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Calculation of the positron bound state with the copper atom

V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati
School of Physics, The University of New South Wales, Sydney 2052, Australia

~Received 25 June 1999!

A relativistic method for the calculation of positron binding to atoms is presented. The method combines a
configuration-interaction treatment of the valence electron and the positron, with a many-body perturbation-
theory description of their interaction with the atomic core. We apply this method to positron binding by the
copper atom and obtain a binding energy of 170 meV (610%). To check the accuracy of the method we use
a similar approach to calculate the negative copper ion. The calculated electron affinity is 1.218 eV, in good
agreement with the experimental value of 1.236 eV. The problem of convergence of positron-atom bound-state
calculations is investigated, and means to improve it are discussed. The relativistic character of the method and
its satisfactory convergence make it a suitable tool for heavier atoms.@S1050-2947~99!08311-0#

PACS number~s!: 36.10.2k, 31.15.Ar, 31.25.Eb
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I. INTRODUCTION

Bound states of positrons with neutral atoms have not
been detected experimentally. For a long time the prevai
view was that neutral atoms do not bind positrons. For
ample, Aronsonet al. @1# proved that positron binding to
hydrogen is not possible, and Gertleret al. @2# showed that a
ground-state helium atom could not bind a positron. In
number of calculations positron binding was observed
alkalis and second column atoms@3–5#. However, important
physical effects, such as virtual or real positronium~Ps! for-
mation, were neglected in those works. As a result, the b
ing was largely considered as an artifact of the approxim
tions used, or the positron bound states found were unst
against Ps emission. This situation has clearly changed n
First, a many-body theory calculation by Dzubaet al. @6#
indicated that atoms with larger dipole polarizabilities a
ionization potentials greater then 6.8 eV~Ps binding energy!
can bind positrons, and predicted positron binding energ
for Mg, Zn, Cd and Hg. Subsequently, a number of rec
calculations showed, and even proved, for a few lighter
oms, that positron-atom bound states do exist@7–16#.

For the problem of positron-atom binding the atom
should be divided into two groups: those with an ionizati
potential I smaller than 6.8 eV, and those withI .6.8 eV.
For the former the lowest fragmentation threshold of
positron-atom system is that of a positive ion and a Ps at
Consequently, positron binding to such atoms should ra
be described as binding of the Ps to the corresponding p
tive ion. Indeed, the ‘‘ion1 Ps’’ component in their wave
function is large, as shown by the calculations for Li-e1,
Na-e1, and He 23S-e1 @7,9–12#. For atoms withI .6.8 eV
the positron-atom bound state is indeed an ‘‘atom1 e1’’
system, at large positron-atom separations. However,
process of virtual Ps formation in this system is very imp
tant @6#, especially whenI is close to 6.8 eV. This effec
makes positron-atom bound states a strongly correla
atomic system. The correlations in it are stronger than th
one finds in its electron analogs, atomic negative ions. T
feature makes the positron-atom bound complexes very
teresting for atomic theory. This also makes them a challe
ing testing ground for applications of modern numeric
PRA 601050-2947/99/60~5!/3641~7!/$15.00
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methods of atomic structure calculations.
The main difficulty in calculations of positron interactio

with atoms comes from the strong electron-positron C
lomb attraction, which leads to virtual positronium formatio
@6#. One can say that it gives rise to a specific short-ran
attraction between the positron and the atom, in addition
the usual polarizational potential which acts between a n
tral target and a charged projectile@17–19#. This attraction
cannot be treated accurately by perturbations and some
order technique is needed. In our earlier works@6,18,19# we
used the Ps wave function explicitly to approximate the v
tual Ps-formation contribution to the positron-atom intera
tion. The same physics may also explain the success of
stochastic variation method in positron-atom bound state
culations~see Ref.@12# and references therein!. In this ap-
proach the wave function is expanded in terms of explic
correlated Gaussian functions which include facto
exp(2arij

2) with interparticle distancesr i j . Using this
method, Ryzhikh and Mitroy obtained positron bound sta
for a whole range of atoms with bothI ,6.8 eV~Li, Na, and
He 23S), and I .6.8 eV ~Be, Mg, Zn, Cu, and Ag!. This
method is well suited for few-particle systems. Its applic
tion to heavier systems is done by considering the Ham
tonian of the valence electrons and the positron in the mo
potential of the ionic core. However, for heavier atoms, e
Zn, the calculation becomes extremely time consuming@15#,
and its convergence cannot be ensured.

