ground-state energy (iii) Finite cavity radius. This effect on the binding energy
of the neutral copper atom. The positron-atom state is boundalculated aR=30a, is very small (~0.0001 a.u.). Since
when its energy is below the dashed line. Figure 4 shows thghe results foR=15a, and R=30a, coincide for very rea-
electron-positron energy of Cel* as a function of the num- sonable value of the positron-atom potential radias
ber of radial basis functions in each electron and positron=5.5a,, it is reasonable to believe that the corresponding
partial waven. The total number of partial waves is fixed by uncertainty is very small too.
Lmax=10. Note that convergence is visibly faster for the Note that the difference between our calculated electron
smaller cavity radius. FOR=15a, saturation begins at affinity of copper and the experimental value is 0.00066 a.u.
~10, while forR=30a, the same level of saturation can be If this value is compared with the numbers presented above,
seen only an~18. Figure 5 shows the Cei* energy as a it is evident that it also gives a reasonable estimate of the
function of the number of partial waves included, while theaccuracy of the calculation of the positron-copper binding
number of radial wave functions in each wave is fixedhat energy(about 10%. Since the accuracy of calculations by
=16 for R=15a, andn= 22 for R=30a,. Saturation can be Mitroy and Ryzhikh[13] was not discussed in their paper,
clearly achieved for both radii &t,,,,=10. The difference in the only thing we can do to estimate it is to use the same
energy at the lasfiowes) points forR=15a, andR=30a, approach. Their best result for Cudiffers from the experi-
in both figures is the effect of a finite cavity radius. It shifts mental value by 0.0116 a.§20% of the positron binding
the energy obtained in the=15a, calculation up with re- energy. If we adopt this value as the uncertainty of their
spect to theR=30a, result. This effect can be easily taken result for the positron binding by copper, we see that the two
into account using the formulas presented in Sec. Il C. Iresults for Cue™ bound state agree with each other within
turns out that the results for both cavity radii coincide, i.e.,the accuracy of the methods.
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