Another nonperturbative technique is the configuratio
interaction~CI! method widely used in standard atomic ca
culations. This method was applied to the positron-cop
bound state in Ref.@16#. In this work the single-particle or-
bitals of the valence electron and positron are chosen
Slater-type orbitals, and their interaction with the Cu1 core
is approximated by the sum of the Hartree-Fock and mo
polarization potentials. The calculation shows slow conv
gence with respect to the number of spherical harmonics
cluded in the CI expansion,Lmax510 still not being suffi-
cient to extrapolate the results reliably toLmax→`.

In the present work we calculate the ground states
Cu-e1 and Cu2 systems using a CI calculation within
spherical cavity of finite radiusR. This procedure facilitates
the convergence of the CI expansion in the difficult positro
3641 ©1999 The American Physical Society
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3642 PRA 60DZUBA, FLAMBAUM, GRIBAKIN, AND HARABATI
atom case, and we show how to extrapolate the results to
R→` limit. The CI method which we use is based on t
combined relativistic configuration interaction and man
body perturbation theory method~CI1MBPT! developed in
our earlier work @20# for precise calculations of many
electron atoms with more than one valence electron. It w
shown there that correlations between the core and vale
electrons are very important, and often contribute more
the energy than the correlations between the valence e
trons. The core-valence correlations are included into the
fective CI Hamiltonian of valence electrons by means
many-body perturbation theory. This allows us to achiev
high accuracy in calculations of atomic energies and tra
tion amplitudes. In the present work we adapt this appro
to the positron problem.

As a single-particle basis for the CI calculations we u
B-splined@21# Hartree-Fock wave functions in the cavity o
finite radiusR. TheB-spline technique has been successfu
used in atomic calculations for many years~see, e.g., Ref.
@22#!, and was recently incorporated with the CI1MBPT
method@23#. The use ofB splines ensures good convergen
of the CI calculation with respect to the number of rad
orbitals. Convergence is further controlled by varying t
cavity radius, while the effect of a finite cavity size on th
energy of the system is taken into account analytically.

We have chosen the copper atom for the positron bou
state calculations for several reasons. First, this atoms lo
like a good candidate for positron-atom bounding. It ha
large polarizability of 40 a.u.@24#, and its ionization poten-
tial I 57.724 eV @25# is not too far from the Ps binding
energy of 6.8 eV, which ensures a sizable contribution
virtual Ps to the positron-atom attraction. Second, copper
a relatively simple electronic structure with only one valen
electron above closed shells. This makes the positron-co
problem effectively a two-particle problem well suited f
application of the CI1MBPT method. Third, there are accu
rate experimental data and a number calculations for the
ergy of the copper negative ion. Thus, we can test
method on Cu2, and compare the results with those obtain
by other techniques. Last but not least, the existence of
positron-copper bound state was predicted by Ryzhik
Mitroy @13# in the framework of the stochastic variation
method, which allows us to compare the results obtai
with the two different techniques.

II. METHOD OF CALCULATION

A. Effective Hamiltonian

We use the relativistic Hartree-Fock method in theVN21

approximation to obtain the single-particle basis sets of e
tron and positron orbitals and to construct an effect
Hamiltonian. The main point for this choice is the simplici
of the MBPT, as discussed in Ref.@20#. The self-consisten
potential is determined for the Cu1 ion and the single-
particle states of the external valence electron and the p
tron are calculated in the field of the frozen core.

The two-particle electron-positron wave function is giv
by the CI expansion

C~re ,r p!5(
i , j

Ci j c i~re!f j~r p!, ~1!
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wherec i and f j are the electron and positron orbitals, r
spectively. The expansion coefficientsCi j are to be deter-
mined by the diagonalization of the matrix of the effecti
CI Hamiltonian acting in the Hilbert space of the valen
electron and the positron,

Heff
CI5ĥe1ĥp1ĥep,

ĥe5cap1~b21!mc22
Ze2

r e
1Vd

N212V̂exch
N211Ŝe ,

ĥp5cap1~b21!mc21
Ze2

r p
2Vd

N211Ŝp , ~2!

ĥep52
e2

ure2r pu
2Ŝep,

whereĥe andĥp the effective single-particle Hamiltonians o
the electron and positron, andĥep is the effective electron-
positron two-body interaction. Apart from the relativist
Dirac operator,ĥe and ĥp include the direct and exchang
Hartree-Fock potentials of the core electronsVd

N21 and

Vexch
N21 , respectively. The additionalŜ operators account fo

correlations involving core electrons~see Ref.@20# for a de-
tailed discussion!. We calculateŜ using the second-orde
MBPT in the residual Coulomb interaction.Ŝe describes the
interaction between the valence electron and the electron
the core. All four second-order diagrams for theŜe are pre-
sented in Fig. 1.Ŝp is the correlation interaction between th
positron and the core. In the second orderŜp is represented
by a sole digram in Fig. 2. Both operators are often cal
correlationpotentials, because thesenonlocal operators can
be included into the equations for the single-particle orbit
together to the Hartree-Fock potential.Ŝe and Ŝp are
energy-dependent operators, which are different for the e
tron and the positron. They are calculated separately for e
partial wave, (s1/2, p1/2, p3/2, etc.!. However, at large dis-
tances both operators have the same asymptotic behavi

FIG. 1. Second-order diagrams for the self-energy of the

lence electron (Ŝe operator!. Summations over excited electro
statesa andb and core hole statesm andn are assumed.

FIG. 2. Second-order diagram for the positron self-energy (Ŝp

operator!. The double line denotes positron states.
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PRA 60 3643CALCULATION OF THE POSITRON BOUND STATE . . .
Se~r ,r 8!, Sp~r ,r 8!.2
ae2

2r 4
d~r2r 8!, ~3!

wherea is the dipole polarizability of the atomic core. Th
asymptotic form comes from the dipole contribution of t
first diagram in Fig. 1 for the electron, and diagram in Fig
for the positron. Formula~3!, with some empirical cutoff at
small distances, is often used as an approximation for
correlation potentials, and is usually called the ‘‘polarizati
potential.’’

Ŝep is another type of correlation between the exter
particles and core electrons. It can be described as scree
of Coulomb interaction between the external electron a
positron by the core electrons. There are, in all, six seco
order diagrams forŜep. Three of them are shown in Fig. 3
The other three can be obtained from them by mirror refl
tion with respect to the vertical axis. When the electron a
the positron are well outside the atomic core,Ŝep is given by
the following asymptotic expression:

Sep~re ,r p!.
ae2re•r p

r e
3r p

3
. ~4!

Similarly to Eq. ~3!, this formula is often used to constru
rough approximations forŜep. Such potentials are called th
‘‘dielectronic correction’’ or ‘‘two-body polarization poten
tial.’’

Diagrammatic expansions in Figs. 1, 2, and 3 enable
to include valence-core correlations in anab initio manner.
To increase the accuracy of the calculations, higher-or
contributions toŜ can be taken into account effectively, b
introducing a numerical factor beforeŜ. For example, the
coefficient forŜe can be chosen by fitting the energies of t
neutral atom states to the experimental data. In doing so
important nonlocal structure of the operators is preserve

B. Basis set

We useB-spline basis functions@21# to calculate the dia-
grams forŜ and to construct the single-particle orbitals f
the CI expansion@Eq. ~1!#. For this purpose the atomic sys
tem is confined to a cavity of radiusR, and the wave func-
tions are set to zero atr 5R. For a sufficiently largeR the
error introduced by this boundary condition is very small
atomic-size binding energies,;exp(22kR), wherek is re-
lated to the binding energy aseB5k2\2/2m. However, for
weakly bound states, e.g. those of the positron with the at
this error has to be considered more carefully~see below!.
The interval@0,R# is divided into a number of segments, an

FIG. 3. Screening of the positron-electron Coulomb interact

(Ŝep operator!.
e

l
ing
d
d-

-
d

e

er

he

r

,

B splines are constructed on them as piecewise polynom
of a certain degree. They are bell-shaped overlapping sm
functions. With an appropriate choice of the radial mesh th
can approximate atomic wave functions to a very high p
cision. Note that it is not convenient to useB splines directly
in CI or MBPT calculations because of their nonorthogon
ity. Instead we use their linear combinations, which a
eigenstates of the single-particle Hartree-Fock Hamiltoni
This ensures orthogonality, allows to separate core and
lence states and improves convergence, since only a
tively small number of lower Hartree-Fock eigenstates
sufficient for the convergence of the CI calculation. This a
means that while we use the sameB splines for the electron
and positron states the resulting single-particle basis st
are different, because the Hartree-Fock Hamiltonians for
electrons and positrons are different. Another advantage
the use ofB splines is that the convergence can be control
by the cavity radiusR ~its reduction leads to a more rapi
convergence!, while its effect on the energy is taken int
account analytically.

C. Effect of finite cavity size

The choice of the cavity radiusR ~see above! is dictated
by a compromise between the convergence rate and the
quired accuracy of the calculations. On the one hand,
radius must be large enough to accommodate the wave f
tion of the state under investigation, e.g., the positron-at
bound state. On the other hand, smaller radii mean fa
convergence, both with respect to the number of radial or
als and, what is especially important for positron-atom c
culations, to the number of angular harmonics. This effec
very strong since convergence is determined by the ca
volume which is proportional toR3, and having a smaller
radius means that one needs fewer basis states to describ
wave function.

The problem of convergence is crucial for the positro
atom interaction. As discussed in Sec. I, the positron tend
form virtual Ps with the external atomic electron@6,17,18#.
The positronium radiusr Ps;2a0 can be small compared t
the characteristic size of the positron-atom bound-state w
function, r;1/k@a0, wherea0 is the Bohr radius. To de-
scribe Ps at large separations from the atom expansion~1!
needs to be extended to very high values of angular mom
tum L and principal quantum numbern to account accurately
for the virtual Ps formation. This problem is well known i
positron-atom scattering calculations; see, e.g., Ref.@26#.
Smaller cavity radii force virtual Ps to be at smaller d
tances, thereby improving the convergence significan
However, the energy of the system is affected. Therefore,
convergence and the accuracy of the calculation can be re
improved only if the effect of a finite-radius cavity on th
energy is taken into account.

To consider the effect of cavity on the energy of the s
tem let us consider the problem of a particle weakly bound
an s state by a finite-range potential. ‘Weakly bound’ he
means that the binding energy is much smaller than the t
cal scale of the potential. This is definitely true for positro
atom bound states whose binding energy is much sma
than 1 eV. To determine the radial wave functionx(r ) at

n
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3644 PRA 60DZUBA, FLAMBAUM, GRIBAKIN, AND HARABATI
large distances it is sufficient to impose on it a bound
condition

1

x

dx

dr U
r 5a

52k, ~5!

at the outer radiusr 5a of the potential well@27#. The k
parameter is related to the energy of the bound state«5
2k2\2/2m, and determines the asymptotic form of the wa
function,x(r ).Ae2kr .

The boundary condition is unchanged when we place
system in the cavity of finite radiusR, R.a, provided the
energy of the bound state is still small. However, the wa
function must now turn into zero at the cavity radius,x(R)
50. This shifts the energy of the weakly bound state
from « to some other value«R , which depends on the radiu
of the cavity. The Schro¨dinger equation fora,r ,R, where
the potential is vanishingly small, is

\2

2m

dx2

dr2
1«Rx~r !50. ~6!

After solving it with boundary conditions~5! andx(R)50,
one obtains a negative eigenvalue«R52kR

2\2/2m, where

k5kR /tanh@kR~R2a!#; ~7!

if R is not too small,R2a.k21. As one can see, forR
→` the solution of Eq.~7!, kR , approaches its asymptoti
valuek, and the energy in the cavity«R→«. For a smaller
cavity radius the eigenvalue becomes positive,«R

5kR
2\2/2m, wherekR is found from

k5kR /tan@kR~R2a!#. ~8!

This means that the state which is bound may appea
unbound due to the effect of the cavity. Equation~8! is valid
for kR(R2a),p/2. Otherwise,k,0, and the energy is too
high, so that it remains positive even when the cavity wal
removed.

Equations~7! and ~8! can be used to find the infinite
cavity energy«52k2\2/2m from the energy«R calculated
for the finite cavity radiusR. It is important that these for
mulas are insensitive to the detailed shape of the atomic
tential, and depend only on the atomic radiusa. The value of
a can be estimated from the position of the classical turn
point r c , in the potential for an external atomic electron,

e2

r c
5I 5

e2

2a0n2
,

wheren is the effective quantum number of the valence el
tron. Beyond the turning point the valence electron’s wa
function decreases exponentially, as exp(2r/a0n). Therefore,
a resonable estimate fora is

a5r c1a0n5~2n21n!a0 . ~9!

For copper (I 50.28349 a.u.,n51.33) this givesa'5a0. A
more accurate value ofa can be found by applying Eq.~7! to
two bound-state calculations performed with two differe
y

e

e

p

as

s

o-

g

-
e

t

cavity radii R. The uncertainly in the value ofa is in fact
unimportant, as long as we consider weakly bound states
which ka!1.

Note that the wave function is also affected by the fin
cavity size. This should be taken into account in calculatio
of the annihilation rate and other matrix elements. The an
hilation rate is proportional to the probability of finding th
positron close to the atom. Fora!R the wave function at
r &a is affected via normalization only. The change of t
normalization can be found by comparing the normalizat
integral for r .a calculated numerically within the cavity,

E
a

R

x2~r !dr,

with the analytical value

E
a

`

e22krdr5
1

2k
e22ka.

III. RESULTS AND DISCUSSION

A. Copper negative ion

To test the method and find out what accuracy can
achieved, we first apply it to the copper negative ion. This
an effective two-particle problem technically very similar
the positron-copper interaction considered above. It sho
be mentioned that for Cu2 only the electronŜ operator is
involved ~Fig. 1!, and for the screening of the electron
electron interaction, instead of the diagrams on Fig. 3, o
must use similar diagrams presented in@20# ~Fig. 4!. The
results of calculations for Cu and Cu2 are presented in Table

FIG. 4. Energy of Cue1 as a function of the number of radia
electron and positron basis functions in each partial wave (Lmax

510). Open circles are forR515a0, and solid ones forR
530a0.
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PRA 60 3645CALCULATION OF THE POSITRON BOUND STATE . . .
I together with the experimental values. The energies
given with respect to the Cu1 core. The accuracy of the
Hartree-Fock approximation is very poor. The binding e
ergy of the 4s electron in neutral Cu is underestimated
about 20%, while the negative ion Cu2 appears altogethe
unbound~its energy lies above that of the neutral atom!. The
inclusion of core-valence correlations (Ŝ) does improve the
energy of the neutral atom, but the negative ion is still n
bound. The standard CI method, in contrast, takes into
count the valence-valence correlations, while neglecting
core-valence correlations. It does produce binding for
negative ion, but the binding energy is almost two tim
smaller than the experiment value. Only when both co
valence and valence-valence correlations are included
the accuracy improve significantly. It is equal to 2.6% for t
ionization potential of the neutral atom and 10% for the el
tron affinity, which is quite good for a relatively simpleab
initio calculation. The remaining discrepancy is mostly d
to third- and higher-order correlation corrections inŜ, since
the configuration expansion for Cu2 converges rapidly, and
the corresponding error is small.

To simulate the effects of higher-order terms inŜ and
thus further improve the accuracy of calculations we int
duce numerical factors before theŜe operators to fit the low-
est s, p, and d energy levels of the neutral copper atom
These factors aref s51.18, f p51.42, andf d51.8 in thes, p
andd channels, respectively. Table I shows that these fac
also significantly improve the calculated electron affinity.
is natural to assume that the same procedure should w
equally well for the positron-atom problem.

Results of other calculations of the electron affinity
copper are presented in Table II. Note that only a coupl
cluster method produces a result more accurate than ou
is interesting to mention among other results the results
Mitroy and Ryzhikh @13,16# who calculated Cu2 for the
same purpose as we do, i.e., to gauge the accuracy of
method for the positron-atom problem. Their first result
electron affinity to copper, 0.921 eV, was obtained by

TABLE I. Ground-state energies of Cu and Cu2 calculated us-
ing different approximations~a.u.!.

Cu Cu2 Electron affinity

RHF a 20.23830 20.20309 20.03521
RHF 1 S b 20.27672 20.27280 20.00392
CI c 20.23830 20.26424 0.02594
CI 1S d 20.27672 20.31802 0.04130
CI 1 f 3S e 20.28394 20.32869 0.04475
Experimentf 20.28394 20.32935 0.04541

aRelativistic Hartree-Fock scheme; a single-configuration appr
mation, no core-valence correlations are included.
bSingle-configuration approximation; core-valence correlations
included by means of MBPT.
cStandard CI method.
dCI1MBPT method, both core-valence and valence-valence co
lations are included.
eS for ans wave is taken with a factorf 51.18 to fit the Cu ground
state energy.
fReferences@25,33#.
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stochastic variational method, while another result 0.916
was achieved in the standard CI calculation. Both meth
are variational in nature and differ basically by the form
the trial two-electron wave function. Since the two resu
agree well with each other, good convergence has prob
been achieved in both methods. However, there is a not
able discrepancy between their result and the experime
electron affinity value. From our point of view the mo
probable source of this discrepancy is approximate treatm
of the Ŝ operator of the valence-core interaction. In the
works Mitroy and Ryzhikh use approximate expressions
the core polarization potentials, based on asymptotic form
las~3! and~4!, which include only dipole core polarization i
the local energy-independent form. Note again that the ac
Ŝ operator is energy dependent. It is different for differe
angular momenta, and for the electron and positron, w
the approximate expression~3! is always the same. Note als
that the screening operatorŜep depends not only on the state
involved but also on the multipolarity of the Coulomb int
gral. The approximate formula~4! describes the dipole par
of screening only; however, other Coulomb multipoles a
also screened. Even though the largest contribution
screening comes from the dipole term, monopole and qu
rupole screening cannot be neglected. For example, mo
pole screening directly contributes to the diagonal Ham
tonian matrix elements in important configurations like 4s2

in Cu2, while dipole screening affects only the off-diagon
matrix elements.

B. Positron binding to copper

The binding energy of Cu2 is about 0.045 a.u. It corre
sponds to a bound-state parameterk'0.3, and the cavity
does not have a noticeable effect on the calculated ener
of Cu2, let alone Cu. The relative error introduced by t
cavity can be easily estimated from Eq.~7!, and even for a
moderateR515a0 it does not exceed 0.1% for the electro
affinity.

For the positron bound state the situation is different.
indicated by the calculation of Ref.@13#, thek value for the
Cu-e1 bound state is about 0.1. This is why we have p
formed the calculation of the positron-atom bound state
ing two different cavity radii,R515a0 and R530a0, to

i-

re

e-

TABLE II. Electron affinities of Cu~eV!. Comparison with
other calculations and experiment.

Affinity Ref. Method

Theory
1.00 @28# Nonrelativistic MR CI calculations
1.09 @29# Modified coupled pair functional method~relativistic!
1.199 @30#

1.236 @31# Relativistic coupled-cluster method
0.921 @13# Nonrelativistic stochastic variational method
0.916 @16# Nonrelativistic CI method
1.218 Present work

Experiment
1.226 @32#

1.2358 @33#
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3646 PRA 60DZUBA, FLAMBAUM, GRIBAKIN, AND HARABATI
make sure that convergence is really achieved. The con
gence pattern with respect to the number of basis states
is illustrated in Figs. 4 and 5. Both plots show the energy
the electron-positron pair moving in the field of Cu1, with
respect to the energy of the Cu1 ion ~in atomic units!. Empty
circles correspond toR515a0, while solid ones correspon
to R530a0. The dashed line shows the ground-state ene
of the neutral copper atom. The positron-atom state is bo
when its energy is below the dashed line. Figure 4 shows
electron-positron energy of Cu-e1 as a function of the num
ber of radial basis functions in each electron and posit
partial waven. The total number of partial waves is fixed b
Lmax510. Note that convergence is visibly faster for t
smaller cavity radius. ForR515a0 saturation begins atn
'10, while forR530a0 the same level of saturation can b
seen only atn'18. Figure 5 shows the Cu-e1 energy as a
function of the number of partial waves included, while t
number of radial wave functions in each wave is fixed an
516 for R515a0 andn522 for R530a0. Saturation can be
clearly achieved for both radii atLmax*10. The difference in
energy at the last~lowest! points forR515a0 andR530a0
in both figures is the effect of a finite cavity radius. It shif
the energy obtained in theR515a0 calculation up with re-
spect to theR530a0 result. This effect can be easily take
into account using the formulas presented in Sec. II C
turns out that the results for both cavity radii coincide, i.

FIG. 5. Energy of Cue1 as a function of maximal orbital mo
mentum of the electron and positron orbitals in the CI expans
Open circles are forR515a0, and closed ones forR530a0.
r-
ed
f

y
d
e

n
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yield identicalk from Eq.~7!, for the atomic potential radius
of a55.5a0. The final binding energy obtained is 0.006
a.u., or 170 meV. This should be compared to the resul
Ryzhikh and Mitroy @13#, which is 0.005518 a.u. or 150
meV. From the discussion of the accuracy of calculatio
which follows we conclude that the difference between t
results is within the accuracy of both methods. A simi
value is achieved in the CI calculation@16#, which used 14
radial orbitals in each partial wave up toLmax510, after
extrapolation toLmax5`. However, the latter procedure ha
considerable uncertainties. There are several factors w
affect the accuracy of our calculations.

~i! The accuracy of calculation ofŜ and contributions of
higher-order correlations. This can be estimated by comp
ing calculations with and without the fitting parameters,
discussed in Sec. III A. The introduction of the fitting param
eters for the electron part of the correlation operatorŜe re-
duces the binding energy by about 0.0009 a.u. However,
relevant uncertainty must be considerably smaller. First,
saw that the use of fitting parameters really improves
calculated electron affinity of copper. We should expect
same effect for the positron binding energy. Second, the
fects of the fitting parameters on the electron and posit
operatorsŜe and Ŝp largely cancel each other.

~ii ! Incompleteness of the basis set. We have seen f
Figs. 4 and 5 that the level of convergence achieved is v
high and the corresponding uncertainty is small. Nevert
less, there is a hidden uncertainty related to the radial co
dinate mesh used, the number of splines, and other pa
eters which determine the details of the numerical proced
Varying these parameters shows that their effect on the b
ing energy does not exceed 0.001 a.u., when estimated
servatively.

~iii ! Finite cavity radius. This effect on the binding energ
calculated atR530a0 is very small (;0.0001 a.u.). Since
the results forR515a0 andR530a0 coincide for very rea-
sonable value of the positron-atom potential radiusa
55.5a0, it is reasonable to believe that the correspond
uncertainty is very small too.

Note that the difference between our calculated elect
affinity of copper and the experimental value is 0.00066 a
If this value is compared with the numbers presented abo
it is evident that it also gives a reasonable estimate of
accuracy of the calculation of the positron-copper bind
energy~about 10%!. Since the accuracy of calculations b
Mitroy and Ryzhikh@13# was not discussed in their pape
the only thing we can do to estimate it is to use the sa
approach. Their best result for Cu2 differs from the experi-
mental value by 0.0116 a.u.~20% of the positron binding
energy!. If we adopt this value as the uncertainty of the
result for the positron binding by copper, we see that the t
results for Cu-e1 bound state agree with each other with
the accuracy of the methods.
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